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Abstract

In this thesis, we formally verify a proof of the Cook-Levin Theorem in the proof
assistant Coq. The Cook-Levin Theorem states that the satisfiability problem SAT
of conjunctive normal forms is NP-complete. This means that any language which
is polynomial-time verifiable is reducible to SAT in polynomial time. Despite its
importance, most proofs do not even attempt to verify the construction’s correct-
ness.
For the proof, one has to encode computations of a chosen reasonable computa-
tional model using Boolean formulas. We use the call-by-value λ-calculus L as the
computational model as part of a larger effort to formalise the basics of complexity
theory. It is much easier to write and verify L-programs than to construct Turing
machines.
Thus, we need to reduce the computation of L-terms to SAT. As Turing machines
are structurally simpler than the λ-calculus, we propose to use Turing machines as
an intermediate problem in the reduction of L to SAT, performing the computation
of a Turing machine from an L-term and the construction of a SAT-formula from a
Turing machine in L.
In this work, we introduce the basics of formalising polynomial-time reductions in
Coq. We present a polynomial-time reduction from Turing machines to SAT in L
which is based on the original tableau construction by Cook and formally verify
its correctness and resource usage. The original construction is adapted and fac-
torised in order to make a formal proof feasible. We see this as a significant first
step towards showing SAT to be NP-complete in L, leaving the reduction from L to
Turing machines for future work.
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Chapter 1

Introduction

Since the advent of modern computational complexity theory in the 1960s and -70s,
it has become one of the cornerstones of theoretical computer science. Important
early results include the hierarchy theorems by Hartmanis and Stearns [15], es-
sentially stating that one can compute more given more time or space. The next
landmark result was the Cook-Levin Theorem, first proved by Stephen A. Cook in
1971 [6] and independently discovered by Leonid Levin in 1973 [21]. This result
founded the important class of NP-complete problems.
NP is the class of all problems which are polynomial-time verifiable, i.e. for which
it is efficiently decidable if a given certificate correctly proves that an element is
a yes-instance of the problem. For two problems P and Q, P is polynomial-time
reducible to Q if there is a function f transforming instances of P into instances of
Q in polynomial time such that for any instance p of P, p ∈ P does hold if and only
if f(p) ∈ Q. IfQ is contained in NP, then P is also in NP. A problem isNP-hard if any
problem contained in NP can be reduced to it in polynomial time. An NP-complete
problem is NP-hard and itself contained in NP.
TheCook-Levin Theoremmakes a statement about the satisfiability problemof con-
junctive normal forms SAT: given a formula N in conjunctive normal form, does
there exist an assignment a to its variables such that the formula evaluates to true,
i.e. a |= N? According to the Cook-Levin Theorem, SAT is NP-complete.
The importance of this result was underlined by the subsequent discovery of 21
moreNP-complete problems byRichardKarp in 1972 [18], whoseNP-hardnesswas
established by reductions from SAT (using transitivity). This showed that there
are in fact manymore problems which are interesting in practice and NP-complete.
Thus, the important contribution of the Cook-Levin Theorem is not that specifically
SAT is NP-complete, but that there exists a natural1NP-complete problem. If one

1We call a problem natural if it is independent of a model of computation and relevant in practice.
This is not a precise definition, but captures the intuition.
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has a natural problem such as SAT which has been shown to be NP-complete, it is
relatively easy to show other important problems to be NP-complete.
Nowadays, the question whether P=NP, i.e. whether every problemwhich is veri-
fiable in polynomial time is also decidable in polynomial time, is one of the biggest
open questions of computer science [23]. If one were to find a polynomial-time
decider for an NP-hard problem such as SAT, one could directly answer “P= NP!”.
Formal Complexity Theory All of the resultsmentioned above are usually taught
in undergraduate courses on theoretical computer science, but the proofs are very
handwavy and omit many interesting details. From a mathematical perspective,
this is not satisfying. Despite the huge importance of these results, no completely
formal proof of any of them has been published2. There have been first steps to-
wards formalising complexity-theoretic results byAsperti [3, 2], but they have been
without reference to a concrete computational model. We will comment on this
subject in Chapter 9.
While there is a mechanised proof verifying the translation of Turing machines to
SAT formulas in the theorem prover ACL2 available [14], it does not include a run-
ning time analysis with respect to a computational model which has been shown
to be reasonable3. Therefore, this proof does not show the NP-hardness of SAT, but
only a part (although a significant one) of that.
One of the reasons no full formalisation is available is that some of the details are
very tedious. The prevalent computational model in complexity theory are Turing
machines, which have a pleasant time and space usage behaviour as they can only
modify a constant amount of data in a single computational step, but are otherwise
very low-level and non-compositional [10]. Doing formal complexity theory using
Turing machines thus seems to be a daunting task: as stated by Forster et al. [10],
“Turingmachines as model of computation are inherently infeasible for the formal-
isation of any computability- or complexity-theoretic result”.
In contrast, results from computability theory have been successfully formalised in
the proof assistant Coq [28]. Coq employs a constructive type theory based on the
calculus of inductive constructions [27]. The key behind this success is that Coq
only allows to define computable functions. It is thus unnecessary to employ an
external model of computation when formalising computability theory in Coq, an
approach known as synthetic computability theory [7]. Nowadays, a large library of
undecidability results is available [12].
When formalising complexity-theoretic results, one cannotmakeuse of this trick: in

2An unpublished formalisation of the Time Hierarchy Theorem using the same λ-calculus in Coq
we are using is known to the author.

3in the sense that the induced complexity classes agree with the ones for Turing machines
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complexity theory, not only the computability of functions is relevant, but also their
time and space usage. For doing basic complexity theory, one at least needs to be
able to state that a function runs in polynomial time. Especially for metaresults like
the Hierarchy Theorems and the Cook-Levin Theorem, a concrete computational
model seems to be unavoidable. However, instead of Turing machines, we use the
call-by-value λ-calculus L [11], as proposed by Forster et al. in [10].
L is still low-level, but much closer to real functional programming languages than
Turing machines are. For instance, inductive datatypes like the natural numbers or
lists can be systematically encoded in L. Using L in Coq is additionally significantly
eased by a certifying extraction mechanism [8]. It allows one to define functions
and datatypes using the usual tools of Coq and semi-automatically derive equiv-
alent L-terms together with certificates of their correctness. This mechanism can
also be used to derive time bounds: during the extraction of functions, recurrence
relations describing the running-time are generated automatically. These have to
be solved by the user to obtain an explicit description of the running time.
The theoretical foundation of using L for the formalisation of complexity theory
has been laid by Forster et al. in [9]. There it is shown that Turing machines and L
can simulate each other with a polynomial overhead in time and a constant-factor
overhead in space for decision problems4, if one chooses the right resource mea-
sures for L. This result is crucial as it proves that many basic complexity classes like
NP or P do correspond for Turing machines and L; in particular, NP-completeness
for L and NP-completeness for Turing machines are equivalent.
Outline of the Cook-Levin Theorem In the following, we are concernedwith the
Cook-Levin Theorem. In order to prove it, one has to show that any problem con-
tained in NP is polynomial-time reducible to a natural problem such as SAT. As we
have no information about the concrete problem we are reducing from, we have to
resort to a proof using properties of the chosen model of computation. Specifically,
arbitrary computations have to be encoded using Boolean formulas. As we are us-
ing L as our computational model, it is necessary to encode arbitrary reduction
chains of L.
The advantage of the greater abstraction provided by L compared to Turing ma-
chines now has its cost: it does not seem easy to directly encode L using Boolean
formulas. In fact, there is evidence that, even when reducing to another natural
problem than SAT, a direct reduction would still be difficult. We will elaborate
on this in Remark 2.21. Thus, we propose to use Turing machines as an interme-
diate step for deriving a natural NP-complete problem for L: one first reduces the
computation of L to Turing machines and then reduces Turing machines to SAT.
Although one uses Turing machines as an intermediate problem, the reductions

4However, the result does not cover sublinear space or time.
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still use L as the computational model.
Outline of this Thesis In this thesis, we formalise the reduction from Turing ma-
chines to SAT. We base the formalisation on a textbook proof by Sipser [24], which
in turn is very similar to the original construction by Cook [6]. Our proof proceeds
by encoding a bounded number of computational steps of a Turing machine in a
tableau of a bounded size. Each row of the tableau represents one of the Turingma-
chine’s configurations with each element of the row corresponding to one symbol
of a Turing machine tape. The tableau can be encoded using a number of Boolean
variables and the conjunctive normal form then forces that the individual rows of
the tableau form valid configuration changes.
In order to make the formalisation feasible, we factorise the proof into several inter-
mediate problems and reductions. The key idea is to first reduce to a string-based
problem PR that shares characteristics of both Turing machines and circuits. The
reduction essentially generates an explicit representation of a Turing machine from
a symbolic one. We then incrementally deal with encoding PR as a conjunctive
normal form. First, we reduce to a binary alphabet using a substituting string ho-
momorphism. PR over a binary alphabet can easily be encoded using a Boolean
formula. In order to bring this formula into conjunctive normal form, we employ
the Tseytin transformation [31].
In contrast to the existing ACL2mechanisation [14], we include running time anal-
yses in L, which is a reasonable computational model.
In Chapter 2, we introduce the needed preliminaries, among them the definition of
Turing machines, L and the basic definitions one needs for complexity theory. We
also elaborate on the specific changes one has tomake to thewell-knowndefinitions
of complexity on Turing machines. The basic techniques for doing polynomial-
time reductions are explored in Chapter 3 on a simpler reduction from k-SAT to
Clique. This is also the only chapter where we go into the details of the running
time analyses. We give an informal outline of the chain of reductions from Turing
machines toSAT in Chapter 4. Chapters 5 to 8 then give the details of the individual
reductions.
Mechanisation All results presented from Chapter 3 onwards have been mech-
anised in the proof assistant Coq [28]. The definitions, lemmas and theorems are
hyperlinked to a version of the development viewable in a webbrowser. The mech-
anisation of some of the reductions differs in small but notable ways to the presen-
tation on paper, mainly for technical reasons. Therefore, the chapters on reductions
usually contain a section outlining the differences and themotivation behind them.
Readers not familiar with Coq may want to skip these sections. While the running
times of the reductions have been verified in Coq, we do not go into these details on
paper, with Chapter 3 being an exception. We give an overview on the full structure
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of the mechanisation in Appendix A.
Contributions The proof of the Cook-Levin Theorem as presented by Sipser [24]
is adapted in order to make a formalisation feasible. To that end the construction
is changed and a new string-based intermediate problem is introduced. The whole
construction including the polynomial running time is formalised in Coq.



Chapter 2

Preliminaries

In this chapter, we present the needed basic definitions, including notations, Turing
machines and the call-by-value λ-calculus L.
2.1 Type Theory
We formalise the results in the constructive type theory of Coq [28], featuring in-
ductive types and an impredicative universe of propositions P. In this section we
introduce the notations and concepts common in type theory. Readers not familiar
with type theory may informally regard types as sets.

B is the type of Booleans with the two elements T and F. Natural numbers are
accomodated by the inductively defined typeN featuring the two constructorsO : N
and S : N → N giving the successor of a number. We use the common operations
on natural numbers.

The type of options O(X) over X consists of the element ∅, denoting the absence of
a value, and elements ◦x for x : X.

We write L(X) for the type of lists over X. Lists are constructed inductively using
the cons constructor starting from the empty list [ ]: for an element x : X and a list
A : L(X), x :: A is the listA prependedwith x. For an arbitrary listA, |A| is the length
of A. The concatenation of two lists A and B is written as A ++ B. We use positions
to refer to the elements of a list at a certain offset, starting at 0. The valid positions
of a list A are the numbers 0, . . . , |A|− 1. Given a position i, the element of A at i is
denoted by A[i]. Formally, this is an option value: if i is not a valid position, A[i] is
defined to be ∅. The listA[i..] is the sublist ofA containing all elements fromposition
i onwards (and potentially no elements if |A| 6 i). Similarly, the list A[..i) contains
all elements up to (but excluding) position i. By an, we denote the list consisting of
the n-fold repetition of the element a. Often, we need to apply a function f : X→ Y

to every element of a list A : L(X). We write [ f x | x ∈ A ] for this list. Note that,
in contrast to the use of this notation in set theory, the order of the list’s elements
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is preserved. Similarly, we use [ x | x ∈ A ∧ p x ], where p : X → B, for the list A
filtered to contain only the elements forwhich the predicate p holds. Given two lists
A,B : L(X), A ⊆ B denotes that all elements of A are also contained in B (possibly
with duplicates or in a diffferent order), i.e. A ⊆ B := ∀x, x ∈ A → x ∈ B. We use
the synonym A∗ to refer to L(A) in the context of strings.
The type of vectors of length n over X is written Xn. For length and subscripting,
we use the same notations as for lists.
The product type X×Y of the types X and Y consists of pairs of elements of X and Y.
The pair of x : X and y : Y is written as (x, y), while we use π1, π2 for the projections
of a pair to its first and second component.
The sum type X + Y of the types X and Y consists of the elements of X and the
elements of Y. Formally, we have two injections L : X→ X+ Y and R : Y → X+ Y.
Sigma typesΣx.p x allowus to define pairswhere the type of the second component
depends on the first component (therefore its inhabitants are also called dependent
pairs). We write (x, s) for the dependent pair consisting of x and s : p x.
A type X is called discrete if equality on it is decidable, that is, there exists a function
eqX : X → X → B such that eqX a b = T if and only if a = b. We also write a ?=b
instead of eqX a b, omitting the type which can be inferred from the context. We
use the type eqType to refer to those types which are discrete.
More generally, we extend the notation a ?=b to other decidable binary predicates,
for instance to a ?6b for deciding the relation 6.
We also need finite types. Finite types are discrete types with a finite number of
elements. Formally, we require a list of all values of the type, in which each element
occurs exactly once, as the witness that it is finite [22]. Given a finite type F and
e : F, index e is the position of e in this list. |F| is the cardinality of F. We refer to finite
types using the type finType. For any number n, there is a type Fn with exactly n
elements f0, . . . , fn−1. Finite types are closed under the type constructors O(·), ·+ ·
and · × ·. For instance, if A and B are finite types, then also A× B is a finite type.
Relations As is common in type theory, we model relations on a type X using
binary predicates of type X → X → P. For a relation R, we write (a, b) ∈ R or
a R b for R a b. A relation R is included in another relation S, denoted R ⊆ S, if
∀a b, (a, b) ∈ R → (a, b) ∈ S. R and S are equivalent if they mutually include each
other: R ≡ S := R ⊆ S∧ S ⊆ R.
The n-th power Rn of a relation R is defined inductively:

R0 x x Rn

R x y Rn y z

R1+n x z

https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.MorePrelim.html#relpower
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For some proofs, it will be convenient to have an alternative definition where the
successor case appends a new transition instead of prepending it:

0R x xnR

nR x y R y z
1+nR x z

Proposition 2.1 We have the following basic facts:
1. Transitivity: Rn x y→ Rm y z→ Rn+m x z

2. Monotonicity: R ⊆ S→ Rn x y→ Sn x y

3. Congruence: R ≡ S→ Rn x y↔ Sn x y

4. Agreement: Rn x y↔ nR x y

5. Additivity: Rn+m x z↔ ∃y, Rn x y∧ Rm y z

2.2 Turing Machines
In this section, we present the formalisation of deterministic Turing machines used
throughout the thesis.
Turing machines can be regarded as finite automata with access to a fixed number
of infinite tapes. Each tape has a head which can be moved sequentially. For every
computational step, the Turing machine reads the content of the cells currently un-
der the heads. It then transitions to a new state and can optionally write a symbol
on each of the tapes, before potentially moving the heads one position to the left or
to the right.
The following definitions are due to Asperti and Ricciotti [4]; for the Coq formali-
sation, we use the Turing machine framework [10].
Tapes We define two-sided infinite tapes over a finite type Σ, the tape alphabet.
In contrast to usual presentations, Σ does not contain a special blank symbol that
denotes unused regions of the tape. Instead, the definition only captures the finite
region of the tape that is currently in use. This formalisation of tapeswithout blanks
has the advantage that each possible tape is uniquely represented by exactly one
element of tapeΣ.
A tape can be in one of four states:

tapeΣ :=tapeΣ
| niltape

| leftof (c : Σ) (rs : L(Σ))

| rightof (c : Σ) (ls : L(Σ))

| midtape (ls : L(Σ)) (c : Σ) (rs : L(Σ))

https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.MorePrelim.html#relpowerRev
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.MorePrelim.html#relpower_trans
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.MorePrelim.html#relpower_monotonous
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.MorePrelim.html#relpower_congruent
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.MorePrelim.html#relpower_relpowerRev
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.MorePrelim.html#relpower_add_split
https://uds-psl.github.io/ba-gaeher/website/Undecidability.TM.TM.html#tape


2.2. Turing Machines 9

A niltape is completely empty. In all other cases, the tape contains at least one sym-
bol c. In the case of leftof c rs, the list of symbols c :: rs contains exactly the tape
contents right of the head, and conversely, in the case of rightof c ls, the list c :: ls

contains the tape contents left of the head. For these two cases, the tape does not
currently reside on a symbol. Finally, midtape ls c rsmodels the case that the head
resides on the symbol c and there are (possibly empty) parts of the tape ls and rs
to the left and to the right.
The tapes are always interpreted such that the heads of the lists are closest to the
Turing machine’s head. If one were to imagine a tape as a linear sequence of sym-
bols, midtape ls c rswould have the following shape:

rev ls c rs

↓

We use the functions left, right : tapeΣ → L(Σ) and current : tapeΣ → O(Σ) to extract
the contents of the tape left of the head, right of the head, or under the head.
Turing machines In each computational step, a Turing machine can optionally
write a symbol and ActΣmove the head on each of its tapes individually. These actions
are captured by the type ActΣ := O(Σ) × move, where Σ is the tape alphabet and
move := L | R | N movedefines the possible movements.

Definition 2.2 (Turing machines) Given a finite type Σ and a number of tapes n, Tur-
ing machines of type mTM Σ n mTM Σ nare tuples (Q, δ, start, halt), where Q is the finite type of
states, δ : Q × (O(Σ))n → Q × ActΣn is the transition function, start is the initial state
and halt : Q→ B defines the halting states.

For the semantics of Turing machines, the values of the transition function for halt-
ing states, i.e. states q for which halt q = T, are irrelevant.
A configuration of a Turing machineM is a pair consisting of the current state and
its tapes.

Definition 2.3 (Configurations) Let M : mTM Σ n. The type of configurations over
M is given by confM := QM × (tapeΣ)

n. confM

We give the full definition of the semantics of Turing machines in Appendix C and
only define formally here how the Turing machine moves its heads (Figure 2.1).
The rest of the definitions follows what one would intuitively expect.
In the presentation on paper, it will suffice to assume a transition relation � on
configurations such that c � c ′(q, tp) � (q ′, tp ′) holds if and only if halt q = F and (q ′, tp ′)
is the successor configuration of (q, tp) according to the transition function.

https://uds-psl.github.io/ba-gaeher/website/Undecidability.TM.TM.html#move
https://uds-psl.github.io/ba-gaeher/website/Undecidability.TM.TM.html#mTM
https://uds-psl.github.io/ba-gaeher/website/Undecidability.TM.TM.html#mconfig
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.TM_single.html#sstep
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tape_move L (leftof r rs) := leftof r rs

tape_move R (leftof r rs) := midtape [ ] r rs

tape_move L (midtape [ ] c rs) := leftof c rs

tape_move R (midtape ls c [ ]) := rightof c ls

tape_move L (midtape (l :: ls) c rs) := midtape ls l (c :: rs)

tape_move R (midtape ls c (r :: rs)) := midtape (c :: ls) r rs

tape_move L (rightof l ls) := midtape ls l [ ]

tape_move R (rightof l ls) := rightof l ls

tape_move _ niltape := niltape

tape_move N tp := tp

Figure 2.1: Turing machine tape movements. Note how the tape does not change if
the Turingmachinewants tomove the head onemore symbol beyond the used tape
region if the head currently is not on a symbol. This means that it is not possible
for the head to reside two or more symbols beyond the used tape region.

Definition 2.4 (Termination Relation)

(q, tp)Bk (q ′, tp ′) := (q, tp) �k (q ′, tp ′)∧ halt q ′ = TcBk c ′
(q, tp)B6k (q ′, tp ′) := ∃l 6 k, (q, tp)Bl (q ′, tp ′)cB6k c ′

We only need single-tape Turing machines throughout this thesis and therefore we
restrict this notation to single-tape machines. The following result states that with
each computational step, a Turing machine can take up at most one additional tape
cell.

Lemma 2.5 (“Time Bounds Space”)
Assume a Turing machineM : mTM Σ 1 and (q, tp) � (q ′, tp ′). Then sizeOfTape tp ′ 6
1 + sizeOfTape tp, where sizeOfTape : tapeΣ → N describes the number of symbols con-
tained on a tape.

2.3 The λ-calculus L
L is an untyped λ-calculus with weak call-by-value reduction and is the underlying
computational model we are using throughout this thesis. This section intends to
give a brief overview of the most foundational aspects of L in order to justify using
L as a computational model. The rest of this thesis can, however, be read without
delving into the details of L. For a more thorough treatment, the interested reader

https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.TM_single.html#tm_step_size
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is referred to [11], where L is introduced in detail in the context of computability
theory.
L is defined over terms terms, t, u : term := x | λx.s | s t1, i.e. only λ-abstractions and
applications are part of the core language. λ-expressions are called abstractions. A
term s is closed if all its variables are bound. A closed abstraction is a procedure.
2.3.1 Semantics of L
For the semantics, we start by defining the reduction relation. Let sxt be the term
that is obtained by replacing every free occurrence of the variable x in s by the term
t. L features a weak call-by-value reduction �. This means that reduction is not
possible below binders (i.e. lambdas) and arguments need to be fully reduced to a
value (a λ-abstraction) before β-reduction (i.e. function application) is possible.

s � s ′
s t � s ′ t

t � t ′
s t � s t ′ (λx.s)(λy.t) � sxλy.t

The last rule is the interesting one: only if both sides of an application have been
fully evaluated to an abstraction can we do a β-reduction.
Note that the reduction relation is not deterministic as we have not specified an
evaluation order for applications. This does not pose a problem, however, as L can
be shown to be uniformly confluent:
Fact 2.6 (Fact 7 in [11]) If s � t1 and s � t2, then either t1 = t2 or t1 � u and t2 � u
for some u.

We say that a term t is normal if it cannot be reduced further according to �. t is
a normal form of s if s �∗ t and t is normal, where �∗ is the reflexive-transitive
closure of �. Uniform confluence implies that normal forms are unique, if they
exist. Moreover, every term s which has a normal form t always normalises to t in
the same number of steps:
Corollary 2.7 (Uniform Normalisation, Fact 29 in [26]) Assume that s �m t and
s �n u and let t be normal. Then n 6 m and u �m−n t.

Thus, the result of evaluation is deterministic, only the way to get there is nonde-
terministic.
2.3.2 Encoding of Inductive Datatypes and Recursive Functions
While L is very simple in nature and does not have built-in suppport for Booleans
or natural numbers, for instance, one can easily encode inductive datatypes using
procedures. One way to do this is to use Scott encodings. The Scott encodings

1Formally, De Bruijn indices are used instead of named binders.
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of elements of an inductive datatype are procedures with one argument for each
of the datatype’s constructors. As an example, we look at the encoding of natural
numbers, which feature two constructorsO : N and S : N→ N. Their Scott encoding
looks as follows:

O := λa.λb.a S n := λa.λb.b n

The basic idea is that the encoding allows to easily match on an element of the
datatype by passing it suitable argumentswhichwill be used for the different cases.
For instance, we have that for procedures s, t:

O s t �2 s S n s t �2 t n

This encoding can be derived systematically for arbitrary datatypes such as lists.
We use the notation xx to denote the encoding of x : X for an L-encodable type X2. Of
course, having inductive datatypes is not ofmuch use if one cannot define recursive
functions on them. Luckily, there is a function with which recursive terms can be
obtained:

Fact 2.8 (Fact 6 from [11]) There is a function ρ : term → term such that (1) ρ s is a
procedure if s is closed and (2) (ρ u)v �3 u(ρ u)v for all procedures u, v.

The procedure u can be seen as a step function taking the function to call for re-
cursion as the first argument. With the help of the recursion operator ρ, one can
define recursive functions on Scott encodings by directly translating the recursive
equations one would use in a functional programming language.

This systematic encoding has been utilised by Forster and Kunze [8] to develop a
certifying extraction mechanismwhich can automatically generate Scott encodings
of inductive datatypes defined in Coq as well as encodings of recursive and non-
recursive functions on these datatypes. The correctness of these encodings, in the
sense that the encoded terms behave similarly to the original terms, is derived fully
automatically. The mechanism thus allows one to program functions for L without
having to directly work with L.

Remark 2.9 Not every type definable in Coq can be extracted: types living in the impred-
icative universe of propositions P or consisting of propositional parts have no corresponding
object in L and thus extraction fails on them. We will see examples of this in Section 3.2.

2Usually, this means that there exists a Scott-encoding for X, although in some cases, one can also
derive an encoding for types without a direct Scott encoding.
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2.3.3 Time and Space Measures for L
As we want to do complexity theory in L, we have to define time and space mea-
sures for it. It is crucial that the induced cost models are reasonable with respect
to the invariance thesis [25], in the sense that Turing machines and L can simulate
each other with a polynomial overhead in time and a constant-factor overhead in
space. For reasonable computational models, well-known classes like P, NP, and
LogSpace are machine-independent.
While reasonablemeasures for Turingmachines are quite intuitive, taking the num-
ber of steps as the time measure and the maximum number of cells used on a tape
as the space measure, the picture is not as clear for the λ-calculus. Historically, a
number of different measures have been explored for the variety of possible evalu-
ation strategies [1].
The seemingly natural resource measures for the λ-calculus are the number of β-
reduction steps for time and the maximum size of terms encountered during a re-
duction to a normal form for space, where we write ‖s‖ ‖s‖for the size of a term s.
However, these measures are a bit unintuitive: there exist terms that exhibit linear
time but exponential space usage [9]. The reason is that, when doing substitution,
terms get duplicated if an argument variable occursmultiple times. This problem is
known as size explosion. A Turing machine implementing a substitution strategy
will thus have an exponential time usage (by Lemma 2.5). Size explosion can be
mitigated if one does not perform a naive substitution-based evaluation strategy,
but instead uses environments that store the values of variables on a heap, thus
avoiding duplication. Sadly, due to the needed pointers into the heap, this strat-
egy does have a linear-factor space overhead on some terms, a problem known as
pointer explosion.
Nevertheless, these resource measures have been shown to be reasonable for L by
Forster et al. in [9], a non-trivial result. While simulating Turing machines in the λ-
calculus within the desired overhead is relatively easy, the efficient simulation of L
using Turing machines is difficult due to size explosion and pointer explosion. The
authors solve this by interleaving substitution- and heap-based strategies. Their
result is, however, limited to decision problems:

Theorem 2.10 (Theorem 2 of [9]) Let Σ be a finite alphabet with {T,F} ⊆ Σ and let
f : Σ∗ → {T,F} be a function. Let t, s ∈ Ω(n).
• If f is computable by L in time t and space s, then f is computable by a Turing machine
in time O(poly(t(n))) and space O(s(n)).
• If f is computable by a Turing machine in time t and space s, then f is computable by
L in time O(poly(t(n))) and space O(s(n)).
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This suffices for the complexity theory of decision problems for at least linear time
and space usage; in particular, the result shows that one can expect to be able to
define the classes P and NP in a way which agrees with the usual definitions for
Turing machines. The intuition behind this result is that computations which ex-
hibit the size explosion problem but terminate in T or F can be compressed to use
only polynomial space by applying the preceding theorem twice.

Remark 2.11 For the proof of the reasonability result, L is defined with a deterministic
left-to-right reduction in order to evade the problem of distinct reduction paths having a
different space usage. This does not matter for us as we will only be concerned with the size
of the results of computations in this thesis.

Based on the natural time measure, the certifying extraction mechanism [8] we
alreadymentioned can also automatically generate recurrences describing the run-
ning time of an extracted function. It is up to the user to solve these recurrences to
obtain explicit time bounds. For the running time analyses in this thesis, we make
heavy use of this functionality.
2.4 Basic Notions of Complexity Theory
Now that we can use L for basic complexity theory, we define the usual notions
like polynomial-time reductions and the class NP. The definitions and results in
this section are due to Fabian Kunze. We leave out some of the technical details on
paper.
Space and Time Complexities We start by formally defining basics like the O

notation and what it means for a function to be in some complexity class.

Definition 2.12 (O) Let f, g : N→ N. f ∈ O(g) if there are c, n0 such that for all n > n0,
it holds that f n 6 c · g n.

This is the usual definition and the expected properties for addition and multipli-
cation can be proved. We say that a function f : N→ N is polynomially bounded if
there exists n : N such that f ∈ O(λx.xn). Moreover, f is monotonic if ∀x y, x 6 y →
f x 6 f y.

Definition 2.13 (Polynomial-time Computable Functions) Assume typesX, Y which
are L-encodable. Let f : X→ Y be an L-computable function. f is computable in polynomial
time if there exists a function ft : N→ N such that
• for all x : X, the number of reduction steps of f’s encoding on the encoding of x is

bounded by ft(‖x‖), where ‖x‖ is the size of x’s encoding,
• ft is monotonic and polynomially bounded,

https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.ONotation.html#inO
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.ONotation.html#inOPoly
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.ONotation.html#monotonic
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Synthetic.html#polyTimeComputable
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• and the output size of f is polynomially bounded, i.e. there exists a function fs : N→ N
which is monotonic and polynomially bounded such that ∀x, ∥∥f x∥∥ 6 fs(‖x‖).

Monotonicity would not strictly be required for the bounding functions, but is
quite convenient. We need the condition that the output size of f is polynomially
bounded in order to avoid size-exploding terms. A size-exploding function does
not have the properties one would intuitively expect of a polynomial-time com-
putable function.
P and NP We continue with the definition of the important classes P and NP. A
problem is a predicate Q : X→ P for an L-encodable type X.

Definition 2.14 (Decidable Problems) LetQ : X→ P for an L-encodable type X. Q is
L-decidable if there exists a L-computable function f : X→ B such that ∀x,Q x↔ f x = T.
Moreover, Q is decidable in time ft : N → N if additionally the number of reduction steps
of f’s encoding on the encoding of x is bounded by ft(‖x‖).

Definition 2.15 (Polynomial-time Decidable Problems) Let Q : X → P for an L-
encodable type X. Q is polynomial-time decidable if there exists a monotonic and polynomi-
ally bounded function fQ : N→ N such that Q is decidable in time fQ.

P is the class of problems for which there exists a polynomial-time decider.

Definition 2.16 (P) Q ∈ P := Q is polynomial-time decidable

For NP, we do not use the usual definition via nondeterminism. While nondeter-
ministic additions to the λ-calculus have been explored in the literature, for instance
via the addition of a new combinator allowing to nondeterministically guess a sin-
gle bit [19], using nondeterminismwouldmake formal reasoningmuch harder. In-
stead, we adapt the well-known alternative verifier characterisation of NP, where
there must exist a verifier which decides whether a certificate of polynomial size
correctly proves that an instance is a yes-instance. Intuitively, the verifier charac-
terisation moves the nondeterminism into the input.

Definition 2.17 (NP) Let Q : X → P and X be an L-encodable type. Q ∈ NP if there
exists a verifier R : X→ term→ P such that:
• λ(x, y).R x y is polynomial-time decidable
• and there exists a monotonic and polynomially-bounded function fQ : N→ N bound-

ing the size of certificates, such that
– if R x y, then Q x,
– and for all x with Q x, there exists y such that R x y and ‖y‖ 6 fQ(‖x‖).

https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Synthetic.html#resSizePoly
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Synthetic.html#decInTime
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.NP.html#inTimePoly
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.NP.html#inP
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.NP.html#inNP
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Note that we require that the type of certificates is term. This does not pose a restric-
tion in practice as we can still use any L-encodable type X (since these types have
an encoding as a term) whose encoding can be decoded in polynomial time, i.e. for
which there exists a function f : term → O(X) running in polynomial time. It turns
out that the Scott encoding of any inductive datatype can in practice be decoded in
linear time.
Fact 2.18 (NP subsumes P) If Q ∈ P then Q ∈ NP.

Polynomial-timeReductions Next, we consider polynomial-time reductions. The
definition mostly corresponds to the usual one on Turing machines.
Definition 2.19 (Polynomial-time Reductions) Assume problems P : X → P and
Q : Y → P for L-encodable types X, Y. P reduces toQ in polynomial-time, written P �p Q,
if there exists a polynomial-time computable function f : X → Y satisfying the property
∀x, P x↔ Q(f x).

Note that, since we require f to be polynomial-time computable, its output size also
needs to be polynomial in its input size. This is the only condition which changes
compared to Turing machines.
�p is transitive and inclusion in NP transfers backwards along reductions, i.e. if
P �p Q and Q ∈ NP, then P ∈ NP.
Definition 2.20 (NP-hardness and NP-completeness) A problem Q : X → P is NP-
hard if for any Y whose encoding λ x.x can be computed in polynomial time any problem
P : Y → P can be reduced to Q in polynomial time, i.e. P �p Q. It is NP-complete if, in
addition, Q ∈ NP.

The requirement that Y needs to be encodable in polynomial time is new compared
to Turing machines. Intuitively, this corresponds to re-encoding the alphabet of
Turing machines from an arbitrary alphabet Σ to, for instance, a binary alphabet,
which is needed if one wants to employ a universal Turing machine. This change
of alphabet is trivially polynomial-time computable. Similarly, we need a common
input format for a universal L-term – the type of L-terms seems to be a reasonable
input type. In practice, the Scott encoding is linear-time computable, although a
formal proof of this meta-result seems to be hard.
NP hardness transfers along polynomial-time reductions: if P �p Q and P is NP-
hard, then Q is NP-hard.
Remark 2.21 We close this chapter by giving an intuitive explanation why one should
not expect there to be an easy proof for the existence of a natural (i.e. machine-independent)
and intuitive NP-complete problem in our setting of complexity theory in L.

https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.NP.html#inNP_intro
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.NP.html#inNP_intro
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.NP.html#P_NP_incl
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.NP.html#reducesPolyMO
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.NP.html#reducesPolyMO_transitive
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.NP.html#red_inNP
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.NP.html#NPhard
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.NP.html#NPhard
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.NP.html#NPcomplete
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.NP.html#red_NPhard
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Assume that Q is a natural NP-complete problem. We conjecture that, if there is a sim-
ple verifier for Q using L, Q also has a simple Turing machine verifier. This is supported
by the fact that Karp’s 21 NP-complete problems [18] all have relatively simple verifiers
using Turing machines. Thus we obtain a direct reduction from Q to the computation of
Turing machines. Since Q is NP-hard, we can reduce the computation of L-terms to Q. By
transititivity of reduction, we get a polynomial-time-overhead simulation of L using Turing
machines. The two combined reductions thus solve L’s size explosion problem. For a direct
polynomial overhead simulation, one however needs a heap-based simulation of L.
This indicates that the NP-hardness proof of Q is at least as advanced as the heap-based
simulation of L, which is arguably not very simple. Motivated by this reasoning, we propose
to use Turing machines as an intermediate problem for proving a natural problem to be NP-
hard: Turing machines are much more expressive than most natural problems, thus they
seem to be a good reduction target candidate for solving the size explosion problem.



Chapter 3

Reducing k-SAT to Clique

In this chapter, we give a first formalisation of a polynomial-time reduction from the
k-SAT problem to theClique problem on undirected graphs. The main purpose of
this chapter is to introduce the style of proofs we use. In particular, we comment
on some of the more technical aspects of doing the running time analysis in Coq so
that we can focus on the less technical aspects in the later chapters.

The satisfiablity problem SAT on CNFs is well-known: given a Boolean formula
in conjunctive normal form, we determine whether there exists a satisfying assign-
ment to the variables. k-SAT restricts the definition to CNFs with a clause size
of k for a fixed k. Clique is a graph-based problem. Given an undirected graph
G = (V, E), a k-clique is a set of vertices C ⊆ V such that |C| = k and all possible
edges between vertices of C are present in E. For a graph G and a number k, the
Clique problem asks whether there exists a k-clique in the graph G.

The reduction from k-SAT toClique is an example of a relatively simple reduction:
in [5], it is one of the first examples of a polynomial-time reduction in an under-
graduate course on theoretical computer science. There, the full proof on paper
does not even span half a page. In particular because of this apparent simplicity
on paper, we deem this reduction to be an interesting first exploration of the tech-
niques we will later use on a larger scale.

3.1 Satisfiability of Conjunctive Normal Forms (CNF)
We start by formalising the satisfiablity problem SAT. A literal is either a Boolean
variable or its negation. The disjunction of a number of literals is a clause. Clauses
can be combined conjunctively to form a conjunctive normal form.
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v : var := N var

l : literal := B× N literal
C : clause := L(literal) clause
N : cnf := L(clause) cnf

Here, the Boolean b of a literal (b, v) denotes the literal’s sign. If the sign is negative
(i.e. b = F), the literal represents v’s negation, otherwise it represents v.
An assignment a : assgnto a CNF assigns a Boolean value to each of its variables. We
choose to model an assignment as the list of variables which are assigned the value
T. All other variables are implicitly assigned the value F: assgn := L(var).
One can define evaluation functions E Efor variables, literals, clauses, and CNFs in
a straightforward way. We will mainly use the function E : assgn → cnf → B for
CNFs, but refer to the other functions using the same identifier. Which function we
mean will always be clear from the context and the used metavariables.
We have the following characterisations of evaluation:
Lemma 3.1 (Evaluation Equivalences)

1. E a v = T↔ v ∈ a

2. E a (b, v) = T↔ E a v = b

3. E a C = T↔ ∃l ∈ C,E a l = T

4. E a N = T↔ ∀C ∈ N,E a C = T

We say that a satisfies the CNF N, denoted a |= N a |= N, if E a N = T. A similar notation
is used for the satisfaction of clauses, literals and variables.
Now, we are able to define the problem SAT: SAT
Definition 3.2 (Satisfiability of CNFs) SAT N := ∃a, a |= N

In the sequel, we show that SAT is in NP, which we prove by giving a verifier for
SAT. A sensible choice for a certificate of a CNF N being in SAT is a satisfying
assignment. Thus a verifier is easy to define: given a CNF N and an assignment
a, it checks whether a satisfies N. In order to prove the verifier correct, we must
show that there exists an assignment of a size which is polynomial in N for every
satisfiable formula N. As a list a containing the variables to which T is assigned
may contain duplicates and variables which are not even used by the CNF, not
every satisfying assignment has a polynomial size. Therefore, we introduce the
notion of small assignments.

https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.SAT.html#var
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.SAT.html#literal
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.SAT.html#clause
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.SAT.html#cnf
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.SAT.html#assgn
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.SharedSAT.html#evalVar
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.SAT.html#evalLiteral
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.SAT.html#evalClause
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.SAT.html#evalCnf
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.SharedSAT.html#evalVar_in_iff
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.SAT.html#evalLiteral_var_iff
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.SAT.html#evalClause_literal_iff
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.SAT.html#evalCnf_clause_iff
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.SAT.html#satisfies
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.SAT.html#SAT
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.SAT.html#SAT
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Definition 3.3 (Used Variables) We can define a function varsOfCnf : cnf → L(var)
varsOfCnf calculating a list of variables contained in a CNF.

Definition 3.4 (Small Assignments)small N a An assignment a is small with respect to a CNF
N if it is duplicate-free and only contains variables used by the CNF:

small N a := dupfree a∧ a ⊆ varsOfCnf N,

where dupfree : ∀X,L(X)→ P is a predicate capturing the absence of duplicates.

Given an arbitrary assignment a for a CNFN, we can compute another assignment
a ′which is small with respect toN by removing duplicates and variables not occur-
ing in the CNF. To that end, we assume functions dedup : ∀(X : eqType),L(X)→ L(X)

and intersect : ∀(X : eqType),L(X) → L(X) → L(X) where dedup removes duplicates
from a list and intersect yields a list that does exactly contain those elements that
occur in both of its input lists.

compress : cnf→ assgn→ assgncompress

compress N a := dedup (intersect a (varsOfCnf N))

Semantically, compress changes the assignment: after removing assignments to un-
used variables, F is implicitly assigned to these unused variables. However, as the
CNF does not refer to these variables, this does not matter. The compression of an
assignment is always with respect to a particular CNF.

Lemma 3.5 (Correctness of compress)
1. small N (compress N a)

2. v ∈ varsOfCnf N→ E a v = E (compress N a) v

3. a |= N↔ compress N a |= N

Lemma 3.6 (SAT is in NP) SAT ∈ NP

In order to prove Lemma 3.6, we need to show that there are valid certificates of
polynomial size exactly for all satisfiable CNFs. Moreover, it has to be shown that
the verifier runs in polynomial time. As these proofs are quite technical, we usually
omit them on paper. However, as the analyses are an integral part of this work, the
following section is an exception and treats the general procedure we use.
3.1.1 Running-time Analysis Using the Extraction Mechanism
We explain the methods we use to prove polynomial time and size bounds. As an
example, we look at the evaluation function E for CNFs. Formally, the function is

https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.SAT.html#varsOfCnf
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.SAT.html#assignment_small
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.SAT.html#assignment_small
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.SAT.html#dedup
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.SAT.html#intersect
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.SAT.html#compress
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.SAT.html#compressAssignment_small
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.SAT.html#compressAssignment_var_eq
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.SAT.html#compressAssignment_cnf_equiv
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.SAT.html#sat_NP


3.1. Satisfiability of Conjunctive Normal Forms (CNF) 21

defined as follows:

EN : assgn→ cnf→ B
EN a [ ] := T

EN a (C :: N) := EC a C & EN a N

Here, we have annotated the evaluation function with a subscript to make clear
which one we mean: EN is the evaluation function for CNFs, while EC is the func-
tion for clauses.
In order to extract this function to L, we first need to generate the encodings for the
used datatypes, in this case for lists, N, and B1. Next, all the used functions need to
be extracted first, in this case the evaluation of clauses and the Boolean conjunction.
We assume this has already been done.
Now, the evaluation function itself can be extracted. During the process, the fol-
lowing recurrences for the running time are generated:

T(EN) a [ ] > 9 (3.1)
T(EN) a (C :: N) > T(EN) a N+ T(EC) a C+ 22 (3.2)

T(·) can be read as “time-of”. The numerical constants appearing in the inequalities
are the numbers of reduction steps of the extracted function. We do not solve the
recurrences directly, but instead define a recursive function TEN implementing the
equations.
Next, we aim to bound the function TEN by a monotonic polynomial pEN : N → N
in the encoding size of the arguments such that

∀a N, TEN a N 6 pEN(‖a‖+
∥∥N∥∥)

holds. In principle, we could also use a multivariate polynomial having one vari-
able for each of the arguments, but this would only complicate things. In the case
of EN, the polynomial pEN(n) := n · pEC(n) + cEN · (n + 1) works, where pEC is the
polynomial bounding T(EC) and cEN is a constant. The bounding equation is then
proved by induction on the CNF N.
Higher-order functions can be treated in a similar way, but there the running time
bounds are conditional on bounds for the argument functions. Inmany cases, how-
ever, it seems to be easier to define a function via direct recursion instead of using
a higher-order function which is more complicated to bound.
Recall that, regarding the size, we only need to bound the size of the result. The
procedure of deriving a polynomial is similar in that case, although the extraction

1This has to be done only once and then never again.
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mechanism does not derive space bounds currently; instead, we derive bounds via
semantic arguments.

Remark 3.7 (Binary versus Unary Numbers) In complexity theory, the question of
the specific encoding of a problem is an important one. Especially for numbers, this is a
delicate subject: a unary encoding of numbers is exponentially larger than the binary en-
coding. Therefore, one usually uses a binary encoding of numbers. Some number-theoretic
problems, for instance, are not NP-hard anymore if a unary encoding instead of a binary
encoding is used. In this thesis, however, we exclusively use a unary encoding, mainly
because it is much easier to work with unary numbers in Coq, although a binary encoding
would be possible. For all of the problems we study, using unary numbers is actually sound.
Intuitively, this is the case since the numbers do not play a central part in the definition:
in SAT, numbers are only used to represent variables. If n variables are used by a
CNF, only the numbers up to n need to be used by the encoding.

3.1.2 k-SAT
Finally, as a variant of SAT, we consider the problem k-SAT where each clause
consists of exactly k literals.
We inductively define a predicate stating this property.

k-CNF [ ]

|C| = k k-CNF N
k-CNF (C :: N)k-CNF

The k-SAT problem additionally requires that k > 0. This is an arbitrary choice as
the problem is trivially polynomial-time decidable if no clause contains a literal.2

Definition 3.8 (k-SAT) k-SAT N := k-CNF N∧ k > 0∧ SAT Nk-SAT
Remark 3.9 Note that k acts as a parameter to the problem and is not part of an instance.
More precisely, we might say that k-SAT (for indeterminate k) is a class of problems,
where we get the problem k-SAT for every fixed k : N.

As k-CNF N can easily be decided in polynomial-time, we obtain a reduction from
k-SAT to SAT. For the case that k = 0 or that N is not a k-CNF, we map to a trivial
no-instance such as x0 ∧ ¬x0.

Lemma 3.10 (k-SAT reduces to SAT) k-SAT �p SAT

Proof As explained in Section 2.4, we need to verify that
• the reduction is correct, i.e. satisfies the reduction equivalence,

2In this case, N is a yes-instance iff N = [ ].
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• runs in polynomial time,

• and produces instances of a size which is polynomial in the input size.

The first condition is easy to verify, while the other two conditions use the tech-
niques of the previous section. �

3.2 Cliques in Undirected Graphs
The second problem involved in our first reduction is the Clique problem on undi-
rected graphs. We start by presenting our formalisation of undirected graphs.

Definition 3.11 (Undirected Graphs) Anundirected graphG = (V, E) : UGraph UGraphconsists
of a type of vertices V : finType and an edge relation E : V → V → P together with the fol-
lowing proofs:

• E is symmetric, i.e. ∀v1 v2 : V, E v1 v2 ↔ E v2 v1,

• and E is decidable, that is, there exists a function Edec : ∀v1 v2 : V, dec ({v1, v2} ∈ E),
where dec p := p+ (¬p) and we write {v1, v2} ∈ E for E v1 v2.

We use the notation {v1, v2} ∈ E instead of (v1, v2) ∈ E to explicitly express that E is
symmetric.

Remark 3.12 From the perspective of proving properties about graphs, the previous def-
inition provides an extremely convenient formalisation as all elements of type V are auto-
matically a vertex of the graph and the edge relation is just a decidable proposition instead
of, say, a list of pairs. However, the definition has a major problem: the propositional part of
the definition, i.e. the edge relation, is not extractable to L and the extraction of the finite type
is at least difficult. Moreover, even if the propositional parts would not cause any trouble,
the definition makes no statements about the time that is needed to decide the edge relation.

We will deal with this issue in Section 3.2.1 by introducing a “flat” first-order encoding
of graphs which can be extracted. As it will be much harder to work with that definition,
though, we define an equivalence between both definitions so that we can prove the correct-
ness statements using the full propositional version while doing the running-time analysis
on the flat version.

We define the metavariables G : UGraph, v : VG and e : EG, where the subscript
signifies that we mean the elements V and E of the graph G. If the graph G is clear
from the context, we may omit the subscript.

Based on this definition of graphs, we can formalise cliques.
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Definition 3.13 (Cliques and k-Cliques) Fix a graph G : UGraph. A list of vertices L
is a clique of G if all the edges between its elements are present in the graph.

clique : L(VG)→ Pclique
clique L := dupfree L∧ ∀v1 v2 ∈ L, {v1, v2} ∈ EG

A k-clique is a clique of exactly k elements: k-clique L := |L| = k∧ clique Lk-clique .

Alternatively, we can define k-cliques inductively, obtaining a definition which is
more suitable for inductive proofs.

0-clique’ [ ]
v /∈ L (∀v ′ ∈ L, {v, v ′} ∈ EG) k-clique’ L

(1+ k)-clique’ (v :: L)k-clique’

The Clique problem asks whether there exists a k-clique in a graph G:
Definition 3.14 (Clique) Clique (G, k) := ∃L : L(VG), k-clique LClique

Note that the number k is part of the instance, in contrast to the parameter k of the
class k-SAT.3
3.2.1 First-order Encoding of Graphs
We now present a variant of graphs and the Clique problem which is extractable
to L. This representation eliminates the components which cause trouble (see Re-
mark 3.12) in the above definition: the finite type and the propositional edge rela-
tion. The finite typewe replace by a natural number v giving the number of vertices.
Valid vertices are natural numbers which are smaller than v. The edge relation is
replaced by a list of pairs of vertices: FlatUGraph := N× L(N× N).FlatUGraph

This type does allow instances which do not make any sense syntactically. There-
fore, we enforce syntactic constraints externally:
FlatUGraph_wf (V, E) := (∀(v1, v2) ∈ E, (v2, v1) ∈ E)∧ (∀(v1, v2) ∈ E, v1 < V ∧ v2 < V)FlatUGraph_wf

One can easily build a Boolean decider for these constraints.
Of course, we want to connect graphs of type UGraph and flat graphs of type FlatU-
Graph somehow. We first define some general relations for the representation of
finite types by natural numbers.
Definition 3.15 (Representation of Finite Types) Let T : finType, t : T , and k, n : N.

n ≈ T := n = |T |n ≈ T
k ≈ ′ t := k = index tk ≈ ′ t

k ≈T,n t := k = index t∧ n ≈ Tk ≈T,n t
3One can show that for every fixed k, the Clique problem is decidable in polynomial time.
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Using this definition, it is easy to encode type constructors like O(·), · × ·, and ·+ ·,
as well as value constructors like ◦·, (·, ·), and inl ·. More generally, we obtain the
same closure properties for the flat representation of finite types as for finite types.
Example 3.16 (Encoding of Option Types) Wedefine flatOpt t := 1+t, flatSome k :=

1+ k and flatNone := 0. Assuming that n ≈ T and k ≈T,n t, we have:

flatOpt n ≈ O(T) flatNone ≈O(T),flatOpt n ∅ flatSome k ≈O(T),flatOpt n
◦t

Thus, we can define a representation relation for graphs as follows:
Definition 3.17 (Representation of Graphs) Let a graph G = (V, E) : UGraph and a
flat graph g = (v, e) : FlatUGraph be given. g represents G, written g ≈ G g ≈ G, if:
• v ≈ V ,
• ∀(v1, v2) ∈ e, v1 < v∧ v2 < v∧ ∃V1 V2, {V1, V2} ∈ E∧ v1 ≈ ′ V1 ∧ v2 ≈ ′ V2

• ∀V1 V2 : V, {V1, V2} ∈ E→ (index V1, index V2) ∈ e

Cliques can be defined in the expected way for flat graphs. The only difference to
the definition on non-flat graphs is that we have to explicitly require the graph to
be syntactically wellformed (see FlatUGraph_wf). The corresponding problem is
called FlatClique FlatClique. A proof that FlatClique is contained in NP is straightforward.
We can then derive an agreement statement for the two definitions: if (v, e) ≈ (V, E)

and if l : L(N) and L : L(V), then l is a clique in (v, e) if, and only if, L is a clique
in (V, E). Moreover, from a clique for one representation we can obtain a clique for
the other one. This agreement allows us to reason using the propositional version,
but analyse the running time on the flat version. Reductions essentially solely use
the flat definition, the propositional variant is only needed to make the proof of the
reduction equivalence more elegant.
3.3 Reduction from k-SAT to Clique
Now that we have defined the involved problems, we present the reduction of k-
SAT to Clique. Assume that the CNF is given as

(l0,0 ∨ . . .∨ l0,k−1)∧ . . .∧ (lm−1,0 ∨ . . .∨ lm−1,k−1),

for a number of clausesm. The basic idea of the reduction is to create a graph with
vertices (i, j) for i ∈ [0..m − 1] and j ∈ [0..k − 1] such that we have a vertex (i, j)

for every literal li,j. The edges between the vertices corresponding to two literals
encode whether the literals can be satisfied at the same time and belong to different
clauses. As a CNF is satisfied if and only if there exists a satisfied literal for every
clause, the satisfiability problem then reduces to checking whether there exists a
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m-clique in the constructed graph. In the following, we present this construction
and its proof of correctness formally.

We start with the reduction to the non-flat version Clique using graphs of type
UGraph. In order to prove polynomial-time computability, we then transfer the re-
sults to the flat version FlatClique.

For the rest of this section, let us fix a number kwith k > 0 and a k-CNF N.4

In order to define the graph, we need to be able to index into a CNF to obtain the
clauses and literals at particular positions. We use the operationsN[i] : O(clause)N[i] to
obtain the clause at index i and C[j] : O(literal) to obtain the j-th literal of a clause
C.C[j] From this, we derive N[i, j] as a way to get the j-th literal of the i-th clause of the
CNF N. The operations return option values in order to handle the case that the
indices are invalid.N[i, j]

Now, we can set up the graph G : UGraph in the following way:

VG := F|N| × FkVG

conflict (s1, v1) (s2, v2) := v1 = v2 ∧ s1 6= s2conflict
EG((i1, j1), (i2, j2)) := i1 6= i2 ∧EG ∀l1 l2,(N[index i1, index j1] = ◦l1

∧N[index i2, index j2] = ◦l2)

→ ¬conflict l1 l2

Here, the type Fn is a finite type consisting of n elements. Two literals l1, l2 are con-
flicting if they refer to the same variable but have different signs. The definition of
the edge relation then captures exactly the intuition described above: two vertices
are connected if their corresponding literals are not conflicting and belong to differ-
ent clauses. Note that theway inwhichwe handle the case thatN[index i, index j] = ∅
does not matter: by construction, there will always exist a literal at these positions
since we assumed that N is in k-CNF.

Remark 3.18 Labelling the graph with the syntactic literals occuring in the CNF instead
of the positions would not work: a single literal can occur multiple times in different clauses
(or even in the same clause) while the construction requires us to differentiate these different
occurences.

One can easily check that EG is symmetric and decidable. For the correctness of the
reduction, our goal is to show that SAT N↔ Clique (G, |N|).

4We will later handle k = 0 and instances not satisfying k-CNF N as special cases.
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3.3.1 From Assignments to Cliques
First of all, let us assume that asat is a satisfying assignment for N, i.e. asat |= N.
We have to derive the existence of a |N|-clique in the graph G. The idea is to pick
an arbitrary literal which is satisfied by asat for every clause. The corresponding
vertices in G form a clique by the construction of the edge relation.

To prove this formally, we require a few facts.

Fact 3.19 Let a : assgn and l1, l2 : literal be arbitrary.

E a l1 = T→ E a l2 = T→ ¬conflict l1 l2

Fact 3.20 Let C be the i-th clause of N, i.e. N[i] = ◦C, and l ∈ C. Then:

∃(ci, li) : VG, i = index ci∧ C[index li] = ◦l

That is, there exists a vertex of the graph that corresponds to a literal which is syntactically
equal to l and is part of the same clause as l.

Note that we could strengthen the preceding fact by also fixing the position of the
literal inside the clause. However, for the proof it is only relevant that the literal
belongs to a specific clause.

We prove the existence of a clique by induction over the number of clauses. In or-
der for an induction to go through, the statement needs to be strengthened: as we
have fixed a graph for the whole CNF, we also require that the clique provided by
the inductive hypothesis only uses vertices belonging to the smaller CNF. More-
over, we need that the corresponding literals are satisfied by asat in order to derive
the existence of the necessary edges if we add a vertex for the new clause in the
inductive step. Thus, we arrive at the following statement:

Lemma 3.21 (Existence of a Clique) Assume a sub-CNFN ′ ofN such thatN = N ′′++
N ′ for some N ′′. Then there exists L : L(VG) with:

1. |N ′|-clique L,

2. ∀(ci, li) ∈ L, index ci > |N ′′|,

3. and ∀(ci, li) ∈ L, ∃l,N[index ci, index li] = ◦l∧ E asat l = T.

Proof By induction on N ′ using Facts 3.20 and 3.19 in the cons case. �

Corollary 3.22 There exists a |N|-clique L in G.

https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.kSAT_to_Clique.html#evalLiteral_true_no_conflict
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.kSAT_to_Clique.html#literalInClause_exists_vertex
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.kSAT_to_Clique.html#exists_clique'
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.kSAT_to_Clique.html#exists_clique


28 Reducing k-SAT to Clique

3.3.2 From Cliques to Assignments
Conversely, we have to show that, given a |N|-clique L in G, there exists a satisfying
assignment for N. The proof proceeds in four steps:

1. For every clause of N, there exists one corresponding vertex in L.
2. Therefore, there exists a list of (clause, literal)-indices (i, j)where every clause

is mentioned exactly once and the referenced literals are non-conflicting.
3. If we map this list of positions to a list of syntactic literals, these literals are

non-conflicting and as there is at least one literal per clause, it suffices to sat-
isfy these literals in order to satisfy the whole CNF.

4. Finally, the list of literals can be turned into a satisfying assignment.
Only the proof of the first step is interesting, the other steps are straightforward.
We use an instance of the pigeonhole principle:
Lemma 3.23 (16.8.7 in [27]) Let A ⊆ B with |B| < |A|. Then ¬dupfree A.
Lemma 3.24 For every clause of the CNF, there exists a corresponding vertex in L:

∀i < |N|, ∃(ci, li), (ci, li) ∈ L∧ index ci = i

Proof As for every i and L the goal is decidable, we can constructively do a proof
by contradiction. Thus, assume that ∀(ci, li) ∈ L, index ci 6= i. It suffices to show that
the list of clause indices of L contains duplicates, i.e. ¬(dupfree[ ci | (ci, li) ∈ L ]),
as there is only an edge between two vertices (ci1, li1) and (ci2, li2) if ci1 6= ci2 by
definition of EG. We apply Lemma 3.23 for B := [f0, . . . , f|N|−1] \ fi, where fk is the
k-th element of the finite type F|N|, as i is not contained in the list of clause indices
by assumption. �

We omit the formal proof of the other steps in this presentation. In the end, we
obtain a satisfying assignment asat for N.
Combining both directions, we get a reduction f : cnf→ UGraph×N if wemapCNFs
which are not in k-CNF to a trivial no-instance.
Theorem 3.25 (k-SAT reduces to Clique) k-SAT N↔ Clique (f N)

However, this reduction cannot be extracted to L as we are using the unextractable
type of graphs UGraph. Therefore, we derive a reduction to the flat version Flat-
Clique. The construction of the graph mirrors the definition of EG, where we use
the flat constructors for pairs to construct the vertices, see Section 3.2.1. This graph
is connected to the non-flat graph G by the relation ≈ (Definition 3.17). We obtain
the following polynomial-time reduction:

https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Pigeonhole.html#pigeonhole'
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.kSAT_to_Clique.html#clique_vertex_for_all_clauses
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.kSAT_to_Clique.html#exists_assignment
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.kSAT_to_Clique.html#reduction_to_Clique
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Theorem 3.26 k-SAT �p FlatClique

Remark 3.27 A first version of this reduction [13] did not use a separate non-extractable
version of graphs but instead directly proved correctness on the flat version. The mechani-
sation was much more tedious because, among other things, we always had to work with the
possibility that a vertex is invalid, i.e. not actually part of the graph. The new proof halved
the lines of code of the Coq mechanisation and is also much more understandable. There-
fore, we believe that defining a separate extractable problem is the right way if the natural
formalisation of a problem in Coq is not directly extractable.

In the introduction to this chapter, we mentioned that the proof of this reduction
given in an introductory course on theoretical computer science merely spans half
a page. Doing the proof formally is a bit more work, as this chapter has shown.
Nevertheless, if one uses the right abstractions (in our case the representation of
graphs using finite types), it is quite manageable. Deriving a flat version which is
extractable to L and doing the running time analysis poses some additional tech-
nical effort, especially if one relates this to the usual approach on paper, which
amounts to “The reduction is obviously polynomial-time computable”. The system-
atic approach of representing finite types using natural numbersmakes the correct-
ness proof of the flat reduction feasible and will be useful for the more complicated
reductions of the coming chapters.

https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.kSAT_to_FlatClique.html#kSAT_to_FlatClique_poly


Chapter 4

Informal Overview of the Proof of the Cook-Levin
Theorem

We give an outline of our proof of the Cook-Levin Theorem, which is loosely based
on the presentation by Sipser [24]. After introducing the problemwe reduce from,
a tableau construction is presented. We show how we can encode deterministic
computations of a Turingmachine in such a tableau and later adapt the construction
to incorporate a form of nondeterminism. Finally, the structure of the formal proof
is described.
We formally state the main part of the Cook-Levin Theorem:
Theorem 4.1 (Cook-Levin) SAT is NP-hard1.

4.1 A Generic Problem for Turing Machines
Recall that, in order to show a problem P to be NP-hard, we have to prove that
any problem Q contained in NP can be reduced to it. In our setting of complexity
theory in L,we thus have to reduce the computation of L toSAT. In Remark 2.21, we
argued why it is hard to directly reduce from L to any natural problem. Therefore,
we believe that the most practical path of reducing from L to SAT is to use Turing
machines as an intermediate problem. We start from a generic problem for Turing
machines. A definition of such a problem the reader might be familiar with is the
following:
Given a nondeterministic Turing machineM, an input in and a number of steps t,

doesM accept in in at most t steps?
This definition explicitly employs nondeterminism, making it hard to reason for-
mally. Therefore, we use a characterisation that relates to this one in a similar way
the verifier characterisation of NP relates to the one using nondeterminism: the
nondeterminism is moved into the input.

1From this, we directly get NP-completeness, as was shown by Lemma 3.6.
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TMGenNP: Given a deterministic Turing machineM, an input in, a maximal
certificate length k ′ and a number of steps t, does there exist a certificate cert with

|cert| 6 k ′ such thatM accepts in++ cert in at most t steps?
In a theory with Turing machines as the computational model, TMGenNP would
be almost trivially NP-hard, although it would not be a natural problem as it de-
pends on the model of computation. Using L, however, the hardness is not trivial
anymore.
4.2 Deterministic Simulation: Tableau of Configurations
We first consider how the computation of a deterministic Turing machine can be
encoded for an arbitrary input of which we only know that its size is at most k. It
will be covered in the next section how we can come up with such an input in the
first place, i.e. how we can “guess” a certificate.
At a first glance, it might seem unintuitive that one can encode the computation of a
Turingmachine using a fixed-size formula as it is not knownapriori howmuch time
or space the Turingmachine needs on a particular input. The key is that TMGenNP
just asks us to simulate a Turing machine M for a bounded number of steps t on
inputs of a bounded size 6 k := |in| + k ′. Thus, the formula can be made large
enough to account for the worst-case: t computational steps and a space usage of
t + k tape cells as the Turing machine can visit at most one cell per computational
step2.
With this insight, wewrite down the computation of the Turingmachine in a tableau
(Figure 4.1). The tableau consists of t+ 1 lines, one for each configuration that can
be encountered in t computational steps. Each line encodes one configuration con-
sisting of a state symbol and the content of the tape. We call such a line a configu-
ration string. The state symbol is also annotated with the symbol currently under
the head. The first line contains the initial state q0 and the input σ1, . . . , σl for l 6 k,
where the head is one symbol to the left of the input (denoted by the blank the
state is annotated with). Note that each line has a fixed length accounting for the
maximum number of tape cells the Turing machine can use. However, the Turing
machine will usually use less space than is available. The cells unused by a config-
uration do contain special blanks ␣. These blanks are not contained in the Turing
machine tape alphabet but are part of the tableau encoding, as our Turingmachines
do not have blanks built-in. Each line of the tableau is delimited by #, the purpose
of which will become clear in Chapter 5. In the end, each cell of the tableau will be
represented by a number of Boolean variables used by the SAT formula.
As noted above, the state symbol also contains the current symbol under the head.

2The bound is t + k and not t since we need the space for the input even if the Turing machine
does not read it.
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#
#
#

#

#
#
#

#

␣ . . . ␣ q␣0 σ1 . . . σl ␣ . . . ␣

... ...t+ 1

O(k+ t)

6 k

1st config
2nd config
3rd config

Figure 4.1: The tableau of configurations

This choice is clear as it makes the transition taken by the Turing machine only
depend on one cell. However, there are multiple ways of dealing with head move-
ments. The most straightforward way might be to move the position of the state
symbol, resembling the movement of the head (moving-head semantics).

Example 4.2 (Moving Head) Consider the TuringmachineM over alphabetΣ = {a, b, c}

with Q = {q0, q1}, halt q0 = halt q1 = F and δ(q0, ◦a) = (q1, (
◦b,L)). The successor of

the tableau line

# #· · · · · ·b b ␣ ␣qa
0c␣

using moving-head semantics would be

# #· · · · · ·b b ␣ ␣bqc
1

␣
.

While this behaviour does work, it makes formal reasoning hard: Depending on
how the Turing machine moves its head in order to write down a string, the config-
uration string will look differently, although it logically represents the same config-
uration. Thus, for any given configuration (q, tp) of themachine, there aremultiple
ways of encoding it as a configuration string:
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# #· · · · · ·b b ␣ ␣bqc
1

␣

# #· · · · · ·b b b ␣qc
1

␣␣

Usually one wants to avoid such issues of non-uniqueness. Therefore, we instead
use a moving-tape semantics where the position of the head (and thus the state
symbol) is fixed at the center of the string. Instead of moving the head, the whole
tape is shifted around the head.
Example 4.3 (Moving Tape) Adapting example 4.2, the same transition looks like this
when using moving-tape semantics:

# #
1 2 30−1−2

· · · · · ·b b ␣ ␣qa
0c␣

ẑ l ẑ

# #· · · · · ·b b b ␣qc
1

␣␣

Note that the size of the substrings left and right of the center symbol is the same number ẑ
depending on t and k, expressing that the state symbol is fixed at the center.

With the moving-tape representation, we have arrived at a formally pleasing han-
dling of head movements.
It remains to encode that the successive lines of the tableau follow from each other
according to the Turingmachine’s transition function. For this, we introduce rewrite
windows consisting of 3× 2 symbols.

premise

conclusion

x1

x4

x2

x5

x3

x6

These rewrite windows are used to justify that one line of the tableau validly fol-
lows from the previous one. At each possible offset, there must exist a rewrite win-
dow whose premise matches a prefix of the previous string and whose conclusion
matches a prefix of the succeding string.
Example 4.4 (Rewrite Windows) Consider again example 4.3. For the positions la-
belled -2, -1, 0, 1 and 2 we need the following rewrite windows (from left to right):

␣
␣

c

␣
qa0

qc1

c

␣
qa0

qc1

b

b

qa0

qc1

b

b

b

b

b

b

b

b

␣

b

b

b

␣

b

␣
␣
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The key behind this construction is that the windows have to overlap. In this way,
a global constraint (that the whole configuration string consistently follows from
the previous one) is enforced using small local constraints given by the rewrite
windows.
We create a set of rewrite windows that encode the valid transitions. Intuitively,
these rewrite windows make the behaviours the Turing machine can have explicit,
compared with the symbolic representation of the transition function. Of course, a
great number of rewrite windows is needed. We mainly have three types of them:
for shifts of the tape, for the transition function involving the center state symbol,
and for replicating the final configuration if the Turing machine halts early in less
than t steps.
Most of the windows need to exist for every possible combination of tape symbols.
For instance, shifting the tape should be possible independently of its contents.
Therefore, we introduce rewrite ruleswhich are parameterised over variables rang-
ing over, for instance, the tape alphabet.

Example 4.5 (Rewrite Rules for Tape Shifts) The rewrite window

b

b

b

b

␣

b

is an instance of the more general rewrite rule

σ1

σ3

σ2

σ1

␣

σ2

,

where σi : Σ.

Note that we distinguish blanks ␣ and elements of Σ as ␣ is only a part of the rep-
resentation of configurations as strings. Seeing this generalisation, one might now
realise a problem regarding the tape shifts: the rewrite windows are not provided
enough information for the overlapping constraints to enforce a consistent tape
shift.

Example 4.6 (Inconsistent Tape Shifts) We not only need to be able to shift the tape to
the right but also leave its position unchanged. For instance, we need the following rewrite
rule:

σ1

σ1

σ2

σ2

␣
␣
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Looking again at Example 4.3, this rule can be applied at the position labelled with 1 to
obtain an alternative successor string:

# #
1 2 30−1−2

· · · · · ·b b ␣ ␣qa
0c␣

# #· · · · · ·b b ␣ ␣qc
1

␣␣

This change of configuration is inconsistent: the left half of the tape is shifted to the right,
while the right half of the tape is left unchanged.

The reason for this inconsistency is that one cannot infer from the overlapping tape
symbols alone in which direction the tape is shifted. We fix this problem by adding
more information: polarities. Polarities p : polarity := + | − | ◦ are positive,
negative, or neutral. Each symbol of the tape alphabet and each blank is annotated
with a polarity indicating in which direction the tape is shifted. Polarities do not
add any information to the configuration strings in their own right and are just
relevant for the configuration changes. Notationally, we write−→σ ,←−σ , σ for a symbol
σ annotated with a positive, negative, or neutral polarity.
Example 4.7 (Polarities) The rewrite rules mentioned above now have the following
form:

σ1

−→
σ3

σ2

−→
σ1

␣
−→
σ2

σ1

σ1

σ2

σ2

␣

␣

The inconsistent rewrite is not possible anymore as the windows overlapping from the left
force a positive polarity:

# #
1 2 30−1−2

· · · · · ·b b ␣ ␣qa
0c␣

# #· · · · · ·−→
b
−→
b
−→
b
−→␣qc

1
−→␣−→␣

Note that we omit the polarities in the premises of rules as they are irrelevant. For-
mally, for each of the rewrite rules depicted in Example 4.7, we do an instantiation
not only for all possible combinations of variable valuations, but also for the three
possible polarities in the premise (we only require that the polarities are consis-
tent).
Remark 4.8 (Blanks and Polarities) Formally, it is not necessary for blanks to be an-
notated with polarities. However, adding polarities to blanks allows us to handle symbols
of the tape alphabet and blanks in a more uniform way, simplifying the proofs.
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Generic Problem on Turing Machines (TMGenNP)

Parallel Rewriting (PR) on arbitrary Σ

Binary Parallel Rewriting on {0, 1}

Formula SAT (FSAT)

SAT of CNFs (SAT)

tableau construction

string homomorphism

encode bits using Boolean variables

Tseytin transformation

Figure 4.2: The chain of reductions from TMGenNP to SAT.

Finally, we need to enforce that the final configuration is a halting configuration.
This can be encoded by requiring that an element of [qm | halt q = T,m : Σ + {␣}] is
contained in the last line of the tableau.
4.3 Nondeterministic Input
The construction presented in the previous section can simulate a deterministic Tur-
ing machine given an initial configuration. In the definition of TMGenNP, how-
ever, a part of the input, the certificate, is existentially quantified. This nondeter-
minism of the input can be encoded by prepending a new line to the tableau, where
in is the fixed part of the input:

· · ·· · ·· · ·# ␣ ␣ q␣ in ∗ ∗ ␣ ␣ #
· · ·# ␣ ␣ q␣ in σ1 σ2 ␣ · · · ␣ #

kẑ ẑ− k

The idea is to add rewrite rules which can replace the ∗ (wildcard) symbols by
arbitrary elements of the tape alphabet. If one wildcard is replaced by a blank, all
the other wildcards to the right of it also need to be replaced by blanks in order to
ensure that the used tape region is contiguous.
4.4 Intermediate Problems
In the presentation by Sipser [24], the tableau is directly encoded as a CNF. Doing
this formally seems to be hard as one needs to handle the invariants of simulating
the Turing machine, the representation of symbols of an arbitrary finite alphabet,
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and the encoding as a CNF all at once. Instead, we factorise the proof into smaller
parts by introducing three intermediate problems that deal with these concerns
one-by-one. Figure 4.2 gives an overview over the reductions. The reduction of
TMGenNP to Parallel Rewriting (PR), a string-based problemwhich will be intro-
duced in Section 5.1, handles the main part of the Turing machine simulation. It
creates an explicit representation of the Turing machine by enumerating all rewrite
windows. After that, we do not have to reason about Turing machines anymore.
Parallel Rewriting can be seen as a model between Turing machines and circuits.
The remaining three reductions subsequently deal with the encoding of the alpha-
bet, the encoding as a Boolean formula and the conversion to a CNF.



Chapter 5

Reducing GenNP to Parallel Rewriting

In this chapter, we introduce the string-based Parallel Rewriting (PR) problem
which formally captures the idea of a string tableau constrained by rewrite win-
dows. The rest of this chapter is then devoted to formalising the tableau construc-
tion presented in Chapter 4 and proving its correctness in a reduction from TM-
GenNP to PR. However, we do not encode the rewrite windows as Boolean for-
mulas, yet, but instead stay at a string-based representation. This reduction does
the main work of encoding Turing machines: one can see the construction as mov-
ing from a symbolic representation of Turing machines to an explicit one, where
all possible “local” behaviours (expressed by the rewrite windows of the previous
chapter) are written down explicitly.
First of all, we make the informal description of TMGenNP given in the previous
chapter precise.
Definition 5.1 (TMGenNP)TMGenNP

TMGenNP(Σ,M, in, k ′, t) := ∃ cert,|cert| 6 k ′
∧∃qf, (startM, initTape (in++ cert))B6t qf,

where
TMGenNP : (ΣΣ.mTM Σ 1× L(Σ)× N× N)→ P,

B is the termination relation of Definition 2.4, and
initTapeinitTape [ ] := niltape

initTape (x :: xs) := leftof x xs,

that is, the head is initially positioned left of the input.

Syntactically, it is important that the numbers t and k ′ are given in a unary encoding
instead of a binary encoding: with a binary encoding, a verifier for TMGenNP
could not even take time linear in the number of steps.

https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.Cook.GenNP.html#SingleTMGenNP
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.Cook.GenNP.html#SingleTMGenNP
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.GenNP.TMGenNP_fixed_mTM.html#initTape_singleTapeTM
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5.1 Parallel Rewriting
Parallel Rewriting works over a finite alphabet Σ. Given an initial string x0, a set of
rewrite windows R, a number of steps t, and a final constraint Rfinal, we are tasked
with determiningwhether there exists a sequence of valid rewrites x0  R . . . R xt
using the rewritewindows R such that xt contains an element of a set of strings Rfinal
as a substring, written xt |= Rfinal. Conceptually, the rewrite windows we consider
here correspond to the rewrite windows of Chapter 4.

Definition 5.2 (Parallel Rewriting instances) PR instances(Σ, o,w, x0, R, Rfinal, t) is a Parallel Rewrit-
ing instance, where

• Σ : finType is the finite alphabet,

• o : N is the rewrite offset with o > 0,

• ω : N is the width of rewrite windows, where ω > 0 and o | ω,

• x0 : Σ∗ is the initial string, where |x0| > ω and o | |x0|,

• R : L(windowω(Σ)) is the set of rewrite windows,

• Rfinal : L(Σ∗) is the set of final substrings,

• t : N is the number of rewrite steps.

Here, windowω(Σ) := Σω × Σω windowω(Σ)denotes the type of windows of width w over Σ and n | m

means that n dividesm.

If the width is clear from the context, we write window(Σ) instead of windowω(Σ).
Instead of directly using the projections π1 and π2 on a window w, we usually
write prem w and conc w prem, conc. In the previous chapter, we considered rewrite windows
of width 3. |x0| is the width of the rewrite tableau. The condition |x0| > ω will
become clear in Remark 5.6. Pictorially, o symbols are always grouped together to
form one abstract symbol, explaining the divisibility constraints. Throughout this
chapter, we always work with an offset of 1 and the more general case will only
become relevant in Chapter 6.

Let us fix the structural parameters Σ, o and ω satisfying the conditions stated in
the definition for the rest of this section.
5.1.1 Validity
We start by defining what it means for a string a to validly rewrite to another string
b, denoted a b.

https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.Cook.PR.html#PR
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.Cook.PR.html#PR
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Definition 5.3 (Matching Windows)prefix

prefix s t := ∃b, t = s++ b
rewHead w a b := prefix (prem w) a∧ prefix (conc w) brewHead ,

that is, a window w justifies a rewrite at the head of two strings a and b if it matches the
heads of a and b.
A window w justifies a rewrite at position i of strings a, b if it matches the head of the
strings starting from position i: rewAt w i a b := rewHead w a[i..] b[i..]rewAt

Intuitively, a rewrite a  b is possible if we can find a rewrite window justifying
a local rewrite for every possible offset. “Possible offsets” are those in the range
[0, |a|−ω], as the windows have a width of ω. Additionally, we only need rewrites
at multiples of the offset, again supported by the view that o symbols together form
a unit.
Definition 5.4 (Validity, Explicit Characterisation) Given a set of rewrite windows
R, the validity of a rewrite from a : Σ∗ to b : Σ∗, written a ER ba ER b , can be defined by:

a ER b := |a| = |b|

∧ o | |a|

∧ ∀0 6 i = j · o 6 |a|−ω, ∃w,w ∈ R∧ rewAt w i a b

Note that the dependency on o and ω is not made explicit in the notation, instead
they need to be inferred from the context. If the set of rewrite windows R is clear,
we may also drop that.
While this definition is fairly intuitive, it does not support easy inductive reasoning.
Therefore, we use an equivalent inductive definition.
Definition 5.5 (Validity) Given a set of rewrite windows R, the validity of a rewrite
from a : Σ∗ to b : Σ∗, written a R ba R b , is defined inductively:

[ ] R [ ]

a R b |a| < ω− o |u| = o |v| = o

u++ a R v++ b
a R b |u| = o |v| = o w ∈ R rewHead w (u++ a) (v++ b)

u++ a R v++ b .

This version prepends a chunk of o symbols in each step. The first two cases deal
with proving validity of rewrites in strings of length < ω. The third case is the
interesting one and is defined in the intuitive way.

https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.MorePrelim.html#prefix
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.Cook.PR.html#rewritesHead
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.Cook.PR.html#rewritesAt
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.Cook.PR.html#validExplicit
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.Cook.PR.html#validExplicit
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.Cook.PR.html#valid
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.Cook.PR.html#valid
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Remark 5.6 It might seem peculiar that we do not require the strings to have a minimum
length of ω: strings of length < ω can be rewritten vacuously to any other string as they
are covered by no window and are disallowed by the definition of PR instances (see Defi-
nition 5.2). This choice enables us to only mention rewHead in the successor case of the
inductive definition; otherwise, we would also need it in the base case. The main proofs of
this chapter are simplified considerably by this choice, albeit at the cost of having nonsensical
base cases.

Proposition 5.7 (Vacuous Rewriting) Let a, b : Σ∗ with |a| = |b| = k · o < ω. Then
a b.

Proof By induction on k. �

Proposition 5.8 (Length Invariance) Let a, b : Σ∗ with a b. Then |a| = |b|.

Lemma 5.9 (Agreement of E and ) For any set of rewrite windows R, it holds that

a ER b↔ a R b.

Proof →: By definition, we have k with |a| = k · o. The proof is by induction on k
with a and b quantified.

←: By induction on a R b. �

5.1.2 The Parallel Rewriting Problem
Parallel Rewriting generates a sequence of strings according to  R for a set of
rewrite windows R. The last string should contain one element of a set of strings
Rfinal as a substring.

Definition 5.10 (Substring constraint) Given a set of strings Rfinal : L(Σ∗), string s
satisfies Rfinal, written s |= Rfinal s |= Rfinal, if:

∃subs k, subs ∈ Rfinal ∧ k · o 6 |s| ∧ prefix subs s[k · o..]

The definition requires a string contained in Rfinal to be a substring of the final string
at a position which is a multiple of the offset o.

Definition 5.11 (Parallel Rewriting) PR

PR (Σ, o,ω, x0, R, Rfinal, t) := ∃xt, x0  tR xt ∧ xt |= Rfinal,

where we implicitly require the instance to satisfy the syntactic constraints of Definition 5.2.

https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.Cook.PR.html#valid_vacuous
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.Cook.PR.html#valid_length_inv
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.Cook.PR.html#valid_iff
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.Cook.PR.html#satFinal
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.Cook.PR.html#satFinal
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.Cook.PR.html#PRLang
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.Cook.PR.html#PRLang
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One can interpret PR to be a problem between Turing machines and circuits: of
course, the definition over a finite alphabet still closely resembles Turing machines.
However, in contrast to Turingmachines, Parallel Rewriting can completely rewrite
the string in a single step, although the power of this is limited as it operates on
strings of a fixed size. Circuits, on the other hand, are similar in the sense that they
also work in parallel. The fact that adjacent rewrite positions overlap and can thus
enforce a global constraint in a single rewrite step is unlike circuits, though.

5.1.3 3-PR
For the rest of this chapter, we fix the width ω to 3 and the offset o to 1, which are
the parameters needed for the Turing machine encoding. We call this variant 3-PR.
The inductive definition of validity can be simplified a bit:a R b

[ ] R [ ]

a R b |a| < 2

x :: a R y :: b

a R b w ∈ R rewHead w (x :: a) (y :: b)

x :: a R y :: b

We use the notation introduced in the previous chapter to denote the window
((x1, x2, x3), (x4, x5, x6)):

x1

x4

x2

x5

x3

x6

Sometimes, we also use [x1, x2, x3] / [x4, x5, x6] if we need to write down a window
in-line.

5.2 Encoding Tapes and Configurations
We start with the construction of the Turing machine simulation. Our goal is to
devise and verify a 3-PR instance simulating a given Turing machine. For the rest
of the chapter, let us fix a TMGenNP instance consisting of a finite tape alphabet
Σ, a single-tape Turing machineM = (Q, δ, start, halt) over Σ, an input in, a number
t of steps, and a maximum size k ′ of the certificate.

Definition 5.12 validCert c := |c| 6 k ′validCert

Formalising the intuitions from Chapter 4, we define the alphabet Γ of the Parallel

https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.Problems.Cook.TPR.html#valid
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.Cook.GenNP.html#isValidCert
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Rewriting instance for the deterministic simulation1.

polarity : T := + | − | ◦
delim : T := # Σstate

Σstate := O(Σ) States
States := Q× Σstate Σtape
Σtape := polarity× Σstate
Σdelim := delim+ Σtape Σdelim

Γ := States+ Σdelim Γ

The three polarities give the direction in which a tape was last shifted. Σstate adds
blanks to the alphabet Σ. Elements of Σstate have no polarity and are used for the
state symbols States, while elements of the tape alphabet Σtape are additionally an-
notated with a polarity. Finally, the full alphabet Γ is either a state symbol, a tape
symbol or the delimiter #.
We need the subalphabets at various points. When we write down elements of Γ ,
we leave the injections into the sum types and option types implicit. Sometimes,
we also implicitly lift functions from a smaller alphabet to a larger one. We use the
metavariables σ : Σ,m : Σtape, p : polarity, γ : Γ , u : Σ∗, and h : Γ∗. ←−

m,
−→
m,mGivenm, we write

−→
m for (+,m), ←−m for (−,m), and m for (◦,m). For an unknown polarity p, we use
mp mp.

Definition 5.13 (Polarity Reversion)

pFlip p := match p[ ◦ ⇒ ◦ | + ⇒ − | − ⇒ + ]
pRev (h : Γ∗) : Γ∗ := rev[ pFlip x | x ∈ h ] pRev

Notationally, we write ~p ~pfor pFlip p.

pRev reverses a string and flips the polarities the symbols are annotated with. Note
that we are already using an implicit lifting of pFlip from polarity to Γ in the defini-
tion of pRev.

Fact 5.14 (Involutions) pFlip and pRev are involutions, that is, pFlip (pFlip p) = p and
pRev(pRev h) = h.

Figure 5.1 shows the layout of a configuration string again. We refer to the center
symbol as the state symbol and to the substrings left and right of it as the left tape

1This does not include the part for generating the initial configuration.

https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#stateSigma
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#States
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#polSigma
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#tapeSigma
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#Gamma
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#polarityRev
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#polarityFlip
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#polarityFlip_involution
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#polarityRev_involution
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# ␣ ␣ qm #␣␣␣ · · · ␣ ␣ · · · ␣left right

ẑ
z

ẑ
z

l

Figure 5.1: Layout of a configuration string.

half and the right tape half. In dependence on t, k ′, and in, we define the following
numbers:

k := |in|+ k ′k
z := t+ kz

∀n, n̂ := n+ 2n̂

l := 2 · (ẑ+ 1) + 1l
The real maximum input size after accounting for the fixed input in and the nonde-
terministic certificate is k. z is the amount of space available for the Turing machine
and thus z units of space need to be available to the left and to the right in the con-
figuration string as the tape can be shifted to be completely on one side of the state
symbol. For technical reasons, we want three symbols to be available to either side
of the state symbol even if t = k = 0. One of those symbols is the delimiter #, the
other two are additional blanks which will never be used by the Turing machine.
Thus ẑ is the number of symbols on each side excluding the delimiter. Finally, l is
the length of the whole configuration string including the center state symbol.
In order to make reasoning about configuration strings possible, we define repre-
sentation relations for tape halves and configurations.
Definition 5.15 (Tape Representation) The string E represents the empty tape:E

E p 0 := [#]
E p (1+ n) := (p, ␣) :: E p n

Tape representation is defined as:u ∼
(n,p)
t h

u ∼
(n,p)
t h := |u| 6 n∧ h = [ (p, x) | x ∈ u ]++ E p (n̂− |u|)

u ∼
p
t h := u ∼

(z,p)
t h,u ∼

p
t h

u ∼
(n,p)
t hmeans that h contains the elements of u annotated with polarity pwhere

a total of n symbols are available for the simulation to use (not counting the three
additional symbols). For the correctness statements, we use u ∼

p
t h, but usually

generalise to u ∼
(n,p)
t h for some n in inductive proofs.

https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#k
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#z
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#z'
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#l
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#E
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#reprTape'
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#reprTape
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Proposition 5.16 We have the following basic facts related to the representation of tapes.
1. ~ commutes with E: [ ~γ | γ ∈ E p n ] = E (~p) n
2. tape representation is invariant under ~: u ∼

(n,p)
t h→ u ∼

(n,~p)
t [ ~γ | γ ∈ h ]

A configuration c = (q, tp) is represented by a string containing the state symbol
at the center with strings representing the left and right tape halves to the left and
right of it.
Definition 5.17 (Configuration Representation)

(q, tp) ∼c (l, e, r)(q, tp) ∼c (l, e, r) := ∃p, e = (q, current tp)∧ left tp ∼
p
t l∧ right tp ∼

p
t r

c ∼c s := ∃l e r, s = rev l++ [e] ++ r∧ (q, tp) ∼c (l, e, r) (q, tp) ∼c s

Note that the left tape half is reversed: while the Turing machine tapes have the
symbol closest to the machine head at the head of the list, we need the symbol
closest to the head to be next to the string’s center. This will pose some difficulties
later on.
Both ∼t and ∼c are computational

stringForTapeHalf
in the sense that, given a tape half or a configu-

ration, respectively, we can compute a string representing this tape half or config-
uration. Let stringForTapeHalf : Σ∗ → Γ∗ and stringForConfig : Q → tape (Σ) → Γ∗ be
such functions. stringForConfig

5.3 Modifying Tapes
Recall that we need rewrite rules for shifting the tape and for encoding transitions
at the center state symbol. In this section, we introduce the rewrite rules for shifting
tape halves and prove themain results formanipulating the representation of a tape
half. Thus, are only concerned with the representation of tape halves for now.
TapeRules Recall thatwe need rules for shifting the tape to the left, to the right, or
leaving its position unchanged. They use metavariables which can be instantiated
with all possible values of the corresponding type. In the premise of the rules, we
omit the polarity; they can be instantiated with each of the three polarities, as long
as the polarity is consistent across the three symbols. The rules are annotated with
the tape halves they are intended for. These annotations have no formal meaning
but help with the intuition.
Right Shifts

σ1

−→
σ4

σ2

−→
σ1

σ3

−→
σ2

␣
−→␣

␣
−→␣

␣
−→␣

(both halves)

https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#E_polarityFlip
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#tape_repr_polarityFlip
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#reprConfig'
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#reprConfig
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#stringForTapeHalf
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#stringForConfig
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␣
−→
σ1

␣
−→␣

␣
−→␣

σ1

−→
σ2

␣
−→
σ1

␣
−→␣

σ1

−→
σ3

σ2

−→
σ1

␣
−→
σ2

(right half)

␣
−→␣

␣
−→␣

σ1

−→␣

␣
−→␣

σ1

−→␣

σ2

−→
σ1

σ1

−→␣

σ2

−→
σ1

σ3

−→
σ2

(left half)

The rules implicitly encode the invariant that all symbols used by the Turing ma-
chine are placed contiguously with no blanks inbetween. For instance, we do not
need the following two rules:

σ1

−→␣

␣
−→
σ1

σ2

−→␣

σ1

−→␣

␣
−→
σ1

␣
−→␣

In the first case, the premise prevents the rule from ever being applicable. In the
second case, the overlap of the rewrite windows and the state symbol which stands
between both tape halves makes it impossible to have the substring ␣−→σ1␣. We call
such instantiations of a rewrite rule spurious.
Knowing this, we write down the above rules in a more succinct way as

m1

−→
m4

m2

−→
m1

m3

−→
m2

.

While we would be fine having the spurious rewrite windows, they do make addi-
tional reasoning necessary in some cases. Therefore, we just regard this as a nota-
tion for the expanded form above, instead of actually having the spurious instanti-
tions. One can easily derive the rules which are actually relevant.
Left Shifts We only write down the abbreviated form:

m1

←−
m2

m2

←−
m3

m3

←−
m4

Note that this rule exactly mirrors the rule for shifting the tape to the right.
Identity Rules

m1

m1

m2

m2

m3

m3
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#
#

␣
␣

␣
␣

␣
␣

␣
␣

#
#

We need no windows which contain both the delimiter # and an element of Σ as
the Turingmachine (by construction of z) cannot use the two blanks adjacent to the
delimiters within the number of steps it is given.
The collection of all windows generated by these rules is referred to as Rtape Rtape.

Remark 5.18 It now becomes clear why we need the delimiter #. Without it, symbols
could just be introduced at the edge of the string. For instance, the rule

␣
−→
σ1

␣
−→␣

␣
−→␣

,

which is intended for use on the right tape half, could then also be used at the leftmost
position of the left tape half as no rewrite window is overlapping from the left.

Lemma 5.19 (Symmetry of Rtape) The Rtape rules are symmetric in the sense that they
are closed under polarity-reversion of premise and conclusion.

[γ1, γ2, γ3] / [γ4, γ5, γ6] ∈ Rtape ↔ [~γ3,~γ2,~γ1] / [~γ6,~γ5,~γ4] ∈ Rtape

Proof We first prove one direction and then use that pFlip is involutive (Fact 5.14).
The proof is by inversion on the rule used to generate the window. The interesting
case is the one for shifting the tape to the left or to the right, which follows by
the fact that the rules for shifting to the left and shifting to the right are exactly
symmetric. �

The following lemma will be extremely helpful in the sequel. If we want to prove a
statement for the left and the right tape half, it allows us to just prove the statement
for the right tape half and then get the symmetric result for the left tape half for
free. This is useful in particular because we cannot do direct inductions over the
reversed left tape half.

Lemma 5.20 (Symmetry of Tape Rewrites)
1. h Rtape h

′ → pRev h Rtape pRev h
′

2. pRev h Rtape pRev h
′ → h Rtape h

′

3. h Rtape h
′ → [ ~x | x ∈ h ] Rtape h

′

Proof

https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#tapeRules
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#tapeRules_revp
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#tape_rewrite_symm1
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#tape_rewrite_symm2
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#tape_rewrite_symm3
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1. By induction on h  Rtape h
′. The first two cases are trivial. In the successor

case, there is the problem that the new symbols are appended at the end of
the strings, while the inductive definition of  only allows to prepend new
symbols. We switch to the explicit characterisation by Lemma 5.9 and do a
case analysis on the position for which we need to provide a rewrite window.
For all but the last position, we can apply the inductive hypothesis, while we
use the polarity-reversed new rewrite window, which exists by Lemma 5.19,
for the last position.

2. Apply 1. and use that pRev is an involution.
3. By induction on h Rtape h

′ and inversion on the used rewrite rule. �

Manipulation of Tape Representations Weprove several lemmaswhich are sim-
ilar in flavour. They state that, starting with the representation of a tape half, we
can leave the tape half unchanged, add a symbol of Σ, or remove a symbol that pre-
fixes it. Moreover, if a tape half rewrites to a stringwhose first symbol is known, the
rest of the string is also uniquely determined. Basically, they allow use to simulate
the effect a single Turing machine transition has on the tape. The results are each
proven for the right tape half and then derived for the left tape half by Lemma 5.20.
Remark 5.21 It now becomes clear why we require at least three symbols on each side of
the state symbol: this way, we can prove results about each of the tape halves individually
without running into the problem of vacuous rewrites (Lemma 5.7).

We start with a statement about empty tape halfs which will later be the base case
of more general results.
Lemma 5.22 (Empty Tape Half: Blank Rewriting)

1. E p n̂ Rtape E p
′ n̂ and if E p n̂ Rtape ␣p

′
:: s, then s = E p ′ (1+ n)

2. rev (E p n̂) Rtape rev (E p n̂) and rev (E p n̂) Rtape rev (␣p
′
) :: s)→ s = E p ′ (1+

n)

Proof
1. The first statement follows by induction on n. For the second one, we unfold
n̂ = 1 + (1+ n) and generalise 1 + n to arbitrary n > 1. The statement then
follows by induction on n: the base case is contradictory. In the successor
case, we do another case analysis on n. If n = 0, the statement holds by
inversion on the used rewrite rule.
Otherwise, n = 1+n ′. We have E p (3+n ′) ␣p ′ :: s and show s = E p ′ (2+n).
By inversion on the rewrite rule used at the head, we get four cases and in

https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#E_rewrite_blank
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#E_rewrite_blank_rev
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each one, s = ␣p ′ :: s ′ and E p (2 + n)  ␣p ′ :: s ′. As 1 + n ′ > 1, we apply the
inductive hypothesis and get s ′ = E p ′ (1+ n), closing the proof.

2. For the first statement, it suffices to show rev (E (~~p) n̂) Rtape rev (E (~~p) n̂).
By Proposition 5.16.1, we can pull out one of the pFlips to turn the rev into a
pRev. Applying Lemma 5.20.1, we are left with [ ~γ | γ ∈ E p n̂ ]  Rtape
[ ~γ | γ ∈ E p ′ n̂ ]. This follows by another application of Proposition 5.16.1
and part 1.
The second part is proved in a similar way: we use that pFlip is involutive,
apply Lemma 5.20.2, and use part 1. �

The important idea of Lemma 5.22 is that the rewrite is uniquely determined once
we know the first symbol of the target string. All of the important lemmas in the
remainder of this sectionwill be similar in style. The two statements of Lemma 5.22
each have an existence and uniqueness part in addition to another property: there
exists a unique s such that E p n̂  Rtape (p ′, ␣) :: s, and additionally, this s satisfies
s = E p ′ (1 + n). In the following, we write this down more succinctly using a
modified unique existence quantifier:

∃!a, p a∧ q a := ∃a, p a∧ (∀b, p b→ b = a)∧ q a. ∃!
Thus, Lemma 5.22.1 now reads as follows:

∃!s, E p n̂ Rtape ␣p
′
:: s∧ s = E p ′ (1+ n)

Remark 5.23 Recall that we use rewrite windows of width 3. Choosing a width of 2 does
in principle also work. A width of 3, however, makes some proofs easier. Consider again the
uniqueness part of statement 1 of the previous lemma. The appropriate statement to prove
would be: E p (1 + n)  ␣p ′ :: s → s = E p ′ n. The corresponding strengthening would
be to require n > 0, which is trivial. In the successor case, we know E p (2+ n) ␣p ′ :: s
and we have to prove s = E p ′ (1 + n). If we now do an inversion on the rewrite rule used
at the head, we cannot, for instance, directly rule out that s = ←−σ :: s ′ (by the rewrite rule
[␣, ␣] / [←−␣ ,←−σ ]2). In order to deal with cases like this, we would need to do a case analysis
on n and then do more inversions on the rewrite rules at the next position.
Rewrite windows of size 3 do not necessitate these additional inversions: they directly encode
structural information such as E p (3 + n) 6 ←−␣ ::

←−
σ :: s ′. We think, however, that using

rewrite windows of size 2 would have been a valid design choice, too.

We now prove results for arbitrary tape halves that need not be empty. Intuitively,
the following three lemmas allow us to add a symbol of Σ to a string representing

2The modification of the rules to width 2 is straightforward.
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a tape half, remove a symbol, or leave the tape half unchanged, thus enabling the
tape shifts. The results are all proved by using induction on the tape half that is
represented by the string and use the lemma for empty tape halves in the base case.

Lemma 5.24 (Adding a Symbol) If rs ∼(n,p)t h and |rs| < n, then

1. ∃!h ′, h Rtape
−→
σ :: h ′ ∧ σ :: rs ∼

(n,+)
t

−→
σ :: h ′

2. ∃!h ′, rev h Rtape rev(
←−
σ :: h ′)∧ σ :: rs ∼

(n,−)
t

←−
σ :: h ′

Proof We look at the first statement, the second statement is again derived by
Lemma 5.20. The proof proceeds by induction on rs. In the base case, we choose
h ′ = E (+) (1+n), pick a suitable rewritewindowat the head, and apply Lemma5.22.

In the cons case, we have σ1 :: rs ∼
(p,n)
t h, 1 + |rs| < n. By inversion on ∼

(p,n)
t , we

know h = σp1 :: h0 and n = 1+ n ′. We show

∃!h ′, σp1 :: h0  
−→
σ :: h ′ ∧ σ :: σ1 :: rs ∼

(p,1+n ′)
t

−→
σ :: h ′

In order to determine a rewrite rule to apply at the head, we need to know two
more symbols at the head of h0. Thus we do a case analysis on rs: either rs = [ ],
rs = [σ2], or rs = σ2 :: σ3 :: rs ′. The interesting case is the third one, for which we
need the inductive hypothesis.

By inversion on ∼
(1+n ′,p)
t , we get h0 = σp2 :: σp3 :: h1 and n ′ = 2 + n0, with σ1 :: σ2 ::

σ3 :: rs ′ ∼(3+n0,p)t σ
p
1 :: σp2 :: σp3 :: h1. Thus, σ2 :: σ3 :: rs ′ ∼(2+n0,p)t σ

p
2 :: σp3 :: h1,

to which the inductive hypothesis can be applied for σ := σ1 to obtain a unique h ′
with σ2 :: σ3 :: h1  −→σ1 :: h ′ and σ1 :: σ2 :: σ3 :: rs ′ ∼(2+n0,+)

t

−→
σ1 :: h

′. By inversion on
∼
(2+n0,+)
t , we have h ′ = −→σ2 :: −→σ3 :: h2.

By using the rewrite window [(p, σ1), (p, σ2), (p, σ3)] / [
−→
σ ,
−→
σ1,
−→
σ2], we directly get

existence. Uniqueness follows by inversion on the rewrite at the head of the string
and by using the uniqueness from the inductive hypothesis. �

Lemma 5.25 (Removing a Symbol) If σ :: rs ∼
(n,p)
t σp :: mp :: h, then

1. ∃!h ′, σp :: mp :: h Rtape
←−
m :: h ′ ∧ rs ∼(n,−)

t

←−
m :: h ′

2. ∃!h ′, rev(σp :: mp :: h) Rtape rev(
−→
m :: h ′)∧ rs ∼(n,+)

t

−→
m :: h ′

Lemma 5.26 (Leaving the Tape Unchanged) If rs ∼(n,p)t mp :: h, then

1. ∃!h ′,mp :: h Rtape m :: h ′ ∧ rs ∼(n,◦)t m :: h ′

2. ∃!h ′, rev(mp :: h) Rtape rev(m :: h ′)∧ rs ∼(n,◦)t m :: h ′

https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#tape_repr_add_right
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#tape_repr_add_left
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#tape_repr_rem_right
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#tape_repr_rem_left
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#tape_repr_stay_right
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5.4 Encoding Transitions
In this section, we deal with the Turingmachine’s transition function. We introduce
new rewrite rules for the different cases of the transition function and differentiate
between halting and non-halting configurations. The resulting windows can be
applied at the center of the configuration string at the three positions involving the
state symbol. Thus, we have three rules for each transition of the Turing machine:
one for each of the cases where the state symbol is in the left, center, or right cell
of the rewrite window. The state symbol uniquely determines the successor string
to which a configuration string can be rewritten. The flow of information for the
rewrite is from the state symbol at the center to the outer regions of the tape halves:
the rewrite rules involving the state symbol uniquely determine the new head of
the tape halves. Then, the results of the previous section yield unique successor
tape strings.
Transition Rules We first present the rules for the case that the Turing machine
is not in a halting configuration, i.e. halt q = F. As we are working with single-tape
Turing machines, we simplify the type of the transition function δ to Q × O(Σ) →
Q×ActΣ in the following presentation, omitting the singleton vector wrappers. We
make the following observations regarding the Turing machine’s behaviour on a
transition δ(q,m) = (p,m ′, a):

m state symbol m ′ written symbol

◦σ qσ
◦σ ′ σ ′

∅ σ

∅ q␣
◦σ ′ σ ′

∅ /
Even ifm ′ = ∅, we can interpret that as the Turing machine just writing the current
symbol again if the head is currently on a symbol (m 6= ∅). However, if the symbol
currently under the head is a blank (m = ∅) and the machine does not write a
new symbol (m ′ = ∅), no symbol is written. Thus, the rewrite windows for all of
the cases except for the one where m = ∅ and m ′ = ∅ look very similar. This last
case needs to be handled differently: if the transition function dictates to move in
a direction where the next symbol is a blank again, the tape must not be shifted,
which resembles the definition of head movement in Figure 2.1 on Page 10.
We start with the cases wherem,m ′ 6= ∅.
δ(q, ◦a) = (p, ◦b,L):

␣
−→␣

qa

p␣

m1

−→
b

σ1

−→
m2

qa

pσ1

m1

−→
b
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␣
−→␣

␣
−→␣

qa

p␣

␣
−→␣

σ1

−→␣

qa

pσ1

σ1

−→
m1

σ2

−→
σ1

qa

pσ2

qa

pm1

␣
−→
b

␣
−→␣

qa

pm2

σ1

−→
b

m1

−→
σ1

We have three main cases, one each for the three possible positions of the state
symbol. Note that we again distinguish blanks and elements of Σ and thus directly
encode the invariant that the used region of the configuration string is contiguous.
As for the tape rules, we can write the rules down more succinctly as

m1

−→
m3

qa

pm2

m2

−→
b

m1

−→
m3

m2

−→
m1

qa

pm2

qa

pm3

m1

−→
a

m2

−→
m1

.

These rules do again generate spurious rewrite windows that will never be applied
when starting with a valid configuration string. Since the tape rules enforce con-
sistent tape shifts, the spurious windows do no harm; however, for simplicity, we
will still work with the full definition without spurious windows in the following.
From the shortened definition of the rules, one can easily restore the rules for the
non-spurious windows.
δ(q, ◦a) = (p, ◦b,R):

m1

←−
b

qa

pm2

m2

←−
m3

qa

pm1

m1

←−
m2

m2

←−
m3

m1

←−
m2

m2

←−
a

qa

pm3

δ(q, ◦a) = (p, ◦b,N):

m1

m1

qa

pb

m2

m2

qa

pb

m1

m1

m2

m2

m1

m1

m2

m2

qa

pb

For the other cases, we only give the rules where the tape is shifted to the right. The
other rules are derived similarly and can be found in Appendix B. The rules where
m ′ = ∅ are very similar to the previous ones: instead of writing a new symbol b,
the current symbol a is written again.
δ(q, ◦a) = (p,∅,L):

m1

−→
m3

qa

pm2

m2

−→
a

m1

−→
m3

m2

−→
m1

qa

pm2

qa

pm3

m1

−→
a

m2

−→
m1

Ifm = ∅, the current symbol under the head is a blank:
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δ(q,∅) = (p, ◦b,L):

m1

−→
m3

q␣

pm2

m2

−→
b

m1

−→
m3

m2

−→
m1

q␣

pm2

q␣

pm3

m1

−→
a

m2

−→
m1

The last case where the current symbol is a blank and the Turing machine does not
write any symbol is different, as noted above. Therefore, the distinction between
elements of Σ and the blank ␣ is important. We give the full rules instead of the
abbreviation.
δ(q,∅) = (p,∅,L):

␣

␣

q␣

p␣

m1

m1

σ1

−→
m1

q␣

pσ1

␣
␣

␣

␣

␣

␣

q␣

p␣

␣
−→␣

σ1

−→␣

q␣

pσ1

σ2

−→
m1

σ1

−→
σ2

q␣

pσ1

q␣

pm1

␣
−→␣

␣
−→␣

q␣

p␣

σ1

σ1

m1

m1

Let Rtrans Rtransdenote the collection of all windows generated by the transition rules.
Halting Extensions Now we deal with halting configurations, i.e. configurations
with states q for which halt q = T. Recall that the tableauwill have a fixed a number
of lines and therefore, rewrites need to be possible even for halting configurations
in case the Turing machine halts early. We solve this problem by adding rewrite
rules that allow to rewrite halting configurations to exactly the same configuration.
Again, we give a simplified definition generating spurious windows.

m1

m1

qm2

qm2

m3

m3

m1

m1

m2

m2

qm3

qm3

qm1

qm1

m2

m2

m3

m3

Let Rhalt Rhaltdenote the collection of all windows generated by the halting rules.
Composition of RewriteWindows We define the set of rewrite windows Rsim Rsimfor
the deterministic simulation of the Turing machine as Rsim := Rtape ++ Rtrans ++ Rhalt.
Next, we prove basic facts about the composition of the three sets of windows.

Definition 5.27 (State Symbols) stateSym q γ := ∃m,γ = qm

The following lemma is based on the fact that a string representing a tape half can-
not contain a state symbol. It helps us in lifting the results of the previous section

https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#transRules
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#haltRules
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#simRules
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#isSpecStateSym
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for tapes to Rsim.

Lemma 5.28 (Tape Rewriting)

1. u ∼
(n,p)
t h→ (∃w ∈ Rsim, rewHead w h h ′)→ (∃w ∈ Rtape, rewHead w h h ′)

2. u ∼
(n,p)
t h→ h Rsim h

′ → h Rtape h
′

3. u ∼
(n,p)
t h→ (pRev h) Rsim (pRev h ′)→ (pRev h) Rtape (pRev h

′)

Proof 1. From the simple fact that all windows contained in Rtape or Rhalt contain
a state symbol, i.e. a symbolγ satisfying stateSym qγ for some q, while a string
representing a tape half can never contain a state symbol.

2. By induction on h  Rsim h
′, using 1. in the successor case. In order to apply

the inductive hypothesis, we invert the representation relation.
3. An induction on Rsim fails: the tape representation relation does not reverse
h, thus we cannot suitably invert the representation relation in order to apply
the inductive hypothesis. Instead, we switch to the explicit characterisation
by Lemma 5.9. �

Lemma 5.29 (State Rules) Letγ1, γ2, γ3, γ4, γ5, γ6 : Γ and stateSymqγ1∨stateSymqγ2∨
stateSym q γ3, w := [γ1, γ2, γ3] / [γ4, γ5, γ6]. Then:

1. halt q = F→ w ∈ Rsim → w ∈ Rtrans

2. halt q = T→ w ∈ Rsim → w ∈ Rhalt

5.4.1 Single Simulation Steps
Weprove that, if we start out with a configuration string, a single rewrite step using
the rewrite windows Rsim exactly corresponds to a step of the Turing machine if the
configuration is not halting and otherwise, the rewrites just replicate the current
halting configuration. Pictorially, we prove the following diagram for the case of
non-halting configurations:

q; (ls, σ, rs)

q ′; (ls ′, σ ′, rs ′)

�

rev left rightqσ

 

rev left ′ right ′q ′σ ′

∼c

∼c

where ls ∼pt left, rs ∼pt right and ls ′ ∼p ′t left ′, rs ′ ∼p ′t right ′. From the existence of a �
or transition, we get the unique existence of the other transition.

https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#rewHeadTrans_tape'
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#rewHeadSim_tape
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#rewHeadSim_tape_polarityRev
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#rewHeadSim_trans
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We start off with an important lemma that allows us to split up a rewrite h  h ′

into three rewrites involving the center state symbol and a rewrite each for the two
tape halves.
Proposition 5.30

(A++ [c, d, e, f, g] ++ B) R (A ′ ++ [c ′, d ′, e ′, f ′, g ′] ++ B ′)∧ |A| = |A ′| ∧ |B| = |B ′|

↔ (A++ [c, d] R A ′ ++ [c ′, d ′])

∧([f, g] ++ B) R ([f ′, g ′] ++ B ′)

∧[c, d, e] / [c ′, d ′, e ′] ∈ R∧ [d, e, f] / [d ′, e ′, f ′] ∈ R∧ [e, f, g] / [e ′, f ′, g ′] ∈ R

Conversely, if we start out with a string of the form given in the previous proposi-
tion and rewrite to another string, the new string can also be split up accordingly.
Proposition 5.31

(A++ [a, b, c, d, e] ++ B) s ′

→ ∃A ′ B ′ a ′ b ′ c ′ d ′ e ′, s = A ′ ++ [a ′, b ′, c ′, d ′, e ′] ++ B ′ ∧ |A| = |A ′| ∧ |B| = |B ′|

The following two results are the main correctness statements for the Turing ma-
chine simulation.
Lemma 5.32 (Step Simulation)
If (q, tp) ∼c s, (q, tp) � (q ′, tp ′) and |tp| < z, then ∃!s ′, s Rsim s

′ ∧ (q ′, tp ′) ∼c s ′.
Proof The proof follows the following ideawhichwas already outlined previously:

hl hrleft rightqm

h ′
l h ′

rq ′m ′∃!left ′ ∃!right ′

Given a configuration string, we split it into the state symbol qm, the left tape half,
and the right tape half. The state symbol uniquely determines the transition the
Turing machine takes. By analysing the heads hl and hr of the tape halves, we can
find out the rewrite windows to use at the center. These windows then uniquely
determine the heads h ′l and h ′r of the successor tape halves. Using Lemmas 5.24-
5.26, the successor tape halves are therefore fully determined. The rewrites can be
justified seperately by Lemma 5.30.
We have to do several case analyses on the transition that is taken and the shape of
the left and right tape halves. As an example, we look at the case where m = ◦σ
and δ(q, ◦σ) = (q ′, ◦σ ′,L), left tp = rev(σ1 :: σ2 :: left ′), right tp = σ3 :: right ′. By
assumption, there are h1 = σp1 :: σp2 :: h ′1, h2 = σp3 :: h ′2 with σ1 :: σ2 :: left ′ ∼(z,p)t h1

and σ3 :: right ′ ∼(z,p)t h2. Pictorially, the tape looks as follows:

https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#valid_rewritesHeadInd_center
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#valid_conc_inv
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#stepsim
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left’ σ
p
2 σ

p
1 qσ σ

p
3 right’

Thus, we apply the window

σ
p
1

−→
σ2

qσ

q ′σ1

σ
p
3

−→
σ ′

at the center. Doing one more case analysis for the left and right tape halves, we
can determine the other two rewrite windows to use at the center.
Next, we transform the two halves of the tape. The element σ1 needs to be re-
moved from the left tape half, while σ ′ needs to be added to the right tape half. By
Lemma 5.25, there is a unique h ′′1 such that

rev(σp1 :: σp2 :: h1) rev(
←−
σ2 :: h

′′
1 ) and σ2 :: left ′ ∼(z,+)

t

−→
σ2 :: h

′′
1 .

Similarly, by Lemma 5.24, there is a unique h ′′2 such that

σ
p
3 :: h ′2  

−→
σ ′ ::
−→
σ3 :: h

′′
2 and σ ′ :: σ3 :: right ′ ∼(z,+)

t

−→
σ ′ ::
−→
σ3 :: h

′′
2 .

These two results can be used to justify the rewrite for the two tape halves. More-
over, we have to show that

(q ′, tp ′) ∼c rev(
−→
σ2 :: h

′′
1 ) ++ [q ′σ1 ] ++ (

−→
σ ′ ::
−→
σ3 :: h

′′
2 ),

which is straightforward, as tp ′ results from tp by writing σ ′ and moving the head
to the left, i.e. tp ′ = midtape (σ2 :: left ′) σ1 (σ ′ :: σ3 :: right ′).
Finally, we prove that the rewrite is unique. Assuming that the current configura-
tion string rewrites to s ′, we can also split up s ′ along the state symbol by Proposi-
tion 5.31. We do an inversion on the rewrite windows used at the center, applying
Lemmas 5.28 and 5.29 in the process, and then use the uniqueness for both tape
halves. �

Lemma 5.33 (Halting Simulation)
If (q, tp) ∼c s, halt q = T, then ∃!s ′, s Rsim s

′ ∧ (q, tp) ∼c s
′.

Proof Using a similar style of arguments as for Lemma 5.32, but simpler, as we do
not have to handle all the cases of the transition function. �

5.5 Deterministic Simulation
We extend the results of the previous section to covermultiple simulation steps and
define a set of final substrings. In the end, we obtain that, starting from any fixed
input, the resulting PR instance does exactly simulate the Turing machine.

https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#haltsim
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5.5.1 Multi-step Simulation
If there is enough space left on the tape, the rewrite windows Rsim can exactly act
like the Turing machine.

Lemma 5.34 (Multi-step Completeness) Let (q, tp) ∼c s, (q, tp) �i (q ′, tp ′) for
some z > i > 0, and |tp| 6 z− i, then ∃!s ′, s iRsim s

′ ∧ (q ′, tp ′) ∼c s ′.

Proof By induction on (q, tp) �i (q ′, tp ′), using Lemma 5.32 in the successor case.
�

Remark 5.35 At this point, our choice to have a fixed state symbol (head) position finally
pays off. If we had chosen to use a moving-head semantics, we would now need an additional
invariant stating that the state symbol is at least i symbols away from the border of the string.
This would need to be built-in into the representation relations, requiring an additional
parameter for ∼t and ∼c determining the amount of available space. The requirement |tp| 6
z− i which only talks about the tape that is represented is much simpler.

Lemma 5.36 (Multi-step Halting) If (q, tp) ∼c s, halt q = T, then ∃!s ′, s  iRsim s
′ ∧

(q, tp) ∼c s
′.

Lemma 5.37 (Multi-step Soundness) If (q, tp) ∼c s, i 6 z, |tp| 6 z−i, and s  iRsim s
′,

then there exist q ′, tp ′ and j with
• (q ′, tp ′) ∼c s ′,
• j 6 i,
• (q, tp) �j (q ′, tp ′),
• and |tp ′| 6 |tp|+ j.

Proof Logically, a new line is appended to the tableau of configurations with each
rewrite step. Thus, a direct induction over s  iRsim s

′ fails: the definition of iRsim
prepends a new line with each step. By Proposition 2.1, we switch to i Rsim . Now,
the induction goes through. In the successor case, wemake a case analysis on halt q
(which is also the reason why the naive induction fails). �

5.5.2 Soundness and Completeness
Next, we deal with the final constraint of ending in a halting state and fix the full
PR instance. We do not directly define the set of final substrings according to the
definition of PR, but instead work with a more abstract notion for now.

Definition 5.38 (Halting String) haltingString s := ∃p m, pm ∈ s∧ halt p = T

Fact 5.39 If (q, tp) ∼c s, then halt q = T if, and only if, haltingString s.

https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#multistep_simulation
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#multistep_halt
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We now obtain soundness and completeness of the full simulation.
Theorem 5.40 (Completeness) If |tp| 6 k, (q, tp) ∼c s, and (q, tp)B6t (q ′, tp ′), then
there is s ′ with s t s ′, (q ′, tp ′) ∼c s ′ and haltingString s ′.
Proof By Lemmas 5.34, 5.36 and Fact 5.39. �

Theorem 5.41 (Soundness) If (q, tp) ∼c s, |tp| 6 k, s  t s ′, and haltingString s ′,
then there are q ′, tp ′ with (q ′, tp ′) ∼c s ′, (q, tp)B6t (q ′, tp ′) and |tp ′| 6 z.
Proof By Lemmas 5.37 and Fact 5.39. �

Next, we define valid initial strings and concretise the final substrings. For the
definition of initial strings, we use the notion of valid initial tapes introduced in
Definition 5.1 on Page 38.
Definition 5.42 (Initial Strings)

initialStringinitialString c := stringForConfig q0 (initTape (in++ c))

isInitialStringisInitialString s := ∃s ′, s = initialString s ′ ∧ validCert s ′

Definition 5.43 (Final Substrings)Rfinal Rfinal := [ qm | halt q = T ]
Proposition 5.44 s |= Rfinal ↔ haltingString s

We have now reduced TMGenNP to the following question:
Problem 5.45
Does there exist a string swith isInitialString s such that PR (Γ, 1, 3, s, Rsim, Rfinal, t) holds?

5.6 Interlude: Nondeterministic Preludes
In this section, we give a recipe to reduce existential questions as in Problem 5.45,
where the initial string of a PR instance is unknown, to full PR instances with a
fixed initial string. While all rewrite windows seen so far only allowed for deter-
ministic rewriting on configuration strings, the key is to make the rewrite windows
nondeterministic. The results presented here can also be seen as providing a (very
limited) form of compositionality for PR.
The construction works by adding new rewrite windows and a new initial string,
which together form a prelude to the given PR instance. The prelude generates an
initial string to the original instance. Of course, we have to make sure that the new
windows do not interfere with the “old” ones. To a large part, this can be ensured
syntactically by expanding the alphabet. Additionally, we require the rewrite win-
dows to produce a string of the old alphabet in exactly t ′ steps, which we call the
number of prelude steps.

https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#completeness
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We present the results for the special case of 3-PR, albeit they transfer directly to
the more general setting.
The following definition generalises the question stated by Problem 5.45.

Definition 5.46 (Existential 3-PR (Ex3PR)) Ex3PRGiven a 3-PR instance (Γ, l, R, Rfinal, t)
missing an input, where l denotes the desired input length, and a predicate p :

L(Γ)→ P, Ex3PR is defined as follows:

Ex3PR (Γ, l, R, Rfinal, t) p := ∃s, |s| = l∧ p l∧ PR (Γ, 1, 3, s, R, Rfinal, t)

Let us fix an Ex3PR instance S = (Γ, l, R, Rfinal, t) over input predicate p. Moreover,
let a prelude alphabet ∆ : finType, a list of prelude windows R ′ : L((window ∆ (Γ +

∆))), a number of prelude steps t ′, and an initial string x0 : L(∆) be given. Collec-
tively, we refer to (∆, R ′, t ′, x0) as a prelude. Here, the new notationwindow∆ (Γ+∆)

means that the premises of the windows are over type ∆, while the conclusions are
over type Γ +∆. The latter is necessary because the prelude should eventually gen-
erate an input for S, while the new windows should not be applicable to strings of
the original instance after the prelude has finished.
The alphabet of the new PR instance will be A := Γ + ∆. A

origStringThroughout this section, we implicitly lift elements of Γ and ∆ to A, the same ap-
plies to strings and windows over these alphabets. Where it is needed, we use the
predicates origString, preludeString : L(A)→ P to distinguish strings over Γ and ∆. preludeString

Assumption 5.47 (Structural Assumptions on the Prelude) Weplace the following
assumptions on (∆, R ′, t ′, x0):
(A0) l > 3

(A1) ∀x ′0, x0  t
′
R ′ x

′
0 → origString x ′0

(A2) ∀k x, k < t ′ → x0  kR ′ x→ preludeString x

(A3), Completeness ∀x ′0, |x ′0| = l∧ p x ′0 → x0  t
′
R ′ x

′
0

(A4), Soundness ∀x ′0, x0  t
′
R ′ x

′
0 → p x ′0

(A5), Compatibility |x0| = l

Assumption (A0) is required to avoid vacuous rewriting. Assumptions (A1) and
(A2) together express that the initial string x0 rewrites in exactly t ′ steps to a string
to which the original windows R can be applied. Moreover, assumptions (A3) and
(A4) ensure that the prelude can generate exactly those strings described by the
predicate p as an input to S.

https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.PTPR_Preludes.html#ExPTPR
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Now, we construct the new PR instance S ′ over alphabet A. We define:

S ′ := (A, 1, 3, x0, Rcomb, Rfinal, t+ t ′) with Rcomb := R++ R ′Rcomb

S ′ witnesses the reduction of Ex3PR to PR: the main goal of this section is to show
that Ex3PR p S ↔ PR S ′. From an abstract perspective, the proof is quite simple.
Most of the formal work is due to the handling of the different alphabets and the
injections into the combined alphabet.
We therefore only state the most important intermediate result. Intuitively, this
allows us to split a sequence of rewrites in the combined instance S ′ into t ′ rewrites
due to the prelude and t rewrites due to the original instance S.

Lemma 5.48 If x0  t ′+tRcomb
s, then there exists x ′0with x0  t

′
R ′ x

′
0, x ′0  tR s, and origString s.

Proof For the proof, we use the following simple facts:
1). If n 6 t ′ and x0  nRcomb b, then x0  nR ′ b.
2). If |s| > 3, origString s, and s nRcomb b, then s nR b and origString b.

We apply additivity of  t+t ′ (Proposition 2.1) to the assumption and choose the
resulting x ′0. It is known that x0  t ′Rcomb x

′
0 and x ′0  tRcomb s. By 1), x0  t ′R ′ x ′0, which

shows the first part of the goal. Applying (A1), we get origString x ′0. The proof is
closed using 2). �

The main result is now a straightforward consequence.

Theorem 5.49 Ex3PR S p↔ PR S ′

Proof Using Lemma 5.48 and the assumptions. �

Remark 5.50 We can generalise the above setup a bit by replacing the fixed initial prelude
string x0 with another predicate stating which prelude strings are valid. This way, one
can reduce an Ex3PR instance to another (possibly simpler) Ex3PR instance by adding
a prelude. This may be interpreted as providing a (very limited) form of compositionality
for PR. In the mechanisation, we prove this more general statement, but we do not
need it for the Turing machine simulation.

5.7 Guessing the Certificate
In this section, we apply the technique presented in Section 5.6 to “guess” an ac-
cepted certificate and thus generate a full input for the Turing machine. To that
end, we design an initial string and nondeterministic rewrite rules that generate an
input in a single rewrite step.

https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.PTPR_Preludes.html#compP
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The alphabet ∆ ∆of the prelude has 4 + |Σ| elements, where q0 := start is the initial
state.

∆ := ␣ | ∗ | q␣0 | # | σ σ : Σ

The symbols ␣ and # just mirror the corresponding symbols of Γ . q␣0 is the fixed ini-
tial state symbol, the ∗ symbols are wildcards that will be replaced by the certificate
and the σ are used for the fixed input. As in the previous section, we implicitly lift
∆ and Γ to the combined alphabet A := Γ + ∆. This requires some additional work
for the formal proofs which we omit on paper. A

As in Section 4.3, the initial string has the following form, where in = [ σ | σ ∈ in ]:

· · ·· · ·· · ·# ␣ ␣ q␣ in ∗ ∗ ␣ ␣ #

kẑ ẑ− k

k ′

Let initStr : L(∆) be this initial string. initStr

For the rewrite windows, we have to ensure that all elements of Σ are placed con-
tiguously and that certificates of length less than k ′ are allowed, too. Exploiting the
fact that the rewrite windows overlap, this is easy to achieve. The following rules
are a subset of the needed ones, with the full set of rules being given in Appendix B.

␣

␣

␣

␣

␣

␣

#

#

␣

␣

␣

␣

␣

␣

␣

␣

#

#
␣

␣

␣

␣

q␣0

q␣0

␣

␣

q␣0

q␣0

σ1

σ1

␣

␣

q␣0

q␣0

∗

m1

␣

␣

q␣0

q␣0

␣

␣
σ1

σ1

∗

m1

␣

␣

σ1

σ1

σ2

σ2

␣

␣

σ1

σ1

␣

␣

␣

␣

The windows enforce that, if we decide to replace a ∗ with a blank instead of an
element of Σ, all ∗s to the right of it are also replaced by a blank. Let Rprelude Rpreludedenote
the set of prelude rewrite windows.
We prove that these rewritewindows exactly produce valid initial strings in a single
rewrite step. It is not necessary to split up the string along the state symbol as
before since it does not take any special role in the prelude. Instead, the individual
components of the initial string can just be stacked upon each other from right to
left, proving soundness and completeness in each step. We need several rather

https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#preludeSig'
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unspectacular inductions for that. This gives us soundness (A4) and completeness
(A3) of the prelude.

Lemma 5.51 (Soundness and Completeness)
1. isInitialString s∧ |s| = l→ initStr Rprelude s

2. initStr Rprelude s→ isInitialString s

Applying Theorem 5.49, we have now arrived at the full reduction of TMGenNP
to 3-PR.
Theorem 5.52 (TMGenNP reduces to PR)

TMGenNP (Σ,M, k, t)↔ PR (A, 1, 3, initStr, Rprelude ++ Rsim, Rfinal, 1+ t)

Proof We have previously reduced TMGenNP to Problem 5.45. Theorem 5.49 for
t ′ = 1 allows us to use the prelude we just constructed to reduce to the PR instance.
It remains to show assumptions (A0) − (A5). The structural requirements (A0) and
(A5) on the initial prelude string hold by construction. Completeness (A3) and
Soundness (A4) follow fromLemma 5.51. (A2) holds trivially as k < 1 implies k = 0.
Finally, (A1), i.e. initStr Rprelude x

′
0 → origString x ′0, follows by an easy induction on

 Rprelude due to the construction of the rewrite windows. �

5.8 Mechanisation
To close this chapter, we comment on the design choices for the Coqmechanisation
and in particular the differences to the presentation on paper.
5.8.1 PR
First of all, we impose the syntactic constraints (like ω > 0) on PR instances ex-
ternally, using a predicate PR_wellformed. Similarly, we do not model windows as
elements of type Σω × Σω using vectors3, but instead use lists: L(Σ) × L(Σ). The
constraint that the lists have length ω is separate.
In order to ease the mechanisation of the reduction, the variant 3-PR is defined ex-
plicitly as a new problem using a separate inductive predicate for validity (cf. Sec-
tion 5.1.3) and an inductive datatype for storing the three symbols of the premise
or conclusion of a window instead of lists. Then, we do another reduction from
3-PR to PR, which is just a trivial embedding.
Our definition of validity for 3-PR is parameterised over an abstract rewritesHead :

L(Σ) → L(Σ) → P predicate which determines whether a prefix of the first list
rewrites to a prefix of the second list. The rewHead predicate of Definition 5.3 is

3This is mainly because Coq’s built-in vectors are unpleasant to use.

https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.SingleTMGenNP_to_TPR.html#prelude_complete
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an instance of that. However, for the proof of the reduction, we use another in-
stantiation: sets of rewrite windows can be alternatively formalised as inductive
predicates of type

Σ→ Σ→ Σ→ Σ→ Σ→ Σ→ P,

with arguments corresponding to the six elements determining a rewrite window.
Using inductive predicates instead of lists has the huge advantage of easier automa-
tion in Coq: inversions are straightforward and proofs that a rewrite is possible can
be done by eautowith suitable hints.
As FlatPRthe finite types for the alphabet of PR are not directly extractable to L, we de-
fine flat versions FlatPR and Flat-3-PR similar to the definition of FlatClique in
Chapter 3. Flat-3-PRThe agreement with the non-flat variants is straightforward to derive.
5.8.2 Organisation of Rewrite Rules
A debatable decision is the organisation of rewrite rules. Regarding Rtape, we have
opted for two inductive predicates shiftRightRules and identityRules, which are then
combined into tapeRules. The definition of identityRules is abbreviated as presented
in Section 5.3 and thus includes spurious windows, while we explicitly make the
distinction between σ : Σ and blanks for shiftRightRules: the spurious windows for
shifting make inversions much harder. The rules for shifting the tape to the left
are defined to be the polarity reversion of the right-shifting rules, which makes
Lemma 5.19 almost trivial.
For the transitions, the rules are much more complicated. We have a hierarchy of
inductive predicates that organise them (Figure 5.2). First, we differentiate accord-
ing to the syntactic form of the read and written symbols. For instance, the induc-
tive predicate for (Some, None) corresponds to transitions of the form δ(q, ◦σ) =

(q ′, ∅, a). Next is a case analysis on the location of the state symbol, and finally,
we distinguish between the three types of movement. It might seem peculiar that
we analyse the state symbol location before the movement as the transition func-
tion determines the movement but not the location. This makes the inversions in
the proofs of the Lemmas 5.32 and 5.33 more efficient. Based on the location of
the state symbol, one arrives at a contradiction earlier. Moving to this organisation
provided a significant reduction in RAM usage when running the proof.
The bottom level of the hierarchy can be shared among all four cases except for
(None, None), where we need the special handling for the edge of the used tape
region. Moreover, for all cases but the (None, None) case, we implement the sim-
plified rules. The spuriouswindows do not result in any complication in the proofs.
As noted in the proof outline of Lemma 5.32, the number of cases for this lemma is
huge: in the end, there are 100 non-contradictory cases left after analysing the pos-
sible transitions the Turing machine takes and accounting for the possible symbols

https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.Cook.FlatPR.html#FlatPRLang
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transition

(Some, Some)

left

left stay right

center right

(Some, None) (None, Some) (None, None)

Figure 5.2: The hierarchy of inductive predicates for transitions.

at the heads of the two tape halves. The proof thus heavily relies on automation.
There is LTac code that analyses the transition the Turing machine can take, de-
structs the two tape halves far enough, and then puts together the needed lemmas.
Custom tactics to invert the tape representation relation ∼t are quite important.
Running the proof takes about 35 minutes4 and 4 gigabytes of RAM, despite hand-
written inversion lemmas for the second and third level of Figure 5.2.
5.8.3 List-based Rules
Of course, one still needs to derive a list-based version of the rewrite rules (i.e. a
variant fromwhichwe can directly compute the list of rewritewindows) in order to
do the extraction to L and the accompanying running time analysis. Moreover, we
use the representation of finite types using bounded subsets ofN as in Section 3.2.1.
The proof of agreement of the inductive rules with the flat list-based rules proceeds
in two steps: first, we define list-based rules still using finite types and show their
agreement with the inductive rules. As the hierarchy of Figure 5.2 does not admit
an easy computation of the windows (it is not at all natural to do a case analysis
on the position of the state symbol when computing the windows), we additionally
define the inductive predicates using an alternative hierarchy that closely matches
the way the windows can be computed (but is slower to invert). The advantage
of this approach is that the agreement between the two hierarchies can be proved
fully automatically at the level of inductive predicates. In the second step, the flat
list-based rules are defined and it is shown that they agree with the finite-type list-
based rules, modulo the representation defined by ≈.
We desire that the finite-type and flat rules are defined in one go, with a minimal
effort required to show their agreement. Moreover, in the end, we also need to in-
stantiate the rules with all concrete elements of Σ and with the possible polarities

4Measured on an Intel Ivy Bridge Core i7-3740QM @ 3.5GHz with 24GB RAM.
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to obtain the list of rewrite windows. In order to fulfill these two requirements, we
define an abstract version fAlphabet fAlphabetof the alphabet A that contains “holes” where
an element of Σ or Σstate, a state of Q, or a polarity has to be placed. More specif-
ically, these holes are formalised as variables which can be of type Σ, Σstate, Q, or
polarity. reifyFinGiven an environment which provides values for the variables, we have
two reification procedures reifyFin and reifyFlat taking an element of fAlphabet ei-
ther to a representation using the finite type A or a flat representation using N. reifyFlatIt
is shown that, for environments related by ≈, the corresponding outputs of reifyFin
and reifyFlat are again related by ≈.
We then lift the reification procedures to windows and lists of windows. For the
instantiation of the rules, we generate all possible environments for the given num-
ber of variables a rule uses and then instantiate the rule with each of those envi-
ronments to obtain a rewrite window. In order to generate the windows for the
transitions, this needs to be combined with an iteration over all states and elements
of Σstate, doing a case analysis on the transition function for every valuation.
The proof of agreement with the inductive rules canmostly be automated and only
requires the manual choice of an assignment to the variables of a rule.
The full reduction produces a Flat-3-PR instance, where the flat reification of the
rewrite windows is used. As the Turing machines use finite types and vectors,
which are both not directly extractable, we also have a flat encoding of these to-
gether with a flat variant FlatTMGenNP FlatTMGenNPof TMGenNP. The definition of flat Tur-
ing machines TM also represents the finite type for the tape alphabet by natural
numbers and uses a list-based representation of the transition function; the formal-
isation was already available in the Coq library of undecidable problems [12]. TM

Theorem 5.53 FlatTMGenNP �p Flat-3-PR

Logically, the reduction for the flat problems takes the following shape:

FlatTMGenNP Flat-3-PR

TMGenNP 3-PR

Computationally, we do a direct reduction from FlatTMGenNP to Flat-3-PR, but
for proving the equivalence, we take the route via the non-flat variants of the prob-
lems.
Together with a trivial proof of Flat-3-PR �p FlatPR, we obtain a reduction to
FlatPR.
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Chapter 6

Reducing PR to Binary PR

In this chapter, we reduce PR instances over an arbitrary finite alphabet Σ : finType
to instances over a binary alphabet represented by the type B. The idea of this re-
duction is to replace every symbol σ : Σ with a unique bitstring of length |Σ|. More
specifically, the i-th element σi (counting from zero) of the finite type Σ is replaced
by the string 0i10|Σ|−i−1, where we write 0 for F and 1 for T for convenience. Thus,
initial strings, rewrite windows, and final substrings need to be adapted. This oper-
ation is incorporated using special string homomorphisms which we call uniform.
For the reduction, we modify the offset o of the PR instance by multiplying it with
|Σ|1. This is motivated by the fact that, semantically, a bitstring of length |Σ| repre-
sents a single symbol of the original alphabet.
The variant of PR in which the alphabet is fixed to B is called BinaryPR. All defi-
nitions of Section 5.1 carry over.
6.1 Uniform Homomorphisms
We introduce string homomorphisms and a special subclass of them, uniform ho-
momorphisms. While one usually uses string homomorphisms over a finite al-
phabet, we do not require finiteness for most of the definitions and results in this
section.

Definition 6.1 (String Homomorphisms) Given types Σ1, Σ2, h : Σ∗1 → Σ∗2 is a ho-
momorphism, written homomorphismhomomorphism h, if h(a1 ++ a2) = h a1 ++ h a2 for all a1, a2 : Σ∗1.

Fact 6.2 Fix a homomorphism h : Σ∗1 → Σ∗2.
1. h [ ] = [ ]

2. h(a :: b) = h[a] ++ h b

3. h(concat l) = concat [ h x | x ∈ l ]
1In fact, this reduction is the motivation for having the offset in the first place.
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Given a function f : Σ1 → Σ∗2, we can define a canonical homomorphism

canonicalHom f := λl.concat [ f x | x ∈ l ] canonicalHom

lifting f to lists.

Proposition 6.3 Let f : Σ1 → Σ∗2. Then (1) canonicalHom f is a homomorphism and
(2) it is the unique homomorphism satisfying the property ∀x, h[x] = f x.

A uniform homomorphism is a special kind of homomorphism. First of all, it is
ε-free, meaning that it only maps [ ] to [ ]. Secondly, it maps all pairs of strings a, b
with |a| = |b| to strings of the same length. Put differently, the length of every string
is multiplied by a constant kwhen passing through the homomorphism.

Definition 6.4 (Uniform Homomorphisms) uniformHom

uniformHom h := homomorphism h∧ (∀x, |h [x]| > 1)∧ (∀x1 x2, |h [x1]| = |h [x2]|)

Note that the definition is in terms of singleton lists. The more general property
follows directly by using the properties of a homomorphism:

Proposition 6.5 Let h : Σ∗1 → Σ∗2 with uniformHom h.

1. |l1| = |l2|→ |h l1| = |h l2|

2. h l = [ ]→ l = [ ]

Again, we can define a canonical uniform homomorphism starting from a function
f : Σ1 → Σ∗2 satisfying |f x| = k for all x : Σ1 and some k > 0.

Proposition 6.6 (Canonical Uniform Homomorphisms)
Let f : Σ1 → Σ∗2 with ∀x, |f x| = k for some k > 0. Then uniformHom (canonicalHom f).

Conversely, we can formalise the above intuition that the length of a string is mul-
tiplied by a constant k when a uniform homomorphism is applied to it.

Lemma 6.7 If Σ : finType and uniformHom h, then Σk.∀x, |h x| = k · |x|.

Proof As Σ is a finite type, inhabitation is decidable. If |Σ| = 0, then we pick 42.
Otherwise, let σ : Σ and pick |h [σ]|. For arbitrary x : Σ∗, the statement follows by
induction on x and using the defining properties of a uniform homomorphism. �
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6.2 Applying Uniform Homomorphisms to PR
We can show that PR is invariant under injective uniform homomorphisms. That
is, given an injective uniform homomorphism h and a PR instance S, we can define
another PR instance S ′ where we have applied h to all strings of S. S ′ is a yes-
instance if, and only if, S is a yes-instance.
Fix a PR instance S = (Σ1, o,ω, x0, R, Rfinal, t). Assume that |Σ1| > 0. Instances of PR
not satisfying this property are trivial no-instances.
Without loss of generality2, we assume that the homomorphism is given as h ′ :
Σ1 → Σ∗2 with

(A1) |h ′ x| = k for a fixed k > 0
(A2) injective h ′

Then, we define the full homomorphism as h := canonicalHom h ′. Properties (A1)
and (A2) carry over to h:

Proposition 6.8
1. uniformHom h

2. |h x| = k · |x|

3. injective h

The following lemma allows us to split the image of h along multiples of k and
follows from the properties of uniform homomorphisms in a straightforward way.

Lemma 6.9 (Inversion of h)
1. h a = u++ v→ |u| = k→ ∃a1 a2, a = a1 :: a2 ∧ h [a1] = u∧ h a2 = v

2. h a = u++ v→ |u| = c · k→ ∃a1 a2, a = a1 ++ a2 ∧ h a1 = u∧ h a2 = v

Homomorphisms can, of course, be lifted to rewrite windows.

Definition 6.10hwindow hwindow w := (h (prem w), h (conc w))

The transformed PR instance is defined as

Rh Rh := [ hwindow w | w ∈ R ]
S ′ := (Σ2, k · o, k ·ω,h x0, Rh, [ h l | l ∈ Rfinal ], t).S ′

2This follows from the results of the previous section.
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Note that the offset and the width both need to be multiplied by the multiplicative
factor k of h. It is easy to see that this definition is well-formed, that is, S ′ does again
satisfy the syntactic constraints of PR (Definition 5.2). The goal for the rest of this
section is to show that PR S↔ PR S ′.
We start with the agreement of rewHead. The first statement of the following lemma
is the equivalence one would expect. However, it is rather weak, as the backwards
direction requires that we know the premise and conclusion to be in the image of h.
For the proof of equivalence of S and S ′, we need a stronger statement: if we have
a string h a that rewrites to a string s, we need to be able to derive that s is in the
image of h.
Lemma 6.11 (Agreement for rewHead)

1. rewHead w a b↔ rewHead (hwindow w) (h a) (h b)

2. If w ∈ Rh, |a1| = o, |u| = k · o, and rewHead w (h a1 ++ h a2) (u ++ v), then there
exists b1 with u = h b1 and |b1| = o.

Proof Using Lemma 6.9 and the results of Proposition 6.8. �

This can be lifted to . For the proof, yet another characterisation of validitywill be
quite convenient. The base case allows one to prove a rewrite using a single rewrite
window3. In the successor case, we can add o symbols, where o is the offset, by
providing a rewrite window for the head.

w ∈ R
prem w D conc w  D

a D b |u| = o |v| = o w ∈ R rewHead w (u++ a) (v++ b)

(u++ a) D (v++ b)

To some extent, this is the most intuitive characterisation of validity: it does not
allow vacuous rewrites (i.e. allows only rewrites of length > ω). Accordingly, it is
not fully equivalent to :
Lemma 6.12 (Agreement of and D) a R b∧ |a| > ω↔ a D b

The restriction to strings of length at least ω does not pose a problem as Defini-
tion 5.2 imposes that as a syntactic constraint. Using the new characterisation, we
can now prove the equivalence for .
Lemma 6.13 (Agreement for ) Let a with |a| > ω be given.

3In the mechanisation, this first rule is formulated differently so that the proof of equivalence
workswithout assuming the rewrite windows to havewidthω, see the comments at the end of Chap-
ter 5.
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1. (h a) Rh b ′ → ∃b, b ′ = h b∧ a R b.
2. a R b↔ (h a) Rh (h b)

Proof 1. We switch to  D and do an induction on  D. In the base case, we
show that the whole string is covered by the rewrite window and use the
definition of Rh and Lemma 6.11.1, as well as the facts provided by Proposi-
tion 6.8 and Lemma 6.9. In the successor case, we use Lemma 6.11.2.

2. Direction → follows by an easy induction. The other direction follows from
1. �

The last lemma can trivially be transferred to n. After having show that the final
constraints agree in the expected way, we can obtain the main agreement result.

Theorem 6.14 PR S↔ PR S ′

6.3 Reduction to BinaryPR
The previous section’s results can be applied to an injective uniform homomor-
phism into B to directly obtain the reduction of PR to BinaryPR. We use a homo-
morphism which just computes a unary encoding of the alphabet’s elements over
a binary alphabet. The i-th element σi (counting from zero) of the finite type Σ is
mapped to the string FiTF|Σ|−i−1.
Formally, let us fix a PR-instance S = (Σ, o,ω, x0, R, Rfinal, t). In order to apply the
results of the previous section, we rely on |Σ| > 0. We handle the case |Σ| = 0

separately in the end.
The following function defines the homomorphism for single elements.

Definition 6.15

hN hN sig n := if n ?
< sig then Fn ++ [T] ++ Fsig−n−1 else Fsig

hΣ σ := hN (|Σ|) (index σ)hΣ

Here, ?
< denotes a Boolean decider for the relation < and index gives the position of an

element of the finite type.

The corresponding homomorphism can be obtained by using canonicalHom. How-
ever, the technique of Section 6.2 just asks us to provide a function operating on
single symbols.
Properties (A1) and (A2) are straightforward to verify.
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Fact 6.16 (Uniformity)
1. |hN sig n| = sig

2. |hΣ σ| = |Σ|

Fact 6.17 (Injectivity)
1. hN sig m = Fn ++ [T] ++ Fsig−n−1 → m = n

2. injective hΣ

The reduction now directly follows by Theorem 6.14. In the special case of |Σ| = 0,
it maps to a trivial no-instance of BinaryPR.

Lemma 6.18 (PR reduces to BinaryPR) PR S↔ BinaryPR S ′, where S ′ is defined as
in Section 6.2.

6.4 Mechanisation
We briefly comment on the differences of the Coq mechanisation and the proof on
paper as well as on the proof of computability.
First of all, BinaryPR is defined to be a syntactically different problem from PR in
the Coq mechanisation. The only change is that the alphabet is fixed to B. Nearly
all definitions (for instance the definition of ) can be re-used and do not need to
be stated explicitly again.
Remember that we enforce the syntactic constraints on valid PR instances (see Def-
inition 5.2) externally. Therefore, we explicitly need to assume wellformedness of
the PR instance for the results of Section 6.2. As wellformedness can be decided,
the reduction maps non-wellformed instances to a trivial no-instance.
BinaryPR has the nice property of being directly extractable aswe do notwork over
a general finite type anymore. Thus, it is not required to define a flat version of the
problem again. However, as PR still needs a separate flat version, our reduction
structure looks as follows:

PR

FlatPR

BinaryPR

The main verification is done for the reduction of PR to BinaryPR, as described
in this chapter. As this reduction cannot be extracted, we define a separate re-
duction of FlatPR to BinaryPR. This reduction basically uses the hN function of
Definition 6.15 to transform the finite subset of N to B. For the verification of this
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reduction, we show that for instances of FlatPR and PR that are equal up to repre-
sentation of finite types ≈, the output of the respective reductions to BinaryPR is
the same up to reordering of elements in lists. Logically, the reduction thus consists
of twoparts: a reduction from FlatPR toPR, converting the finite subset {0, . . . , n−1}
of N into the finite type Fn, and the reduction from PR to BinaryPR. Computation-
ally, however, this is shortcut to a single direct reduction which runs in polynomial
time.

Theorem 6.19 FlatPR �p BinaryPR
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Chapter 7

Reducing Binary PR to Formula Satisfiability

In this chapter, we finally encode PR over a binary alphabet as a Boolean formula.
This formula will not be in CNF, yet. The main idea of the encoding is to explicitly
unfold the tableau induced by the BinaryPR instance. As we are working over a
binary alphabet, each character of the involved strings can be accomodated by one
Boolean variable. A satisfying assignment to the formula will therefore resemble
a sequence of valid rewrites, starting with the initial string and ending up with a
string satisfying the final substring constraint. The formula φwe generate is a con-
junction of three gadgets: a formula φinit enforcing that the first line of the tableau
matches the initial string, a formula φtrans encoding that the individual lines fol-
low from each other according to the rewrite windows, and a formula φfinal which
makes the final substring constraint hold.
7.1 Formula Satisfiability (FSAT)
We start by introducing a generalised variant of SAT that does not require the for-
mula to be in CNF.
Formulas are defined inductively: F

f : F := T | v | f1 ∨ f2 | f1 ∧ f2 | ¬f (v : var)

One can directly derive the operators ∧ and ∨ for more than two operands, which
we will denote by ∧f∈l f and ∨f∈l f for l : L(F).
Assignments a : assgn are defined in the same way as for CNFs, see Section 3.1. An
evaluation function E : assgn→ F → B can be derived in the canonical way. We say
that an assignment a satisfies f, written a |= f, if E a f = T.
Definition 7.1 (Formula Satisfiability) FSATFSAT f := ∃a, a |= f

We could prove that FSAT is in NP using the same notion of small assignments
as for CNF satisfiability. This will, however, already follow from the reduction of
FSAT to SAT in Chapter 8.
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Explicit Assignments The assignments we use, where we just store a list of vari-
ables to which the value T is assigned and to all other variables the value F is as-
signed implicitly, are quite indirect and unstructured. For the rest of this chapter
a more explicit characterisation bearing resemblance to the Boolean strings used
by BinaryPR will be quite convenient. One possible characterisation is a list of
Booleans e : L(B) together with a start index s, where the value e[i] at position i
of this list is the value assigned to variable s + i. To variables outside the range
[s, s+ |e|), the value F is assigned.
As we will be working with ranges of variables [start, start + len) a lot throughout
this chapter, we introduce the notation [s.. + l)[s..+ l) instead of [s, s + l), which makes
the notation less redundant. In the following, we use the letter I to denote variable
ranges of this form.
We can naturally convert back and forth between such explicit assignments and
assignments a : assgn. First, we present a function that generates an explicit assign-
ments for the variables in range [start, start+ len).

explicitA explicitAssgn : assgn→ N→ N→ L(N)
explicitAssgn a start 0 := [ ]

explicitAssgn a start (1+ len) := explicitAssgn a start len++ [(start+ len) ?∈a]

We use the notation a[s.. + l) := explicitAssgn a s l and may also write a[I]a[I] for a
variable range I.
Lemma 7.2 (Properties of explicitAssgn)

1. |explicitAssgn a start len| = len

2. k < len→ (explicitAssgn a start len)[k] = ◦(E a (start+ k))

3. explicitAssgn a s (l1 + l2) = explicitAssgn a s l1 ++ explicitAssgn a (s+ l1) l2

Given an explicit assignment e, we can project out the assignment to a particular
range of variables I = [start..+ len):e[I]

e[I] = e[start..+ len) := (e[len..])[..start).

The subscripting notation thus is overloaded for full assignments and for explicit
assignments, but this will not pose a problem as it will always be clear from the
context what we mean.
7.2 Encoding Properties using Boolean Formulas
Based on explicit assignments, we now present ways to encode predicates using
formulas f : F and show that this representation is closed under conjunction and
disjunction, the main composition operations we need for the reduction.
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Definition 7.3 (Encoding of Predicates) encodesPredAtA formula f encodes a predicate p : L(B)→
P on a range of variables I = [start.. + len) if, for every assignment a, a |= f is equivalent
to satisfaction of p under the partial assignment given by I:

encodesPredAt start l f p := ∀a, a |= f↔ p (a[start..+ l])

This encoding scheme is rather simple: we can only prove statements about con-
tiguous ranges of variables. An elaborate definition allowing a more fine-grained
control would be possible, but over-complicated for our simple use case.
To stay in line with the variable range notation, we also write encodesPredAt I f p
for a range of variables I.
A rather trivial but important fact is that encodesPredAt is extensional with respect
to the encoded predicate. This will be quite convenient for proving correctness of
encodings by switching to an equivalent characterisation of the predicate we want
to encode.
Fact 7.4 (Extensionality) Let ∀e, |e| = l→ p1 e↔ p2 e. Then

encodesPredAt s l f p1 ↔ encodesPredAt s l f p2.

As a first example, we define the encoding of a literal:
encodeLiteral v sign : F := if sign then v else ¬v encodeLiteral

As onewould expect, the formula encodeLiteral v s forces variable v to take the value
s:
Proposition 7.5 (Correctness of encodeLiteral)

encodesPredAt v 1 (encodeLiteral v s)(λl.l = [s])

Next, we show that conjunction and disjunction of formulas correspond to conjunc-
tion and disjunction of represented predicates. One problem with this is that the
two predicates may talk about different variable ranges I1 and I2. Our simple rep-
resentationmodel does not allow to accurately depict this, hence the new predicate
will talk about the smallest range of variables I that contains I1 and I2. We write
this as I = I1 t I2.

combStart s1 s2 := min s1 s2 combStart
combLength s1 s2 l1 l2 := max (s1 + l1)(s2 + l2) −min s1 s2 combLength
[s1..+ l1) t [s2..+ l2) := [combStart s1 s2..+ combLength s1 s2 l1 l2) I1 t I2

Using e[s..+ l], we can restore the assignments to I1 and I2 given an assignment to
I1 t I2:
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Proposition 7.6 Let I1 = [s1..+ l1) and I2 = [s2..+ l2).
1. a[I1] = (a[I1 t I2])[(s1 − combStart s1 s2)..+ l1]

2. a[I2] = (a[I1 t I2])[(s2 − combStart s1 s2)..+ l2]

Now, we have all the tools necessary to combine the encoding of two predicates:
Lemma 7.7 (Encoding of ∧ and ∨) Let I1 = [s1..+ l2) and I2 = [s2..+ l2). Assume
that encodesPredAt s1 l1 f1 p1 and encodesPredAt s2 l2 f2 p2.

1. encodesPredAt (I1 t I2)(f1 ∧ f2)
(λe.p1(e[s1 − combStart s1 s2..+ l1])∧ p2(e[s2 − combStart s1 s2..+ l2]))

2. encodesPredAt (I1 t I2)(f1 ∨ f2)
(λe.p1(e[s1 − combStart s1 s2..+ l1])∨ p2(e[s2 − combStart s1 s2..+ l2]))

Proof Straightforward using Proposition 7.6. �

By conjoining formulas encoding single literals, a list L : L(B) can be encoded by
forcing a range of variables to be equal to the list.

encodeList encodeList s [ ] := T

encodeList s (l :: L) := encodeLiteral s l∧ encodeList (1+ s) L

Proposition 7.8 (Correctness of encodeList)

encodesPredAt s (|L|) (encodeList s L) (λe.L = e)

encodeList will be the basic ingredient of encoding PR.
7.3 Reduction to FSAT
In this section, we show how to encode the three subformulas φinit, φtrans, φfinal. As
most of the encodings are straightforward to see from the definition of PR, we only
give an informal description for some of them.
Fromnowon, fix aBinaryPR instance (o,ω, x0, R, Rfinal, t) that satisfies the syntactic
constraints of Definition 5.2. For our convenience, we define m := |x0| to be the
length of each of the tableau’s lines.m

The variable layout of the formula we produce is demonstrated by Figure 7.1
We start with the encoding of φtrans. This is most intuitive when looking at the
explicit characterisation of validity (see Definition 5.4): we have a big conjunction
over all pairs of subsequent lines for which we have to enforce validity. Validity can
be encoded as a conjunction over the offsets at which a window needs to hold, and
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x0 xm−1

xm x2m−1

xt·m · · ·

· · ·

...
t+ 1

m

Figure 7.1: The variable layout of the constructed FSAT instance does directly mir-
ror the layout of the PR strings in a tableau.

at each position we have a disjunction over all possible rewrite windows. First of
all, we need to be able to encode a single rewrite window. As a rewrite windows
just encodes two lists, this is straightforward to derive as a conjunction for premise
and conclusion. Since the premise of the window needs to match in one line of the
tableau while the conclusion needs to hold for the next line, the encoding is param-
eterised over two indices s1 and s2 giving the respective start of the encoding.

encodeWindow s1 s2 w := encodeList s1 (prem w)∧ encodeList s2 (conc w) encodeWindow

The correctness statement of course also needs to range over all the variables be-
tween the two starting indices.

Proposition 7.9 (Correctness of encodeWindow) Let s, l : N and win : window(B).

encodesPredAt s (l+ω) (encodeWindow s (s+ l) win)

(λe.e[0..+ω) = prem win∧ e[l..+ω) = conc win)

This can be lifted to express that one of the windows of R holds at a given posi-
tion by computing a disjunction over the list of windows. We assume a function
encodeWindows : N→ N→ F encodeWindowstaking the two start indices for that purpose, without
going into more detail.

Proposition 7.10 (Correctness of encodeWindows) Let s, l : N.

encodesPredAt s (l+ω) (encodeWindows s (s+ l))

(λe.∃w,w ∈ R∧ e[0..+ω) = prem w∧ e[l..+ω) = conc w)

A bit more interesting is the function needed to encode all windows at every off-
set of a string. Technically, this is a conjunction over all possible offsets. The fact
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that the windows only need to hold at multiples of o is a minor inconvenience as
this means that we cannot define the function computing the formula using direct
structural recursion over the position at which we encode the windows next1. In-
stead, we employ a step index which is initialised to the lengthm = |x0| of the lines
of the tableau to make the function structurally recursive.

encodeWindowsLine ′ step l s1 s2 := if l ?<ω then T
encodeWindowsLine else match step[ 0⇒ T | 1+ step⇒ encodeWindows s1 s2

∧ encodeWindowsLine ′ step (l− o) (s1 + o) (s2 + o) ]

encodeWindowsLine step s := encodeWindowsLine ′ mm s (s+m)

Intuitively, the parameter s1 of encodeWindowsLine ′ determines the first index start-
ing at which the premises of the windows are placed, while s2 is the starting index
of the conclusions.

Proposition 7.11 (Correctness of encodeWindowsLine) Let l 6 m.

encodesPredAt s (l+m) (encodeWindowsLine ′ l l s (s+m))

(λe.(e[0..+ l)) R (e[m..+ l))

Moreover, we have

encodesPredAt s (2 ·m)(encodeWindowsLine s)(λe.(e[0..+m)) R (e[m..+m))

Proof The second statement is the first one instantiated with l := |x0|. For the first
statement, we use strong induction on l. �

Nowwe can obtain the formula φtransφtrans by forming a conjunction over all lines of the
tableau.

Lemma 7.12 (Correctness of φtrans)

encodesPredAt 0 ((1+ t) ·m) φtrans

(λe.∀0 6 i < t, ((e[i ·m..+m)) R (e[(1+ i) ·m..+m)))

The final constraint can be encoded similarly: we have a nested disjunction over the
strings in Rfinal and the possible positions at which they can match. For the latter,
remember that the final substrings need to match at positions which are multiples
of the offset o. Therefore, we employ a step-indexing technique similar to the one
for encodeWindowsLine.

1Coq requires functions to be structurally recursive.
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Lemma 7.13 (Correctness of φfinal) φfinal

encodesPredAt (t ·m)m φfinal (λe.e |= Rfinal)

Finally, the initial constraint is simply an instance of encodeList: the first |x0| vari-
ables have to match x0. Therefore, in the end the whole formula is

φ := encodeList 0 x0 ∧ φtrans ∧ φfinal. φ

Lemma 7.14 (Correctness of φ)

encodesPredAt 0 ((1+ t) ·m) φ

(λe. e[0..+m) = x0

∧(∀0 6 i < t, ((e[i ·m..+m)) R (e[(1+ i) ·m..+m)))

∧e[t ·m..+m) |= Rfinal)

Theorem 7.15 (BinaryPR reduces to FSAT)

FSAT φ↔ ∃xt, x0  tR xt ∧ xt |= Rfinal
Proof
→: As FSATφ holds, we have a satisfying assignment a. By Lemma 7.14, the corre-

sponding explicit assignment to the first (1+t)· |x0| variables witnesses a valid
rewrite sequence satisfying the final constraint. We prove that e[0..m)  tR
e[t ·m..+m) by switching to t R and doing an induction on t.

←: From the proof that the initial string rewrites in t steps to a final string we have
to generate a sequence of intermediate strings that together form a satisfying
assignment. For this, we generalise to arbitrary strings x, ywith |x| = |x0| = m

and show that, if x nR y, then there exists e with |e| = (1+ n) ·m and

e[0..+m) = x∧ e[n ·m..+m) = y

∧(∀0 6 i < n, (e[i ·m..+m)) R e[(1+ i) ·m..+m))).

This statement follows by an induction on x R y. �

7.4 Mechanisation
We again comment on some aspects of the mechanisation.
As in the previous chapter, we have to treat non-wellformed instances separately
by first deciding wellformedness and mapping violating instances to a trivial no-
instance.
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A major inconvenience is that many of the representation proofs are somewhat
repetitive and mainly rely on inductively forming conjunctions and disjunctions
of formulas. Except for the two functions which need step-indexing, these can be
taken care of by a few lemmas that allow to form the disjunction or conjunction of a
list of formulas at a fixed position or by replicating a formula parameterised by the
index of the first variable it uses at various positions for a given offset between the
replications. The authors of [20] face a similar problem in encoding certain predi-
cates using Diophantine equations. They come up with Coq tactics that can largely
automate the process of finding an encoding and proving its correctness if the pred-
icate has a shape that is already known, using the Coq unification mechanism. If
the predicate is not in a known shape, extensionality can be used to bring it into an
equivalent shape, similar to our Fact 7.4. The key idea of their approach is to use
Sigma types that informatively bundle the encoding and its proof of correctness.
Sadly, a similar trick can not be applied in our setting: Sigma types (or even their
computational part) currently are not extractable to L. Thus, it seems unavoidable
to explicitly define the formula encoding a particular predicate.
As both BinaryPR and FSAT are directly extractable, we need not define separate
flat versions. Thus, we obtain the following polynomial-time reduction:

Theorem 7.16 BinaryPR �p FSAT
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Chapter 8

Reducing Formula Satisfiability To SAT

In this chapter, we finally showhow to convert an arbitrary logical formula f : F into
CNF. If one does the conversion in a naive way, this incurs an exponential blowup.
Consider, for instance, the formula f1 ∨ f2 for two arbitrary formulas f1, f2. If we
were to first recursively convert f1, f2 to CNFsN1, N2 and then apply distributivity
to end up with a new CNF N equivalent to N1 ∨ N2, the number of clauses in N
were in O(|N1| · |N2|).
Example 8.1 Assume that N1 = C1 ∧ C2 and N2 = C3 ∧ C4. Then

N↔N1 ∨N2
↔(C1 ∨ (C3 ∧ C4))∧ (C2 ∨ (C3 ∧ C4))

↔(C1 ∨ C3)∧ (C1 ∨ C4)∧ (C2 ∨ C3)∧ (C2 ∨ C4)

Clearly, this does not work if we want to obtain a polynomial-time reduction. In-
stead, we use the Tseytin transformation [31]. The key insight behind the trans-
formation is that the exponential blowup is caused by having to duplicate subfor-
mulas, as can be seen in Example 8.1. This can be prevented by introducing new
variables which represent the subformulas, so that we may use the variable in-
stead of duplicating the whole formula. Introducing new variables is fine since we
only require the resulting CNF N to be equisatisfiable to the original formula f, i.e.
SAT N↔ FSAT f, but not equivalent.
In the Tseytin transformation, each subformula f ′ of the formula f is represented by
a variable v ′ togetherwith a CNFN ′, such that FSAT f ′ ↔ SAT (v ′∧N ′). Intuitively,
the CNF N ′ forces the variable v ′ to be equivalent to f ′ for any assignment.
Example 8.2 As an example, we consider the transformation for the disjunctive formula
f = f1 ∨ f2. First of all, we recursively apply the transformation to f1 and f2 in order to
obtain variables v1 and v2 and CNFsN1 andN2 that represent the respective formulas. Of
course, we have to take care that the new variables introduced for the transformations of f1
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and f2 do not overlap. We now add a fresh variable v for the subformula f1 ∨ f2 and build
a CNF N such that v∧N is equisatisfiable to f1 ∨ f2. N should enforce that v↔ (v1 ∨ v2)

and that v1 and v2 represent f1 and f2, respectively. Therefore, set N = N1 ∧ N2 ∧ N
′,

where N ′ is the CNF

N ′ := (¬v∨ v1 ∨ v2)∧ (¬v1 ∨ v)∧ (¬v2 ∨ v),

which is equivalent to v↔ (v1 ∨ v2).

8.1 Preliminaries: Composing Partial Assignments
As mentioned in the introduction, the Tseytin transformation adds new variables.
In order to prove the transformation correct, we need some tools to be able to in-
troduce fresh variables and compose assignments to different ranges of variables.
First of all, we define functions computing the maximum variable used in a CNF
or formula (or zero if no variable is used). We refer to both of these functions by
maxVarmaxVar ; it will be clear from the context whether we mean CNFs or formulas.
Moreover, we need predicates that allowus to express that all variables of a formula
or CNF are contained in a non-contiguous range of variables such as [0, b1)∪[b2, b3].

v ∈ r Variable ranges are formalised as predicates r : N → P. For instance, the range
[0, b1) ∪ [b2, b3] is representedr1 ⊆ r2 as λn.n < b1 ∨ (n > b2 ∧ n 6 b3). Nevertheless, we
use the more intuitive mathematical notation on paper and write v ∈ r for r v and
r1 ⊆ r2 for ∀v, r1 v→ r2 v.v ∈cnf N

We use the predicates v ∈cnf N and v ∈F f to denote that a variable is contained in
a CNF or formula.v ∈F f

Definition 8.3 (Variable Containment) Let a range r : N → P, a formula f, and a
CNF N be given. f only uses variables of r, written f ⊆ rf ⊆ r , if ∀v ∈F N, v ∈ r.
N only uses variables of r, written N ⊆ rN ⊆ r , if ∀v ∈cnf N, v ∈ r.

Of course, variable containment is monotonous.

Proposition 8.4

1. r1 ⊆ r2 → N ⊆ r1 → N ⊆ r2

2. (N1 ++N2) ⊆ r↔ N1 ⊆ r∧N2 ⊆ r

We now turn to the composition of assignments. Recall that assignments are rep-
resented by a list of variables to which T is assigned and to all other variables F
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is assigned implicitly. In principle, this form of assignments is completely non-
compositional as all assignments are total. However, wemay still get a form of com-
position by overriding implicit F values. If we only compose assignments which ex-
plicitly assign values to disjoint variable ranges, we may still obtain the properties
one would intuitively expect.
We define variable containment a ⊆ r a ⊆ rfor assignments in the same way as for for-
mulas and CNFs:

a ⊆ r := ∀v ∈ a, v ∈ r

Note that this definition only talks about variables to which T is assigned. We ob-
tain the same properties as in Proposition 8.4.

Definition 8.5 (Composition and Restriction) For two assignments a1, a2, the com-
position a1 ∪ a2 a1 ∪ a2is given as a1 ∪ a2 := a1 ++ a2. That is, we assign T to the variables to
which either a1 or a2 assigns T, and assign F only to those values to which neither a1 nor
a2 assigns T.
The restriction of a to the range [0, b) is defined as a|b := [ v | v ∈ a∧ v ?<b ].1 a|b

Regarding composition, we can show that adding an assignment to variables which
are disjoint from the variables used by a CNF or formula does not change the result
of evaluation.

Proposition 8.6 Let ranges r, r ′ : N → P and assignments a, a ′ be given with a ′ ⊆ r ′
and ∀n,¬(n ∈ r∧ n ∈ r ′), i.e. r and r ′ are disjoint. Then:

1. v ∈ r→ E a v = E (a ∪ a ′) v

2. N ⊆ r→ (E a N = T↔ E (a ∪ a ′) N = T)

3. f ⊆ r→ (E a f = T↔ E (a ∪ a ′) f = T)

Similarly, we can restrict an assignment. We only need this for formulas.

Proposition 8.7 If f ⊆ [0, n), then a |= f↔ (a|n) |= f.

Remark 8.8 During the development of the proof, we also considered various other forms
of assignments which directly allow for partial assignments and thus admit a more intuitive
form of composition (for instance the explicit assignments of Chapter 7). However, we need
to directly reason about evaluation for much of the proof of correctness. Partial assignments
require us to define the result of evaluation as an option value, which entails additional
reasoning. We thus think that the added expressivity of partial assignments is not worth it.

1We restrict this to ranges [0, b) as we would have to reason about Boolean deciders for arbitrary
ranges r otherwise.
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8.2 Correctness of the Tseytin Transformation
In this section, we formally define the Tseytin transformation and verify its cor-
rectness. The main effort will be to justify the individual transformations for the
operators ∧,∨ and ¬ due to the need to compose the new variables introduced by
the subformulas. With this in mind, our first step is to eliminate ∨ in the formula
so that we can omit the proof of correctness for this operator without loss of gener-
ality. Then, the main verification step is to define a relation between formulas and
CNFs that is strong enough for an inductive proof to go through.

eliminateOr The operator ∨ can directly be eliminated by applying De Morgan’s law f1 ∨ f2 ↔
¬(¬f1 ∧ ¬f2). We assume a function eliminateOr : F → F applying this law recur-
sively. Moreover, we use an inductive predicate orFree : F → P that holds exactly for
all formulas not containing an application of ∨.orFree We have the following properties:
Proposition 8.9 (Properties of eliminateOr)

1. orFree (eliminateOr f)

2. E a f = E a (eliminateOr f)

8.2.1 The Tseytin Transformation
Now, we define the transformation function. The main challenge is to keep track
of the used variables, such that we can easily introduce fresh variables as needed.
To that end, we define an auxiliary function tseytin ′ : var → F → var × cnf × var
(Figure 8.1). Its first argument is the next unused variablenf (short for “next free”),
followed by the formula fwewould like to transform. It returns a triple (rv,N, nf ′),
where rv is the variable representing the formula,N is the accompanying CNF, and
nf ′ is the next free variable after transforming f. The function’s different casesmake
use of primitive functions introducing the CNF constraints. They can be found in
Figure 8.2. Note that we add a fresh variable for the variable base case, too, and
force this variable to be equivalent to the original one. This is a design choice we
make to simplify the invariant for the proof of correctness a bit. Alternatively, this
case could read tseytin ′ nf v := (v, [ ], nf), returning just the original variable with
an empty CNF. The transformation function tseytin (Figure 8.1) can be derived by
first computing themaximum variable used by the formula and then using tseytin ′.
8.2.2 Proof of Correctness
We now show tseytin to be correct, in the sense that the resulting pair (v,N) of rep-
resenting variable v and CNFN is equisatisfiable to the original formula. Formally,
we define the following relation:
Definition 8.10 (Representation of Formulas by CNFs)

f (v,N) := FSAT f↔ SAT ([(T, v)] :: N)f (v,N)
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tseytin ′ : var→ F → var× cnf× var tseytin ′

tseytin ′ nf T := (nf, tseytinTrue nf, 1+ nf)

tseytin ′ nf v := (nf, tseytinEquiv v nf, 1+ nf)

tseytin ′ nf (f1 ∧ f2) := let
(rv1, N1, nf1) = tseytin ′ nf f1
(rv2, N2, nf2) = tseytin ′ nf1 f2

in (nf2, N1 ++N2 ++ tseytinAnd nf2 rv1 rv2, 1+ nf2)

tseytin ′ nf (¬f) := let (rv,N, nf ′) = tseytin ′ nf f

in (nf ′, N++ tseytinNot nf ′ rv, 1+ nf ′)

tseytin ′ nf (f1 ∨ f2) := . . .

tseytin : F → var× cnf tseytin
tseytin f := let (v,N, _) = tseytin ′ (1+maxVar f) in (v,N)

Figure 8.1: The Tseytin transformation is defined via an auxiliary function keeping
track of the next free variable which is initialised with the successor variable of
the maximum variable used by the formula. The omitted case for ∨ is defined
analogously to ∧, replacing tseytinAnd with tseytinOr.

Function CNF
tseytinAnd v v1 v2 (v∨ v1)∧ (v∨ v2)∧ (v∨ v1 ∨ v2)

tseytinOr v v1 v2 (v∨ v1 ∨ v2)∧ (v∨ v1)∧ (v∨ v2)

tseytinNot v v ′ (v∨ v ′)∧ (v∨ v ′)
tseytinEquiv v v ′ (v∨ v ′)∧ (v∨ v ′)
tseytinTrue v v

Figure 8.2: The primitive CNFs for the Tseytin transformation. We use the notation
v for ¬v.
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The statement we would like to prove is that tseytin f = (v,N) → f (v,N). As
tseytin is defined in terms of tseytin ′, we first prove a more general statement for
this function. The first direct generalisation one might come up with is

f ⊆ [0, b)→ nf > b→ tseytin ′ nf f = (v,N, nf ′)→ f (v,N),

where we have generalised the initial value 1+maxVar f for nf. However, an induc-
tive proof still does not go through: in the cases where an operator is used, we do
not know enough to do any reasoning about the assignments as the relation does
not hold any information on the structure of the CNFs and assignments. We there-
fore define a stronger relation parameterised over b, nf, and nf ′. Intuitively, the
variable range [0, b) is used by the original formula and [nf, nf ′) is the range of new
variables introduced by the transformation.

Definition 8.11 (Strengthened Representation Relation)
f

b

nf,nf ′
(v,N)

f
b

nf,nf ′
(v,N)

, if the following conditions hold:
1. N ⊆ ([0, b) ∪ [nf, nf ′)),
2. v ∈ [nf, nf ′),
3. for all a ⊆ [0, b), there exists a ′ ⊆ [nf, nf ′) such that (a ∪ a ′) |= N,
4. and for all a with a |= N, the equivalence a |= v↔ a |= f holds.

The first two conditionsmake the expected statements about the range of used vari-
ables. Note that the second condition would be too strong if we had not chosen to
introduce a new variable in the variable case of the transformation.
The third condition states that for any assignment to the original variables [0, b), we
can extend this assignment to the new variables in range [nf, nf ′) such that the CNF
N is satisfied. Intuitively, the condition does hold since the CNF produced by the
Tseytin transformation only contains constraints which relate the original variables
to the new variables; therefore, for any assignment to the original variables, we
should be able to find a consistent assignment for the new variables. Only if we
force the representing variable to be T is N actually equisatisfiable to f.
Finally, the fourth condition says that an assignment satisfyingN assigns the value
T to the representing variable v if and only if it satisfies f.
Based on this relation, we can prove the following statement by induction on f:

f ⊆ [0, b)→ nf > b→ tseytin ′ nf f = (v,N, nf ′)→ f
b

nf,nf ′
(v,N)

We factor out the inductive steps into compatibility lemmas for the operators.
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Lemma 8.12 (Compatibility with ∧) Assume that f1 ⊆ [0, b), f2 ⊆ [0, b), and

• ∀nf nf ′ v N,nf > b→ tseytin ′ nf f1 = (v,N, nf ′)→ f1 b

nf,nf ′
(v,N),

• ∀nf nf ′ v N,nf > b→ tseytin ′ nf f2 = (v,N, nf ′)→ f2 b

nf,nf ′
(v,N).

Then ∀nf nf ′ v N,nf > b→ tseytin ′ nf (f1∧f2) = (v,N, nf ′)→ (f1∧f2) b

nf,nf ′
(v,N).

Proof By computation, we have tseytin ′ nf f1 = (rv1, N1, nf1) and tseytin ′ nf1 f2 =

(rv2, N2, nf2) andhave to show (f1∧f2) b

nf,1+nf2
(nf2, N1++N2++tseytinAndnf2 rv1 rv2).

We instantiate the inductive hypotheses accordingly to obtain

• f1 b

nf,nf1
(rv1, N1),

• f2 b

nf1,nf2
(rv2, N2).

The first two goals are trivial using monotonicity of variable containment (Propo-
sition 8.4).
For the fourth goal, we have to prove E a nf2 = T ↔ a |= (f1 ∧ f2) under the
assumption that a |= N1 ++N2 ++ tseytinAnd nf2 rv1 rv2. From the assumption, we
get a |= N1 and a |= N2; therefore, the proof is straightforward from the fourth
conditions of the inductive hypotheses and the definition of tseytinAnd.
The third goal is the most complicated one since we have to provide a satisfying
assignment to the new variables. Assume an assignment a with a ⊆ [0, b). First of
all, we apply the third conditions of the inductive hypotheses to this assignment
to obtain disjoint assignments a ′1, a ′2 to the new variables in ranges [nf, nf1) and
[nf1, nf2) introduced by the transformation of the subformulas f1 and f2, and have
that (1) (a ∪ a ′1) |= N1 and (2) (a ∪ a ′2) |= N2. In order to determine the value
we should assign to the new representing variable, we make a case analysis on
E a (f1 ∧ f2). If E a (f1 ∧ f2) = T, we choose a ′ := [nf2] ++ a

′
2 ++ a

′
1. In the other

case, we pick a ′ := a ′2 ++ a
′
1. The rest of the proof is a bit technical, using the third

and fourth conditions of the inductive hypotheses and the various results of Sec-
tion 8.1, mainlymonotonicity (Proposition 8.4) and the results on evaluation under
extended assignments (Proposition 8.6). �

Lemma 8.13 (Compatiblity with ¬)
Assume f ⊆ [0, b) and

∀nf nf ′ v N,nf > b→ tseytin ′ nf f = (v,N, nf ′)→ f
b

nf,nf ′
(v,N).

Then ∀nf nf ′ v N,nf > b→ tseytin ′ nf (¬f) = (v,N, nf ′)→ (¬f)
b

nf,nf ′
(v,N).

Proof Similar in style to the compatibility lemma for ∧ (Lemma 8.12). �
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Assuming that the formula does not contain ∨’s, we can now prove the desired
statement.
Theorem 8.14 (Correctness of tseytin′)

orFree f→ f ⊆ [0, b)→ nf > b→ tseytin ′ nf f = (v,N, nf ′)→ f
b

nf,nf ′
(v,N)

Proof By induction on f.
f = T: The conditions of the representation relation are straightforward to verify,

using monotonicity (Proposition 8.4). For the third condition, we pick the
assignment [nf], setting the newly introduced variable to T.

f = v: Again an easy proof. For the third condition, given an assignment a ⊆ [0, b)

to the original variables, we pick the same value that a assigns to v for the
assignment to the newly added variable nf (as v should be equivalent to the
new variable nf).

f = f1 ∧ f2: By Lemma 8.12.
f = f1 ∨ f2: Contradictory.
f = ¬f ′: By Lemma 8.13. �

Weget the correctness statement for tseytin as a straightforward corollary, after hav-
ing shown that

b

nf,nf ′ is indeed stronger than .

Proposition 8.15 Let f ⊆ [0, b) and nf > b. Then f
b

nf,nf ′
(v,N)→ f (v,N).

Proof We have to show two directions.
• Assume that a |= f. By the hypothesis’ third condition instantiated with the

assignment a|b to the original variables, we get an assignment a ′ ⊆ [nf, nf ′)
to the new variables with (a|b ∪ a ′) |= N. We have to show that (a|b ∪ a ′) |=
(v ∧N). Satisfaction of N follows by assumption. By the fourth condition of
the assumption, it now suffices to show a|b ∪ a ′ |= f. We have shown that
it is fine to extend an assignment by a ′ and still get the same evaluation if
f ⊆ [0, b) (Propositon 8.6). Moreover, Proposition 8.7 justifies the restriction
of a to a|b. Therefore the goal follows by the assumption a |= f.
• We have E a ([(T, v)] :: N) for an assignment a and show that a |= f. This is

straightforward using the fourth condition of the strengthened relation. �

https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.FSAT_to_SAT.html#tseytinP_repr
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.FSAT_to_SAT.html#tseytin_formula_repr_s
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Corollary 8.16 (Correctness of tseytin)
Assume that orFree f. Then tseytin f = (v,N)→ f (v,N).

The full reduction first eliminates disjunctions and then applies the Tseytin trans-
formation.

reduction f := let (v,N) = tseytin (eliminateOr f)in [(T, v)] ++N reduction

Lemma 8.17 (FSAT reduces to SAT) FSAT f↔ SAT (reduction f)

Proof By combining Proposition 8.9 and Corollary 8.16. �

One quickly notes that the CNFs produced by this reduction have a clause size of
at most 3. We can easily adapt the reduction to yield 3-CNFs by making the clause
size exactly 3. For that, we duplicate some of the literals in the clauses computed
by the functions in Figure 8.2 and the function reduction. Thus, we directly obtain
a reduction to 3-SAT, too.
Lemma 8.18 (FSAT reduces to 3-SAT)

FSAT f↔ 3-SAT (reduction ′ f),

where reduction ′ is the reduction obtained by the modifications described above.
sizeFWe close this chapter by noting that the Tseytin transformation does indeed only

incur a linear increase in size, where we define the size sizeF of a formula and the
size sizecnf of a CNF (up to constant factors) as the number of nodes in the AST
induced by it. sizecnf

Proposition 8.19 There are constants celiminateOr and ctseytin such that:
1. sizeF (eliminateOr f) 6 celiminateOr · sizeF f

2. If tseytin ′ nf f = (v,N, nf ′), then sizecnf N 6 ctseytin · sizeF f

Moreover, if orFree f, then
tseytin f = (v,N)→ v < 1+maxVar f+ sizeF f∧N ⊆ [0, 1+maxVar f+ sizeF f).

The mechanisation in Coq closely follows the description on paper. The running-
time analysis crucially relies on the size bounds of the previous proposition.
Theorem 8.20

1. FSAT �p 3-SAT
2. FSAT �p SAT

https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.FSAT_to_SAT.html#tseytin_repr
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.FSAT_to_SAT.html#reduction
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.FSAT_to_SAT.html#FSAT_to_SAT
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.FSAT_to_SAT.html#FSAT_to_3SAT
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.FSAT.html#formula_size
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Problems.SAT.html#size_cnf
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.FSAT_to_SAT.html#eliminateOR_size
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.FSAT_to_SAT.html#tseytinP_size
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.FSAT_to_SAT.html#tseytin_size
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.FSAT_to_SAT.html#tseytin_varBound
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.FSAT_to_SAT.html#FSAT_reduces_to_SAT
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.FSAT_to_SAT.html#FSAT_reduces_to_3SAT


Chapter 9

Conclusion

In this final chapter we evaluate our results, give an overview on related work, and
comment on potential future work, both from the perspective of formalisation and
mechanisation.
In the preceding chapters, we have proved the following chain of reductions1:

TMGenNP �p 3-PR �p PR �p BinaryPR �p FSAT �p SAT

Combining these results, we obtain our following main mechanised result:

Theorem 9.1 TMGenNP is in NP. Moreover, if TMGenNP is NP-hard, then SAT
is NP-complete.

We do not see this as a full result, yet. Recall that we proposed to use Turing ma-
chines as an intermediate problem for the reduction from L to SAT as Turing ma-
chines are structurally simpler and seem to be a good reduction target for elimi-
nating L’s size explosion problem (see Remark 2.21). Thus, a mechanised proof of
the step from L to Turing machines is still missing for a proof of the Cook-Levin
Theorem in L, but we think that this work contributes a significant part towards a
fully mechanised proof.
As this thesis shows, formal complexity theory including running time analyses
with reference to a concrete model of computation is to some extent feasible. The
overhead for producing computable reductions and analysing their running time
is quite noticeable, however, see Appendix A. We think that more abstract results
like the Hierarchy Theorems might be mechanisable with a smaller overhead and
are thusmore promising candidates for future mechanisations. Most running-time
bounds we have established in this thesis are not very precise as we only required
polynomial bounds. In order to be able to comfortably establish precise bounds,

1Formally, we have shown the statements for the corresponding “flat” encodings in L.

https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.overview.html#FlatSingleTMGenNP_in_NP
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.overview.html#conditional_SAT_complete
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.overview.html#conditional_SAT_complete
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some work needs to be done to be able to properly work with asymptotic complex-
ities, like a suitable abstraction for constants.
9.1 Related Work
Proofs of the Cook-Levin Theorem There are a number of different proofs of the
Cook-Levin Theorem available. In this thesis, we have formalised the tableau-style
proof by Sipser [24, Chapter 7.4], which is in the spirit of Cook’s original construc-
tion [6]. However, Cook considers the problem of determining tautologihood of
DNFs, which he does by first building a CNF and then negating it. The construc-
tion is limited to Turing machines with one-sided infinite tapes.

A class of more modern proofs uses circuits. First of all, a family of circuits is
designed which encodes the computation of a Turing machine for different input
lengths. Then, it is shown how a circuit can be encoded as a Boolean formula. This
proof is available in different flavours, for example the construction of the circuit
family can proceed in a tableau-like style (e.g. in Chapter 9.3 of [24]) or by first
restricting the Turing machine to be oblivious, such that it shows the same sequence
of head movements on every input of a certain length [5, p. 199ff]. Although the
circuit-based proofs might appear more elegant on paper and their ideas can be
used for other proofs in circuit complexity, their mechanisation seems to be a lot
more tedious as one would first have to formalise the standard notions of complex-
ity and constructibility of circuits.

Levin [21] treats so-called search problemswhere not only the existence of a solution
has to be determined, but also a certificate needs to be given. He shows a problem
equivalent to SAT to be universal, but does not give an account of his proof.
Existing Mechanisation As mentioned in the introduction, there is an existing
mechanisation of the translation of Turingmachines to Boolean formulas in the the-
orem prover ACL2 [14]. They also use a tableau-style construction. However, there
are a number of key differences to our mechanisation. First of all, they restrict their
proof to Turingmachineswith one-sided infinite tapes. By this restriction, they also
circumvent the problemof non-uniqueness of the representation of a tapewhichwe
explained in Chapter 4 and addressed by using a moving-tape semantics instead of
the standard moving-head semantics. Their proof can use a simpler moving-head
semantics. Moreover, they employ nondeterministic Turing machines and have a
fixed input, which we did not choose to do because our definition of NP makes
use of the verifier characterisation. Their proof ends at the problemwhich we have
called FSAT, omitting the additional step to SAT.

From a high-level perspective, the most striking difference is that they do a direct
reduction instead of factorising the proof as we did. This is quite interesting, as we
originally thought it would not be feasible to do a direct reduction and deal with
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the encoding of transitions and arbitrary finite alphabets as well as the accounting
of variables in the resulting formula all at once2. Motivated by this thought process,
we developed our factorisation and only after finishing the mechanisation became
aware of the existing implementation. However, we think that our factorisation
leads to the proof being much more elegant and understandable. While it seems
hard to get more than a high-level intuitive grasp of the proof [14], it is our belief
that our proof is quite satisfactory even on paper. Finally, the authors remark that
ACL2 in its then-current state is not suitable for a running-time analysis. Due to
a lack of alternatives, they do their analysis by defining a second version of their
translation functions that counts the number of steps the translation takes. It is
not clear at all that the resulting cost model is reasonable in the sense explained
in Section 2.3.3. Because of the missing connection to a real machine model, we
are of the opinion that their result does not fully include the Cook-Levin Theorem,
which clearly requires to derive the NP-hardness of a (natural) problem. We see
the full running-time analysis with respect to a reasonable computational model as
the major advantage of our proof.
Formalising Complexity Theory There have been other approaches to formal-
ising complexity-theoretic results. As mentioned in the introduction, Asperti has
studied results like the Hierarchy Theorems and Borodin’s Gap Theorem from the
perspective of reverse complexity theory, examining what properties a computa-
tional model needs to satisfy to prove the mentioned theorems [3, 2]. Her results
have been mechanised in the proof assistant Matita [29]. However, despite devel-
oping a formalisation of Turing machines [4], the abstract results have not been
connected to a concrete computational model, yet.

Forster et al. [10] have developed a framework for the verified programming of
multi-tape Turing machines in Coq, which we have been using for the definition of
Turingmachines. They formalise time and spacemeasures and continuewith a for-
mally verified universal Turing machine and a multi-tape to single-tape compiler,
both with a verified polynomial time and constant-factor space overhead. Despite
these successes, they come to the conclusion that larger formalisations do not seem
to be feasible and suggest the approach of using L we have been pursuing in this
thesis.

Heiter formalises the undecidability of the Post correspondence problem in [16] by
reducing fromTuringmachines. The reduction uses string-based rewriting systems
as an intermediate problem. However, this rewriting problem does not bear much
resemblance to our PR, with the key difference being that her construction is not
suitable for resource-limited computations as needed for our reduction.

2We still think that this is the case if one uses two-sided infinite tapes.
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9.2 Future Work
In this thesis, we have formally verified a reduction from Turing machines to SAT.
However, as we are working in the setting of complexity theory in L, we would
eventually like to obtain a mechanised reduction from L to SAT. The missing re-
duction from L to Turing machines is certainly challenging as it requires the imple-
mentation of a heap-based evaluation strategy for the lambda calculus using Turing
machines3. The framework for the verified programming of Turing machines [10],
whose formalisation of Turingmachines is used in this thesis, makes this much eas-
ier as it allows to do relatively high-level programming using control-flow primi-
tives and the possibility to encode inductive datatypes on individual tapes. An
unpublished implementation of a heap-based simulation is already available in the
Coq library of undecidable problems [12]. Then, a compiler from multi-tape to
single-tape Turing machines is necessary, which has already been verified in [10].
Note that one can fix a constant Turing machine which takes the L-term to simulate
as an input so that the running time of the multi-tape to single-tape construction
need not be analysed. Currently, this reduction is work-in-progress.

Another relatively isolated line of work is to define a version of L including nonde-
terminism and to prove that the resulting definition of NP agrees with the verifier
characterisation we use here. Such extensions to λ-calculi have been studied previ-
ously from the perspective of modelling concurrent systems, for example in [19],
but never from the perspective of obtaining a reasonable computational model.
Thismight also open the door to formalise other results of complexity theorywhich
rely on nondeterminism.

For the proofs in this thesis, we were mostly only concerned with the time usage of
a reduction and not its space usage (we only made sure that it does not exhibit size
explosion). It would be interesting to formalise space classes like LogSpace and
PSpace and prove results like Savitch’s Theorem which relates nondeterministic
and deterministic space. For a mechanisation to be possible, first the extraction
framework would need to be expanded to also derive recurrences for the space
usage of a term.

On a more general note, the expansion of the reasonability result of [9] beyond
decision problems would be interesting in order to facilitate the mechanisation of
results outside of the mere complexity theory of decision problems. It seems like
one might need to investigate the matter of size explosion in more detail in order
for this to work, maybe resulting in general conditions to rule out size explosion or
a direct scheme to compress size-exploding terms.

3Note that the more complicated interleaving strategy of [9] is not necessary as we do not care
about the space overhead.
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Finally, on the more technical side there is the issue of binary encodings. Through-
out this thesis we used a unary encoding for numbers. For the problemswe consid-
ered this is reasonable (or even necessary, as with the encoding of the number of
steps in TMGenNP), but many number-theoretic problems are not NP-hard any-
more if one employs a unary encoding instead of a binary encoding4. An example
for this is the SubsetSum problem, asking whether there is a subset A ⊆ B of a
given set of numbers B such that A sums exactly to a number c. However, almost
all Coq standard library functions are defined with respect to the Peano numbers
N, whose Scott encoding is unary. Having to manually redefine them for binary
numbers would be rather unpleasant, especially as writing recursive functions on
binary numbers is more difficult5. A translation can usually be done mechanically,
which is whywe feel like it might be feasible to implement an automatic translation
plugin using the MetaCoq project [30] for meta progamming in Coq. This plugin
could also automatically prove agreementwith the original unary definition. Alter-
natively, the translation could happen directly at the level of the extraction plugin
so that the Peano numbers are extracted to a binary encoding instead of their Scott
encoding.

4or any other c-nary encoding for c > 1
5The Peano recursor for binary numbers seems like the best way, but clutters up the function’s

definition. Arithmetical operations like addition andmultiplication should, of course, still be defined
via direct recursion on binary numbers.
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Structure of the Mechanisation

We give an overview of the structure of our mechanisation. Our development is
based on the Coq library of undecidable problems [12], which contains among
other things a formalisation of L and Turing machines as well as the extraction
framework. The files we contribute mainly live in the /L/Complexity directory of
the project. The project is hosted on GitHub.
Basic Definitions For completeness, we start with an overview over the basic def-
initions for complexity theory which were developed by Fabian Kunze.

Component Spec Proof
O-notation and monotonicity 70 167

decidability & computability in time 118 182
P, NP and reductions 102 157

The basic definitionsweneed are quite compact. The files forOnotationmostly con-
tain automation, for instance for proving that a particular function is polynomial or
monotonic. The file for NP includes basic facts like properties of polynomial-time
reductions and the inclusion P ⊆ NP.

Throughout the thesis, we use a small library of additional facts about lists and
other things that are not yet present in the Coq standard library or the undecid-
ability library. Moreover, we have a shared file providing running time and size
bounds for common functions.

Component Spec Proof
preliminaries 169 381

polynomial bounds 112 253
ProblemDefinitions The definitions of the problems we use are contained in the
subfolder Problems.

https://github.com/uds-psl/ba-gaeher
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Component Spec Proof
SAT 201 446
FSAT 93 87
k-SAT 26 42

Clique & FlatClique 194 263
variants of Parallel Rewriting 551 1022

TMGenNP 28 50
The files for extractable problems include the respective extraction to L. For exam-
ple, the extraction of SAT makes up 84 lines of specification and 247 lines of proof
of the total number of lines. The definitions for flat problems include predicates
connecting them to the corresponding non-flat version. In total, we have five vari-
ants of Parallel Rewriting: PR, FlatPR, 3-PR, Flat-3-PR and BinaryPR. As the 3-PR
variant fixes all definitions to the special case of the width being 3 and the offset be-
ing 1, most definitions and lemmas have to be stated again for the variant. The file
on generic problems for Turing machines explores different definitions and proves
their equivalence.
Reduction to Clique

Component Spec Proof
pigeonhole principle 64 150
k-SAT to Clique 140 249

k-SAT to FlatClique 176 333
k-SAT to SAT 6 41

While the (not extractable) proof using the abstract representation of graphs is
fairly compact, with a major part component being a proof of the pigeonhole prin-
ciple adapted from the ICL 2019 course [17], defining a computable variant and
analysing its running time takes up some space. For completeness, we include a
reduction from k-SAT to SAT proving that it is contained in NP.
Proof of the Cook-Levin-Theorem Recall that our proof of the Cook-Levin The-
orem consists of four main reductions and a minor embedding of 3-PR into PR.

Component Spec Proof

TMGenNP to 3-PR reduction 1843 2481
time analysis 838 1706

3-PR to PR 37 174
PR to BinaryPR 222 719

BinaryPR to FSAT 312 1078
FSAT to SAT 213 605

The reduction of TMGenNP to 3-PR includes the formalisation of preludes for
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PR needed for guessing the certificate. 735 lines of specification of 909 lines of
the reduction’s correctness proof are for generating the list-based windows and
proving their agreement with the inductive predicates. The running-time analysis
makes up a very significant part of the whole reduction.
The remaining reductions are much simpler, with the reduction to BinaryPR in-
cluding a formalisation of uniform homomorphisms and their action on PR in-
stances.
In total, we have contributed 5230 lines of specification and 10038 lines of proof,
of which 1636 and 3181 lines are for the extraction/running-time analysis (not in-
cluding the definition of the flat problems or the flat reductions). If we additionally
exclude the flat problems, flat reductions and any proofs of computability (i.e. also
exclude the definition of the list-based rules), we are left with 2339 lines of specifi-
cation and 4524 lines of proof. These numbers thus only capture the correctness of
the construction, but do not even includewhat is needed for a reduction in synthetic
computability theory (as it is not at all clear how one would, in general, translate
inductive predicates to something which is computable).
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Full Rewrite Rules

The following list contains the full set of rewrite rules as implemented by the Coq
mechanisation.
B.1 Tape Rules
Right Shifts

σ1

−→
σ4

σ2

−→
σ1

σ3

−→
σ2

␣
−→␣

␣
−→␣

␣
−→␣

␣
−→
σ1

␣
−→␣

␣
−→␣

σ1

−→
σ2

␣
−→
σ1

␣
−→␣

σ1

−→
σ3

σ2

−→
σ1

␣
−→
σ2

␣
−→␣

␣
−→␣

σ1

−→␣

␣
−→␣

σ1

−→␣

σ2

−→
σ1

σ1

−→␣

σ2

−→
σ1

σ3

−→
σ2

Left Shifts The rules for left shifts are defined to be the polarity-reversion of the
rules for shifting to the right, i.e. [γ1, γ2, γ3] / [γ4, γ5, γ6] is a rule for shifting to the
left if, and only if, [~γ3,~γ2,~γ1] / [~γ6,~γ5,~γ4] is a rule for shifting to the right.
Identity Rules

m1

m1

m2

m2

m3

m3

#
#

␣
␣

␣
␣

␣
␣

␣
␣

#
#

B.2 Transition Rules
δ(q, ◦a) = (p, ◦b,L):
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m1

−→
m3

qa

pm2

m2

−→
b

m1

−→
m3

m2

−→
m1

qa

pm2

qa

pm3

m1

−→
a

m2

−→
m1

.

δ(q, ◦a) = (p, ◦b,R):

m1

←−
b

qa

pm2

m2

←−
m3

qa

pm1

m1

←−
m2

m2

←−
m3

m1

←−
m2

m2

←−
a

qa

pm3

δ(q, ◦a) = (p, ◦b,N):

m1

m1

qa

pb

m2

m2

qa

pb

m1

m1

m2

m2

m1

m1

m2

m2

qa

pb

δ(q, ◦a) = (p,∅,L):

m1

−→
m3

qa

pm2

m2

−→
a

m1

−→
m3

m2

−→
m1

qa

pm2

qa

pm3

m1

−→
a

m2

−→
m1

δ(q, ◦a) = (p,∅,R):

m1

←−
a

qa

pm2

m2

←−
m3

qa

pm1

m1

←−
m2

m2

←−
m3

m1

←−
m2

m2

←−
a

qa

pm3

δ(q, ◦a) = (p,∅,N):

m1

m1

qa

pa

m2

m2

qa

pa

m1

m1

m2

m2

m1

m1

m2

m2

qa

pa

δ(q,∅) = (p, ◦b,L):

m1

−→
m3

q␣

pm2

m2

−→
b

m1

−→
m3

m2

−→
m1

q␣

pm2

q␣

pm3

m1

−→
a

m2

−→
m1

δ(q,∅) = (p, ◦b,R):

m1

←−
b

q␣

pm2

m2

←−
m3

q␣

pm1

m1

←−
m2

m2

←−
m3

m1

←−
m2

m2

←−
a

q␣

pm3

δ(q,∅) = (p, ◦b,N):

m1

m1

q␣

pb

m2

m2

q␣

pb

m1

m1

m2

m2

m1

m1

m2

m2

q␣

pb
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δ(q,∅) = (p,∅,L):

␣

␣

q␣

p␣

m1

m1

σ1

−→
m1

q␣

pσ1

␣
␣

␣

␣

␣

␣

q␣

p␣

␣
−→␣

σ1

−→␣

q␣

pσ1

σ2

−→
m1

σ1

−→
σ2

q␣

pσ1

q␣

pm1

␣
−→␣

␣
−→␣

q␣

p␣

σ1

σ1

m1

m1

δ(q,∅) = (p,∅,N):

m

m

q␣

p␣

␣

␣

␣

␣

q␣

p␣

m

m

␣

␣

␣

␣

q␣

p␣

m1

m1

σ1

σ1

q␣

p␣

q␣

p␣

␣

␣

␣

␣

q␣

p␣

σ1

σ1

m1

m1

δ(q,∅) = (p,∅,R):

m1

m1

q␣

p␣

␣

␣

␣
←−␣

q␣

pσ1

σ1

←−
m1

q␣

p␣

␣

␣

␣

␣

q␣

pσ1

σ1

←−␣

␣
←−␣

q␣

pσ1

σ1

←−
σ2

σ2

←−
m1

m1

m1

σ1

σ1

q␣

p␣

␣
←−␣

␣
←−␣

q␣

pm1

B.3 Halting Rules

m1

m1

qm2

qm2

m3

m3

m1

m1

m2

m2

qm3

qm3

qm1

qm1

m2

m2

m3

m3
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Appendix C

Semantics of Turing Machines

In this chapter, we present the parts of the semantics of Turing machines that were
left out in Section 2.2. Let us fix a Turing machine tape alphabet Σ : finType and a
Turing machineM = (Q, δ, start, halt) : TM Σ n.

We start with the functions left, right : tapeΣ → L(Σ) and current : tapeΣ → O(Σ)

giving the parts of the tape left, right, or under the head.

left niltape := [ ]

left (leftof r rs) := [ ]

left (rightof l ls) := l :: ls

left (midtape ls c rs) := ls

right niltape := [ ]

right (leftof r rs) := r :: rs

right (rightof l ls) := [ ]

right (midtape ls c rs) := rs

current (midtape ls c rs) := ◦c

current _ := ∅

The function tape_write writes a symbol to the current position of a tape.

tape_write : tapeΣ → O(Σ)→ tape Σ

tape_write t ∅ := t
tape_write t (◦s) := midtape (left t) s (right t)

Recall the function tape_move : tapeΣ → move→ tapeΣ we have defined on Page 10
that moves a tape in a given direction. The function doAct : tapeΣ → ActΣ → tapeΣ
performs an action on a tape by first writing a symbol and then moving the tape.

doAct t (s,m) := tape_move (tape_write t s)m

https://uds-psl.github.io/ba-gaeher/website/Undecidability.TM.TM.html#left
https://uds-psl.github.io/ba-gaeher/website/Undecidability.TM.TM.html#right
https://uds-psl.github.io/ba-gaeher/website/Undecidability.TM.TM.html#current
https://uds-psl.github.io/ba-gaeher/website/Undecidability.TM.TM.html#tape_write
https://uds-psl.github.io/ba-gaeher/website/Undecidability.TM.TM.html#tape_move
https://uds-psl.github.io/ba-gaeher/website/Undecidability.TM.TM.html#doAct
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In order to perform a computational step, we start by gathering the symbols un-
der the heads and then lookup the value of the transition function to perform the
actions given by the transition function on all tapes.

step : confM → confM
step (q, ts) := let (q ′, as) := δ(q, [ current t | t ∈ ts ])in (q ′, [ doAct t a | t ∈ ts, a ∈ as ])

The execution is defined computationally. We first define an abstract loop function.
loop : ∀A, (A→ A)→ (A→ B)→ A→ N→ O(A)

loop f p a k := if p a then ◦a else match k [ 0⇒ ∅ | S k ′ ⇒ loop f p (f a) k ′ ]
Intuitively, f is a step function, p is a predicate that isTwhen the loop should break,
a is the initial value, and k is the maximum number of steps. If the loop terminates
within at most k steps, the final value is returned. Before we give the loop function
for Turing machines, we fix initial configurations and halting configurations.

initConf t := (start, t)

haltingConf (q, t) := halt q

Now, we can instantiate loop suitably to obtain a function executing the Turing ma-
chineM.

loopTM : ConfM → N→ O(ConfM)

loopTM c steps := loop step haltingConf c steps

execTM t := loopTM (initConf t)

C.1 Single-tape Turing Machines
For the whole of Chapter 5, we have used simpler definitions for single-tape Turing
machines. In the following, we present the derived definitions.

sconfM := Q× tapeΣ
transM ((q, t) : sconfM) := let (q ′, [a]) := δ(q, [t])in (q ′, a)

tepsstep ((q, t) : sconfM) := let (q ′, a) := transM(q, current t)in (q ′, doAct tp a)

Here we use the same notations for vectors as for lists, i.e. [a] is a singleton vector
in the definition of transM, for instance. We define the following relations:

(q, t) � (q ′, t ′) := halt q = F∧ sstep s = s ′

(q, tp)Bk (q ′, tp ′) := (q, tp) �k (q ′, tp ′)∧ halt q ′ = T

(q, tp)B6k (q ′, tp ′) := ∃l 6 k, (q, tp)Bl (q ′, tp ′)

One can show that these relational definitions agree with loopTM in the expected
way.

https://uds-psl.github.io/ba-gaeher/website/Undecidability.TM.TM.html#step
https://uds-psl.github.io/ba-gaeher/website/Undecidability.TM.Prelim.html#loop
https://uds-psl.github.io/ba-gaeher/website/Undecidability.TM.TM.html#loopM
https://uds-psl.github.io/ba-gaeher/website/Undecidability.TM.TM.html#execTM
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.TM_single.html#sconfig
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.TM_single.html#strans
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.TM_single.html#relpower_loop_agree
https://uds-psl.github.io/ba-gaeher/website/Undecidability.L.Complexity.Reductions.Cook.TM_single.html#loop_relpower_agree
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