

Undecidability of the Post Correspondence Problem in Coq

Bachelor Talk

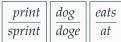
Edith Heiter

Advisors: Prof. Dr. Gert Smolka, Yannick Forster

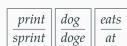
August 23, 2017

What to Expect?

- Formalized decision problems:
 - Post correspondence problem (PCP)
 - modified Post correspondence problem (MPCP)
 - word problem in string-rewriting systems
 - halting problem for Turing machines
- Formal definition and verification of reductions from the literature proving PCP undecidable:
 - Hopcroft et al. (2006)
 - Davis et al. (1994)
 - Wim H. Hesselink (2015)
- constructive Coq development

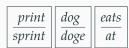


- $\bullet \ \text{strings} \ \Sigma^* := L \, \Sigma$
- instance *P* of type $pcp := L(\Sigma^* \times \Sigma^*)$



	$\frac{dog}{doge}$	eats at	print sprint
--	--------------------	------------	-----------------

- strings $\Sigma^* := \bar{L} \Sigma$
- instance *P* of type $pcp := L(\Sigma^* \times \Sigma^*)$



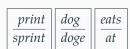
dog	eats	print
doge	at	sprint

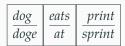
dogeatsprint dogeatsprint

- strings $\Sigma^* := \bar{L} \Sigma$
- instance *P* of type $pcp := \mathbf{L} (\Sigma^* \times \Sigma^*)$

dogeatsprint dogeatsprint

- strings $\Sigma^* := \bar{L} \Sigma$
- instance P of type $pcp := \mathbf{L}(\Sigma^* \times \Sigma^*)$
- S is a match if concat (map $\pi_1 S$) = concat (map $\pi_2 S$), abbreviated as $C_1 S = C_2 S$
- *S* is a match for P if $S \neq []$, $S \subseteq P$, and *S* is a match





dogeatsprint dogeatsprint

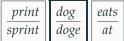
Assume a fixed alphabet Σ .

- strings $\Sigma^* := \bar{L} \Sigma$
- instance P of type $pcp := \mathbf{L}(\Sigma^* \times \Sigma^*)$
- S is a match if concat (map $\pi_1 S$) = concat (map $\pi_2 S$), abbreviated as $C_1 S = C_2 S$
- *S* is a match for P if $S \neq []$, $S \subseteq P$, and *S* is a match

Definition (Post correspondence problem)

 $PCP P := \exists S. S \text{ is a match for } P$

- strings $\Sigma^* := L \Sigma$
- instance (d, P) of type mpcp := $(\Sigma^* \times \Sigma^*) \times pcp$

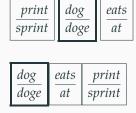


- strings $\Sigma^* := L \Sigma$
- instance (d, P) of type mpcp := $(\Sigma^* \times \Sigma^*) \times pcp$

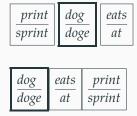




- strings $\Sigma^* := L \Sigma$
- instance (d, P) of type mpcp := $(\Sigma^* \times \Sigma^*) \times pcp$



- strings $\Sigma^* := L \Sigma$
- instance (d, P) of type mpcp := $(\Sigma^* \times \Sigma^*) \times pcp$
- S is a match if $C_1 S = C_2 S$
- *S* is a match for P if $S \neq []$, $S \subseteq P$, and *S* is a match



Assume a fixed alphabet Σ .

- strings $\Sigma^* := L \Sigma$
- instance (d, P) of type mpcp := $(\Sigma^* \times \Sigma^*) \times pcp$
- S is a match if $C_1 S = C_2 S$
- *S* is a match for P if $S \neq []$, $S \subseteq P$, and *S* is a match

Definition (Modified Post correspondence problem)

 $\mathsf{MPCP}\,(d,P) := \exists\, S.\,(d::S) \text{ is a match for } (d::P)$

Definition (Undecidability)

A class $P: X \to \mathbb{P}$ is undecidable if the halting problem (Halt) reduces to P.

Definition (Undecidability)

A class $P: X \to \mathbb{P}$ is undecidable if the halting problem (Halt) reduces to P.

Definition (Reduction)

Definition (Undecidability)

A class $P: X \to \mathbb{P}$ is undecidable if the halting problem (Halt) reduces to P.

Definition (Reduction)

Definition (Undecidability)

A class $P: X \to \mathbb{P}$ is undecidable if the halting problem (Halt) reduces to P.

Definition (Reduction)

Definition (Undecidability)

A class $P: X \to \mathbb{P}$ is undecidable if the halting problem (Halt) reduces to P.

Definition (Reduction)

 $\Sigma := \{a, b\}$ finite alphabet of symbols $R := \{ab/ba, aa/ab\}$ finite set of rewrite rules

$$\Sigma := \{a, b\}$$

$$R := \{ab/ba, aa/ab\}$$

finite alphabet of symbols finite set of rewrite rules

$$aab \Rightarrow_R aba$$

$$\frac{u/v \in R}{xuy \Rightarrow_R xvy}$$

$$\Sigma := \{a, b\}$$

$$R := \{ab/ba, aa/ab\}$$

finite alphabet of symbols finite set of rewrite rules

$$aab \Rightarrow_R aba$$

$$aab \Rightarrow_{R}^{*} bab$$

$$\frac{u/v \in R}{xuy \Rightarrow_R xvy}$$

$$\overline{z \Rightarrow_R^* z}$$

$$\frac{u/v \in R}{xuy \Rightarrow_R xvy} \qquad \frac{z \Rightarrow_R z}{z \Rightarrow_R^* z} \quad \frac{x \Rightarrow_R y \quad y \Rightarrow_R^* z}{x \Rightarrow_R^* z}$$

$$\Sigma := \{a, b\}$$

$$R := \{ab/ba, aa/ab\}$$

finite alphabet of symbols finite set of rewrite rules

$$aab \Rightarrow_R aba$$

 $aab \Rightarrow_R^* bab$

$$\frac{u/v \in R}{xuy \Rightarrow_R xvy}$$

$$\frac{u/v \in R}{xuy \Rightarrow_R xvy} \qquad \frac{z \Rightarrow_R z}{z \Rightarrow_R^* z} \quad \frac{x \Rightarrow_R y \quad y \Rightarrow_R^* z}{x \Rightarrow_R^* z}$$

Definition: Word problem in string-rewriting systems

$$SR(R, x, y) := x \Rightarrow_R^* y$$

Word problem
$$aab \Rightarrow_R^* bab$$
 with $R = \{ab/ba, aa/ab\}$
 $aab \Rightarrow aba \Rightarrow baa \Rightarrow bab$

```
Word problem aab \Rightarrow_R^* bab with R = \{ab/ba, aa/ab\}

aab \Rightarrow aba \Rightarrow baa \Rightarrow bab
```


\$ \$aab∗

Word problem
$$aab \Rightarrow_R^* bab$$
 with $R = \{ab/ba, aa/ab\}$
 $aab \Rightarrow aba \Rightarrow bab \Rightarrow bab$

$$\frac{\$}{\$aab*}$$

• copy dominoes transfer unchanged symbols to the next string

Word problem
$$aab \Rightarrow_R^* bab$$
 with $R = \{ab/ba, aa/ab\}$

$$aab \Rightarrow aba \Rightarrow baa \Rightarrow bab$$

$$\boxed{\frac{\$}{\$ aab \star}} \boxed{\frac{a}{a}} \boxed{\frac{ab}{ba}}$$

$$\frac{\$}{\$aab*}$$

- *copy dominoes* transfer unchanged symbols to the next string
- rewrite dominoes simulate a single rewrite

Word problem $aab \Rightarrow_{R}^{*} bab$ with $R = \{ab/ba, aa/ab\}$ $aab \Rightarrow aba \Rightarrow baa \Rightarrow bab$ $\boxed{\frac{\$}{\$ aab \star}} \boxed{\frac{a}{a}} \boxed{\frac{ab}{ba}} \boxed{\frac{\star}{\star}}$

 $\frac{\$aab*}{\$aab*aba*}$

- copy dominoes transfer unchanged symbols to the next string
- rewrite dominoes simulate a single rewrite
- consecutive strings are separated by *

Word problem $aab \Rightarrow_{R}^{*} bab$ with $R = \{ab/ba, aa/ab\}$ $aab \Rightarrow aba \Rightarrow baa \Rightarrow bab$ $\boxed{\frac{\$}{\$aab \star}} \boxed{\begin{array}{c|c} a & b \\ \hline a & ba \end{array}} \boxed{\begin{array}{c|c} \star & ab \\ \hline ba & \star \end{array}} \boxed{\begin{array}{c|c} a \\ \hline ba \end{array}} \boxed{\begin{array}{c|c} \star \\ \hline ba \end{array}} \boxed{\begin{array}{c|c} \star \\ \hline a \\ \hline \end{array}}$

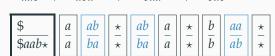
$$\frac{\$aab \star aba \star}{\$aab \star aba \star baa \star}$$

- copy dominoes transfer unchanged symbols to the next string
- rewrite dominoes simulate a single rewrite
- \blacksquare consecutive strings are separated by \star

Halt to SR

Reducing String Rewriting to MPCP

Word problem $aab \Rightarrow_{R}^{*} bab$ with $R = \{ab/ba, aa/ab\}$ $aab \Rightarrow$ aba baa bab



$$\frac{\$aab * aba * baa*}{\$aab * aba * baa * bab*}$$

- copy dominoes transfer unchanged symbols to the next string
- rewrite dominoes simulate a single rewrite
- consecutive strings are separated by *

Word problem $aab \Rightarrow_R^* bab$ with $R = \{ab/ba, aa/ab\}$

$$aab \Rightarrow aba \Rightarrow baa \Rightarrow bab$$

$$\$aab * aba * baa * bab * \$$$

 $\$aab * aba * baa * bab * \$$

- copy dominoes transfer unchanged symbols to the next string
- rewrite dominoes simulate a single rewrite
- \blacksquare consecutive strings are separated by \star

Word problem $aab \Rightarrow_{R}^{*} bab$ with $R = \{ab/ba, aa/ab\}$

$$aab \Rightarrow aba \Rightarrow baa \Rightarrow bab$$

$$\$aab * aba * baa * bab * \$$$

 $\$aab * aba * baa * bab * \$$

- copy dominoes transfer unchanged symbols to the next string
- rewrite dominoes simulate a single rewrite
- consecutive strings are separated by *

$$f(R,x,y) := \left\{ \left\lceil \frac{\$}{\$x*} \right\rceil, \left\lceil \frac{y * \$}{\$} \right\rceil, \left\lceil \frac{x}{*} \right\rceil \right\} \cup \left\{ \left\lceil \frac{a}{a} \right\rceil \middle| a : \Sigma \right\} \cup \left\{ \left\lceil \frac{u}{v} \right\rceil \middle| u/v \in R \right\}$$

Correctness Proof $x \Rightarrow_{R}^{*} y \leftrightarrow \mathsf{MPCP}(f(R, x, y))$

Let x, y and z be strings over Σ and R a set of rewrite rules.

Lemma

If $x \Rightarrow_R^* y$, then there is a match for the MPCP instance f(R, x, y).

Halt to SR

Correctness Proof $x \Rightarrow_{R}^{*} y \leftrightarrow \mathsf{MPCP}(f(R, x, y))$

Let x, y and z be strings over Σ and R a set of rewrite rules.

Lemma

PCP and Undecidability

If $x \Rightarrow_{R}^{*} y$, then there is a match for the MPCP instance f(R, x, y).

Lemma

Let
$$A \subseteq f(R, x, y)$$
. If $C_1 A = z \star (C_2 A)$, then $z \Rightarrow_R^* y$.

Proof. Size induction on A with a generalized claim for all z. A more general lemma yields either

- $z \Rightarrow_R^* y$ or
- $z \Rightarrow_R^* m$ and $C_1 A' = m \star (C_2 A')$ for a smaller list A'. The inductive hypothesis yields $m \Rightarrow_{R}^{*} y$.

Correctness Proof $x \Rightarrow_{R}^{*} y \leftrightarrow \mathsf{MPCP}(f(R, x, y))$

Let x, y and z be strings over Σ and R a set of rewrite rules.

Lemma

If $x \Rightarrow_R^* y$, then there is a match for the MPCP instance f(R, x, y).

Lemma

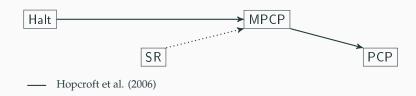
Let
$$A \subseteq f(R, x, y)$$
. If $C_1 A = z \star (C_2 A)$, then $z \Rightarrow_R^* y$.

Proof. Size induction on A with a generalized claim for all z. A more general lemma yields either

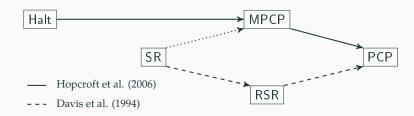
- $z \Rightarrow_R^* y$ or
- $z \Rightarrow_R^* m$ and $C_1 A' = m \star (C_2 A')$ for a smaller list A'. The inductive hypothesis yields $m \Rightarrow_R^* y$.

Theorem (SR reduces to MPCP) $SR(R, x, y) \leftrightarrow MPCP(f(R, x, y))$

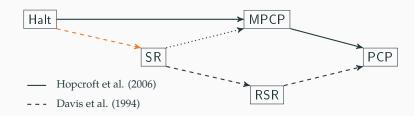
Intermediate Result



Intermediate Result



Intermediate Result



Turing Machines¹ and the Halting Problem

¹Andrea Asperti and Wilmer Ricciotti (2015)

Turing Machines¹ and the Halting Problem

PCP and Undecidability

- Turing machine $M := (Q, \delta, q_0, H)$ over finite alphabet Σ
 - transition function $\delta: Q \times \Sigma_{\perp} \to Q \times \Sigma_{\perp} \times \{L, N, R\}$
 - halting function $H: Q \to \mathbb{B}$

¹Andrea Asperti and Wilmer Ricciotti (2015)

Turing Machines¹ and the Halting Problem

- Turing machine $M := (Q, \delta, q_0, H)$ over finite alphabet Σ
 - transition function $\delta: Q \times \Sigma_{\perp} \to Q \times \Sigma_{\perp} \times \{L, N, R\}$
 - halting function $H: Q \to \mathbb{B}$

PCP and Undecidability

- configurations conf : $Q \times \text{tape}$ and step function $\hat{\delta} : \text{conf} \to \text{conf}$
 - $\hat{\delta}(q, \underline{baA}) = (q', \underline{caA}) \text{ if } \delta(q, \lfloor b \rfloor) = (q', \lfloor c \rfloor, R)$
 - $\hat{\delta}(q, AA) = (q', AA)$ if $\delta(q, \bot) = (q', \bot, L)$

¹Andrea Asperti and Wilmer Ricciotti (2015)

Turing Machines² and the Halting Problem

• final configurations $H_c := H(\pi_1 c) = \text{true}$

²Andrea Asperti and Wilmer Ricciotti (2015)

Turing Machines² and the Halting Problem

- final configurations $H_c := H(\pi_1 c) = \text{true}$
- reachability predicate:

PCP and Undecidability

$$\frac{\hat{\delta} c \vdash c' \quad \neg H_c}{c \vdash c'}$$

²Andrea Asperti and Wilmer Ricciotti (2015)

Turing Machines² and the Halting Problem

- final configurations $H_c := H(\pi_1 c) = \text{true}$
- reachability predicate:

PCP and Undecidability

$$\frac{\hat{\delta} c \vdash c' \quad \neg H_c}{c \vdash c'}$$

Definition: Reachability

Reach
$$(M, c_1, c_2) := c_1 \vdash c_2$$

²Andrea Asperti and Wilmer Ricciotti (2015)

Turing Machines² and the Halting Problem

- final configurations $H_c := H(\pi_1 c) = \text{true}$
- reachability predicate: $\frac{c' + c'}{c' + c'}$

$$\frac{\hat{\delta} c \vdash c' \quad \neg H_c}{c \vdash c'}$$

Definition: Reachability

Reach $(M, c_1, c_2) := c_1 \vdash c_2$

Definition: Halting problem

 $\mathsf{Halt}\,(M,t) := \exists \, c_f.\, (q_0,t) \, \vdash c_f \wedge H_{c_f}$

²Andrea Asperti and Wilmer Ricciotti (2015)

$$f(M, c_1, c_2) := (R, x, y)$$

$$f(M, c_1, c_2) := (R, x, y)$$

$$f(M, c_1, c_2) := (R, x, y)$$

• string encoding $\langle \cdot \rangle$: conf $\rightarrow \Gamma^*$ with $\Gamma := q : Q \mid a : \Sigma \mid (|\cdot|)$

$$\begin{array}{c|cccc} c & (q,\emptyset) & (q,{}_{\uparrow}aA) & (q,BaA) & (q,Ba_{\uparrow}) \\ \hline \langle c \rangle & q(\emptyset) & q(aA) & (BqaA) & (Baq) \end{array}$$

$$f(M, c_1, c_2) := (R, \langle c_1 \rangle, \langle c_2 \rangle)$$

• string encoding $\langle \cdot \rangle$: conf $\rightarrow \Gamma^*$ with $\Gamma := q : Q \mid a : \Sigma \mid (|\cdot|)$

$$\begin{array}{c|cccc} c & (q,\emptyset) & (q,{}_{a}A) & (q,BaA) & (q,Ba_{\uparrow}) \\ \hline \langle c \rangle & q(\emptyset) & q(aA) & (BqaA) & (Baq) \end{array}$$

$$f(M, c_1, c_2) := (R, \langle c_1 \rangle, \langle c_2 \rangle)$$

• string encoding $\langle \cdot \rangle$: conf $\rightarrow \Gamma^*$ with $\Gamma := q : Q \mid a : \Sigma \mid (\mid \mid)$

$$\begin{array}{c|cccc} c & (q,\emptyset) & (q,{}_{\stackrel{}{\uparrow}}AA) & (q,BaA) & (q,Ba_{\stackrel{}{\uparrow}}) \\ \hline \langle c \rangle & q(\emptyset) & q(aA) & (BqaA) & (Baq) \\ \end{array}$$

- each rewrite rule realizes one δ̂-step
 - $q_0 a / a q_1$ represents $\delta(q_0, |a|) = (q_1, \perp, R)$
 - aq_0 / $q_f a$ and q_0 (/ q_f (represent δ (q_0, \perp) = (q_f, \perp, L)

$$f(M, c_1, c_2) := (R, \langle c_1 \rangle, \langle c_2 \rangle)$$

• string encoding $\langle \cdot \rangle$: conf $\rightarrow \Gamma^*$ with $\Gamma := q : Q \mid a : \Sigma \mid (|\cdot|)$

- each rewrite rule realizes one $\hat{\delta}$ -step
 - $q_0 a / a q_1$ represents $\delta(q_0, |a|) = (q_1, \perp, R)$
 - aq_0)/ $q_f a$) and q_0 (/ q_f () represent δ (q_0, \perp) = (q_f, \perp, L)
- Δ contains rules that simulate the result of δ $(q, \lfloor a \rfloor)$ and δ (q, \bot) for all non final states q : Q and symbols $a : \Sigma$

$$f(M, c_1, c_2) := (\Delta, \langle c_1 \rangle, \langle c_2 \rangle)$$

• string encoding $\langle \cdot \rangle$: conf $\rightarrow \Gamma^*$ with $\Gamma := q : Q \mid a : \Sigma \mid \{ \mid \mid \} \}$

- each rewrite rule realizes one δ̂-step
 - $q_0 a / a q_1$ represents $\delta(q_0, |a|) = (q_1, \perp, R)$
 - aq_0 $|/q_f a|$ and q_0 $|/q_f|$ represent $\delta(q_0, \bot) = (q_f, \bot, L)$
- Δ contains rules that simulate the result of $\delta(q, |a|)$ and $\delta(q, \perp)$ for all non final states q:Q and symbols $a:\Sigma$

Translating the Transition Function into Rewrite Rules

 $\delta(q_1, \perp) = (q_2, \text{write}, \text{move})$

и	v	и	v	write	move
q_1 (q ₂ (c q1)	<i>q</i> ₂ <i>c</i>)		L
q_1 ($q_2($	q_1	q_2	1	N
$q_1()$	$q_2()$	q_1	q_2	1	R
q_1 (c	$(q_1 c$			1	R
q_1 (q2(b	cq_1	92 c b)	$\lfloor b \rfloor$	L
q_1 ($(q_2 b$	q_1	$q_2 b$	$\lfloor b \rfloor$	N
q_1 ((bq_2)	q_1	bq_2	$\lfloor b \rfloor$	R

 $\delta(a_1, |a|) = (a_2, \text{write, move})$

(71) [1])							
и	v	u v		write	move		
$(q_1 a$	q ₂ (a	cq1a q2ca			L		
		$q_1 a$	$q_2 a$		N		
		$q_1 a$	aq_2	上	R		
$(q_1 a$	$q_2(b$	cq1 a	<i>q</i> ₂ <i>c b</i>	$\lfloor b \rfloor$	L		
		$q_1 a$	$q_2 b$	$\lfloor b \rfloor$	N		
		$q_1 a$	bq_2	$\lfloor b \rfloor$	R		

Correctness Proof

Lemmas

- If *c* is not a final configuration, then $\langle c \rangle \Rightarrow_{\Delta} \langle \hat{\delta} c \rangle$.
- If $\langle c \rangle \Rightarrow_{\Delta} z$, then $z = \langle \hat{\delta} c \rangle$ and c is not a final configuration.

Proof. Both lemmas require large case analyses on the tape of configuration *c* and the result of transitions.

Theorem (Reach reduces to SR) $c_1 \vdash c_2 \leftrightarrow \langle c_1 \rangle \Rightarrow_{\Lambda}^* \langle c_2 \rangle$

Reducing the Halting Problem to String Rewriting

$$f(M,t) := (R, \langle (q_0,t)\rangle, y)$$

Reducing the Halting Problem to String Rewriting

$$f(M,t) := (R, \langle (q_0,t)\rangle, \varepsilon)$$

Reducing the Halting Problem to String Rewriting

$$f(M,t) := (R, \langle (q_0,t)\rangle, \varepsilon)$$

• $(q_0, t) \vdash c_f$ if and only if $\langle (q_0, t) \rangle \Rightarrow_{\Lambda}^* \langle c_f \rangle$

Reducing the Halting Problem to String Rewriting

$$f(M,t) := (R, \langle (q_0,t) \rangle, \varepsilon)$$

- $(q_0, t) \vdash c_f$ if and only if $\langle (q_0, t) \rangle \Rightarrow^*_{\Lambda} \langle c_f \rangle$
- provide rules enabling $\langle c_f \rangle \Rightarrow^* \varepsilon$ for all final configurations c_f :

$$D := \left\{ (q_f s/q_f), (sq_f/q_f), (q_f/\varepsilon) \,|\, q_f \in Q_H, s \in \Sigma \cup \{(\!(, \!(\!)\!)\} \right\}$$

$$(q_0aba) \Rightarrow_{\Delta}^* (|abq_fa|) \Rightarrow_D (|abq_f|) \Rightarrow_D (|abq_f|) \Rightarrow_D (|aq_f|) \Rightarrow_D (|aq_f|)$$

Halt to SR

Reducing the Halting Problem to String Rewriting

$$f(M,t) := (\Delta \cup D, \langle (q_0,t) \rangle, \varepsilon)$$

- $(q_0, t) \vdash c_f$ if and only if $\langle (q_0, t) \rangle \Rightarrow^*_{\Lambda} \langle c_f \rangle$
- provide rules enabling $\langle c_f \rangle \Rightarrow^* \varepsilon$ for all final configurations c_f :

$$D := \{ (q_f s/q_f), (sq_f/q_f), (q_f/\varepsilon) \mid q_f \in Q_H, s \in \Sigma \cup \{\emptyset,\emptyset\} \}$$

$$(|q_0aba|) \Rightarrow_{\Delta}^* (|abq_fa|) \Rightarrow_D (|abq_f|) \Rightarrow_D (|abq_f| \Rightarrow_D (|aq_f| \Rightarrow_D (|q_f| \Rightarrow_D |abq_f|))$$

Reducing the Halting Problem to String Rewriting

$$f(M,t) := (\Delta \cup D, \langle (q_0,t) \rangle, \varepsilon)$$

- $(q_0, t) \vdash c_f$ if and only if $\langle (q_0, t) \rangle \Rightarrow^*_{\Lambda} \langle c_f \rangle$
- provide rules enabling $\langle c_f \rangle \Rightarrow^* \varepsilon$ for all final configurations c_f :

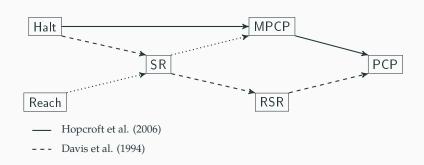
$$D := \left\{ (q_f s/q_f), (sq_f/q_f), (q_f/\varepsilon) \,|\, q_f \in Q_H, s \in \Sigma \cup \{ (\!(, \!(\!)\!) \} \right\}$$

$$(q_0aba) \Rightarrow_{\Delta}^* (abq_fa) \Rightarrow_D (abq_f) \Rightarrow_D (abq_f \Rightarrow_D (aq_f \Rightarrow_D (q_f \Rightarrow q_f \Rightarrow_D \epsilon))$$

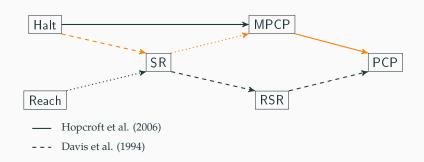
Theorem (Halt reduces to SR)

$$(\exists c_f. (q_0,t) \vdash c_f \land H_{c_f}) \leftrightarrow \langle (q_0,t) \rangle \Rightarrow_{\land \cup D}^* \varepsilon$$

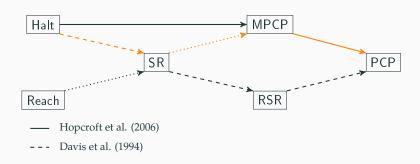
Undecidability Result



Undecidability Result



Undecidability Result



Realization of one Turing machine transition

- reduction via SR: *q*₀*a*/*aq*₁
- direct reduction to MPCP: $\left[\frac{0}{0} \left| \frac{q_0 a}{a q_1} \right| \frac{b}{b} \right| \frac{a}{a} \right] \left[\frac{b}{b} \right]$

Future Work

- Formalize undecidability proofs based on reductions of PCP:
 - problems related to context-free grammars: inclusion and non-emptiness of intersection (Hopcroft et al. 2006, Hesselink 2015)
 - satisfiability problem for variants of specification formalisms (Finkbeiner and Hahn 2016, Song and Wu 2014)
 - validity of first-oder formulas (Schöning 2009)
 - secrecy problem for security protocols (Tiplea et al. 2005)
- Show PCP λ and Turing undecidable:
 - implement the reductions in the weak call-by-value λ-calculus L (Forster and Smolka 2017)
 - formalize the computational equivalence of L and Turing machines (Dal Lago and Martini 2008)

References

Andrea Asperti and Wilmer Ricciotti.
 A formalization of multi-tape Turing machines.
 Theoretical Computer Science, 603:23–42, 2015.

Martin D. Davis, Ron Sigal, and Elaine J. Weyuker. Computability, Complexity, and Languages: Fundamentals of Theoretical Computer Science.

Academic Press, 1994.

Wim H. Hesselink.
 Post's correspondence problem and the undecidability of context-free intersection.
 Manuscript, July 2015.

- ▶ John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. *Introduction to Automata Theory, Languages, and Computation*. Addison-Wesley, 2006.
- Emil L Post.
 A variant of a recursively unsolvable problem.
 Bulletin of the American Mathematical Society, 52(4):264–268, 1946.
- Axel Thue.
 Probleme über Veränderungen von Zeichenreihen nach gegebenen Regeln.
 J. Dybwad, 1914.

Coq Development

	Spec	Proof	Σ
Definitions	292	121	413
MPCP to PCP	75	145	220
SR to MPCP	50	127	177
Halt to SR	209	349	558
Halt to MPCP	306	517	823
SR to RSR	37	71	108
RSR to PCP	118	328	446
PCP undecidability	9	12	21
	1096	1670	2766

Halt, SR, MPCP, PCP: 955 Halt, SR, RSR, PCP: 1112 Halt, MPCP, PCP: 1043

Proof (SR to MPCP) \rightarrow

Lemma

If $z \Rightarrow_R^* y$, then there is some $A \subseteq f(R, x, y)$ such that $C_1 A = z \star (C_2 A)$.

Proof. Induction on $\Rightarrow *$.

Lemma

If $x \Rightarrow_{R}^{*} y$, then there is a match for the MPCP instance f(R, x, y).

Proof. The list $\left|\frac{\$}{\$x*}\right|$:: *A* is a match for the MPCP instance.

Proof (SR to MPCP) \leftarrow

Lemma

Let $A \subseteq f(R, x, y)$. If $C_1 A = z \star m(C_2 A)$, then either

- $z \Rightarrow_R^* y$ and m = [] or
- $A = B + \begin{bmatrix} \star \\ \star \end{bmatrix}$:: A', $C_1 B = z$, $C_2 B = m'$, and $z \Rightarrow_R^* m'$ for some A', B, m'.

Proof. Induction on *A* for all strings *z* and *m*. Let A = d :: A.

- $z = []: \left\lfloor \frac{y * \$}{\$} \right\rfloor, \left\lfloor \frac{u}{v} \right\rfloor$ with u = [], and $\left\lfloor \frac{*}{*} \right\rfloor$ are candidates for d
- z = az': $\left[\frac{y \star \$}{\$}\right]$, $\left[\frac{u}{v}\right]$, and $\left[\frac{a}{a}\right]$ are candidates for d

Proof (Reach to SR)

Lemma

If $\langle c \rangle \Rightarrow_{\Delta} z$, then $z = \langle \hat{\delta} c \rangle$ and c is not a final configuration.

Proof. Let c=(q,t). We have $\langle (q,t)\rangle=xuy$ and z=xvy with $u/v\in\Delta$. Case analysis on tape t. Assume $t=\emptyset$.

$$\begin{split} &\langle (q,\emptyset)\rangle = q(\emptyset) = xuy. \text{ If } u/v = q_1()/(aq_2 \text{ simulating } \delta\left(q_1,\bot\right) = (q_2,a,R),\\ &\text{then } q(\emptyset) = xq_1(y \text{ yields } q = q_1 \text{ and } \langle \hat{\delta} \, c \rangle = (aq_2) = x(aq_2y = z. \end{split}$$

Remark: It is important that (\neq) . Assume a configuration $\langle (q_1, \emptyset) \rangle = q_1(\emptyset)$ and $\delta(q_1, \bot) = (q_2, \lfloor a \rfloor, R)$.

- The only applicable rewrite rule is $(q_1 (/ (aq_2))$ and $(\hat{\delta}(q_1, \emptyset)) = ((q_2, a_{\uparrow})) = ((aq_2))$.
- If the only one tape delimiter is \parallel , the rule $(q_1 \parallel / aq_2 \parallel)$ for the right end of the tape is also suitable. But $aq_2 \parallel \parallel \neq \langle (q_2, a_{_{\uparrow}}) \rangle = \parallel aq_2 \parallel$.

Proof (Halt to SR)

Lemmas

- 1. If c_f is a final configuration, then $\langle c_f \rangle \Rightarrow_D^* \varepsilon$.
- 2. If $\langle c \rangle \Rightarrow_D z$ for some z, then c is a final configuration.
- 3. If $\langle c \rangle \Rightarrow_{\Delta \cup D}^* \varepsilon$, then $c \vdash c_f$ for some final configuration c_f .

Proof (3). Induction on the derivation \Rightarrow^* with a generalized claim for all c.

- $\langle c \rangle = \varepsilon$ is contradictory.
- $\langle c \rangle \Rightarrow_{\Delta \cup D} z$: If the rewrite rule is from Δ , we use the inductive hypothesis and $z \Rightarrow_{\Delta \cup D}^* \varepsilon$, otherwise the lemma above.

Reducing Restricted String Rewriting to PCP

$$f(R,x,y) := \left\{ \begin{bmatrix} \$ \\ \$x \star \end{bmatrix}, \begin{bmatrix} \frac{y \star \$}{\$} \end{bmatrix}, \begin{bmatrix} \frac{\star}{\tilde{x}} \end{bmatrix}, \begin{bmatrix} \frac{\tilde{x}}{\tilde{x}} \end{bmatrix}, \begin{bmatrix} \frac{\tilde{a}}{\tilde{a}} \end{bmatrix} | a : \Sigma \right\} \cup \left\{ \begin{bmatrix} u \\ \tilde{v} \end{bmatrix}, \begin{bmatrix} \frac{\tilde{u}}{v} \end{bmatrix} | u/v \in R \right\}$$

Example:

 $R := \{aa/ab, ab/ba\}, x := baa$ and y := bab. Since $baa \Rightarrow_R^* bab$ holds, we should be able to construct a match for the PCP instance

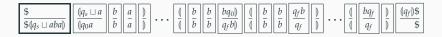
$$\left\{ \begin{bmatrix} \$ \\ \$baa\star \end{bmatrix}, \begin{bmatrix} bab\star\$ \\ \$ \end{bmatrix}, \begin{bmatrix} \star \\ \bar{\star} \end{bmatrix}, \begin{bmatrix} \bar{\star} \\ \bar{\star} \end{bmatrix}, \begin{bmatrix} \bar{a} \\ \bar{a} \end{bmatrix}, \begin{bmatrix} \bar{a} \\ \bar{a} \end{bmatrix}, \begin{bmatrix} \bar{b} \\ \bar{b} \end{bmatrix}, \begin{bmatrix} \bar{b} \\ \bar{b} \end{bmatrix}, \begin{bmatrix} aa \\ a\bar{b} \end{bmatrix}, \begin{bmatrix} \bar{a}a \\ a\bar{b} \end{bmatrix}, \begin{bmatrix} \bar{a}b \\ \bar{b}a \end{bmatrix}, \begin{bmatrix} \bar{a}b \\ \bar{b}a \end{bmatrix} \right\}$$

$$\frac{\$baa \star \tilde{b}\tilde{a}\tilde{b} \star bab \star \$}{\$baa \star \tilde{b}\tilde{a}\tilde{b} \star bab \star \$}$$

Reducing the Halting Problem to MPCP

tape	Ø	leftof	midtape	rightof
С	(q, \emptyset)	(q, A)	(q, BaA)	(q, Ba_{\uparrow})
$\langle c \rangle$	(qu)	$(q \sqcup aA)$	(BqaA)	(Baq)

Encoding of configurations using a blank symbol \sqcup .



- initial domino
- transition dominoes for all non final states
- copy dominoes for all symbols and (), ()
- deletion dominoes for all final states
- final dominoes for all final states

Reducing MPCP to PCP

$$f\left\{\boxed{\frac{1}{111}}, \boxed{\frac{10111}{10}}, \boxed{\frac{1}{0}}\right\} = \left\{\left[\frac{\$\#1\#0\#1\#1\#1}{\$\#1\#0\#}\right], \boxed{\frac{\#1}{1\#1\#1\#}}, \boxed{\frac{\#1\#0\#1\#1\#1}{1\#0\#}}, \boxed{\frac{\#1\#0}{0\#}}, \boxed{\frac{\#\$\$}{\$}}\right\}$$

Both instances are solvable:

$\frac{10111}{10}$	1 111	1 111	$\frac{10}{0}$		\$#1#0#1#1#1 \$#1#0#	#1 1#1#1#	#1 1#1#1#	#1#0 0#	#\$ \$
--------------------	----------	----------	----------------	--	-------------------------	--------------	--------------	------------	-----------

- interleave the domino components with # symbols starting to the left of the first symbol in the top string and to the right in the bottom string
- delete empty dominoes since the interleaving has no effect
- provide an additional copy of the first MPCP domino starting at the top and the bottom with \$#
- provide an extra domino adding the missing # at the top row