
Memo : Tennenbaum’s Theorem in
Constructive Type Theory
1 Preliminaries
We start by giving Tennenbaum’s Theorem as e.g. formulated in [5]

Theorem 1.1 (Tennenbaum): If M ≡ 〈N, 0,⊕,⊗,=〉 is a PA model which is not
isomorphic to the standard model N then neither ⊕ nor ⊗ can be recursive.

The above formulation only considers models whose domain can be identified with
N and are thus countable. In general we can certainly restrict our attention to
countable models, since no uncountable model can be recursive.

In this memo we follow the proof of Tennenbaum’s Theorem as presented in [5]
but derive the result in a constructive type theory (CTT) providing types for the
natural numbers N, booleans B and propositions P. We start out be fixing some
definitions on the level of our meta-theory:

Definition 1.2:

• reflect (P : P)(b : B) := P ↔ b = true
• Dec (p : X → P) := ∃ f : X → B ∀x. reflect p(x) f(x)
• Enum (p : N→ P) := ∃ f : N→ N ∀x. p(x)↔ ∃n. f(n) = S(x)
• Stable (p : X → P) := ∀x,¬¬p(x)→ p(x)

Any type X is a data type iff there is an enumerator of X and X has decidable
equality.

There are three different theories of arithmetic we will be considering, namely PA,
HA and Q. As a reminder: Q is PA without the induction scheme but with the
added axiom ∀x. x = 0 ∨ ∃ y. Sy = x and HA has the same axioms as PA but
works with an intuitionistic deduction system.

Most importantly, throughout the whole text we will assume

Proposition 1.3 (Church’s Thesis (CT)): Every function f : N → N in our con-
structive meta-theory is µ-recursive.

and for the purpose of conciseness:

Proposition 1.4: There is an injective function π : N → N only producing prime
numbers.

Using CT we can extend a standard result for µ-recursive functions ([4] Thm.39.2.)
to all functions of our meta theory:
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Definition 1.5:

CTQ := ∀ f : N→ N ∃ϕf . Σ1 ϕf ∧ ∀n. Q ` ∀x, ϕf (n, x)↔ f(n) = x

giving us the ability to represent any meta-level function on the object-level.
We can already make use of this in the following proposition:

Proposition 1.6: There are inseparable r.e. formulas, meaning a pair of unary Σ1
formulas α, β in the language of PA such that ∀n. N � ¬(α ∧ β)(n) and for any
decidable predicate p : N→ P we can not have

∀n. N � α(n)→ p(n) and ∀n. ¬
(
p(n) ∧ N � β(n)

)
.

Proof: Let ψn enumerate all formulas in PA, then we define the disjoint predicates
A(n) := PA ` ¬ψn(n) and B(n) := PA ` ψn(n). One can show that A,B are
enumerable.

Given any enumerable predicate p with function f such that p(x)↔ ∃n.f(n) =
S(x), we get a Σ1 formula ϕf representing f by using CTQ. One can now check
that p(n)↔ N � ∃n.ϕf (n, S(x)). Using this Idea on A and B, we get candidate
Σ1 formulas α, β.

Given any decidable predicate p, we can similarly to above get a Σ1 formula
ϕp representing p in Q, and deduce p(n) ↔ N � ϕp(n). By the enumeration of
formulas, there is c : N such that ψc = ϕp. We are now left to show that

∀n. N � ψn(n)→ N � ψc(n) and ∀n. ¬
(
N � ¬ψc(n) ∧ N � ψn(n)

)
.

always leads to a contradiction. This will follow from a case analysis on p(c) ∨
¬p(c). �

2 HA models
We now gather some statements which are true in any HA model M .

We can define an embedding ν : N→M by ν(0) := 0, ν(n+ 1) := S(ν(n)) which
can easily be shown to be injective. Image points of ν will be called standard
numbers or simply numerals and we will use the notation n̂ := ν(n) for them.

Lemma 2.1: For any binary ∆0 formula ϕ we have

M � ∀x y. (∃ z < x. ϕ(z, y)) ∨ ¬(∃ z < x. ϕ(z, y)).

Proof: By induction on the ∆0 formula ϕ. �

Wo now come to one of the most important ideas we need on our way to Tennen-
baum’s Theorem. Informally; when given any finite set L of natural numbers, we
can code this set by a single number c in the following way

c := product of the prime numbers π(u) for all u ∈ L
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3 Tennenbaum in CTT

and the decoding is possible due to the prime factorization theorem. Given any
decidable predicate p and bound n : N we can now use this idea to code the finite
set {u < n | p(u)}. The following Lemma shows the existence of the desired code
number in N, together with its defining properties.

Lemma 2.2: If the predicate p : N→ P is propositionally decidable, then for every
bound n : N there is a code c : N such that

∀u.
(
u < n→ p(u)↔ π(u) | c

)
∧
(
π(u) | c→ u < n

)
.

Proof: We do a proof by induction on n. For n = 0 we can choose c = 1. For
the successor case: if ¬p(n) we can simply take the code c given by the induction
hypothesis, otherwise if p(n) we multiply the given c with π(n). In both cases
the conditions are checked by making use of the prime property as well as the
injectivity of π. �

Using CTQ we get a formula ϕπ representing π, making it possible to show a slightly
weaker version of the above lemma, establishing coding of finite sets in M .

Lemma 2.3: For any binary ∆0 formula ϕ and n : N we have

M � ∀ b ∃ c ∀u < n̂. (∃ z < b. ϕ(z, u)) ↔ ∃ p. ϕπ(u, p) ∧ p | c.

Proof: By Lemma 2.1, the predicate λn. M � ∃ z < b. ϕ(z, n̂) is propositionally
decidable. One then checks that ĉ with the c : N given by Lemma 2.2 proves the
existence claim. Of great importance is the fact that u < n̂. It tells us that u is a
numeral, reducing the goal to checking the equivalence for numerals u only, which
is guaranteed by Lemma 2.2. �

Remark 2.4: If u can be shown to be a numeral, we can use the defining property of
ϕπ given by CTQ to show that π̂(u) | c ↔ M � ∃ p. ϕπ(u, p)∧p | c. In the following
we will therefore slightly abuse notation and write π(u) | c for ∃ p. ϕπ(u, p) ∧ p | c.

3 Tennenbaum in CTT
Again let M � HA , then we have a predicate expressing that an element is a
standard number std(e) := ∃n. n̂ = e and we will call M a standard model iff
∀ e.std(e) (i.e. iff ν is surjective).

Lemma 3.1: M is a standard model iff there is a unary formula ϕ with

∀ e.
(

std(e) ↔ M � ϕ(e)
)
.

Proof: If M is a standard model, then the formula x = x shows the claim.
Given a formula ϕ with the desired property, we certainly have ϕ(0̂) since 0̂ is

a numeral, and ϕ(x)↔ std(x) clearly implies std(Sx) and hence ϕ(Sx). Thus by
induction in the model, we have ∀x.M � ϕ(x) which is equivalent to ∀x.std(x).�
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Corollary 3.2 (Overspill): Assume that M in not standard and Stable std. If ϕ is
any unary formula withM � ϕ(n̂) for all n : N then ¬¬∃ e : M.¬std(e) ∧M � ϕ(e).

Proof: Assume that ¬∃ e : M.¬std(e) ∧ M � ϕ(e). By the stability of std this
implies ∀ e : M.M � ϕ(e)→ std(e). Since M is not standard, the assumption that
ϕ holds on all numerals together with Lemma 3.1 gives us ¬∀ e.M � ϕ(e)→ std(e)
and thus a contradiction. �

Using Overspill we will now be able to remove the restriction of only being able to
code finite sets in M .

Lemma 3.3: If M is not standard and Stable std, then for any binary ∆0 formula
ϕ we have

¬¬∀ (b : M) ∃ (c : M) ∀ (n : N). (∃x < b. ϕ(x, n̂)) ↔ π(n) | c.

Proof: Recall that by Lemma 2.3 we have for all n : N

M � ∀ b ∃ c ∀u < n̂. (∃ z < b. ϕ(z, u)) ↔ π(u) | c

And thus by applying Overspill we get

¬¬∃ e. std(e) ∧ M � ∀ b ∃ c ∀u < e. (∃ z < b. ϕ(z, u)) ↔ π(u) | c.

Since we are trying to show a double-negated goal, we can now get rid of the double
negations in the goal and the assumption. So we have e : M non-standard such
that for every b : M there is c : M with

M � ∀u < e. (∃ z < b. ϕ(z, u)) ↔ π(u) | c.

In particular, if u is equal to any numeral n̂ we have n̂ < e and thus

M � (∃ z < b. ϕ(z, n̂)) ↔ π̂(n) | c. �

Lemma 3.4: If M is a data type, then for all 0 < n and e : M we can compute a
boolean value b : B such that reflect (n̂ | e) b.

Proof: By Euclid’s lemma we have unique r : N, d : M with

e = d · n̂+ r̂ ∧ r < n

If r = 0, we have e = d · n̂ and thus clearly reflect (n̂ | e) true.
Now consider r 6= 0. If we had n̂ | e then e = d′ · n̂ + 0 for some d′ : M ,

and by the uniqueness part of Euclid r = 0, giving us a contradiction and hence
reflect (n̂ | e) false �
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3 Tennenbaum in CTT

Remark 3.5: Since the above proof hides the reason we need M to be a data type,
let us mention it here.
The Euclidean lemma only gives the propositional existence of r : N and d : M .

We are then not allowed to access them for the proof since the goal is asking for a
boolean decision. If M has decidable equality, the expression e = d · n̂+ r̂ ∧ r < n
is decidable and if M can be enumerated, there will be some k : N which will hit d
during the enumeration. The problem then comes down to searching for r, k : N
which satisfy the mentioned decidable predicate. Since Euclid guarantees us that
the search will end, it shows that we can get r, k computationally.

Lemma 3.6: If M is not standard then ¬¬∃ c. ¬Dec(λn. π̂(n) | c).

Proof: Let α′, β′ be inseparable Σ1 formulas, which are equivalent to formulas
∃ z.α(z, x), ∃ z.β(z, x) where α, β are binary ∆0 formulas. Since α′, β′ are disjoint
we can show

N � ∀x, y, z < n̂¬(α(y, x) ∧ β(z, x) )

for every n : N. By soundness and the decidability of ∆0 formulas we then get

M � ∀x, y, z < n̂¬(α(y, x) ∧ β(z, x) ).

Using Overspill we (under a double negation) get e : M with

M � ∀x, y, z < e¬(α(y, x) ∧ β(z, x) )

which guarantees disjointness of α, β when everything is bounded by e.
We now define the predicate X := λn.M � ∃ z < e. α(z, n̂) and note that

• If N � ∃ z.α(z, n) there is m : N with N � α(m,n). By ∆0 completeness and
soundness this gives us M � α(m̂, n̂) which finally implies X(n).

• Assume that X(n) ∧N � ∃ z.β(z, n̂). Then similarly to above, there is m : N
with M � β(m̂, n̂), showing M � ∃ z < e.β(z, n̂). Together with X(n) this
contradicts the disjointness of α, β under the bound e.

This shows that X can not be decidable due to the inseparability of α′ and β′. By
Lemma 3.3 however, there is a code c : M such that X(n) ↔ π(n) | c which by
Lemma 3.4 means that X is decidable. Hence we have a contradiction. �

Theorem 3.7 (Tennenbaum): Assuming CTQ then for any data type M � HA if
Stable std then ∀ e.std(e), telling us that ν : N→M is an isomorphism.

Proof: By the stability of std our goal is equivalent to ¬¬∀ e.std(e), so for the
sake of contradiction, assume that M is not standard. Then by Lemma 3.6
(we can remove the ¬¬ since we are trying to show ⊥) there is an e : M with
¬Dec(λn. π̂(n) | e), contradicting however the result of Lemma 3.3. �
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4 Proof by McCarty
We will now present another constructive proof that is due to Charles McCarty [2]
[3]. For the proof to work one can either assume unique choice in the form

Definition 4.1: UC := ∀R. ∀x. ∃ !y.R(x, y) → ∃ (f : N→ B). ∀x.R(x, f(x))

or situate the models in a constructive setting (e.g. in intuitionistic ZF), assuring
that the interpretation of the disjunction ∨ is a computational decision. We also
requite a stronger notion of inseparability, namely:

Definition 4.2: Inseparable r.e. formulas α, β are called object inseparable iff
HA ` ¬∃x.α(x) ∧ β(x).

Theorem 4.3: Given UC and object inseparable formulas, then for any M � HA we
have ∀ e. ¬¬std(e). By further assuming Markov’s Principle we get ∀ e. std(e).

Proof: Assume that M has a non-standard element e : M and let α, β the insepa-
rable Σ1 formulas. For any unary formula ϕ it is possible to show

HA ` ∀x¬¬∀ y < x. ϕ(y) ∨ ¬ϕ(y).

Using soundness and instantiating the above for α and e, we get

M � ¬¬∀ y < e. α(y) ∨ ¬α(y).

We are trying to prove a contradiction, so we can get rid of the ¬¬ and since any
numeral n̂ is smaller then the non-standard number e we get M � α(n̂) ∨ ¬M �
α(n̂) which can then be used to show

∀n ∃ !b. reflect (λn.M � α(n̂)) b

Thus by UC there is a decider for λn.M � α(n̂) and we have

• N � α(n)→ HA ` α(n)→M � α(n̂) by Σ1 completeness and soundness.
• AssumingM � α(n̂)∧N � β(n) we getM � β(n̂) similarly to above. Together

with M � α(n̂) this contradicts HA ` ¬∃x.α(x) ∧ β(x).

This shows that X would be separating α and β, giving us the desired contradic-
tion. �

5 Discussion
We will now analyse the assumptions that go into the proof of Theorem 3.7.

(1) It should be possible to explicitly construct a formula ϕπ representing π in
Q, which would remove one usage of CTQ in the proof.
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5 Discussion

(2) We note that the need for stability of std in Section 3 comes from the usage
of Lemma 3.6 where the dependence goes back to Overspill. It turns out that
redoing the proof using object inseparable formulas, one can completely avoid the
usage of Overspill. This was sketched in [1] and is also at play in the proof by
McCarty. It should again be possible to explicitly construct object inseparable
formulas, eliminating the last dependance on CTQ, which would enable us to drop
CT as an assumption.

(3) The assumption that M needs to be a data type can be weakened. Since we
have HA ` ∀x y. x = y ∨ x 6= y it suffices to have decidable apartness. It is also
possible to do a different proof of Lemma 3.4 assuming a witness operator for M ,
instead of an enumerator.
Overall these observations would get us

Proposition 5.1: If M has an enumerator or witness operator and decidable apart-
ness, we have ∀ e.¬¬std(e). Further assuming Markov’s Principle then shows
∀ e.std(e).

We will now turn to comparing the results Theorem 3.7 and Theorem 4.3. The
main difference, looked at from the standpoint of CTT, lies in the definition of
�. In the Coq development mechanizing the proof as presented in Section 3,
the predicate � is placed into the impredicative type of propositions P. For an
alternative treatment of McCarty’s one can put � into T, turning the interpretation
of ∨ into an informative sum type, making it possible to drop the assumption UC.
Under these circumstances we get decidable equality of the type as a theorem from
HA ` ∀x y. x = y ∨ x 6= y and soundness. It does not seem possible to internally
express the enumerability of M in HA, showing that Theorem 4.3 is less restrictive
when it comes to the type M of the model.

The current Coq development treats both addition and multiplication as function
symbols in the logic, meaning the interpretation of both symbols in the model
correspond are recursive functions. To really put the development in line with the
original statement of Tennenbaum’s theorem, this needs to be changed in a future
version; capturing one of the functions via a relation in the signature, and therefore
no longer enforcing it to be recursive. It is also important to note that the current
development directly interprets the object equality as model equality, which should
and possibly can be weakened.
Both Section 3 and Theorem 4.3 only need the stability of std to establish

∀ e.std(e), leading to the interesting question wether something close to

Markov’s Principle ←→ ∀M. Stable sdtM

can be shown in any sensible way.
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