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What is a Context-Free Grammar?

Example

A\aAc
A\aBc
B\BB
B\b

I Describe context-free languages
e.g. {anbmcn | m, n > 0}

I Are used to describe (programming) languages
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Important Terms

Example

A\aAc
A\aBc
B\BB
B\b

I Grammar G consists of:
I symbols s

characters a, b, c , ...
variables A, B, C , ...

I phrases u, v , w , ...
I rules A\u

I Words are phrases containing only characters
I u derives a word wby rewriting rules of the

grammar
I A language of a grammar is the set of all words we

can derive starting with some variable (LAG or LBG )
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Derivations

Example

A\aAc
A\aBc
B\BB
B\b

Example

Derivation of aaabccc

A⇒ aAc A\aAc ∈ G

⇒ aaAcc A\aAc ∈ G

⇒ aaaBccc A\aBc ∈ G

⇒ aaabccc B\b ∈ G
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Decidability Problems

1. Empty language problem: LAG ≡ ∅?
2. Word problem: w ∈ LAG?
3. Finiteness: Is LAG finite?

4. Equality problem: LAG ≡ LA
′

G ′?
5. Regularity: Is LAG regular?

decidable

undecidable
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Chomsky Normal Form (CNF)

A grammar G is in CNF, if for all rules A\u ∈ G holds:
I u 6= ε

I u = a or
I |u| ≤ 2 and all symbols in u are variables

All grammars can be transformed into CNF

Serves as basis for CYK algorithm to decide the word problem
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Contributions

Decidability results
I Decidability of word problem (w ∈ LAG?)
I Decidability of emptiness problem (LAG ≡ ∅?)

Grammar transformations
I Elimination of ε-rules (A\ε)
I Elimination of unit-rules (A\B)
I Binarization (every rule of the form A\s1s2)
I Separation (every rule of the form A\a or A\B1 . . .Bn)
+ Elimination of deterministic variables

yield grammar in CNF
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Definitions

We use lists for grammars and derivations

var := n n ∈ N
char := n n ∈ N
symbol := var | char

phrase := L (symbol)

rule := var × phrase

grammar := L (rule)

10



Introduction Formalization Finite Iteration Word Problem Binarization Conclusion

Definitions

We use lists for grammars and derivations

The notion of derivability can be defined inductively:

A
G
=⇒ A

A\u ∈ G

A
G
=⇒ u

A
G
=⇒ uBw B

G
=⇒ v

A
G
=⇒ uvw

Languages of a grammar are defined in terms of derivability:

LAG w := A
G
=⇒ w ∧ w is a word
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Alternative Derivation Predicates

A
G
=⇒ A

A\u ∈ G

A
G
=⇒ u

A
G
=⇒ uBw B

G
=⇒ v

A
G
=⇒ uvw

I Give several derivation predicates for different purposes
I Heart of the work

=⇒L is a right-linear variant of =⇒

A
G
=⇒L A

A
G
=⇒L uBw B\v ∈ G

A
G
=⇒L uvw B

v
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Alternative Derivation Predicates

A
G
=⇒ A

A\u ∈ G

A
G
=⇒ u

A
G
=⇒ uBw B

G
=⇒ v

A
G
=⇒ uvw

I Give several derivation predicates for different purposes
I Heart of this work

=⇒F is symmetric and resembles a derivation tree

u
G
=⇒F u

A\u ∈ G u
G
=⇒F v

A
G
=⇒F v

s
G
=⇒F u v

G
=⇒F w

sv
G
=⇒F uw

A
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Finite Fixed Point Iteration (FFPI) (ICL 2014)

f : X → X
x : X

Is f nx a fixed point of f?

x is a fixed point of a
function f , if f x = x .

Lemma (Fixed Point)

Let σ : X → N such that for every number n either σ(f n x) > σ(f n+1 x) or f n x is a
fixed point of f. Then f σx x is a fixed point of f .

σ x > σ(f x) > σ(f 2 x) > · · · > σ(f n x) = 0

max. σ x times
⇒ n = σ x

mu
st b

e a
fixe

d

poi
nt o

f f
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Finite Fixed Point Iteration (FFPI) (ICL 2014)

f : X → X
x : X

Is f nx a fixed point of f?

x is a fixed point of a
function f , if f x = x .

Lemma (Induction)

Let p : X → Prop and x ∈ X such that p x and ∀z . p z → p(f z). Then p(f n x) for
every number n.
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Finite Closure Iteration (FCI) (ICL 2014)

N : list X
step : list X → X → Prop (decidable)

Wanted: M ⊆ N s.t. M is closed with respect to step

nil

M1

x1 ∈ N

step

M2

x2 ∈ N

step

M
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Finite Closure Iteration (FCI) (ICL 2014)

N : list X
step : list X → X → Prop (decidable)

Lemma
If step is decidable, then we can construct a list M, s.t.
1. Closure: If step M x and x ∈ N, then x ∈ M.
2. Induction: Let p : X → Prop such that step xs x → p x for all xs ⊆ p and x ∈ N.

Then M ⊆ p.
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Decidability of Word Problem

w ∈ LAG?
More general: A G

=⇒ u?

Existing solutions: CYK algorithm (bottom-up), Earley algorithm (top-down)
We give a generalized CYK-algorithm (bottom-up chart parsing algorithm)

Example

Let G and u be given as

G := A\aBA B\BB
A\a B\b

u := abba
a b b a

B B A

B

A
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Decidability of Word Problem

Let G and u be fixed. We define:
I item : Type := symbol × phrase

I Segments: v -s u := ∃u1 u2. u = u1vu2

Aim: Construct D : list item, such that

(s, v) ∈ D ↔ v -s u ∧ s
G
=⇒ v

We use FCI:
I N := items (G , u) ( "all symbols of G × all segments of u")
I step M (s, v) := v = s ∨ s = A ∧

∃M ′ ⊆ M. A\(π1 M ′) ∈ G ∧ v = concat(π2 M ′)

I D := FCI N step
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Decidability of Word Problem

We use FCI:
I N := items (G , u) ( "all symbols of G × all segments of u")
I step M (s, v) := v = s ∨ s = A ∧

∃M ′ ⊆ M. A\(π1 M ′) ∈ G ∧ v = concat(π2 M ′)

I D := FCI N step

Example

Let G and u be given as

G := A\aBA B\BB
A\a B\b

u := abba

D
(a,a) (b,b)

(A,a) (B,b)

(B,bb)

(A,abba)
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Decidability of Word Problem

Lemma
(s, v) ∈ D ↔ v -s u ∧ s

G
=⇒ v

Proof
→ Using the induction lemma of FCI.
← Using the closure lemma of FCI.

Lemma (FCI)
If step is decidable, then we can
construct a list M, s.t.

1. Closure: If step M x and
x ∈ N, then x ∈ M.

2. Induction: Let p : X → Prop
such that step xs x → p x
for all xs ⊆ p and x ∈ N.
Then M ⊆ p.

Theorem (The word problem of context-free languages is decidable)

Let G and w be given. ∀A. (A,w) ∈ DG ,w iff A
G
=⇒ w .
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Binarization

Example

G := A\aBCa
B\b
C\c

G 2 := A\aA0

A0\BCa
A0\BA1

A1\Ca
B\b
C\c

We use FFPI to compute G 2
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Binarization

Lemma (FFPI - Fixed Point)
Let σ : X → N such that for every number n
either σ(f n x) > σ(f n+1 x) or f n x is a fixed
point of f. Then f σx x is a fixed point of f .

We use FFPI to compute G 2

step’ : grammar → grammar → grammar
step’ G ′ [] := []
step’ G ′ (A\[] :: G ) := A\[] :: step’ G ′ G
step’ G ′ (A\[s0] :: G ) := A\[s0] :: step’ G ′ G
step’ G ′ (A\[s0;s1] :: G ) := A\[s0;s1] :: step’ G ′ G
step’ G ′ (A\(s0::u) :: G ) := let B := fresh G ′

in A\[s0;B] :: B\u :: G
step G := step’ G G

step function

count : grammar → N
count [] := 0
count (A\u :: G ) := if |u| ≤ 2 then count G

else |u| + count G

size function

G 2 := FFPI step count 23



Introduction Formalization Finite Iteration Word Problem Binarization Conclusion

Binarization

Lemma (FFPI - Fixed Point)
Let σ : X → N such that for every number n
either σ(f n x) > σ(f n+1 x) or f n x is a fixed
point of f. Then f σx x is a fixed point of f .

Lemma (FFPI - Induction)
Let p : X → Prop and x ∈ X such that p x
and ∀z . p z → p(f z). Then p(f n x) for every
number n.

Lemma

1. G 2 is binary
2. For every (non fresh) A: LAG ≡ LAG 2

Proof

1. G 2 is a fixed point of step (FFPI fixed point lemma) and every fixed point of step
is binary.

2. (FFPI induction lemma) prove: For every (non fresh) A: LAG ≡ LAstep G
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Conclusion

What we did
I Decidability results

I Decidability of word problem (w ∈ LA
G?)

I Decidability of emptiness problem (LA
G ≡ ∅?)

I Grammar transformations
I Elimination of ε-rules (A\ε)
I Elimination of unit-rules (A\B)
I Binarization (every rule of the form A\s1s2)
I Separation (every rule of the form A\a or A\B1 . . .Bn)
+ Elimination of deterministic variables

yield grammar in CNF

Future Work
I Decidability of finiteness of context-free languages
I Elimination of useless symbols
I Closure properties of CFLs
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Closure Properties

Let C ,C1, C2 be a context-free and R a regular language
I C1 ∪ C2 is context-free
I C1 ∩ C2 is in general not context-free
I C ∪ R is context-free
I C is not context-free
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Alternative Derivation Predicates

A
G
=⇒ A

A\u ∈ G

A
G
=⇒ u

A
G
=⇒ uBw B

G
=⇒ v

A
G
=⇒ uvw

I Give several derivation predicates for different purposes
I Heart of this work

=⇒T is a symmetric variant of =⇒

u
G
=⇒T u

A\u ∈ G

A
G
=⇒T u

u
G
=⇒T u1vu2 v

G
=⇒T w

u
G
=⇒T u1wu2
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Use of Derivation Predicates

Decidability of Emptiness Problem =⇒F

Decidability of Word Problem =⇒F

Elimination of Epsilon Rules =⇒T , =⇒L

Elimination of Unit Rules =⇒F

Elimination of Deterministic Variables =⇒, =⇒L

Separation of Grammars =⇒

Binarization of Grammars =⇒
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Use of FFPI and FCI

Decidability of Emptiness Problem FCI

Decidability of Word Problem FCI

Elimination of Epsilon Rules -

Elimination of Unit Rules FCI

Elimination of Deterministic Variables -

Separation of Grammars FFPI

Binarization of Grammars FFPI
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