
Undecidability of Peano Arithmetic

Marc Hermes

2. July 2020

computer science

saarland
university

Marc Hermes Undecidability of PA 2. July 2020 1

http://www.cs.uni-saarland.de/

Main Statement (Informally)

Considering logical entailment for the first-order theory of Peano
Arithmetic (PA), we can show

There is no algorithm which can tell us for every
formula ϕ if it holds in every model of PA.

The proof of this is fully mechanised Coq. [Smith, 2013]

Marc Hermes Undecidability of PA 2. July 2020 2

Main Statement (Informally)

Considering logical entailment for the first-order theory of Peano
Arithmetic (PA), we can show

There is no algorithm which can tell us for every
formula ϕ if it holds in every model of PA.

The proof of this is fully mechanised Coq. [Smith, 2013]

Marc Hermes Undecidability of PA 2. July 2020 2

Main Statement (Informally)

Considering logical entailment for the first-order theory of Peano
Arithmetic (PA), we can show

There is no algorithm which can tell us for every
formula ϕ if it holds in every model of PA.

The proof of this is fully mechanised Coq. [Smith, 2013]

Marc Hermes Undecidability of PA 2. July 2020 2

Main Statement (Informally)

Considering logical entailment for the first-order theory of Peano
Arithmetic (PA), we can show

There is no algorithm which can tell us for every
formula ϕ if it holds in every model of PA.

The proof of this is fully mechanised Coq. [Smith, 2013]

Marc Hermes Undecidability of PA 2. July 2020 2

The Coq Proof Assistant

Coq is an interactive proof assistant [The Coq Proof Assistant, 2020]

Based on the calculus of constructions by Thierry Coquand

Work started in 1984 by Coquand and Gérard Huet

Is still actively developed and supported

Noteworthy proofs that have been mechanised in Coq:

Four Colour Theorem [Gonthier, 2008]

Feit-Thompson Theorem [Gonthier et al., 2013]

CompCert Compiler [Leroy et al., 2012]

and most relevant for this talk:

Hilbert’s 10th Problem [Larchey-Wendling and Forster, 2019]

Marc Hermes Undecidability of PA 2. July 2020 3

The Coq Proof Assistant

Coq is an interactive proof assistant [The Coq Proof Assistant, 2020]

Based on the calculus of constructions by Thierry Coquand

Work started in 1984 by Coquand and Gérard Huet

Is still actively developed and supported

Noteworthy proofs that have been mechanised in Coq:

Four Colour Theorem [Gonthier, 2008]

Feit-Thompson Theorem [Gonthier et al., 2013]

CompCert Compiler [Leroy et al., 2012]

and most relevant for this talk:

Hilbert’s 10th Problem [Larchey-Wendling and Forster, 2019]

Marc Hermes Undecidability of PA 2. July 2020 3

The Coq Proof Assistant

Coq is an interactive proof assistant [The Coq Proof Assistant, 2020]

Based on the calculus of constructions by Thierry Coquand

Work started in 1984 by Coquand and Gérard Huet

Is still actively developed and supported

Noteworthy proofs that have been mechanised in Coq:

Four Colour Theorem [Gonthier, 2008]

Feit-Thompson Theorem [Gonthier et al., 2013]

CompCert Compiler [Leroy et al., 2012]

and most relevant for this talk:

Hilbert’s 10th Problem [Larchey-Wendling and Forster, 2019]

Marc Hermes Undecidability of PA 2. July 2020 3

The Coq Proof Assistant

Coq is an interactive proof assistant [The Coq Proof Assistant, 2020]

Based on the calculus of constructions by Thierry Coquand

Work started in 1984 by Coquand and Gérard Huet

Is still actively developed and supported

Noteworthy proofs that have been mechanised in Coq:

Four Colour Theorem [Gonthier, 2008]

Feit-Thompson Theorem [Gonthier et al., 2013]

CompCert Compiler [Leroy et al., 2012]

and most relevant for this talk:

Hilbert’s 10th Problem [Larchey-Wendling and Forster, 2019]

Marc Hermes Undecidability of PA 2. July 2020 3

The Coq Proof Assistant

Coq is an interactive proof assistant [The Coq Proof Assistant, 2020]

Based on the calculus of constructions by Thierry Coquand

Work started in 1984 by Coquand and Gérard Huet

Is still actively developed and supported

Noteworthy proofs that have been mechanised in Coq:

Four Colour Theorem [Gonthier, 2008]

Feit-Thompson Theorem [Gonthier et al., 2013]

CompCert Compiler [Leroy et al., 2012]

and most relevant for this talk:

Hilbert’s 10th Problem [Larchey-Wendling and Forster, 2019]

Marc Hermes Undecidability of PA 2. July 2020 3

The Coq Proof Assistant

Coq is an interactive proof assistant [The Coq Proof Assistant, 2020]

Based on the calculus of constructions by Thierry Coquand

Work started in 1984 by Coquand and Gérard Huet

Is still actively developed and supported

Noteworthy proofs that have been mechanised in Coq:

Four Colour Theorem [Gonthier, 2008]

Feit-Thompson Theorem [Gonthier et al., 2013]

CompCert Compiler [Leroy et al., 2012]

and most relevant for this talk:

Hilbert’s 10th Problem [Larchey-Wendling and Forster, 2019]

Marc Hermes Undecidability of PA 2. July 2020 3

The Coq Proof Assistant

Coq is an interactive proof assistant [The Coq Proof Assistant, 2020]

Based on the calculus of constructions by Thierry Coquand

Work started in 1984 by Coquand and Gérard Huet

Is still actively developed and supported

Noteworthy proofs that have been mechanised in Coq:

Four Colour Theorem [Gonthier, 2008]

Feit-Thompson Theorem [Gonthier et al., 2013]

CompCert Compiler [Leroy et al., 2012]

and most relevant for this talk:

Hilbert’s 10th Problem [Larchey-Wendling and Forster, 2019]

Marc Hermes Undecidability of PA 2. July 2020 3

Coq and Mathematics

Mathematics is in the most part implicitly framed in set theory. Coq is
based on a different kind of foundational theory. (dependent type theory)

There are a lot of intuitions mathematicians have, which are not justified
in set theory, but are when using a type theory.

2 = {∅, {∅}} = (∅, ∅) = (0, 0)

0 + 1 = 1

most likely sin(cos) /∈ π

In agreement with intuition, the above statements do not make sense in
type theory!

Marc Hermes Undecidability of PA 2. July 2020 4

Coq and Mathematics

Mathematics is in the most part implicitly framed in set theory. Coq is
based on a different kind of foundational theory. (dependent type theory)

There are a lot of intuitions mathematicians have, which are not justified
in set theory, but are when using a type theory.

2 = {∅, {∅}} = (∅, ∅) = (0, 0)

0 + 1 = 1

most likely sin(cos) /∈ π

In agreement with intuition, the above statements do not make sense in
type theory!

Marc Hermes Undecidability of PA 2. July 2020 4

Coq and Mathematics

Mathematics is in the most part implicitly framed in set theory. Coq is
based on a different kind of foundational theory. (dependent type theory)

There are a lot of intuitions mathematicians have, which are not justified
in set theory, but are when using a type theory.

2 = (0, 0)

∅+ 1 = {∅}
sin(cos) ∈ π

In agreement with intuition, the above statements do not make sense in
type theory!

Marc Hermes Undecidability of PA 2. July 2020 4

Coq and Mathematics

Mathematics is in the most part implicitly framed in set theory. Coq is
based on a different kind of foundational theory. (dependent type theory)

There are a lot of intuitions mathematicians have, which are not justified
in set theory, but are when using a type theory.

2 = {∅, {∅}} = (∅, ∅) = (0, 0)

0 + 1 = 1

most likely sin(cos) /∈ π

In agreement with intuition, the above statements do not make sense in
type theory!

Marc Hermes Undecidability of PA 2. July 2020 4

Coq and Mathematics

Mathematics is in the most part implicitly framed in set theory. Coq is
based on a different kind of foundational theory. (dependent type theory)

There are a lot of intuitions mathematicians have, which are not justified
in set theory, but are when using a type theory.

2 = (0, 0)

∅+ 1 = {∅}
sin(cos) ∈ π

In agreement with intuition, the above statements do not make sense in
type theory!

Marc Hermes Undecidability of PA 2. July 2020 4

Proofs in Coq

Let’s look at some proofs inside of Coq!

Marc Hermes Undecidability of PA 2. July 2020 5

Marc Hermes Undecidability of PA 2. July 2020 6

Marc Hermes Undecidability of PA 2. July 2020 6

Marc Hermes Undecidability of PA 2. July 2020 6

Marc Hermes Undecidability of PA 2. July 2020 6

Marc Hermes Undecidability of PA 2. July 2020 6

Marc Hermes Undecidability of PA 2. July 2020 6

Marc Hermes Undecidability of PA 2. July 2020 6

Marc Hermes Undecidability of PA 2. July 2020 6

Marc Hermes Undecidability of PA 2. July 2020 6

Marc Hermes Undecidability of PA 2. July 2020 6

Marc Hermes Undecidability of PA 2. July 2020 6

Marc Hermes Undecidability of PA 2. July 2020 6

Marc Hermes Undecidability of PA 2. July 2020 6

Marc Hermes Undecidability of PA 2. July 2020 6

Marc Hermes Undecidability of PA 2. July 2020 6

Marc Hermes Undecidability of PA 2. July 2020 6

Marc Hermes Undecidability of PA 2. July 2020 6

Marc Hermes Undecidability of PA 2. July 2020 6

Marc Hermes Undecidability of PA 2. July 2020 6

Marc Hermes Undecidability of PA 2. July 2020 6

Undecidability along Reductions

Undecidable Predicate (informally)

A predicate which has no algorithmic decision procedure.

Let α be some undecidable predicate on a type A and β a predicate on
B. If we have a computable function f : A→ B with

∀x : A. α(x) ↔ β(f (x))

then β is also undecidable.

Intuition

β decidable by algorithm and f computable → (β ◦ f ↔ α) decidable. E

Marc Hermes Undecidability of PA 2. July 2020 7

Undecidability along Reductions

Undecidable Predicate (informally)

A predicate which has no algorithmic decision procedure.

Let α be some undecidable predicate on a type A and β a predicate on
B. If we have a computable function f : A→ B with

∀x : A. α(x) ↔ β(f (x))

then β is also undecidable.

Intuition

β decidable by algorithm and f computable → (β ◦ f ↔ α) decidable. E

Marc Hermes Undecidability of PA 2. July 2020 7

Undecidability along Reductions

Undecidable Predicate (informally)

A predicate which has no algorithmic decision procedure.

Let α be some undecidable predicate on a type A and β a predicate on
B. If we have a computable function f : A→ B with

∀x : A. α(x) ↔ β(f (x))

then β is also undecidable.

Intuition

β decidable by algorithm and f computable → (β ◦ f ↔ α) decidable. E

Marc Hermes Undecidability of PA 2. July 2020 7

Reductions

Definition

Let α be some predicate on a type A and β a predicate on B. Then we
call f : A→ B a reduction from α to β iff

∀x : A. α(x) ↔ β(f (x))

and f is computable.

The above gives a synthetic notion for reductions, which is justified by
noting that from the outside we can recognise:

Coq’s internal logic is constructive

Every function definable in Coq is computable

Marc Hermes Undecidability of PA 2. July 2020 8

Reductions

Definition

Let α be some predicate on a type A and β a predicate on B. Then we
call f : A→ B a reduction from α to β iff

∀x : A. α(x) ↔ β(f (x))

and f is computable.

The above gives a synthetic notion for reductions, which is justified by
noting that from the outside we can recognise:

Coq’s internal logic is constructive

Every function definable in Coq is computable

Marc Hermes Undecidability of PA 2. July 2020 8

Reductions

Definition

Let α be some predicate on a type A and β a predicate on B. Then we
call f : A→ B a reduction from α to β iff

∀x : A. α(x) ↔ β(f (x))

and f is computable.

The above gives a synthetic notion for reductions, which is justified by
noting that from the outside we can recognise:

Coq’s internal logic is constructive

Every function definable in Coq is computable

Marc Hermes Undecidability of PA 2. July 2020 8

Reductions

Definition

Let α be some predicate on a type A and β a predicate on B. Then we
call f : A→ B a reduction from α to β iff

∀x : A. α(x) ↔ β(f (x))

and f is computable.

The above gives a synthetic notion for reductions, which is justified by
noting that from the outside we can recognise:

Coq’s internal logic is constructive

Every function definable in Coq is computable

Marc Hermes Undecidability of PA 2. July 2020 8

Reductions

Definition

Let α be some predicate on a type A and β a predicate on B. Then we
call f : A→ B a reduction from α to β iff

∀x : A. α(x) ↔ β(f (x))

and f is computable.

The above gives a synthetic notion for reductions, which is justified by
noting that from the outside we can recognise:

Coq’s internal logic is constructive

Every function definable in Coq is computable

Marc Hermes Undecidability of PA 2. July 2020 8

Reductions

Relevant for us: What are A,B, α, β and f in our case?

f : A→ B s.t. ∀x . α(x) ↔ β(f (x))

Marc Hermes Undecidability of PA 2. July 2020 9

Fragment FA of Peano Arithmetic

The first-order theory of PA has the following symbols:

Function Symbols : 0 S + · Predicate Symbols : ≡
Logical Symbols : ⊥ ∧ ∨ → Quantifiers : ∀ ∃

We don’t assume all axioms, but only the following fragment

Zero addition : ∀x . 0 + x ≡ x

Recursion for addition : ∀xy . (Sx) + y ≡ S(x + y)

Zero multiplication : ∀x . 0 · x ≡ 0

Recursion for multiplication : ∀xy . (Sx) · y ≡ y + x · y

f : A→ B s.t. ∀x . α(x) ↔ β(f (x))

Marc Hermes Undecidability of PA 2. July 2020 10

Fragment FA of Peano Arithmetic

The first-order theory of PA has the following symbols:

Function Symbols : 0 S + · Predicate Symbols : ≡
Logical Symbols : ⊥ ∧ ∨ → Quantifiers : ∀ ∃

We don’t assume all axioms, but only the following fragment

Zero addition : ∀x . 0 + x ≡ x

Recursion for addition : ∀xy . (Sx) + y ≡ S(x + y)

Zero multiplication : ∀x . 0 · x ≡ 0

Recursion for multiplication : ∀xy . (Sx) · y ≡ y + x · y

f : A→ B s.t. ∀x . α(x) ↔ β(f (x))

Marc Hermes Undecidability of PA 2. July 2020 10

Fragment FA of Peano Arithmetic

The first-order theory of PA has the following symbols:

Function Symbols : 0 S + · Predicate Symbols : ≡
Logical Symbols : ⊥ ∧ ∨ → Quantifiers : ∀ ∃

We don’t assume all axioms, but only the following fragment

Zero addition : ∀x . 0 + x ≡ x

Recursion for addition : ∀xy . (Sx) + y ≡ S(x + y)

Zero multiplication : ∀x . 0 · x ≡ 0

Recursion for multiplication : ∀xy . (Sx) · y ≡ y + x · y

f : A→ FA formulas s.t. ∀x . α(x) ↔ β(f (x))

Marc Hermes Undecidability of PA 2. July 2020 10

Diophantine constraints

We define expressions containing variables, we call

atomic equations

xi = 1 | xi + xj = xk | xi · xj = xk

And evaluations of these expressions for given σ : N→ N

[xi = 1]σ := σ(i) = 1

[xi + xj = xk]σ := σ(i) + σ(j) = σ(k)

[xi · xj = xk]σ := σ(i) · σ(j) = σ(k)

We call a list L = [e1, . . . , en] of atomic equations ej a H10 problem and
extend []σ to problems by [L]σ := [e1]σ ∧ . . . ∧ [en]σ.

Marc Hermes Undecidability of PA 2. July 2020 11

Diophantine constraints

We define expressions containing variables, we call

atomic equations

xi = 1 | xi + xj = xk | xi · xj = xk

And evaluations of these expressions for given σ : N→ N

[xi = 1]σ := σ(i) = 1

[xi + xj = xk]σ := σ(i) + σ(j) = σ(k)

[xi · xj = xk]σ := σ(i) · σ(j) = σ(k)

We call a list L = [e1, . . . , en] of atomic equations ej a H10 problem and
extend []σ to problems by [L]σ := [e1]σ ∧ . . . ∧ [en]σ.

Marc Hermes Undecidability of PA 2. July 2020 11

Diophantine constraints

We define expressions containing variables, we call

atomic equations

xi = 1 | xi + xj = xk | xi · xj = xk

And evaluations of these expressions for given σ : N→ N
[xi = 1]σ := σ(i) = 1

[xi + xj = xk]σ := σ(i) + σ(j) = σ(k)

[xi · xj = xk]σ := σ(i) · σ(j) = σ(k)

We call a list L = [e1, . . . , en] of atomic equations ej a H10 problem and
extend []σ to problems by [L]σ := [e1]σ ∧ . . . ∧ [en]σ.

Marc Hermes Undecidability of PA 2. July 2020 11

Diophantine constraints

We define expressions containing variables, we call

atomic equations

xi = 1 | xi + xj = xk | xi · xj = xk

And evaluations of these expressions for given σ : N→ N
[xi = 1]σ := σ(i) = 1

[xi + xj = xk]σ := σ(i) + σ(j) = σ(k)

[xi · xj = xk]σ := σ(i) · σ(j) = σ(k)

We call a list L = [e1, . . . , en] of atomic equations ej a H10 problem and
extend []σ to problems by [L]σ := [e1]σ ∧ . . . ∧ [en]σ.

Marc Hermes Undecidability of PA 2. July 2020 11

Satisfiabiliy of diophantine constraints

Given a H10 problem L, we can now ask the question:

Satisfiability

Can L be satisfied? ↔ Can we show ∃σ. [L]σ ?

This question is equivalent to asking if some diophantine equation has a
solution. The latter is known to be undecidable [Matijasevič, 1970]
[Larchey-Wendling and Forster, 2019].

f : A→ FA formulas s.t. ∀x . α(x) ↔ β(f (x))

Marc Hermes Undecidability of PA 2. July 2020 12

Satisfiabiliy of diophantine constraints

Given a H10 problem L, we can now ask the question:

Satisfiability

Can L be satisfied? ↔ Can we show ∃σ. [L]σ ?

This question is equivalent to asking if some diophantine equation has a
solution. The latter is known to be undecidable [Matijasevič, 1970]
[Larchey-Wendling and Forster, 2019].

f : A→ FA formulas s.t. ∀x . α(x) ↔ β(f (x))

Marc Hermes Undecidability of PA 2. July 2020 12

Satisfiabiliy of diophantine constraints

Given a H10 problem L, we can now ask the question:

Satisfiability

Can L be satisfied? ↔ Can we show ∃σ. [L]σ ?

This question is equivalent to asking if some diophantine equation has a
solution. The latter is known to be undecidable [Matijasevič, 1970]
[Larchey-Wendling and Forster, 2019].

f : A→ FA formulas s.t. ∀x . α(x) ↔ β(f (x))

Marc Hermes Undecidability of PA 2. July 2020 12

Satisfiabiliy of diophantine constraints

Given a H10 problem L, we can now ask the question:

Satisfiability

Can L be satisfied? ↔ Can we show ∃σ. [L]σ ?

This question is equivalent to asking if some diophantine equation has a
solution. The latter is known to be undecidable [Matijasevič, 1970]
[Larchey-Wendling and Forster, 2019].

f : H10 problems→ FA formulas s.t. ∀L. sat(L) ↔ β(f (L))

Marc Hermes Undecidability of PA 2. July 2020 12

Embedding H10 problems into FA

Let’s look at the following example of an H10 problem

L = [x + x = y , y · y = x]

We want to send this to a formula in FA which intuitively expresses the
satisfiability of L.

The choice is canonical:

∃x ∃y x + x ≡ y ∧ y · y ≡ x

f : H10 problems→ FA formulas s.t. ∀L. sat(L) ↔ β(f (L))

Marc Hermes Undecidability of PA 2. July 2020 13

Embedding H10 problems into FA

Let’s look at the following example of an H10 problem

L = [x + x = y , y · y = x]

We want to send this to a formula in FA which intuitively expresses the
satisfiability of L.

The choice is canonical:

∃x ∃y x + x ≡ y ∧ y · y ≡ x

f : H10 problems→ FA formulas s.t. ∀L. sat(L) ↔ β(f (L))

Marc Hermes Undecidability of PA 2. July 2020 13

Embedding H10 problems into FA

Let’s look at the following example of an H10 problem

L = [x + x = y , y · y = x]

We want to send this to a formula in FA which intuitively expresses the
satisfiability of L.

The choice is canonical:

∃x ∃y x + x ≡ y ∧ y · y ≡ x

f : H10 problems→ FA formulas s.t. ∀L. sat(L) ↔ β(f (L))

Marc Hermes Undecidability of PA 2. July 2020 13

Embedding H10 problems into FA

Let’s look at the following example of an H10 problem

L = [x + x = y , y · y = x]

We want to send this to a formula in FA which intuitively expresses the
satisfiability of L.

The choice is canonical:

∃x ∃y x + x ≡ y ∧ y · y ≡ x︸ ︷︷ ︸
ε∗(L)

f : H10 problems→ FA formulas s.t. ∀L. sat(L) ↔ β(f (L))

Marc Hermes Undecidability of PA 2. July 2020 13

Embedding H10 problems into FA

Let’s look at the following example of an H10 problem

L = [x + x = y , y · y = x]

We want to send this to a formula in FA which intuitively expresses the
satisfiability of L.

The choice is canonical:

∃x ∃y x + x ≡ y ∧ y · y ≡ x︸ ︷︷ ︸
ε∗(L)︸ ︷︷ ︸

ε(L)

f : H10 problems→ FA formulas s.t. ∀L. sat(L) ↔ β(f (L))

Marc Hermes Undecidability of PA 2. July 2020 13

Embedding H10 problems into FA

Let’s look at the following example of an H10 problem

L = [x + x = y , y · y = x]

We want to send this to a formula in FA which intuitively expresses the
satisfiability of L.

The choice is canonical:

∃x ∃y x + x ≡ y ∧ y · y ≡ x︸ ︷︷ ︸
ε∗(L)︸ ︷︷ ︸

ε(L)

ε : H10 problems→ FA formulas s.t. ∀L. sat(L) ↔ β(ε(L))

Marc Hermes Undecidability of PA 2. July 2020 13

Tarski Semantics

We can interpret sentences from our first-order language of arithmetic in
the standard model (N, 0, S ,+, ·).

Given an environment ρ : N→ N we can evaluate terms. We can then use
this to define truth of formulas ϕ in N, for which we write N � ϕ.

Examples

N � (x1 + x2 ≡ x3) = ∀ρ. ρ(1) + ρ(2) = ρ(3)

N � (∀x . 0 + x ≡ x) = ∀n : N. 0 + n = n

Marc Hermes Undecidability of PA 2. July 2020 14

Tarski Semantics

We can interpret sentences from our first-order language of arithmetic in
the standard model (N, 0, S ,+, ·).

Given an environment ρ : N→ N we can evaluate terms. We can then use
this to define truth of formulas ϕ in N, for which we write N � ϕ.

Examples

N � (x1 + x2 ≡ x3) = ∀ρ. ρ(1) + ρ(2) = ρ(3)

N � (∀x . 0 + x ≡ x) = ∀n : N. 0 + n = n

Marc Hermes Undecidability of PA 2. July 2020 14

Tarski Semantics

We can interpret sentences from our first-order language of arithmetic in
the standard model (N, 0, S ,+, ·).

Given an environment ρ : N→ N we can evaluate terms. We can then use
this to define truth of formulas ϕ in N, for which we write N � ϕ.

Examples

N � (x1 + x2 ≡ x3) = ∀ρ. ρ(1) + ρ(2) = ρ(3)

N � (∀x . 0 + x ≡ x) = ∀n : N. 0 + n = n

Marc Hermes Undecidability of PA 2. July 2020 14

Tarski Semantics
If we replace N with some other domain D providing

O : D

S : D → D

⊕ : D × D → D

⊗ : D × D → D

we get the more general notion of a model (D,O, S,⊕,⊗) for arithmetic.

Example

D � (∀x . 0 + x ≡ 0) = ∀d : D. O⊕ d = d

We call ϕ valid in FA and write FA � ϕ iff

∀D model of FA ∀ρ. D �ρ ϕ

ε : H10 problems→ FA formulas s.t. ∀L. sat(L) ↔ β(ε(L))

Marc Hermes Undecidability of PA 2. July 2020 15

Tarski Semantics
If we replace N with some other domain D providing

O : D

S : D → D

⊕ : D × D → D

⊗ : D × D → D

we get the more general notion of a model (D,O, S,⊕,⊗) for arithmetic.

Example

D � (∀x . 0 + x ≡ 0) = ∀d : D. O⊕ d = d

We call ϕ valid in FA and write FA � ϕ iff

∀D model of FA ∀ρ. D �ρ ϕ

ε : H10 problems→ FA formulas s.t. ∀L. sat(L) ↔ β(ε(L))

Marc Hermes Undecidability of PA 2. July 2020 15

Tarski Semantics
If we replace N with some other domain D providing

O : D

S : D → D

⊕ : D × D → D

⊗ : D × D → D

we get the more general notion of a model (D,O, S,⊕,⊗) for arithmetic.

Example

D � (∀x . 0 + x ≡ 0) = ∀d : D. O⊕ d = d

We call ϕ valid in FA and write FA � ϕ iff

∀D model of FA ∀ρ. D �ρ ϕ

ε : H10 problems→ FA formulas s.t. ∀L. sat(L) ↔ β(ε(L))

Marc Hermes Undecidability of PA 2. July 2020 15

Tarski Semantics
If we replace N with some other domain D providing

O : D

S : D → D

⊕ : D × D → D

⊗ : D × D → D

we get the more general notion of a model (D,O, S,⊕,⊗) for arithmetic.

Example

D � (∀x . 0 + x ≡ 0) = ∀d : D. O⊕ d = d

We call ϕ valid in FA and write FA � ϕ iff

∀D model of FA ∀ρ. D �ρ ϕ

ε : H10 problems→ FA formulas s.t. ∀L. sat(L) ↔ FA � ε(L)

Marc Hermes Undecidability of PA 2. July 2020 15

Canonical Model Homomorphism

If we have some FA model D, we can recursively define a function
ν : N→ D by

Definition

ν(0) := O , ν(x + 1) := ν(x)⊕ S O

Giving us an embedding of N into any FA model.

By induction over x : N we can show that ν is a homomorphism:

Homorphism Lemma

ν(x + y) = ν(x)⊕ ν(y) ν(x · y) = ν(x)⊗ ν(y)

For the proof of these equations we need the axioms we assumed for FA.

Marc Hermes Undecidability of PA 2. July 2020 16

Canonical Model Homomorphism

If we have some FA model D, we can recursively define a function
ν : N→ D by

Definition

ν(0) := O , ν(x + 1) := ν(x)⊕ S O

Giving us an embedding of N into any FA model.

By induction over x : N we can show that ν is a homomorphism:

Homorphism Lemma

ν(x + y) = ν(x)⊕ ν(y) ν(x · y) = ν(x)⊗ ν(y)

For the proof of these equations we need the axioms we assumed for FA.

Marc Hermes Undecidability of PA 2. July 2020 16

Canonical Model Homomorphism

If we have some FA model D, we can recursively define a function
ν : N→ D by

Definition

ν(0) := O , ν(x + 1) := ν(x)⊕ S O

Giving us an embedding of N into any FA model.

By induction over x : N we can show that ν is a homomorphism:

Homorphism Lemma

ν(x + y) = ν(x)⊕ ν(y) ν(x · y) = ν(x)⊗ ν(y)

For the proof of these equations we need the axioms we assumed for FA.

Marc Hermes Undecidability of PA 2. July 2020 16

Verification of Reduction

To verify the reduction, we now need to show

Theorem

∀L. sat(L) ↔ FA � ε(L)

Proof.

← We use that N � ∃Nε∗(L). Providing us N elements in N that give us a
solution for L.

→ By sat(L) we have a solution σ for L, which we can transport to any
model D via the homomorphism ν. �

Marc Hermes Undecidability of PA 2. July 2020 17

Verification of Reduction

To verify the reduction, we now need to show

Theorem

∀L. sat(L) ↔ FA � ε(L)

Proof.

← We use that N � ∃Nε∗(L). Providing us N elements in N that give us a
solution for L.

→ By sat(L) we have a solution σ for L, which we can transport to any
model D via the homomorphism ν. �

Marc Hermes Undecidability of PA 2. July 2020 17

Verification of Reduction

To verify the reduction, we now need to show

Theorem

∀L. sat(L) ↔ FA � ε(L)

Proof.

← We use that N � ∃Nε∗(L). Providing us N elements in N that give us a
solution for L.

→ By sat(L) we have a solution σ for L, which we can transport to any
model D via the homomorphism ν. �

Marc Hermes Undecidability of PA 2. July 2020 17

Verification of Reduction

To verify the reduction, we now need to show

Theorem

∀L. sat(L) ↔ FA � ε(L)

Proof.

← We use that N � ∃Nε∗(L). Providing us N elements in N that give us a
solution for L.

→ By sat(L) we have a solution σ for L, which we can transport to any
model D via the homomorphism ν.

�

Marc Hermes Undecidability of PA 2. July 2020 17

Verification of Reduction

To verify the reduction, we now need to show

Theorem

∀L. sat(L) ↔ FA � ε(L)

Proof.

← We use that N � ∃Nε∗(L). Providing us N elements in N that give us a
solution for L.

→ By sat(L) we have a solution σ for L, which we can transport to any
model D via the homomorphism ν. �

Marc Hermes Undecidability of PA 2. July 2020 17

Closing Remarks

Since the proof works for the fragment FA, it also works for PA. This was
very easy to check with Coq.

Advantages of working with Coq

Definitions can easily be modified; broken proofs will be pointed out

Admitting proof goals

Looking up definitions is a matter of seconds

Standard library with many theorems

Book-keeping

Automation

Marc Hermes Undecidability of PA 2. July 2020 18

Closing Remarks

Since the proof works for the fragment FA, it also works for PA. This was
very easy to check with Coq.

Advantages of working with Coq

Definitions can easily be modified; broken proofs will be pointed out

Admitting proof goals

Looking up definitions is a matter of seconds

Standard library with many theorems

Book-keeping

Automation

Marc Hermes Undecidability of PA 2. July 2020 18

Closing Remarks

Since the proof works for the fragment FA, it also works for PA. This was
very easy to check with Coq.

Advantages of working with Coq

Definitions can easily be modified; broken proofs will be pointed out

Admitting proof goals

Looking up definitions is a matter of seconds

Standard library with many theorems

Book-keeping

Automation

Marc Hermes Undecidability of PA 2. July 2020 18

Closing Remarks

Since the proof works for the fragment FA, it also works for PA. This was
very easy to check with Coq.

Advantages of working with Coq

Definitions can easily be modified; broken proofs will be pointed out

Admitting proof goals

Looking up definitions is a matter of seconds

Standard library with many theorems

Book-keeping

Automation

Marc Hermes Undecidability of PA 2. July 2020 18

Closing Remarks

Since the proof works for the fragment FA, it also works for PA. This was
very easy to check with Coq.

Advantages of working with Coq

Definitions can easily be modified; broken proofs will be pointed out

Admitting proof goals

Looking up definitions is a matter of seconds

Standard library with many theorems

Book-keeping

Automation

Marc Hermes Undecidability of PA 2. July 2020 18

Closing Remarks

Since the proof works for the fragment FA, it also works for PA. This was
very easy to check with Coq.

Advantages of working with Coq

Definitions can easily be modified; broken proofs will be pointed out

Admitting proof goals

Looking up definitions is a matter of seconds

Standard library with many theorems

Book-keeping

Automation

Marc Hermes Undecidability of PA 2. July 2020 18

Closing Remarks

Since the proof works for the fragment FA, it also works for PA. This was
very easy to check with Coq.

Advantages of working with Coq

Definitions can easily be modified; broken proofs will be pointed out

Admitting proof goals

Looking up definitions is a matter of seconds

Standard library with many theorems

Book-keeping

Automation

Marc Hermes Undecidability of PA 2. July 2020 18

Closing Remarks

Since the proof works for the fragment FA, it also works for PA. This was
very easy to check with Coq.

Disadvantages

Seemingly trivial things can become hard

Nothing else came to my mind

Marc Hermes Undecidability of PA 2. July 2020 18

Closing Remarks

Since the proof works for the fragment FA, it also works for PA. This was
very easy to check with Coq.

Disadvantages

Seemingly trivial things can become hard

Marc Hermes Undecidability of PA 2. July 2020 18

Closing Remarks

Since the proof works for the fragment FA, it also works for PA. This was
very easy to check with Coq.

Disadvantages

Seemingly trivial things can become hard

Nothing else came to my mind

Marc Hermes Undecidability of PA 2. July 2020 18

Closing Remarks

Since the proof works for the fragment FA, it also works for PA. This was
very easy to check with Coq.

Disadvantages

Seemingly trivial things can become hard

Nothing else came to my mind

Marc Hermes Undecidability of PA 2. July 2020 18

Closing Remarks

Since the proof works for the fragment FA, it also works for PA. This was
very easy to check with Coq.

Disadvantages

Seemingly trivial things can become hard

Nothing else came to my mind

Marc Hermes Undecidability of PA 2. July 2020 18

Closing Remarks

Since the proof works for the fragment FA, it also works for PA. This was
very easy to check with Coq.

Disadvantages

Seemingly trivial things can become hard

Nothing else came to my mind

Marc Hermes Undecidability of PA 2. July 2020 18

Closing Remarks

Since the proof works for the fragment FA, it also works for PA. This was
very easy to check with Coq.

Disadvantages

Seemingly trivial things can become hard

Nothing else came to my mind

Marc Hermes Undecidability of PA 2. July 2020 18

More Work...

I did

Some results on finite PA models.

Failed Attempt of an undecidability proof.

In progress right now

replacing FA � by FA `

Possible next goals

Tennenbaum’s Theorem

Self-verifying Theories

Getting PA ` ϕ from N � ϕ

Thank you for your attention!

Marc Hermes Undecidability of PA 2. July 2020 19

More Work...

I did

Some results on finite PA models.

Failed Attempt of an undecidability proof.

In progress right now

replacing FA � by FA `

Possible next goals

Tennenbaum’s Theorem

Self-verifying Theories

Getting PA ` ϕ from N � ϕ

Thank you for your attention!

Marc Hermes Undecidability of PA 2. July 2020 19

More Work...

I did

Some results on finite PA models.

Failed Attempt of an undecidability proof.

In progress right now

replacing FA � by FA `

Possible next goals

Tennenbaum’s Theorem

Self-verifying Theories

Getting PA ` ϕ from N � ϕ

Thank you for your attention!

Marc Hermes Undecidability of PA 2. July 2020 19

More Work...

I did

Some results on finite PA models.

Failed Attempt of an undecidability proof.

In progress right now

replacing FA � by FA `

Possible next goals

Tennenbaum’s Theorem

Self-verifying Theories

Getting PA ` ϕ from N � ϕ

Thank you for your attention!

Marc Hermes Undecidability of PA 2. July 2020 19

Bibliography
Gonthier, G. (2008).
Formal proof–the four-color theorem.
Notices of the AMS, 55(11):1382–1393.

Gonthier, G., Asperti, A., Avigad, J., Bertot, Y., Cohen, C., Garillot, F., Le Roux, S.,
Mahboubi, A., O’Connor, R., Biha, S. O., et al. (2013).
A machine-checked proof of the odd order theorem.
In International Conference on Interactive Theorem Proving, pages 163–179. Springer.

Larchey-Wendling, D. and Forster, Y. (2019).
Hilbert’s Tenth Problem in Coq.
In Geuvers, H., editor, 4th International Conference on Formal Structures for Computation
and Deduction (FSCD 2019), volume 131 of LIPIcs, pages 27:1–27:20.

Leroy, X. et al. (2012).
The compcert verified compiler.

Matijasevič, Y. V. (1970).
Enumerable sets are diophantine.
Soviet Math. Dokl., 11:354–358.

Smith, P. (2013).
An introduction to Gödel’s theorems.
Cambridge University Press.

The Coq Proof Assistant (2020).
http://coq.inria.fr.

Marc Hermes Undecidability of PA 2. July 2020 20

http://coq.inria.fr

	The Proof Assistant Coq
	Reduction

