Formal Theory of Context-Free Grammars Initial Bachelor Seminar Talk

Jana Hofmann Advisor: Prof. Dr. Gert Smolka

29th May 2015

Topics

Formalization of Context-Free Grammars in Coq

Verified Algorithm for Normalization

(Decidability of Context-Free Languages)

Sources

- Dexter C. Kozen
 Automata and Computability
 Springer, 1997
- John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman Introduction to automata theory, languages, and computation AddisonWesley, 2nd edition, 2001
- Denis Firsov and Tarmo Uustalu
 Certified Normalization of Context-Free Grammars
 Institute of Cybernetics at TUT, 2015
- Jan-Oliver Kaiser
 Constructive Formalization of Regular Languages
 Bachelor thesis, Saarland University, 2012

Content

Motivation and Examples

Context-Free Grammars Chomsky Normal Form

Formalization

Definitions Derivation

Transformation into CNF

- ε Elimination
 - 1) Adding Nullable Rules Correctness
 - 2) Deleting ε Rules

Outlook

Context-Free Grammars

Context-Free Grammars are used to

- describe non-regular languages
- define programming languages (Backus-Naur-Form)

Example

```
egin{aligned} A &\longrightarrow & arepsilon \ A &\longrightarrow & (A) \ A &\longrightarrow & AA \end{aligned} describes \{arepsilon, (), (()), ()(), (())(), ...\}
```

Notation

	notation	example
variable	A, B, C,	A
terminal	a, b, c,	(,)
phrase	u, v, w	(A) , (A (AA)), ε
rule	r	$A \longrightarrow (A)$
grammar	G	$A \longrightarrow \varepsilon \mid (A) \mid AA$
grammar with start symbol	(G, S)	

Chomsky Normal Form

 Chomsky Normal Form is the foundation for further reasoning on CFGs (e.g. CYK algorithm)

(G, S) is in Chomsky Normal form if every rule in G is of one of the following forms:

- ▶ $A \longrightarrow BC$ where $B, C \neq S$
- \rightarrow $A \longrightarrow a$
- \triangleright $S \longrightarrow \varepsilon$

Chomsky Normal Form

Example

$$A \longrightarrow \varepsilon \mid (A) \mid AA$$
 \longrightarrow
$$A \longrightarrow \varepsilon \mid B) \mid AA$$

$$B \longrightarrow (A$$

$$A \longrightarrow \varepsilon \mid BC \mid AA$$

$$B \longrightarrow DA$$

$$C \longrightarrow)$$

$$D \longrightarrow ($$

Definitions

```
egin{array}{lll} \emph{var} & := n & (n \in \mathbb{N}) \ \emph{ter} & := n & (n \in \mathbb{N}) \ \emph{symbol} & := \textit{var} \mid \textit{ter} \end{array}
```

```
phrase := \mathcal{L}(symbol)
rule := var \times phrase
grammar := \mathcal{L}(rule)
```

g

Derivation

ightharpoonup: grammar ightarrow var ightharpoonup phrase ightharpoonup Prop

$$\frac{A \longrightarrow u \in G}{A \stackrel{G}{\Longrightarrow} A} \qquad \frac{A \longrightarrow u \in G}{A \stackrel{G}{\Longrightarrow} u} \qquad \frac{A \stackrel{G}{\Longrightarrow} uBw \quad B \stackrel{G}{\Longrightarrow} v}{A \stackrel{G}{\Longrightarrow} uvw}$$

lacksquare \mathcal{L} : grammar o var o phrase o Prop

$$\mathcal{L}_{\mathcal{G}}^{\mathcal{A}} := \lambda u. \ (\mathcal{A} \overset{\mathcal{G}}{\Longrightarrow} u \ \land \ \text{terminal} \ u)$$

Transformation into CNF

- 1. eliminate all ε -rules ($A \longrightarrow \varepsilon$)
- 2. eliminate unit-rules $(A \longrightarrow B)$
- 3. eliminate long-rules $(A \longrightarrow X_1 X_2 ... X_k)$
- 4. replace terminals with variables

ε - Elimination

1. add new rules by dropping variables

Example $A \longrightarrow \varepsilon \mid a \qquad \qquad A \longrightarrow \varepsilon \mid a$ $B \longrightarrow \varepsilon \mid b \qquad \qquad B \longrightarrow \varepsilon \mid b$ $C \longrightarrow AB \mid cAc \qquad \qquad C \longrightarrow AB \mid \varepsilon \mid A \mid B \mid cAc \mid cc$

2. remove all rules of the form $A \longrightarrow \varepsilon$ (and add $S \longrightarrow \varepsilon$)

1) Adding Nullable Rules

construct the closure G' of G with respect to

$$\frac{A \longrightarrow u \in G}{A \longrightarrow u \in G'} \qquad \frac{A \longrightarrow u_1 X u_2 \in G' \quad X \longrightarrow \varepsilon \in G'}{A \longrightarrow u_1 u_2 \in G'}$$

lacktriangle prove that $\mathcal{L}_G^A \equiv \mathcal{L}_{closure\ G}^A$

ε - Elimination

$$\frac{A \longrightarrow u \in G}{A \longrightarrow u \in G'} \qquad \qquad \frac{A \longrightarrow u_1 X u_2 \in G' \quad X \longrightarrow \varepsilon \in G'}{A \longrightarrow u_1 u_2 \in G'}$$

- fixpoint iteration
- termination: new rule is a subset of the old so only finitely many rules can be added
- ▶ in Cog bounded recursion with two bounds:
 - number of possible rules
 - ightharpoonup |G'| (number of steps done without adding a rule)

Correctness

$$A \xrightarrow{G} u \leftrightarrow A \xrightarrow{G'} u$$
 \rightarrow : easy
 \leftarrow : essential:
let $r \in closure\ G,\ r \notin G$
prove: $A \xrightarrow{r::G} u \rightarrow A \xrightarrow{G} u$
induction on $A \xrightarrow{r::G} u$:

- u = A and we get $A \stackrel{G}{\Longrightarrow} A$
- ▶ $A \longrightarrow u \in r :: G$. So either $A \longrightarrow u \in G$ (trivial) or $r = A \longrightarrow u$ then by construction $\exists u_1 \ u_2 \ X. \ A \longrightarrow u_1 X u_2 \in G \ \land \ X \longrightarrow \varepsilon \in G \ \land u = u_1 u_2$. So we get $A \stackrel{G}{\Longrightarrow} u$.
- $u = u_1 u_2 u_3$. By IH: $A \stackrel{G}{\Longrightarrow} u_1 X u_3$, $X \stackrel{G}{\Longrightarrow} u_2$ so $A \stackrel{G}{\Longrightarrow} u$.

Correctness (2)

1)

$$\mathit{nullable}_G^A \,:=\, A \xrightarrow{G} \varepsilon$$

2)

$$nullable_G^{1A} := A \longrightarrow \varepsilon \in closure G$$

3)

$$\frac{\forall \ X \in u. \ nullable^{\sqcap X}_{\ G} \quad A \longrightarrow u \in G}{nullable^{\sqcap A}_{\ G}}$$

- ▶ 1) \leftrightarrow 2) proof not yet done
- ▶ 1) \leftrightarrow 3) proof by mutual induction

2) Deleting ε - Rules

- every rule $B \longrightarrow \varepsilon$ is superfluous now
- ▶ Proof: Let $A \stackrel{G}{\Longrightarrow} u$ be of minimal length and $u \neq \varepsilon$. no rule $B \longrightarrow \varepsilon$ needed (otherwise not minimal length)
- ▶ if $\varepsilon \in \mathcal{L}_G^S$, add $S \longrightarrow \varepsilon$

$$\Rightarrow \mathcal{L}_{\textit{G}}^{\textit{S}} \equiv \mathcal{L}_{\textit{closure G}}^{\textit{S}}$$

Outlook

- proof for nullable correctness property
- **proof** for deletion of ε Rules
- finish algorithm and it's verification:
 - deletion of unit-rules
 - deletion of long-rules
 - new rules for terminals
- add other constraints to CNF (e.g. useless symbols)
- decidability of context-free languages: CYK-algorithm

Derivations

$$\frac{A \xrightarrow{G} A}{A \xrightarrow{G} A} \qquad \frac{A \xrightarrow{G} u \in G}{A \xrightarrow{G} u} \qquad \frac{A \xrightarrow{G} u Bw \quad B \xrightarrow{G} v}{A \xrightarrow{G} uvw}$$

is equivalent to

$$\frac{A \overset{G}{\Longrightarrow} uBw \quad B \longrightarrow v \in G}{A \overset{G}{\Longrightarrow} uvw}$$

proof by straightforward induction

Equivalence nullable

strengthen the statement:

$$A \overset{{\sf G}}{\Longrightarrow} u \to \forall \ X \in u. \ X \overset{{\sf G}}{\Longrightarrow} \varepsilon \to {\it nullable}^{{\scriptscriptstyle \mathsf{II}}}{}_{A}^{{\sf G}}$$

proof by induction on $A \stackrel{G}{\Longrightarrow} u$.