Lennard Gaher

Advisor: Fabian Kunze

Saarland University

10 January 2020

Second Bachelor Seminar Talk

Reminder: Complexity Theory in L

m L: call-by-value A-calculus
m reasonable model for computational complexity theory?

m most definitions carry over, i.e.

NP-hard A:=VB,inNP B — B <, A

! [Forster et al., 2019]

Cook’s Theorem3

The satisfiability problem on CNFs SAT is NP-hard.

Given a Boolean formula in conjunctive normal form, does there
exist a satisfying assignment?

No formal proof available?

2At least none that | am aware of
3 The complexity of theorem-proving procedures [Cook, 1971]

Generic NP-hard Problem

Idea: encode computation as Boolean formula

L: non-local computations, too high-level ®

Generic NP-hard Problem for Turing Machines

Idea: encode computation as Boolean formula

GenNP (M, input,t) :=M is a nondet. 1-tape TM
AM accepts on input in < t steps

Generic NP-hard Problem for Turing Machines

Idea: encode computation as Boolean formula

GenNP (M, k,t) :=M is a det. 1-tape TM
A3 input, |input| < k
A M accepts on input in <t steps

Generic NP-hard Problem for Turing Machines

Idea: encode computation as Boolean formula

GenNP (M, k,t) :=M is a det. 1-tape TM
A3 input, |input| < k
A M accepts on input in <t steps

(M, k, t) € GenNP « f(M, k, t) € SAT

Boundedness

SAT formula has a fixed size, but:
m TM may have different space usage depending on input

m TM may take a different number of steps until it halts

Tableau®
T [#] - < |qglo1 Okl = = |#| 1% config
#| 2 config
#] |#| 3 config
t
#
< !

“based on [Sipser, 1997], similar to [Cook, 1971]

String-based Configurations

zTM = {av ba C}

special blanks .. for unused regions of the string

String-based Configurations

zTM = {av bv C} 6(q17 a) = (q27ob7 L)

special blanks .. for unused regions of the string

String-based Configurations

v ={a b, c} (a1, a) = (a2,°b, L)

Non-unique representation: '\ \

~|l-lcla|b|b|~

S| =]a|b|b]|b|-=

special blanks .. for unused regions of the string

Fixed State Position

zTM = {av ba C}

-2 -1 0 1 2 3

left tape half right tape half

Fixed State Position

zTM = {av bv C} 6(q17 a) = (q27ob7 L)

left tape half right tape half

Rewrite Windows: Force Valid Configuration Changes

zTM = {av bv C} 6(q17 a) = (q27ob7 L)

Rewrite Windows: Force Valid Configuration Changes

Ytm ={a, b, c} d(q1,a) = (g2,°b, L)

clagi| b

Rewrite Windows: Force Valid Configuration Changes

v ={a b, c} (a1, a) = (a2,°b, L)

-2 -1 0 1 2 3

Rewrite Windows: Force Valid Configuration Changes

v ={a b, c} (a1, a) = (a2,°b, L)
z > z
2 -1 0 1 2 3
~lclai|b|b|=-|=
w1l |b|b|b| -~
c ‘qf b ai | b ‘ b ‘ b |-

Rewrite Rules

Add one symbol to the right half of the tape:

b|b|=-|-=

b|b| b~

Rewrite Rules

Add one symbol to the right half of the tape:

o1 |o2| - | =

g3 | 01 | 02 o

0i € XTM
g1 | 02 o

03| 01 | 02

Rewrite Rules

Add one symbol to the right half of the tape:

01

0'2 — —

03

g1 | 02 o

o € XM
01 ‘ (%] o (%] o o o o o
03‘01‘02 01‘02 o oy | - | =

Tableau: Deterministic Simulation

#] - < lqglo1 Okl = = |#| 1% config

#| 2" config

ﬁ ﬁ 3 config
t

#

I=2z+1

A~

10

Parallel Rewriting (PR)

Given:
m an alphabet ¥ and a string length /
m an initial string xg € ¥/ and a step count t
m a width w of rewrite windows
m a set of rewrite windows R
m a set of final substring constraints Ry,
Determine: 3 xq,...,x—1 € ¥/ s.t.
m x; ~ xj+1: for all offsets, there exists a rewrite window”

m there exists an element x € Ry, which is a substring of x;_1

11

Nondeterminism

m "Guess” input string of length < k with a single rewrite step
m Add symbols {#, ., x, g~} for initial state g

Initial string:

#
#

Sisl hin

12

Mechanisation: Challenges

m massive number of cases (100): proof heavily relies on
automation
— rewrite rules formalised as inductive predicates

m proofs that rewrites are unique require a lot of inversions

13

B i
Reduction of GenNP to SAT

| Generic Problem on Turing Machines (GenNP) |

~

| Parallel Rewriting (PR) on arbitrary © |

homomorphism

| Binary Parallel Rewriting |

encode bits using boolean variables

| Propositional SAT (FSAT) |

Tseytin transformation

| SAT on CNFs (SAT) |

14

Introduction Parallel Rewriting
00000 0000000

Conclusion

Contributions:

m factorisation of proof® into tractable parts
m changes to the original construction. ..

m ...to fit our notion of Turing machines
m ...to make inductive proofs work nicely

m Coq: verified reduction of GenNP to PR

Roadmap:
m reduction of PR to binary PR
m reduction of binary PR to formula satisfiablity
m (reduction of formula satisfiability to CNF satisfiability)
|

extraction to L

o

[Sipser, 1997]

Context

ooe

15

LOC

Component Spec Proof
preliminaries 86 196
definition of PR 136 232
single-tape TMs 35 78
nondeterminism: Preludes 47 169

reduction of TM to PR 930 1501
encoding of finite types 9 70
list-based rules (wip) 581 672

total 1824 2918

16

Tape Shifts

Add one symbol to the right half of the tape:

01

02

—

—

—

0'1‘0'2

03

01

02

03‘01‘02

17

Tape Shifts
Add one symbol to the right half of the tape:
o1 |02 = | = 01 ‘ g2 | =
o3 |o1|oa| = 03‘01‘02

0i € XTM

17

Tape Shifts
Add one symbol to the right half of the tape:
o1 |02 | ~ | = 01‘02 -
g € ZTM
o3 |o1|oa| = 03‘01‘02

Leave the tape unchanged:

—

o1 02| = | - 01‘02

—

0'1 0'2 — — 0'1‘0'2

17

Tape Shifts
Add one symbol to the right half of the tape:
o102 = | = 01‘02 -
g € ZTM
o3| 01|02 = 03‘01‘02

Leave the tape unchanged:

—

o1 02| = | - 01‘02

0'1 0'2 — — 0'1‘0'2

17

Tape Shifts

Add one symbol to the right half of the tape:

—

ooz | - | = 01‘02
0i € XTM

o3 | 01 | 02 — 0'3‘0’1‘0'2

Leave the tape unchanged:

o1 | o2 | = | = 01‘02‘_

o1 (%] i — N 0'1‘0'2‘ -

17

Tape Shifts
Add one symbol to the right half of the tape:
o102 = | = 01‘02 -
g € ZTM
o3| 01|02 = 03‘01‘02

Leave the tape unchanged:

—

o1 02| = | - 01‘02

0'1 0'2 — — 0'1‘0'2

17

. ~ - -
Polarities { -, -,

)

Add one symbol to the right half of the tape:

oL o2 | - | = 01‘02

Flala| - ;;‘

Leave the tape unchanged:

18

. ~ - -
Polarities { -, -,

)

Add one symbol to the right half of the tape:

oL o2 | - | = 01‘02

Flala| - ;5‘

Leave the tape unchanged:

o)
o

18

Transition Rules — Example meTmmU{.},0€ XM

(q,a) = (p,°b, L):

-1 q?|m o1 ‘ q® | m
~| P B M|
D _ O-l‘qa gl‘az‘qa
oo | p | o | p rﬁ‘;{ p°2
|- - q° | o1 ‘ml
B - e B |

19

Transition Rules — Example meTrmU{.},0€ XM

In Coq mechanisation:
6(q7 a) = (p’ob’ L).

m ‘ q? | m2 m ‘ my ‘ q? q? | m ‘ my
= — — | — - | =
m3 ‘Pml b m3 ‘ mi ‘sz P™| b ‘ mi

Contains garbage, i.e.

19

Representation Relations

Representation of tape halves:

ung| o [-]- [-]-[#]

n

Representation of configurations:

q; (Is,0,rs) ~c | rev left |q°| right |, where:

m /s ~Z left
m rs ~7 right

20

Deterministic Simulation

q; (/S, o, I’S) ~c | rev left |q”| right |
Y $
q; (/S/, o', rs') ~c | rev left' |q’al| right’ |

where Is ~Z' left, rs ~Z right and Is' ~Z" left’, rs' ~% right’

21

Deterministic Simulation

q; (/S, o, I’S) ~c | rev left |q"| right |
Y $
q; (/S/, o', rs') ~c | rev left' |q’al| right’ |

where Is ~Z' left, rs ~Z right and Is' ~Z" left’, rs' ~% right’

left q right

21

Deterministic Simulation

q; (/S, o, I’S) ~c | rev left |q"| right |
Y $
q; (/S/, o', rs') ~c | rev left' |q’al| right’ |

where Is ~Z' left, rs ~Z right and Is' ~Z" left’, rs' ~% right’

left hy q° hy, right

21

Deterministic Simulation

q; (/S, o, I’S) ~c | rev left |q"| right |
Y $
q; (/S/, o', rs') ~c | rev left' |q’al| right’ |

where Is ~Z' left, rs ~Z right and Is' ~Z" left’, rs' ~% right’

left hy q° hy, right

21

Deterministic Simulation

q; (/S, o, I’S) ~c | rev left |q”| right |
Y $
q; (/S/, o', rs') ~c | rev left' |q’al| right’ |

where Is ~Z' left, rs ~Z right and Is' ~Z" left’, rs' ~% right’

left hy q° hy, right

Alleft’ Aright’

21

Tape Transformations

Add symbol:
rse~yhArs| <2 =3, (h~ 3 = H)Aa:rs

Is~, hA|ls| <2 — 3K, (revh ~rev'a = WYAa s~ G i

Remove symbol:

— —
azburs~y,anbih— 30 (axbiih~ b HW)Aburs~ bl
Leave unchanged:

auxrs~yazh—3W (ah~a:h)ANa:rs

22

Main Simulation Results

Let (q, tape) be a configuration with |tape| < k. There exists s
with (g, tape) ~c s.

If (q, tape) >=t (q’, tape’), then there exists s’ with s ~t &,
(q', tape’) ~c s’ and s’ = Riinal.

Let s be given such that (g, tape) ~ s and |tape| < k for some
g, tape.

If s ~ts" and s’ = Rfnal, then there exists (¢, tape’) with

(q', tape’) ~¢ s’ such that (g, tape) >=t (q’, tape’) and |tape’| < Z'.

Challenges due to Turing Machine Formalisation

m left half of the tape is reversed wrt the Turing machine
formalisation
— use symmetry of rewrite rules for tapes

m Turing machine formalisation does not have notion of blanks
— mechanisation: blanks also have polarities

24

Reduction to Binary Alphabet

Y ={o1,...,0n} _ '
Homomorphism: f : ¥ — {0,1}",0; +— 0'~110"~'

Example (|X] = 2):

25

Parallel Rewriting (PR)

Given:
m an alphabet ¥ and a string length /
m an initial string xg € ¥/ and a step count t
m a width w of rewrite windows and a rewriting offset o
m a set of rewrite windows R
m a set of final substring constraints Ry,
Determine: 3 xq,...,x—1 € ¥/ s.t.
m x; ~ xj+1: for all offsets, there exists a rewrite window”

m there exists an element x € Ry, which is a substring of x;_1

25

Introduction Parallel Rewriting Context
00000 0000000 000

String Rewriting (SR) (and why it does not work for us)

m rules u/v where u,v € ©*

m string rewriting system R over ¥: finite set of rules

m rewrite relation =g; given x, y, determine whether x =% y
Problems:

m essentially unbounded, would require a modified restricted
version for SAT; this is the hard part

m only a single final string

m only a single rewrite in each step, does not allow tape shifting

26

References

Blaser, M.
Theoretical computer science: An introduction.

Cook, S. A. (1971).

The complexity of theorem-proving procedures.

In Proceedings of the Third Annual ACM Symposium on
Theory of Computing, STOC '71, pages 151-158, New York,
NY, USA. ACM.

Forster, Y., Kunze, F., and Roth, M. (2019).

The weak call-by-value lambda-calculus is reasonable for both
time and space.

Technical report.

Full version appeared as arXiv:1902.07515 To appear.

27

References

Sipser, M. (1997).
Introduction to Theory of Computation.
PWS Publishing Company, 1 edition.

28

	Introduction
	Parallel Rewriting
	Context
	

