
Memo : Undecidability of Validity for
Peano Arithmetic

1 Peano Arithmetic

We treat Peano Arithmetic (PA) in first-order logic. Here is a very short recap of
the language of PA. It contains the following symbols:

function symbols : 0 S + ·

predicate symbols : ≡

logical symbols : ⊥ ∧ ∨ →

quantifiers : ∀ ∃

Next, we inductively define terms T and formulas F.

Definition 1.1: t is of type T iff

• t = vn for some number n ∈ N.

• t = ft1 . . . tn for t1, . . . , tn : T and a function symbol f of arity n.

Definition 1.2: φ is of type F iff

• φ = ⊥

• φ = t1 ≡ t2 for t1, t2 : T

• φ = Lφ1φ2 for φ1, φ2 : F and a logical symbol L.

• φ = Q. ϕ for ϕ : F and a quantifier Q.

Remark 1.3: The binding of variables vn by quantifiers is realised by using de
Bruijn indices [1]. As can be seen in the last rule for building a formula Q. ϕ, we
do not specify the variable that Q binds. Instead, a variable vn is bound by Q if
Q is the n-th quantifier shadowing vn. This approach to binding greatly simplifies
formalisation.

To ease reading, we will however also use the customary notation for binding
variables, by adding the variable name behind the quantifier. So in this text, it
will the usage of de Bruijn indices will not be noticeable.

In the following, we will use the usual brackets plus infix notations for 2-ary func-
tion and logical symbols. We will also use variable names x, y, z.
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1.1 Axioms

Here is a list of formulas we will take as axioms.

• Disjointness : ∀ x. 0 6≡ Sx

• Injectivity of S : ∀ xy. Sx ≡ Sy → x ≡ y

• Zero addition : ∀ x. 0 + x ≡ 0

• Recursion for addition : ∀ xy. (Sx) + y ≡ S(x + y)

• Zero multiplication : ∀ x. 0 · x ≡ 0

• Recursion for multiplication : ∀ x. (Sx) · y ≡ y + x · y

We will call the list containing these formulas αPA. Additionally, for any formula
φ(x) with free variable x we also add the induction axiom

φ(0) → ( ∀ x. φ(x) → φ(Sx)) → ∀ x. φ(x)

Remark 1.4: Note that, because of the induction axioms, there are infinitely many
axioms. For any formula however, it is possible to decide whether it is an axiom
or not. This also makes it possible to enumerate all axioms.

2 Tarski Semantics

[5] A (Tarski) model M for a first order language like PA is given by fixing a
domain D and an interpretation function I, which assigns to any k-ary function
symbol f a function f I : Dk → D and to any k-ary predicate symbol P a k-ary
predicate P I on D. For any assignment ρ : N → D we can then recursively define
a term evaluation ρ̂ : T → D by

ρ̂(vi) := ρ(i) and ρ̂(fv1 . . . vn) := f I ρ̂(v1) . . . ρ̂(vn).

Let a : D and ρ be an assignment, then by a; ρ we will designate the function that
starts with a and follows up by ρ:

a; ρ(0) := a , a; ρ(k + 1) := ρ(k)

With this, we extend term evaluations ρ̂ to formula evaluations M �ρ φ by

• M �ρ ⊥ := ⊥

• M �ρ Pt1 . . . tn := P I ρ̂(t1) . . . ρ̂(tn)

• M �ρ Lφ1 . . . φn := L̂(M �ρ φ1) . . . (M �ρ φn)

• M �ρ Q ϕ := Q̂ d : D. M �d;ρ ϕ
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3 Diophantine Equations

where we note that L̂, Q̂ are the interpretations of the logical symbols and quanti-
fiers in our meta-logic. If Γ is a list of formulas, we will write M �ρ Γ iff M �ρ φ

for every formula φ in Γ and M � Γ if we have M �ρ Γ for every ρ.
We then call a list of formulas Γ valid iff for every model M, we have M � Γ.

Remark 2.1: In the following, the only predicate symbol we have will be the equal-
ity symbol ≡ for PA. To ease discussion, we will further restrict our attention to
extensional models, i.e. models in which the interpretation ≡I of equality is syn-
tactic equality =. Any model we consider from now on will be assumed to be
extensional.

2.1 PA models

We want to work with models of PA, i.e. models in which the axioms of PA hold.

Definition 2.2: A model M is a PA model iff M � αPA and M � α for any
induction axiom α. We will also write M � PA for this.

In this context, we also adopt the following meaning for validity:

PA � φ := ∀ M. M � PA → M � φ

It expresses that some formula holds in every model in which the axioms of PA
hold. Our goal will be to show that it is (in some sense we will make more precise)
not possible to have a general way of deciding this for every formula.

3 Diophantine Equations

Informally, a h10c problem is a list of atomic equations. The latter contain vari-
ables x1, x2, x3, . . . and have one of the following three forms:

xi = 1 | xi + xj = xk | xi · xj = xk

Given a function σ : N → N we define evaluations of atomic equations by

• [xi = 1]σ := σ(i) = 1

• [xi + xj = xk]σ := σ(i) + σ(j) = σ(k)

• [xi · xj = xk]σ := σ(i) · σ(j) = σ(k)

If there exists a σ which makes the evaluation true, we say that the equation is
satisfiable.

Example 3.1: The following is an example of a h10c problem

[

x1 = 1 , x1 + x1 = x2 , x · x = x2

]
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By substituting the equations into each other this yields the equation x2 = 2,
which is a more familiar Diophantine equation. It is now also obvious that the
above problem cannot be satisfied, since there is no natural number x satisfying
x2 = 2.

Remark 3.2: We mention here (but will not show), that for every Diophantine
equation it is possible to write down an equivalent h10c problem [2]. We choose to
treat satisfiability of the latter, since the translation into an adequate PA sentence
is easier.

For problems L, we now define the predicate

sath10c(L) := ∃ σ : N → N, ∀ a ∈ L, [a]σ

and call L satisfiable if the above holds, i.e. when there is some σ satisfying all its
atomic equations simultaneously.

4 Undecidability

We say that some predicate P over a type X is decidable iff there is a function f

from X to the Boolean type B with fx = true ↔ Px and we call it undecidable
when the negation holds.

Remark 4.1: Inside of the proof assistant Coq, nothing internally tells us that any
function from some type to another type is in any sense computable. From the
outside however we can argue that every function we can define in Coq is indeed
a computable function.

This is why in our definition of decidable we simply ask for any function f on the
level of Coq. Looked at from the outside we can recognise f as being computable,
which is what we want for the concept of a decider.

It has been shown [3] [4] that Hilbert’s 10th problem is undecidable and, more
importantly in this context, sath10c is undecidable [2].

We now want to use this result to show that PA � is undecidable as well. To
do this, we will establish a many-one reduction. This means we translate h10c

problems to formulas by a function ε, such that

Theorem 4.2: ∀ L, sath10c L ↔ PA � ε(L)

By this result then, undecidability of PA � follows:

Proof: Assume it were decidable, then there is a function f : F → B establishing
the respective equivalence. But with this, (f ◦ε) would show decidability of sath10c:

f(ε(L)) = true ↔ PA � ε(L) ↔ sath10c(L) �

4



5 Embedding of H10 into PA

5 Embedding of H10 into PA

The idea behind the embedding ε will be very straight forward, the essential part
will be proving the wished for equivalence of Theorem 4.2.

We first define a function preε translating atomic equations to the most canonical
PA formula possible:

• preε(xi = 1) := (vi ≡ S0)

• preε(xi + xj = xk) := (vi + vj ≡ vk)

• preε(xi · xj = xk) := (vi · vj ≡ vk)

Remark 5.1: In the above, the choice of our notation almost makes it look like preε

does not do anything. Note however, that preε is applied to elements of type h10c

which then end up (on the right) as formulas in PA.

We extend the definition of preε to problems, by recursively defining

• preε[] := (0 ≡ 0)

• preε(a :: L) := preε(a) ∧ preε(L)

Example 5.2: Calculating the embedding of the list from Example 3.1, we get

preε
[

x1 = 1 , x1 + x1 = x2 , x3 · x3 = x2

]

= (v1 ≡ S0) ∧ (v1 + v1 ≡ v2) ∧ (v3 · v3 ≡ v2) ∧ (0 ≡ 0)

This is a formula with free variables v1, v2, v3. However, it does not yet express the
satisfiability of some equations. We can fix this by adding existential quantifiers,
to get

∃ v1 ∃ v2 ∃ v3. (v1 ≡ S0) ∧ (v1 + v1 ≡ v2) ∧ (v3 · v3 ≡ v2) ∧ (0 ≡ 0)

which is now expressing what we want.

So learning from the above example we define

ε(L) := ∃ v1 . . . ∃ vN . preε(L)

where N stands for the biggest index of a variable vi appearing in preε(L). In
this way we make sure that ε(L) is a closed formula expressing the existence of a
solution for preε(L).

6 Verification of Reduction

Definition 6.1: Let M � PA, then we recursively define the function ν : N → D by

ν(0) := 0I , ν(k + 1) := ν(k) +I SI0I

and we call ν(k) the numeral of k in M.
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Lemma 6.2: Let M be any PA model and x, y : N, then we have

ν(x + y) = ν(x) +I ν(y) and ν(x · y) = ν(x) ·I ν(y)

Proof: Both equalities can be shown by induction over x : N and using the fact
that the axioms of PA hold in the model. �

Lemma 6.3: Let M be some PA model, L some h10c problem and σ : N → N an

environment, then

∀ a ∈ L.[a]σ → M �ν◦σ preε(L)

showing that the numerals given by σ satisfy the pre-embedding of a.

Proof: We prove this by induction on the list L. If L is empty, this is trivial, so
assume L = a :: L′. We do a case analysis on the form of a, only showing the
second case since all others are similar. So assume a is of the form xi + xj = xk

and σ satisfies it. Then

[xi + xj = xk]σ ↔ σ(i) + σ(j) = σ(k)

Lemma 6.2 and the above then imply

ν(σ(k)) = ν
(

σ(i) + σ(j)
)

= ν(σ(i)) +I ν(σ(j))

which is equivalent to M �ν◦σ (vi + vj ≡ vk). Using the induction hypothesis this
gives us

M � preε(a) ∧ M � preε(L′) ↔ M � preε(a :: L′) �

The next result tells us that, when we are in the standard model, we can even
show that Lemma 6.3 holds as an equivalence.

Lemma 6.4: Let N be the standard model of PA, a : h10c and σ : N → N some

environment, then

∀ a ∈ L. [a]σ ↔ N �σ preε(L)

Proof: If M = N, then ν is the identity function on N which makes it possible to
run all steps from the prove of Lemma 6.3 in reverse. �

Lemma 6.5: Let M be some model with domain D, φ : F and ρ some environment.

Then we have

M �ρ ( ∃ N φ) ↔ ∃ d1 : D . . . ∃ dN : D. M �d1;...;dN ;ρ φ

Proof: We do an induction over N , leaving out the trivial base case. In the
following we first apply the definition of M �ρ, then the induction hypothesis.

M �ρ ( ∃ N+1φ) ↔ M �ρ ( ∃ v ∃ N φ)

↔ ∃ d : D. M �ρ ( ∃ N φ)

↔ ∃ d : D, ∃ d1 : D . . . ∃ dN : D. M �d;d1;...;dN ;ρ φ �
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6 Verification of Reduction

Lemma 6.6: Let M be some model with domain D, t a term largest variable ap-

pearing is smaller than vN and ρ, σ : N → D two environments which agree up to

N . Then we have ρ̂(t) = σ̂(t).

Proof: Note that when a term t = ft1 . . . tn has smaller variables than vN , its
constituents tj must also have variables smaller than vN .

Knowing this, the result then follows by structural induction on the term t. �

Lemma 6.7: Let M be some model with domain D, φ a formula whose largest

variable appearing is smaller than vN and ρ, σ : N → D two environments which

agree up to N . Then we have

M �ρ φ ↔ M �σ φ

Proof: Similarly to terms, note that whenever a formula φ with smaller variables
than vN is composed of several formulas, either by logical connectives or quantifiers,
then the constituents also have variables smaller than vN .

We show the equivalence (where we quantify over ρ, σ) by structural induction
on the formula φ. For φ = ⊥ this is trivial. If φ = Pt1 . . . tn for some predicate
symbol P and terms t1 . . . tn, we have

M �ρ Pt1 . . . tn ↔ P I ρ̂(t1) . . . ρ̂(tn) ↔ P I σ̂(t1) . . . σ̂(tn) ↔ M �σ Pt1 . . . tn

by using Lemma 6.6 on the terms.
For φ = Lφ1φ2, where L is a logical connective and φ1, φ2 formulas, we have

M �ρ Lφ1φ2 ↔ L̂(M �ρ φ1)(M �ρ φ2)

↔ L̂(M �σ φ1)(M �σ φ2) ↔ M �σ Lφ1φ2

where we used the induction hypothesis on φ1, φ2. In the quantifier case φ = Q v, α

we similarly have

M �ρ Q α ↔ Q̂ d : D. M �d;ρ α

↔ Q̂ d : D. M �d;σ α ↔ M �σ Q α

by the induction hypothesis applied to α. �

We can now put everything together to verify the reduction.

Proof: (of Theorem 4.2) We show both implications of the equivalence. First,
assume PA � ε(L). By Lemma 6.5 this is equivalent to

∀ M ρ. ∃ d1 : D . . . ∃ dN : D. M �d1;...;dN ;ρ preε(L)

So in particular, for the standard model N of PA and ρ = id we get natural num-
bers d1 . . . dN : N such that N �d1;...;dN ;id preε(L). Lemma 6.4 then tells us that L
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is satisfied by d1; . . . ; dN ; id.

For the other implication, assume that sath10c(L) holds; meaning there is a σ :
N → N such that all atomic equations in L are satisfied. Now let M be any model
of PA. We want to show M � ε(L), which by Lemma 6.5 is equivalent to

∀ ρ. ∃ d1 : D . . . ∃ dN : D. M �d1;...;dN ;ρ preε(L)

For any ρ, we set dk := ν ◦ σ(k) for every k = 1, . . . , N and now need to show

M �d1;...;dN ;ρ preε(L).

By Lemma 6.7, the environments d1; . . . ; dN ; ρ and ν ◦σ are interchangeable, since
they agree up to N and by the definition of ε there is no larger variable than vN

in preε(L). So the above is equivalent to

M �ν◦σ preε(L)

which now follows from Lemma 6.3 and the fact that σ was such that it satisfied
the problem L. �

7 Observations

Going through the proofs, there are some observations we can make with regards
to what we need in αPA in order to establish the result.

It turns out that, if we take the reduced list of axioms αR only containing
the four axioms: zero addition, recursion for addition, zero multiplication and
recursion for multiplication, all proofs we did still work out, mainly because they
are only really needed in Lemma 6.2. So we can show

∀ L. sath10c L ↔ ∀ M. M � αR → M � ε(L)
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