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We present a proof of cut elimination for IEL. The proof is an adap-
tion of the proof given in Krupski and Yatmanov (2016) and has been
mechanized in the Coq proof assistant. The basic proof structure, i.e. an
induction on pairs of natural numbers to proof that any cut can directly
be eliminated remains is inspired by Plato (2001).

In Krupski and Yatmanov (2016) decidability and cut-elimination
for IEL are proven. The presented proof is similar to the proof of
cut-elimination for IPC given in Troelstra and Schwichtenberg (2000).
Formalizing this proof in a proof assistant involves design decisions
about representing the contexts (multisets of formulae in the paper)
and reasoning about them. While these technical details are interest-
ing, we feel it is better to give the proof without elaborating too many
of the somewhat gory details about the formalization. We proceed in
the following fashion: We present the proof on the same abstraction
level as textbooks about structural proof theory would do, only some-
times hinting at parts which are more difficult to prove using a proof
assistant. After presenting the proof, we investigate the representa-
tion of the sequent calculus in Coq and the collection of facts about
multisets which was needed in the development.

Cut Elimination: History

The first cut elimination proof was given by Gentzen (1935a, 1935b).
TBD.

Existing formalizations of Cut Elimination Formalizing cut elimination
proofs for a sequent calculus is not a new topic. Michaelis and Nip-
kow (2017) formalize a cut elimination proof in Isabelle/HOL closely
following Troelstra and Schwichtenberg (2000) (but using induction
on derivations instead of induction of height multiple times). Pening-
ton (2018) tried to do a similiar proof following Troelstra & Schwicht-
enberg in Coq, but ultimately failed, relying on a structural multiset
1 encoding. A structural encoding is also used in Park (2013) mas- 1 (c.f. Section Formalization)

ter thesis, where cut elimination and the termination of a bidirec-
tional proof search for an intuitionistic modal logic are proven. How-
ever with this encoding the proofs are quite complicated and gener-
ate a fairly big coq development with many case distinctions on list
equivalences. van Doorn (2015) formalized a semantic cut elimina-
tion proof for classical propositional logic in Coq using this encoding.
The idea to use multisets explicitely for a cut elimination proof is used
in Chaudhuri, Lima, and Reis (2017), where cut elimination for an in-
tuitionistic logic in Abella is proven.

For IPC simpler formalized cut elimination proofs exist, where the
cut elimination proof is a simple structural induction using a gen-
eralized cut elimination theorem (like Gentzen MultiCut) by Smolka
and Brown (2012) for the implicational fragment of IPC and later by
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Dang (2015) for full IPC. It relies on using the sequent calculus G3Imp
described in Troelstra and Schwichtenberg (2000) which is very well
suited for proof search (TODO: Explanation why it is so well suited).

Sequent Calculus for IEL

The sequent calculus for IEL is derived from the calculus G3ip as pre-
sented in Troelstra and Schwichtenberg (2000). Of course new rules
for the K operator are introduced. Krupski and Yatmanov (2016) dis-
tinguish multiple equivalent systems with different rules, however
all of these are equivalent and only ease the proof of equivalence be-
tweem the natural deduction system and the sequent calculus. We
use their sequent calculus IELGM (and the version with depts IEL-
GMd).

Only two rules are added: The KI-rule, which absorbs both the
intuitionistic reflection (A → KA) and K-distributivity rule from the
natural deduction calculus for IEL. And the K⊥-rule, which basically
represents the truth condition in IEL.

In fig. 1 a presentation of the rules is given.

⊥ ∈ Γ

Γ⇒ s

pi ∈ Γ

Γ⇒ pi

A, B, Γ⇒ s

A ∧ B, Γ⇒ s

Γ⇒ s Γ⇒ t

Γ⇒ s ∧ t
(AR)

s, Γ⇒ u t, Γ⇒ t

(s ∧ t), Γ⇒ u
(AL)

Γ⇒ Fi

Γ⇒ F1 ∨ F2
(ORi)

S, Γ⇒ F T, Γ⇒ F

S ∨ T, Γ⇒ F
(OL)

F, Γ⇒ G

Γ⇒ F1 ⊃ F2
(IR)

S ⊃ T, Γ⇒ S T, Γ⇒ F

S ⊃ T, Γ⇒ F
(IL)

K(∆), ∆, Γ⇒ φ

Γ, K(∆)⇒ Kφ
(KI)

Γ⇒ K⊥
Γ⇒ F

(KB)

Figure 1: IELGM sequent calculus, the
naming conventions match the coq for-
malization, i.e. the left rule for ∧ is
called AL for and-left instead of ∧L.

For a derivation of a formula F from a multiset of premisses Γ we
use the common notation Γ⇒ F.

With n⇒ we denote, that a derivation of height less or equal to n
exists. The height of a derivation is the maximum of the subderiva-
tion’s heights increased by 1. We encode the height in the inductive
rules in the same way as done in Michaelis and Nipkow (2017). That
is we explicitly have a step rule which allows to arbitrarily increase
the height of every derivation by one (and of course by iterated ap-
plication by any natural number). This additional rule allows us to
formalize every other rule with premises of the same height. For ex-
ample we could define the AR-Rule with heights explicitely as
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Γ n⇒ s Γ n⇒ t ARd
Γ n+1⇒ s ∧ t

, combining this scheme with the step rule has the same effect as using
the maximum over the subderivation’s heights in the constructor 2 2 However reasoning with maximum of

heights is needed when proving that
from any IELGM derivation a IELGMd
derivation can be obtained.

e.g.

Γ n⇒ s Γ m⇒ t ARd’
Γ

max(n,m)+1⇒ s ∧ t
.

Lemma 1. If Γ⇒ F iff there exists an n s.t. Γ n⇒ F.

Lemma 2 (Weakening). IELGM enjoys the depth preserving weakening
property: Γ n⇒ F =⇒ G, Γ n⇒ F.

Proof. Structural induction on the derivation (just as Michaelis and
Nipkow (2017); Troelstra and Schwichtenberg (2000) use induction
on n).

We can prove some inversion rules, used for proving contraction.

Lemma 3. Left rules are invertible in the following sense:

• A ∧ B, Γ⇒ C =⇒ A, B, Γ⇒ C.

• A ∨ B, Γ⇒ C =⇒ A, Γ⇒ C and B, Γ⇒ C

• A ⊃ B, Γ⇒ C =⇒ B, Γ⇒ C

Proof. The proofs are by structural induction on n , as in Troelstra and
Schwichtenberg (2000).

The last result we need is the contraction proof. Contraction al-
lows us to ignore duplicate assumptions. We will proof it using the
standard form.

Lemma 4 (Contraction). If F, F, Γ n⇒ s then F, Γ n⇒ s.

Proof. We do an induction on n with s and Γ quantified.

For completeness sake, we state the contraction lemma in the way
we will use it: Multisets can be collapsed into sets. For example if we
have a proof that Γ1, Γ1, Γ2 ⇒ s, we also have a proof that Γ1, Γ2 ⇒ s.

Lemma 5 (Useful contraction). If A ⊆ B and B ⊆ A, A ⇒ s ⇐⇒
B⇒ s.3 3 Inclusion here is to be read as set-

inclusion, not multiset-inclusion.
Proof. With informal reasoning, it is a simple consequence of above
lemma. When reasoning in a proof assistant, a reduction to duplicate-
free lists is needed.

With these lemmas inplace, we can prove the main result.

Lemma 6 (Cut is admissible). If Γ1 ⇒ F and F, Γ2 ⇒ ∆ then Γ1, Γ2 ⇒
∆.
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Proof. We do an induction on pairs (r, k) of natural numbers where r
is the cut-rank of the cut-derivation, that is the sum of the premisses
heights and where k is the length of the formula 4, such that we ob- 4 The length of a formula is defined in-

ductively.

l(pi) = 0

l(⊥) = 0

l(s ◦ t) = 1 + max(l(s), l(t))

l(Ks) = 1 + l(s)

, where ◦ is any binary operator. Note,
that subformulas are always of a smaller
size.

tain two inductive hypotheses: Any cut with lower cut-rank or same
cut-rank and cutformula of a lower size can be eliminated by the in-
ductive hypothesis. We do not do an induction on the derivation, but
instead only do an inversion i.e. a case analysis on which derivation
was used to derive the left premiss. This suffices for most cases, in
some cases we also need a second case distinction on the derivation
of the right premiss afterwards.

We will proof some of the cases in detail here.

1. The left premiss was derived using the⊥-Rule, thus our derivation
has the following form 5 : 5 We omit the heights of the derivations,

since they are not needed in this case.

⊥ ∈ Γ1
Γ1 ⇒ F F, Γ2 ⇒ ∆

Γ1, Γ2 ⇒ ∆

Since ⊥ ∈ Γ1, we know that there is a context Γ′1 s.t. Γ1 ≡ ⊥, Γ′1.
Therefore we can use weakening and the bot introduction rule.

2. If the left premiss was derived using the variable-rule (therefore
F ∈ Γ1), we can use weakening and the right derivation.

3. Assume the left premiss was derived using the left rule for ∧, thus
there exists Γ1 s.t. A1 ∧ A2, Γ′1 = Γ1.

A1, A2, Γ′1
n−1⇒ F

A1 ∧ A2, Γ′1
n⇒ F Γ2

m⇒ ∆
Γ1, Γ2 ⇒ ∆

We can do a cut of lower height on the same formula F by permut-
ing the application of the left introduction rule for ∧ down.

A1, A2, Γ1′ n−1⇒ F Γ2
n⇒ ∆

r-cut
A1, A2, Γ′1

n⇒ ∆

A1 ∧ A2, Γ′1, Γ2
m⇒ ∆

Since (n − 1) + n < n + m, we can apply the IH and remove the
cut.

4. Assume the left premiss was derive using the right rule for ∧:

Γ1 n−1⇒ A1 Γ1 n−1⇒ A2

Γ1
n⇒ A1 ∧ A2 A1 ∧ A2, Γ2

n⇒ ∆

Γ1, Γ2
S(n)⇒ ∆

By the inversion lemma for∧, we can obtain a derivation A1, A2, Γ2
n⇒

∆. We will replace the cut with 2 cuts with a formula of lower size
(we cut on A1 and A2 instead of A1 ∧ A2). Our new derivation has
the following form:
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Γ1
n−1⇒ A1

Γ1
n−1⇒ A2 F, G, Γ2

n−1⇒ ∆

A1, Γ1, Γ2
n⇒ ∆

Γ1, (Γ1, Γ2)
S(n)⇒ ∆

5. Assume the left premiss was derived using the left for disjunction.

A1, Γ′1 ⇒ F A2, Γ′1 ⇒ F

A1 ∨ A2, Γ1′ n−1⇒ A2 F, Γ2
n⇒ ∆

Γ1, Γ2
S(n)⇒ ∆

We can permute the cut upwards.

A1, Γ′1 ⇒ F F, Γ2 ⇒ ∆

A1, Γ′1, Γ2 ⇒ ∆

A2, Γ′1 ⇒ F F, Γ2 ⇒ ∆

A2, Γ′1, Γ2 ⇒ F

A1 ∨ A2, Γ′1, Γ2 ⇒ ∆

Note, that both cuts have a lower cutrank since their left premiss
has a derivation which is 1 less deep.

6. Assume the left premiss was derived using one of the right-rules
for disjunction. We can cut on the smaller formula.

7. Assume the premiss was derived using the left introduction rule
for implication. Permute the cut upwards, just as in the disjunction
case.

8. Assume the premiss was derived using the right introduction rule
for implication. We need to do a second case analysis on the deriva-
tion F, Γ2 ⇒ ∆. (We only prove select cases here)

(a) If the second premiss is an axiom, either F = ∆ or ∆ ∈ Γ2. In
both cases the cut is unnecessary.

(b) Similarly, if the second premiss is derived using the bottom
rule, either F = ⊥ or ⊥ ∈ ∆.

(c) An interesting case arises, when the right premiss is proved
using the left introduction rule for implication.

s0, Γ1 ⇒ t0
Γ1 ⇒ s0 ⊃ t0

[D2]
s1 ⊃ t1, s0 ⊃ t0, Γ′2 ⇒ s1 t1, s0 ⊃ t0, Γ′2 ⇒ ∆

s1 ⊃ t1, s0 ⊃ t0, Γ′2 ⇒ ∆
Γ1, Γ2 ⇒ ∆

We have 2 cases: Either s0 ⊃ t0 = s1 ⊃ t1 or s0 ⊃ t0 6= s1 ⊃ t1

and .

i. In the first case we can build the following derivation:

Γ1 ⇒ s0 ⊃ t0 s0 ⊃ t0, Γ2 ⇒ s1 r-cut
Γ1, Γ2 ⇒ s1

s1, Γ1 ⇒ t1 t1, Γ2 ⇒ ∆
s-cut

(s1, Γ1), Γ2 ⇒ ∆
s-cut

(Γ1, Γ2), (Γ1, Γ2)⇒ ∆
contr.

Γ1, Γ2 ⇒ ∆
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ii. If s0 ⊃ t0 6= s1 ⊃ t1 a multiset Γ′2 exists s.t. Γ2 = (s1 ⊃ t1), Γ′2.

Γ1 ⇒ s0 ⊃ t0 s0 ⊃ t0, Γ2 ⇒ s1 s-cut
Γ1, (s1 ⊃ t1, Γ′2)⇒ s1

Γ1 ⇒ s0 ⊃ t0 s0 ⊃ t0, t1, Γ2 ⇒ ∆
r-cut

Γ1, t1, Γ′2 ⇒ ∆
IL

s1 ⊃ t1, Γ1, Γ′2 ⇒ ∆
rewriting

Γ1, Γ2 ⇒ ∆

9. Assume the premiss was derived using the K-introduction rule.
We do a second case distinction on the derivation of the right de-
duction. Most cases are similiar to those obtained in the right rule
for implication subcases, we won’t go into too much detail here.

(a) The right premise is an axiom. Either ∆ = F, in which case
weakening and using IH on the left deduction suffices or ∆ ∈ Γ2

in which case we can directly construct the derivation.

(b) The most interesting case occurs, when the KI-rule is used on
both sides . To ease the notation we change the notation (Note:
I guess it might be better to do this globally): We rename ∆ into
Ω.

So assume F = KF′, Ω = K Ω′ and Γ1 = Γ′1, K(∆1) and F, Γ2 =

Γ′2, K(∆2). We have the following derivation:

Γ′1, ∆1, K(∆1)⇒ F′

Γ′1, K(∆1)⇒ K F′
Γ2, ∆2, K(∆2)⇒ Ω′

Γ2, K(∆2)⇒ KΩ′

Γ1, Γ2 ⇒ KΩ′

We do a case analysis on F ∈ Γ′2 ∨ F ∈ K(∆2).

i. Assume F ∈ Γ′2. Therefore there is a Γ′′2 s.t. Γ2 = Γ′′2 , K(∆2).

Γ1, ∆1, K(∆1)⇒ F F, Γ′′2 , ∆2K(∆2)⇒ Ω′
r-cut

Γ1, ∆1, K(∆1), Γ′2, K(∆2)⇒ Ω
KI

Γ′1, Γ′′2 , K(∆1, ∆2)⇒ KΩ′
rewriting

Γ1, Γ2 ⇒ KΩ′

We first apply the K-introduction rule and afterwards cut on
F.

ii. Assume F ∈ K(∆2). Therefore F′ ∈ ∆2 and there is a ∆′2 s.t.
∆2 = F′, ∆′2. 6. 6 This reasoning is suprisingly compli-

cated in a proof assistant (injectivity +
map needed), -> formalization section

Γ1, ∆1, K(∆1)⇒ F′
Γ1, K(∆1)⇒ K F Γ2, ∆2, K(∆2)⇒ Ω′

r-cut
∆′2, F′, K(∆2)⇒ Ω′

s-cut
Γ′1, Γ′2, ∆1, ∆′2, K(∆1), K(∆′2)⇒ Ω′

Γ′1, Γ′2, K(∆1, ∆′2)⇒ KΩ′
rewriting

Γ1, Γ2 ⇒ KΩ′

10. Assume the premiss was derived using the K-bottom rule.

Γ1
n−1⇒ K⊥

Γ1
n⇒ F F, Γ2

n⇒ ∆
Γ1, Γ2 ⇒ ∆

We use weakening and the KB rule.
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Γ1 ⇒ K⊥
Γ1, Γ2 ⇒ K⊥
Γ1, Γ2 ⇒ ∆

Equivalence to nd

We first present the proof that any nd-derivation can be turned into
a sequent calculus derivation. We first proof some left elimination
results for the sequent calculus. The proofs are easy inductions.

Lemma 7. s, Γ⇒ t ⇐⇒ Γ⇒ s ⊃ t

Proof. The only-if direction is a trivial consequence of the right intro-
duction rule for ⊃. We proof the left direction by induction on the
derivation with Γ quantified.

A inversion rule can be shown for and.

Lemma 8. Γ⇒ s ∧ t ⇐⇒ Γ⇒ s ∧ Γ⇒ t

Proof. Induction on the derivation.

We can also show, that the deduction system has the reflexivity
property.

Lemma 9 (Reflexivity for⇒). s, Γ⇒ s

Proof. The proof is by induction on the formula s with Γ quantified.

1. If s is ⊥ or a variable, it is trivial.

2. Assume s = a ∧ b. We can build the following derivation:

3. The other cases, are similiar, we will take a look at the s = Ks′ case.

With these lemmas in-place we can proof the result.

Lemma 10 (Sc =⇒ Nd). If Γ ` s, then Γ⇒ s

Proof. Induction on the derivation, we only cover some select cases.

• If the assumption rule was used, we can apply reflexivity (lemma 9).

• Assume the A ` Ks was derived from A ` s. By the inductive
hypothesis. we obtain a sc-derivation A ⇒ s. Since A ≡ A ++[],
we can apply the K-Introduction rule.

• Assume the k-implication rule was used i.e. we get an inductive
hypothesis Γ ⇒ K(s → t) and have to proof Γ ⇒ Ks → Kt.
We first apply the cut-rule with K(s ⊃ t). Therefore we need to
complete a derivation of K(s ⊃ t), Γ ⇒ Ks ⊃ Kt. Using the right-
rule for implication, we are left with proving K(s ⊃ t), KsΓ ⇒
Ks ⊃ Kt. We can now use the KI-rule and only need to prove s, s ⊃
t, Ks, K(s ⊃ t), Γ⇒ t, which is simple (using cut and reflexivity).
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All other cases are easily solved by using the elimination lemmas, just
as in Troelstra and Schwichtenberg (2000).

Since we have proven both directions of the equivalence, we get
the desired result, that the sequent calculus formulation of IEL really
is equivalent to the natural deduction system.

Formalization

Multisets

We represent multisets as lists. Using lists as the representation for
sets or multisets of formulas is common, however there seem to be
atleast two possibilities for how to deal with list equivalence.

1. Adopt the rules s.t. they need not refer to a special list equality (we
call this a structural encoding 7). 7 Is there a better term for this?

2. Embed list equality into the rules.

To analyze the difference between the two approaches, let us consider
the and-elimination rule. If encoded in a structural way, we would
state in the following form: For any list L1, L2 over formulas if L1 +

+F∧G ++L2⇒ s, then L1 ++F :: G :: L2⇒ s. That is by squeezing
the formula between arbitrary lists of formulas we embed multiset
equivalence implicitely.

This approach is not feasible for IEL, since it is impossible to em-
bed the K-Introduction rule in this fashion (since it is not just about
a single element somewhere in the multiset, but the whole mutliset
being equivalent to a multiset union). Aditionally with the structural
representations some proofs get more complex 8. The alternative we 8 tries to prove cut elimination for IPC

using this approach but does not suc-
ceed,in cut elimination is proven, how-
ever not via a syntactic approach.

are using is to define multiset equivalence explicetely and use in the
rules. This makes the proofs more similiar to textbook proofs, but has
the drawback that a solid collection of multiset lemmata is needed
(going beyond the lemmata contained in the standard library). For
example case analysis on multiset equivalences is needed, as are some
registering multisets for rewriting in Coq.

In this section we will discuss some of the additional theorems
needed. We make use of the uds-psl base library for duplicate free
lists and some facts about inclusions.

Decidability

TODO: Literatureinordnung

A fixpoint theorem

Our proof search will rely on a fixpoint theorem. We introduce some
terminology, let f : N → A → B be a function, where A is an arbi-
trary type.

We call f monotone with a respect to a subset U ⊆ A if and only
if for every n ∈ N and every u ∈ U, f (n) ≤ f (n + 1).9 We say 9 We assume that ⊥ ≤ >.
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that f makes progress at n in U if and only if there is an u ∈ U s.t.
f (n, u) 6= f (n + 1, u). Note that if f is monotone, it can only make
progress if at least one element changes from true to false.

With these terms we can now define the crucial property for our
proof search. f has the progress-property if f only makes progress at
n + 1 if it made progress at n (with respect to U .

Definition 1. f has the noprogress-property with respect to U ⊆ A iff
∀n, noprogress( f , U, n)→ noprogress( f , U, n + 1).

Intuitively the noprogress property guarentess, that the values of
the function won’t change, if they have not changed in one step.
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