Formalization

Finite Iteration

Word Problem

Binarization

Conclusion

# Verified Algorithms for Context-Free Grammars in Coq Final Bachelor Talk

Jana Hofmann Advisor: Prof. Dr. Gert Smolka



29th August 2016

Formalization

Finite Iteration

Word Problem

Binarization

Conclusion

#### Introduction

Formalization

Finite Iteration

Word Problem

Binarization

Conclusion

Formalization

Finite Iteration

Word Problem

Binarization

Conclusion

#### What is a Context-Free Grammar?



- Describe context-free languages
   e.g. {a<sup>n</sup>b<sup>m</sup>c<sup>n</sup> | m, n > 0}
- Are used to describe (programming) languages

| Introduction |
|--------------|
| 0000000      |

Example

Formalization

 $A \mid aAc$ 

A\aBc

 $B \setminus BB$ 

 $B \setminus b$ 

Finite Iteration

Word Problem

Binarization

Conclusion

#### Important Terms

Grammar G consists of:

symbols s

characters a, b, c,...

variables A, B, C, ...

- ▶ **phrases** *u*, *v*, *w*,...
- rules  $A \setminus u$
- Words are phrases containing only characters
- u derives a word wby rewriting rules of the grammar
- ► A language of a grammar is the set of all words we can derive starting with some variable (L<sup>A</sup><sub>G</sub> or L<sup>B</sup><sub>G</sub>)

Formalization

Finite Iteration

Word Problem

Binarization

Conclusion

#### Derivations

| Example                                                                       | Example                                                                                                                      |                                                    |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| $A \setminus aAc$<br>$A \setminus aBc$<br>$B \setminus BB$<br>$B \setminus b$ | Derivation of <i>aaabccc</i><br>$A \Rightarrow aAc$<br>$\Rightarrow aaAcc$<br>$\Rightarrow aaaBccc$<br>$\Rightarrow aaabccc$ | $egin{array}{llllllllllllllllllllllllllllllllllll$ |
|                                                                               |                                                                                                                              |                                                    |

Formalization

Finite Iteration

Word Problem

Binarization

Conclusion

#### **Decidability Problems**



```
Introduction Fo
```

Formalization

Finite Iteration

Word Problem

Binarization

Conclusion

## Chomsky Normal Form (CNF)

A grammar G is in CNF, if for all rules  $A \setminus u \in G$  holds:

►  $u \neq \varepsilon$ 

- ▶ *u* = *a* or
- $|u| \leq 2$  and all symbols in u are variables

All grammars can be transformed into CNF

Serves as basis for CYK algorithm to decide the word problem

| Formalization |
|---------------|
| 0000          |
|               |

Finite Iteration

Word Problem

Binarization

Conclusion

# **Previous Work**

#### Denis Firsov and Tarmo Uustalu

Certified Normalization of Context-Free Grammars Institute of Cybernetics at TUT, 2015

🔋 Denis Firsov and Tarmo Uustalu

Certified CYK parsing of context-free languages Journal of Logical and Algebraic Methods in Programming 83.5 (2014): 459-468

#### Aditi Barthwal

A formalization of the theory of context-free languages in higher order logic The Australian National University, Ph.D. thesis, 2010

#### Marcus V. M. Ramos

Formalization of context-free language theory Universidade Federal de Pernambuco, Ph.D. thesis, 2016



Formalization

Finite Iteration

Word Problem

Binarization

Conclusion

# Contributions

Decidability results

- Decidability of word problem ( $w \in \mathcal{L}_{G}^{A}$ ?)
- Decidability of emptiness problem ( $\mathcal{L}_{\mathcal{G}}^{\mathcal{A}} \equiv \emptyset$ ?)

Grammar transformations

- Elimination of  $\varepsilon$ -rules ( $A \setminus \varepsilon$ )
- Elimination of unit-rules  $(A \setminus B)$
- Binarization (every rule of the form  $A \setminus s_1 s_2$ )
- Separation (every rule of the form  $A \setminus a$  or  $A \setminus B_1 \dots B_n$ )
- + Elimination of deterministic variables

yield grammar in CNF

Formalization •000 Finite Iteration

Word Problem

Binarization

Conclusion

# Definitions

We use lists for grammars and derivations

- var:=n $n \in \mathbb{N}$ char:=n $n \in \mathbb{N}$ symbol:=var | char

Formalization

Finite Iteration

Word Problem

Binarization

Conclusion

#### Definitions

We use lists for grammars and derivations

The notion of derivability can be defined inductively:

$$\frac{A \setminus u \in G}{A \stackrel{G}{\Rightarrow} A} \qquad \frac{A \setminus u \in G}{A \stackrel{G}{\Rightarrow} u} \qquad \frac{A \stackrel{G}{\Rightarrow} uBw \quad B \stackrel{G}{\Rightarrow} v}{A \stackrel{G}{\Rightarrow} uvw}$$

Languages of a grammar are defined in terms of derivability:

$$\mathcal{L}_{G}^{A} w := A \stackrel{G}{\Rightarrow} w \land w \text{ is a word}$$

| Introduction | Fo |
|--------------|----|
| 0000000      | 00 |

ormalization

Finite Iteration

Word Problem

Binarization

Conclusion

#### Alternative Derivation Predicates

$$\frac{A \setminus u \in G}{A \stackrel{G}{\Rightarrow} A} \qquad \qquad \frac{A \setminus u \in G}{A \stackrel{G}{\Rightarrow} u} \qquad \qquad \frac{A \stackrel{G}{\Rightarrow} uBw \quad B \stackrel{G}{\Rightarrow} v}{A \stackrel{G}{\Rightarrow} uvw}$$



- Give several derivation predicates for different purposes
- Heart of the work

 $\Rightarrow_{\mathcal{L}}$  is a right-linear variant of  $\Rightarrow$ 

$$\frac{A \stackrel{G}{\Rightarrow}_{\mathcal{L}} uBw \quad B \setminus v \in G}{A \stackrel{G}{\Rightarrow}_{\mathcal{L}} uvw}$$



| Formali<br>000●                            | zation Fini                                                  | te Iteration                                                            | Word Problem                                | Binarization<br>000 |
|--------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------|---------------------|
|                                            | Alterna                                                      | ative Derivation                                                        | on Predicates                               | 5                   |
| $\overline{A \stackrel{G}{\Rightarrow} A}$ | $\frac{A \backslash u \in G}{A \stackrel{G}{\Rightarrow} u}$ | $\frac{A \stackrel{G}{\Rightarrow} uBw}{A \stackrel{G}{\Rightarrow} u}$ | $\frac{B \stackrel{G}{\Rightarrow} v}{v w}$ |                     |

- Give several derivation predicates for different purposes
- Heart of this work

 $\Rightarrow_{\mathcal{F}}$  is symmetric and resembles a derivation tree

$$\frac{1}{u \stackrel{G}{\Rightarrow}_{\mathcal{F}} u} \qquad \frac{A \setminus u \in G \quad u \stackrel{G}{\Rightarrow}_{\mathcal{F}} v}{A \stackrel{G}{\Rightarrow}_{\mathcal{F}} v} \qquad \frac{s \stackrel{G}{\Rightarrow}_{\mathcal{F}} u \quad v \stackrel{G}{\Rightarrow}_{\mathcal{F}} w}{sv \stackrel{G}{\Rightarrow}_{\mathcal{F}} uw}$$



| ntrod | luct | ion |
|-------|------|-----|
| 0000  | 000  |     |

Finite Iteration

Word Problem

Binarization

Conclusion

## Finite Fixed Point Iteration (FFPI) (ICL 2014)

 $f: X \to X$ x: X

x is a fixed point of a function f, if f = x.

Is  $f^n x$  a fixed point of f?

# Lemma (Fixed Point)

Let  $\sigma : X \to \mathbb{N}$  such that for every number n either  $\sigma(f^n x) > \sigma(f^{n+1} x)$  or  $f^n x$  is a fixed point of f. Then  $f^{\sigma x} x$  is a fixed point of f.



| ntroductio | n |
|------------|---|
| 000000     |   |

Finite Iteration

Word Problem

Binarization

Conclusion

# Finite Fixed Point Iteration (FFPI) (ICL 2014)

 $f: X \to X$ x: X

x is a fixed point of a function f, if f = x.

Is  $f^n x$  a fixed point of f?

# Lemma (Induction)

Let  $p: X \to Prop \text{ and } x \in X$  such that  $p \times and \forall z. p \ z \to p(f \ z)$ . Then  $p(f^n \ x)$  for every number n.

Formalization

Finite Iteration

Word Problem

Binarization

Conclusion

#### Finite Closure Iteration (FCI) (ICL 2014)

N : list Xstep : list  $X \to X \to Prop$  (decidable)

Wanted:  $M \subseteq N$  s.t. M is closed with respect to *step* 



Formalization

Finite Iteration

Word Problem

Binarization

Conclusion

# Finite Closure Iteration (FCI) (ICL 2014)

N : list Xstep : list  $X \to X \to Prop$  (decidable)

#### Lemma

If step is decidable, then we can construct a list M, s.t.

- 1. Closure: If step  $M \times and x \in N$ , then  $x \in M$ .
- 2. Induction: Let  $p: X \to Prop$  such that step  $xs \ x \to p \ x$  for all  $xs \subseteq p$  and  $x \in N$ . Then  $M \subseteq p$ .

Formalization

Finite Iteration

Word Problem

Binarization

Conclusion

#### Decidability of Word Problem

 $w \in \mathcal{L}_{G}^{A}$ ? More general:  $A \stackrel{G}{\Rightarrow} u$ ?

Existing solutions: CYK algorithm (bottom-up), Earley algorithm (top-down) We give a generalized CYK-algorithm (bottom-up chart parsing algorithm)

#### Example

Let G and u be given as

 $G := A \setminus aBA$   $B \setminus BB$  $A \setminus a$   $B \setminus b$ u := abba



Formalization

Finite Iteration

Word Problem

Binarization

Conclusion

#### Decidability of Word Problem

Let G and u be fixed. We define:

- item : Type := symbol × phrase
- ▶ Segments:  $v \preceq_s u := \exists u_1 \ u_2. \ u = u_1 v u_2$

Aim: Construct D : list item, such that

$$(s,v) \in D \leftrightarrow v \precsim_s u \wedge s \stackrel{\mathsf{G}}{\Rightarrow} v$$

We use FCI:

- ▶  $N := items (G, u) ( \rightsquigarrow "all symbols of G × all segments of u")$
- ► step M  $(s, v) := v = s \lor s = A \land$  $\exists M' \subseteq M. A \setminus (\pi_1 M') \in G \land v = \text{concat}(\pi_2 M')$
- ► D := FCI N step

Formalization

Finite Iteration

Word Problem

Binarization

Conclusion

#### Decidability of Word Problem

We use FCI:

▶  $N := items (G, u) (\rightsquigarrow$  "all symbols of  $G \times$  all segments of u")

► step 
$$M(s, v) := v = s \lor s = A \land$$
  
 $\exists M' \subseteq M. A \backslash (\pi_1 M') \in G \land v = \operatorname{concat}(\pi_2 M')$ 

D := FCI N step

#### Example

Let G and u be given as  

$$G := A \setminus aBA \qquad B \setminus BB$$
  
 $A \setminus a \qquad B \setminus b$   
 $u := abba$ 

Formalization

Finite Iteration

Word Problem

Binarization

Conclusion

## Decidability of Word Problem

#### Lemma

$$(s,v) \in D \leftrightarrow v \precsim_s u \wedge s \stackrel{G}{\Rightarrow} v$$

# Proof

- $\rightarrow$  Using the induction lemma of FCI.
- ← Using the closure lemma of FCI.

Lemma (FCI) If step is decidable, then we can construct a list M, s.t. 1. Closure: If step  $M \times$  and  $x \in N$ , then  $x \in M$ . 2. Induction: Let  $p : X \to Prop$ such that step  $xs \times \to p \times$ for all  $xs \subseteq p$  and  $x \in N$ . Then  $M \subseteq p$ .

Theorem (The word problem of context-free languages is decidable) Let G and w be given.  $\forall A. (A, w) \in D_G, w \text{ iff } A \stackrel{G}{\Rightarrow} w.$ 

| Introduction |
|--------------|
| 0000000      |

Formalization

Finite Iteration

Word Problem

Binarization

Conclusion

#### **Binarization**



We use FFPI to compute  $G^2$ 

step G

Formalization

Finite Iteration

Word Problem

Binarization

Conclusion

#### Binarization

in  $A \setminus [s_0; B] :: B \setminus u :: G$ 

:= step' G G

We use FFPI to compute  $G^2$ step' : grammar  $\rightarrow$  grammar  $\rightarrow$  grammar step' G' [] := [] step' G' (A\[] :: G) := A\[] :: step' G' G step' G' (A\[s\_0] :: G) := A\[s\_0] :: step' G' G

Lemma (FFPI - Fixed Point) Let  $\sigma: X \to \mathbb{N}$  such that for every number *n* either  $\sigma(f^n x) > \sigma(f^{n+1} x)$  or  $f^n x$  is a fixed point of *f*. Then  $f^{\sigma x} x$  is a fixed point of *f*.

step function

size function

# $\begin{array}{ll} \operatorname{count} : \operatorname{grammar} \to \mathbb{N} \\ \operatorname{count} [] & := 0 \\ \operatorname{count} (A \backslash u :: G) & := \operatorname{if} |u| \leq 2 \text{ then count } G \\ & \quad \operatorname{else} |u| + \operatorname{count} G \end{array}$

step' G'  $(A \setminus [s_0; s_1] :: G)$  :=  $A \setminus [s_0; s_1] ::$  step' G' Gstep' G'  $(A \setminus (s_0::u) :: G)$  := let B := fresh G'

 $G^2 := FFPI$  step count

Formalization

Finite Iteration

Word Problem

Binarization

Conclusion

## Binarization

Lemma

- 1.  $G^2$  is binary
- 2. For every (non fresh) A:  $\mathcal{L}_{G}^{A} \equiv \mathcal{L}_{G^{2}}^{A}$

# Proof

Lemma (FFPI - Fixed Point) Let  $\sigma : X \to \mathbb{N}$  such that for every number neither  $\sigma(f^n x) > \sigma(f^{n+1} x)$  or  $f^n x$  is a fixed point of f. Then  $f^{\sigma x} x$  is a fixed point of f.

Lemma (FFPI - Induction) Let  $p: X \to Prop$  and  $x \in X$  such that  $p \times and \forall z. p \ z \to p(f \ z)$ . Then  $p(f^n \times)$  for every number n.

- 1.  $G^2$  is a fixed point of *step* (FFPI fixed point lemma) and every fixed point of *step* is binary.
- 2. (FFPI induction lemma) prove: For every (non fresh) A:  $\mathcal{L}_{G}^{A} \equiv \mathcal{L}_{step \ G}^{A}$

| Formalization |  |
|---------------|--|
| 0000          |  |
|               |  |

| Finite | Iteration |
|--------|-----------|
| 0000   |           |

Word Problem

Binarization

Conclusion

# Conclusion

## What we did

- Decidability results
  - Decidability of word problem ( $w \in \mathcal{L}_{G}^{A}$ ?)
  - Decidability of emptiness problem  $(\mathcal{L}_{G}^{A} \equiv \emptyset?)$
- Grammar transformations
  - Elimination of  $\varepsilon$ -rules ( $A \setminus \varepsilon$ )
  - Elimination of **unit-rules**  $(A \setminus B)$
  - Binarization (every rule of the form  $A \setminus s_1 s_2$ )
  - Separation (every rule of the form  $A \setminus a$  or  $A \setminus B_1 \dots B_n$ )
  - + Elimination of deterministic variables

# Future Work

- Decidability of finiteness of context-free languages
- Elimination of useless symbols
- Closure properties of CFLs

yield grammar in CNF

### Sources

Dexter C. Kozen Automata and Computability Springer, 1997

John E. Hopcroft and Jeffrey D. Ullman Introduction to Automata Theory, Languages and Computation Addison-Wesley, Reading, Ma., USA, 1997

Gert Smolka and Chad E. Brown Introduction to Computational Logic Lecture Notes [PDF], 2014. Retrieved from https://www.ps.uni-saarland.de/courses/cl-ss14/script/icl.pdf

# **Closure Properties**

Let  $C, C_1, C_2$  be a context-free and R a regular language

- ▶  $C_1 \cup C_2$  is context-free
- $C_1 \cap C_2$  is in general not context-free
- $C \cup R$  is context-free
- $\overline{C}$  is not context-free

## Alternative Derivation Predicates

$$\frac{A \setminus u \in G}{A \stackrel{G}{\Rightarrow} A} \qquad \frac{A \setminus u \in G}{A \stackrel{G}{\Rightarrow} u} \qquad \frac{A \stackrel{G}{\Rightarrow} uBw \quad B \stackrel{G}{\Rightarrow} v}{A \stackrel{G}{\Rightarrow} uvw}$$

- Give several derivation predicates for different purposes
- Heart of this work

 $\Rightarrow_{\mathcal{T}}$  is a symmetric variant of  $\Rightarrow$ 

$$\frac{1}{u \stackrel{G}{\Rightarrow}_{\mathcal{T}} u} \qquad \frac{A \backslash u \in G}{A \stackrel{G}{\Rightarrow}_{\mathcal{T}} u} \qquad \frac{u \stackrel{G}{\Rightarrow}_{\mathcal{T}} u_1 v u_2 \quad v \stackrel{G}{\Rightarrow}_{\mathcal{T}} w}{u \stackrel{G}{\Rightarrow}_{\mathcal{T}} u_1 w u_2}$$



# Use of Derivation Predicates

| Decidability of Emptiness Problem      | $\Rightarrow_{\mathcal{F}}$                            |
|----------------------------------------|--------------------------------------------------------|
| Decidability of Word Problem           | $\Rightarrow_{\mathcal{F}}$                            |
| Elimination of Epsilon Rules           | $\Rightarrow_{\mathcal{T}}, \Rightarrow_{\mathcal{L}}$ |
| Elimination of Unit Rules              | $\Rightarrow_{\mathcal{F}}$                            |
| Elimination of Deterministic Variables | $\Rightarrow$ , $\Rightarrow_{\mathcal{L}}$            |
| Separation of Grammars                 | $\Rightarrow$                                          |
| Binarization of Grammars               | $\Rightarrow$                                          |

# Use of FFPI and FCI

| Decidability of Emptiness Problem      | FCI  |
|----------------------------------------|------|
| Decidability of Word Problem           | FCI  |
| Elimination of Epsilon Rules           | -    |
| Elimination of Unit Rules              | FCI  |
| Elimination of Deterministic Variables | -    |
| Separation of Grammars                 | FFPI |
| Binarization of Grammars               | FFPI |