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Abstract

We give a basic formalization of context-free grammars and the languages they de-
scribe in the proof assistant Coq. We show the decidability of the word and the
emptiness problem of context-free languages by giving and verifying decision pro-
cedures. Furthermore, we describe four grammar transformations: The elimina-
tion of empty rules, the elimination of unit rules, the separation of characters from
the rest of the grammar and the binarization of a grammar. For each transforma-
tion, we show that it preserves the language of the grammar. Together, they yield
a grammar which is in Chomsky normal form.

We aim for algorithms that are easy to understand and verify. Many of our re-
sults are obtained with finite iteration on lists. By using abstractions of fixed point
and closure iterations, the correctness of the algorithms is intuitive and formally
obtained with short proofs.
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Chapter 1

Introduction

Context-free grammars (CFGs) are an important concept in the field of computer
science. Theywere introduced byNoamChomsky in 1956 [2]. Initially, he intended
to use them to describe natural languages. But natural languages turned out to be
too complex to be described by CFGs. Nevertheless, they became an important
tool to describe languages, although not natural languages. They are, however,
perfect to describe programming languages, because they capture their recursive
structure. It has been found that efficient parsing algorithms thatwork on a context-
free grammar have cubic time complexity [5]. Besides the word problem, there are
several other decidable problems for context-free grammars. For example, it is also
decidable whether a language is finite or empty [5]. These are reasonswhy context-
free grammars are so popular.

In this thesis, we give verified algorithms to decide the word and the emptiness
problem. In addition, we discuss and verify four grammar transformations which
yield a grammar inChomskynormal form (CNF). CNF is a popular basis for further
reasoning on context-free grammars, since it guarantees strong assumptions about
the grammar. As an example, the CYK algorithm for deciding the word problem
assumes the grammar to be in CNF [5]. Furthermore, the proof of the pumping
lemma for context-free languages is based on the Chomsky normal form [8]. We
show that every grammar can be transformed to CNF without modifying its lan-
guages.

All functions and proofs are realized in the proof assistant Coq [11]. We primar-
ily aim to describe algorithms that are easy to understand, explain and verify. In
order to obtain simple algorithms and proofs, we forego achieving optimal com-
plexity. We benefit from the functional context we work in— on the computational
level, Coq is a dependently typed functional programming language. As context-
free grammars have been studied for several decades there are many textbooks de-
scribing algorithms, popular are [8, 5]. Most of them follow an imperative way of



12 Introduction

arguing. Hence, as a second consequence of the functional setting, our algorithms
and especially our proofs often differ from existing literature. Thereby, the formal-
ization of context-free grammars permits new insights, apart from the relevance of
the topic in its own right.

In the course of our work, we discovered that most of the problems we approached
can be solved using iteration. Therefore, we make use of abstractions described in
[10] which formalize general closure and fixed point iterations. Thereby, we can
condense our tasks to describing a step function we have to prove correct.

1.1 Related Work

The formalization of context-free grammars and corresponding results using proof
assistants has become popular recently [1, 3, 9]. Work has been investigated espe-
cially in verifying parsers and parser generators. Firsov andUustalu [3] formalize a
CYK parser using Agda. Jourdan, Pottier and Leroy [6] describe a validation func-
tion for LR(1)-Parsers in Coq. A second publication in Coq by Koprowski and Bin-
sztok [7] deals with the verification of a parser interpreter that is based on parsing
expression grammars which represents an alternative to context-free grammars.

Concerning normalization, this thesis was inspired by a second work of Firsov and
Uusatalu [4]. They describe grammar transformations to CNF verified in Agda. By
using parse tree transformations for their proofs, they show how to convert every
parse tree to a corresponding one in CNF. In her PhD thesis [1], Barthwal gives
a formalization of CFGs including transformations to CNF and Greibach normal
form, which is another important normal form. In addition, she also describes a
possibility of eliminating useless symbols in grammars. Her work is carried out
using higher-order logic (HOL) embedded in Isabelle. Ramos [9] gives a compre-
hensive formalization of context-free grammars in Coq. This includes a proof that
for every CFG, there exists a CNF. In addition, he shows several closure properties
and a proof of the pumping lemma for CFGs.

1.2 Contribution

To the best of our knowledge, concerning the decidability of the word and empti-
ness problem, we seem to be the first to formalize proofs in Coq. Our approach for
deciding the word problem does not follow traditional parser algorithms. It can
be described as a generalized variant of CYK without assuming the grammar to be
in CNF. Moreover, we describe four transformations of context-free grammars. To-
gether, they yield a grammar in CNF. Each transformation works on general gram-
mars without making restrictive assumptions. The four transformations are
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• Elimination of ε-rules
• Elimination of unit rules
• Separation of characters
• Binarization

We aimed for simplicity, thus our complete formalization counts about 2,000 lines.
The development is carried out in constructive type theory. Therefore, all functions
are computable.





Chapter 2

Preliminaries

We will formalize context-free grammars using lists, which allow us to describe
algorithmic ideas in an intuitive and compact way. We assume the reader to be
familiar with well known functions like map, concat and filter.

When talking about decidability, we refer to the definition given in [10]. As Coq is
based on constructive type theory, decidability is defined with an informative type
rather than propositionally.

Definition 2.1 A proposition P is decidable, if the informative type {P} + {¬P} is
inhabited. Consequently, a predicate p : X → Prop is decidable, if ∀x : X. {p x}+{¬p x}
is inhabited.

We use the notation X dec−−→ Prop for decidable predicates and Xdec for a type with
decidable equality.

2.1 Finite Fixed Point Iteration

Many results of this thesis are obtained by finite fixed point and closure iterations
on context-free grammars. For both, we can use a formalization described in [10].
We first discuss the more general finite fixed point iteration (FFPI). For this thesis,
we will only apply it to lists. However, the abstraction is not restricted to a special
type.

Remember that for a function f we call x a fixed point of f , if f x = x. Given x and
f , we will describe under which conditions we can compute a fixed point of f by
applying f at most n times to x.

Lemma 2.2 (Finite Fixed Point Iteration) LetX be a type and f : X → X a function.

1. Fixed Point. Let σ : X → N and x ∈ X such that for every number n either σ(fn x) >
σ(fn+1 x) or fn x is a fixed point of f. Then fσx x is a fixed point of f .

https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Base.html#dec
https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Base.html#it_ind
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2. Induction. Let p : X → Prop and x ∈ X such that p x and ∀z. p z → p(f z). Then
p(fn x) for every number n.

Lemma 2.2 states that if there is a size function σ for X , that decreases with every
step of f until a fixed point is reached, then we will get a fixed point after at most
σ x steps. In addition, if f preserves some property x fulfils, then the fixed point
(and any intermediate step) will also have this property.

2.2 Finite Closure Iteration

Finite closure iteration (FCI) is a technique that can only be applied to lists. It suc-
cessively adds elements from a list N to a list M which is initially empty. The
elements to be added to M are determined by a predicate step. For each list M
and candidate x from N , step returns > if x can be added toM and ⊥ otherwise.
Thereby, a list that is closedwith respect to step andN is constructed. FCI obviously
terminates as N is finite.

Formally, FCI can be described with the following lemma.

Lemma 2.3 (Finite Closure Iteration) Let X be a type with decidable equality, step :

list X → X → Prop be a decidable predicate, and N be a list over X . Then one can
construct a listM ⊆ S such that:

1. Closure. If step M x and x ∈ N , then x ∈M .
2. Induction. Let p : X → Prop such that step xs x → p x for all xs ⊆ p and x ∈ N .

ThenM ⊆ p.

This means that in order to apply this lemma we need:

1. a type Xdec which will be inferred automatically
2. a maximal list N : list X

3. a step predicate step : list X → X → Prop

4. a proof that step is decidable.

For the resulting listM , Lemma 2.3 states thatM is closed with respect to step and
N . Moreover, if step inductively preserves some property for elements of N , then
we can also assume it to hold for all elements ofM .

Finite closure iteration is a strengthening of finite fixed point iteration. In fact, FCI
can be proved using FFPI [10]. The proof shall not be discussed further at this point.

https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Base.html#it_ind
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2.3 Sublists

Apart from iterations the notion of sublists and segments will prove itself helpful.
We receive a sublist of a list xs : list X by removing some elements from xs . Which
elements can be removed is indicated by a predicate p : X → Prop. In contrast
to list inclusion (⊆), sublists respect the order and the number of appearances of
elements in the original list. We realize the concept of sublists with an inductive
definition. We write xs -p ys if xs is a sublist of ys with respect to p.

nil -p nil

xs -p ys p y

xs -p y :: ys

xs -p ys

y :: xs -p y :: ys

Note that if xs is an element of the powerlist of ys , then xs -> ys .

We give some basic but useful properties of sublists that can be proven easily. We
use ++ for list concatenation.

Fact 2.4 (Properties of sublists)

1. xs -p xs (Reflexivity)
2. If xs -p ys and ys -p zs , then xs -p zs . (Transitivity)
3. If xs1 -p ys1 and xs2 -p ys2, (Closure under Concatenation)

then xs1 ++ xs2 -p ys1 ++ ys2.
4. If p and p′ are equivalent for all s and xs -p ys , then xs -p′ ys .
5. If xs -p ys and p x for all x in xs , then p x for all x in ys .
6. If xs -p ys1 ++ ys2 then there exist xs1, xs2 such that (Split)

xs1 -p ys1 and xs2 -p ys2.
7. If xs -p ys , then xs ⊆ ys . (Inclusion)

The functional characterization of sublists is straightforward. The following func-
tion computes all sublists of a list.

slists : ∀ X. (X
dec−−→ Prop)→ list X → list (list X)

slists p [] := [[]]
slists p (s::u) := if p s then slists p u ++ map (cons s) (slists p u)

else map (cons s) (ppower p u)

Fact 2.5 xs -p ys iff xs ∈ slists p ys .

A segment is a sublist where all elemens appear next to each other in the original
list. This leads directly to a definition of segments:

https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Lists.html#slist_id
https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Lists.html#slists_slist
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Definition 2.6 A list xs is a segment of ys (xs -s ys), if there exists xs1 and xs2 such
that ys = xs1 ++ xs ++ xs2.

For example, the list [1, 3, 4] is a sublist of [1, 2, 3, 4] but not a segment. Every seg-
ment is also a sublist but not vice versa. Again we state properties of segments that
we will be helpful in subsequent proofs.

Fact 2.7 (Properties of segments)

1. xs -s xs (Reflexivity)
2. ε -s xs

3. If xs -s ys and ys -s zs , then xs -s zs . (Transitivity)

We can compute all segments of a list:

segms : ∀ Xdec . list X → list (list X)

segms [] := [[]]
segms (x :: xs) := let sxs := segms xs

in sxs ++ map (cons x)
(filter (λys. ∃zs. xr = ys++zs) sxs)

The function segms is a functional characterization of -s.

Fact 2.8 xs -s ys iff xs ∈ segms ys .

2.4 Basic Definitions

We give some helpful list functions. We define ∗f to be an operation that concate-
nates all elements of two lists using a given function f .

• ∗f • : ∀ X Y Z. list X → list Y → list Z

[] ∗f ys := []
(x :: xs) ∗f ys := map (f x) ys ++ xs ∗f ys

For example, a ∗pair b yields the classical cross product using the pair constructor.

The notion of projection is well known and its lifting to lists is straightforward.

π1 : ∀ X Y. list (X × Y )→ list X

π1 xs := map (λ(x, y). x) xs

https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Lists.html#segment
https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Lists.html#segment_nil
https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Lists.html#segms_corr
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π2 : ∀ X Y. list (X × Y )→ list Y

π2 xs := map (λ(x, y). y) xs

Finally, we give a substitution function that replaces all appearances of an element
in a list with a second list.

•[• → •] : ∀ Xdec. list X → X → list X → list X

[][y → ys] := []
(x :: xs)[y → ys] := if x = y then ys ++ xs[y → ys]

else x :: xs[y → ys]

We will make use of the following properties of substitution:

Fact 2.9 (Properties of substitution)

1. (xs1 ++ xs2)[y → ys] = xs1[y → ys] ++ xs2[y → ys] (Split)
2. If y /∈ xs , then xs[y → ys] = xs. (Skip)
3. | xs | = | xs[y → y′] |
4. If y′ /∈ xs , then (xs[y → y′]) [y′ → y] = xs . (Reversible substitution)

https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Lists.html#substL_split




Chapter 3

Context-Free Grammars

To characterize context-free grammars in a formal way, we give the following defi-
nitions of variables (also called non-terminals) and characters (terminals).

var := n (n ∈ N)
char := n (n ∈ N)
symbol := var | char

For variables we use Roman capital letters (A,B,C...) whereas for characters and
symbols we use small letters (s for symbols and a, b, c, . . . for characters). In Ap-
pendix C, you can find all variables namings. Phrases are lists of symbols, they are
indicated by u, v, w. Rules are pairs of a variable and a phrase. A grammar G is a
list of rules.

phrase := L (symbol)

rule := var × phrase

grammar := L (rule)

To improve readability, we write A\aBc for a rule (A, [a,B, c]). In addition, we
write su for a phrase s :: u and uv instead of u ++ v. The distinction between those
two operators is possible with the naming of the variables.

3.1 Derivations

A context-free grammar describes a context-free rewriting system. We say that a
phrase uAw rewrites to uvw, if there is a rule A\v in the grammar. Consequently,
v is derivable from u (i.e. u G

=⇒ v), if v can be reached from u in arbitrary many
rewriting steps. There are many ways to formalize the property of derivability. A
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=⇒

A

u
=⇒L

=⇒T

A

=⇒F

Figure 3.1: Different derivation predicates.

direct implementation of rewriting yields the following predicate:

u
G
=⇒I u

A\v ∈ G

uAw
G
=⇒I uvw

u
G
=⇒I v v

G
=⇒I w

u
G
=⇒I w

The second rule performs one step of rewriting. The first and the third rule add
reflexivity and transitivity. However, other characterizations of derivability turn
out to be more convenient for formal proofs. Actually, we will make use of several
definitions throughout this thesis. Thereby, we can choose fromdifferent induction
principles, depending on which gives us the shortest and most intuitive proofs.
Appendix B sums upwhich predicate is used in which chapter for the main proofs.
In Fig. 3.1, we illustrate four different characterizations of derivability which are
discussed below.

In contrast to=⇒I , the following predicate defines an induction principle which iso-
lates the application of a rule and adds the congruent transitive closure. Therefore,
it implicitly states that derivations are context-free.

u
G
=⇒T u

A\u ∈ G

A
G
=⇒T u

u
G
=⇒T u1vu2 v

G
=⇒T w

u
G
=⇒T u1wu2
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As we often do grammar transformations, this predicate can be very useful, since
in the second case we can concentrate on the rule while the third case is often quite
simple as we can work with two inductive hypotheses.

In most cases, our lemmas will be statements about derivability beginning with
a single variable. Therefore, we introduce a non-symmetric variant giving us an
appropriate induction principle. We will mostly use this characterization, so we
just use the =⇒-notation.

A
G
=⇒ A

A\u ∈ G

A
G
=⇒ u

A
G
=⇒ uBw B

G
=⇒ v

A
G
=⇒ uvw

For some proofs it will be convenient to argue about a single derivation step. The
following predicate captures the right-linear character of a derivation.

A
G
=⇒L A

A
G
=⇒L uBw B\v ∈ G

A
G
=⇒L uvw

We finally give a derivation predicate that is inspired by parse trees which often
serve as basis for formalizations of context-free grammars. In contrast to linear
derivations, trees allow a two-dimensional bottom-up perspective.

u
G
=⇒F u

A\u ∈ G u
G
=⇒F v

A
G
=⇒F v

s
G
=⇒F u v

G
=⇒F w

sv
G
=⇒F uw

Seen as a parse tree, the second rule implements the conversion of a forest (a list of
trees) to a single tree with a rule. The second rule captures the concatenation of a
derivation tree with a forest. Compared to conventional definitions of parse trees
like in [4], this predicate is not nested inductive but nevertheless gives us strong
inductive hypotheses.

Note that all characterizations are defined as predicates and not as types. Thus,
we can only speak about derivability, not about concrete derivations. Actually, there
might be several derivations for the same phrase. For our purpose, the notion of
derivability turned out to be powerful enough and yields simple proofs. We want
to prove that all these characterizations are equivalent. An illustration of how we
will prove their equivalence can be found in Fig. 3.2. We start by proving that =⇒,
=⇒L and =⇒T are equivalent.

Lemma 3.1 A
G
=⇒ u↔ A

G
=⇒L u.

https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Derivation.html#derL_der_equiv


24 Context-Free Grammars

⇒L ⇒ ⇒T

⇒I

⇒F

Figure 3.2: Equivalence proofs of derivation predicates.

Proof By induction on the derivation predicate for both parts. For the only-if part,
we need a nested induction on the second inductive hypothesis. �

Lemma 3.2 A
G
=⇒ u↔ A

G
=⇒T u.

Proof By induction on =⇒ and =⇒T , respectively. �

To prove the equivalence of =⇒T , =⇒F and =⇒I , we first establish certain properties
of =⇒F .

Lemma 3.3 (Splitting) The derivation of =⇒F can be split into two parts:
Assume u1u2

G
=⇒F v. Then there are v1 and v2 such that v = v1v2 and u1

G
=⇒F v1 and

u2
G
=⇒F v2.

Proof By induction on u1u2
G
=⇒F v and a second induction on u1u2 in the first

case. �

Lemma 3.4 (Compatibility with Concatenation) =⇒F is compatible with concatena-
tion:
If u1

G
=⇒F v1 and u2

G
=⇒F v2, then u1u2

G
=⇒F v1v2.

Proof By induction on u1
G
=⇒F v1 and a second induction on u1 in the first case. �

Lemma 3.5 (Transitivity) =⇒F is transitive:
If u G

=⇒F v and v
G
=⇒F w, then u

G
=⇒F w.

Proof By induction on u G
=⇒F v using the splitting property (Lemma 3.3). �

Now we are able to prove the equivalence of =⇒F , =⇒I and =⇒T .

Lemma 3.6 We need three proofs:

1. u
G
=⇒F v → u

G
=⇒T v.

https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Derivation.html#derT_der_equiv
https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Derivation.html#derf_split
https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Derivation.html#derf_concat
https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Derivation.html#derf_trans
https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Derivation.html#derf_derT
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2. u
G
=⇒T v → u

G
=⇒I v.

3. u
G
=⇒I v → u

G
=⇒F v.

Proof All implications can be proved using induction on the derivation predicate:

1. By induction on u G
=⇒F v.

2. By induction on u G
=⇒T v.

3. By induction on u G
=⇒I v using transitivity and compatibilitywith concatenation

of =⇒F . �

Because of the established equivalences between the different predicates, we can
assume the properties we proved for =⇒F to hold for all of them. An additional
extension property will be helpful.

Lemma 3.7 (Extension) Assume u G
=⇒T v and G ⊆ G′. Then u

G′
=⇒T v.

Proof By induction on u G
=⇒ v. �

Phrases that contain only characters are called words (x, y, z). A language of a
grammar is defined by the sets of words we can get by starting the derivation
with a certain variable. We define the languages of a grammar using a predicate
L : grammar → var → phrase → Prop.

LAG x := A
G
=⇒ x

Note that by writing x instead of u, we require x to be a word, which can not be
derived further.

3.2 Operations on Grammars

The domain D and the range R are defined by the right- and left-hand sides of a
grammar.

D : grammar → list symbol

D [] := []
D (A\u :: G) := A :: D G

R : grammar → list phrase

R [] := []
R (A\u :: G) := u :: R G

We can compute a list S of all symbols of a grammar.

S : grammar → list symbol

S [] := []
S (A\u :: G) := A :: u ++ S G

https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Derivation.html#der_subset
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We will write SG instead of S G (equally for D and R). For the sake of readability,
we might also drop the index G, if it is clear from the context.

For some operations on context-free grammarswewill need to introduce fresh vari-
ables to the grammar. As the definition of symbols is based on natural numbers, we
can lift< and≤ up to symbols. We call the symbol s fresh forG, if ∀s′ ∈ SG. s′ < s.

Fact 3.8 For every grammar G there is a variable A that is fresh for G.

The functional characterizations of maximal and fresh symbols are obvious and
shall be omitted here. We will assume a generator fresh : grammar → var that
gives us a variable that is fresh for agrammar.

Discussion

When Chomsky first described context-free grammars [2], he defined them as a
tuple (N,T, P, S). The set N consists of all variables, T of all characters, P is the
set of rules and S is the start variable. As the set N and T are given through P , we
do not mention them explicitly. In addition, we do not care about start variables as
our results will hold generally for all possible start variables.

The way we defined derivability is unusual. Some formalizations are based on
parse trees [4], others define =⇒ to describe a single step and then add the reflexive
and transitive closure (⇒∗) [1]. Furthermore, there are many possibilities to de-
scribe derivations with inductive predicates that we did not discuss. A thesis like
this develops in the curse of work and time is limited. After finishing our work, we
consider other possibilities to define grammars and derivations which might be in-
teresting for future work. For example, we could have assumed the grammar to be
binary. This means that grammars are described without lists on the right-hand
sides. Thereby, one may shorten some proofs. Alternatively, a derivation predicate
that could have replaced =⇒F is the following:

ε
G
=⇒F ε

A\u ∈ G u
G
=⇒F u′ v

G
=⇒F v′

Av
G
=⇒F u′v′

u
G
=⇒F u′

su
G
=⇒F su′

This predicate captures the intuition of rewriting parse trees in phrases (rule 2) and
skipping characters (rule 3).

https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Symbols.html#pickFresh


Chapter 4

Decidability of Emptiness Problem

Westart by proving that for every grammarG andvariableA it is decidablewhether
LAG is empty, i.e. ¬∃x. LAG x. Proving that the word problem is decidable is not suf-
ficient since we would have to check infinitely many words. To decide whether LAG
is empty, we need the notion of productive variables. We call a variable produc-
tive, if it derives a word x. Hence, a language LAG is empty, if A is not productive.
Computing the set of productive variables is not difficult. If there is a rule A\a in
G, then A is obviously productive. Additional, for a rule A\u, A is productive, if
every variable in u is productive. We compute the set of all productive variables
and LAG is empty, if A is not in this set.

First, we give an inductive predicate productive. To simplify definitions and proofs,
we lift the notion of productive variables to symbols.

productiveG a

A\u ∈ G ∀s ∈ u. productiveG s
productiveG A

We prove that the inductive characterization of productive corresponds with our
direct definition.

Lemma 4.1 productiveG A iff ∃x. A G
=⇒ x.

Proof Instead of =⇒ we prove the claim with =⇒F as this characterization matches
the right-inductive definition of productive best.

→ By induction on productiveG A and a nested induction on u in the second case
(see the rules of productive).

← We prove the generalized statement u G
=⇒F v → (∀s ∈ v. productiveG s)→ ∀s ∈

u. productiveG s. It subsumes the claim as in a word, all symbols are productive.
The proof goes through by induction on u G

=⇒F v. �

https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Dec_Empty.html#productive_derWord_equi
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To compute the set of all productive symbols of a grammar, we make use of finite
closure iteration (Section 2.2). Remember that we need to supply a maximal list N
that contains all productive symbols. We can pick SG, as all productive symbols are
symbols of G. In addition, we need to define a step predicate. The step predicate
follows the structure of the inductive characterization of productive.

step : grammar → list symbol → symbol → Prop

stepG M s := s = a ∨ s = A

∧ ∃u. A\u ∈ G
∧ ∀s′ ∈ u. s′ ∈M

With step, every symbol which is added to the resulting list is a character or a pro-
ductive variable, since it can be derived in one step to a list of productive symbols.
Since G is finite, step is obviously decidable.

Fact 4.2 stepG M s is decidable.

FCI yields the required list of all productive symbols.

PG := FCI stepG SG

To prove that PG is correct, we prove that a symbol s is in PG iff s is productive
in G. Using the closure and the induction lemma proved for FCI (Lemma 2.3), the
proof is straightforward.

Lemma 4.3 Assume s ∈ SG and productiveG s. Then s ∈ PG.

Proof By induction on productive.

• s = a. With the closure lemma of FCI, we need to show that s ∈ SG and stepPG
s holds. The first statement holds by assumption. The latter holds because s is
a character by induction.

• s = A and A\u ∈ G. Again, using the closure lemma and the assumption that
s ∈ SG, only step PG s is left to show. Because of the inductive hypothesis, all
symbols in u are in PG. Therefore, step PG A holds. �

Lemma 4.4 If s ∈ PG, then productiveG s.

Proof We apply the induction lemma of FCI. Thereby, we need to prove that if
in a set of symbols M , all elements are productive and step M s holds, then s is
productive. Because of stepM s, there are two cases.

• s = a. Then s is productive.

https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Dec_Empty.html#step_dec
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• s = A and A\u ∈ G. All symbols of u are inM . Then by induction, they are all
productive and therefore, A is productive. �

Combining Lemma 4.3 and Lemma 4.4 gives us the intended property.

Corollary 4.5 Assume s ∈ SG. Then s ∈ PG iff productiveG s.

As PG is computable, we can decide whether LAG is empty, if A is a symbol of G.
Otherwise, the language must be empty since a symbol that is not in SG can not
derive anything but itself.

Theorem 4.6 It is decidable whether LAG is empty.

https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Dec_Empty.html#P_productive_equiv
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Chapter 5

Decidability of Word Problem

We want to prove that context-free languages are decidable, i.e. we aim to decide
LAG x. Instead of deciding only A G

=⇒ x, we rather decide the more general problem
A

G
=⇒ u. We assume G and u to be fixed. Intuitively, we want to compute for all

segments of u, from which symbols they can be derived.

To realize this idea, we introduce a type item .

item := symbol × phrase

Our aim is to construct a listM : list item such that (s, v) ∈M if and only if sderives
v and v is a segment of u. We construct this list with a bottom-up algorithm: Every
pair (s, s) is inM , if s appears in u. Then, we combine pairs (s0, v0), . . . , (sn, vn) of
M , such that there is a rule B\s0 . . . sn in G. We know that si derives vi for every
pair (si, vi) and therefore,B derives v0 . . . vn. So if v0 . . . vn is a segment of u, we can
add the pair (B, v0 . . . vn) toM . Finally, as u is a segment of u, we have (A, u) ∈M
iff A derives the phrase u.

Consider the following example.

Example 5.1

Let G and u be given as

G := A\aBA B\BB
A\a B\b

u := abba

The following figure illustrates the algorithm.



32 Decidability of Word Problem

a b b a

step 1

a b b a

B B A

step 2

a b b a

B B A

B

step 3

a b b a

B B A

B

A

step 4

Figure 5.1: Illustration of the decision algorithm.

1. First, we add (a, a) and (b, b) toM .
2. Now we add (A, a) (B, b) since (b, b) ∈ M , (a, a) ∈ M , A\a ∈ G and B\b ∈

G.
3. Next, we add (B, bb) because of (B, b) ∈M ,B\BB ∈ G and bb is a segment

of u. Note that every element ofM can be used multiple times to construct
a new item.

4. Finally, we add (A, abba) since (a, a), (B, bb), (A, a) ∈ M and A\aBA ∈ G.
Of course, abba is a segment of u.

Since (A, u) is inM , A can derive u.

We now want to formalize the idea. To prove it correct, the tree predicate =⇒F
is suited best. Similar to the algorithm we describe, it is defined in a bottom-up
manner. We aim to prove the following lemma.

Lemma 5.1 Assume u and G are fixed and s ∈ SG. Then we can compute a listM such
that (s, v) ∈M iff s G

=⇒F v and v is a segment of u.

We will later see why s ∈ SG is a necessary assumption. The intuition ofM can be

https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Dec_Word.html#DW_der_equiv'
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described formally with the aid of an inductive predicate:

s ∈ u
(s, s) ∈M

v -s u M ′ ⊆M A\(π1 M ′) ∈ G concat(π2 M
′) = v

(A, v) ∈M

We obtain the deciding item list with FCI.

itemsG,u := SG ∗pair (segms u)

stepG M (s, v) := v = s ∨ s = A ∧
∃M ′ ⊆M. A\(π1 M ′) ∈ G ∧ v = concat(π2 M

′)

DG,u := FCI stepG itemsG,u

For the following, we fix the variables G and u and can therefore omit the index
G,u.

The predicate step implements the inductive intuition ofM for FCI. The list items is
the maximal list we have to provide to use FCI: Note that all pairs (s, v) for which
s

G
=⇒F v and v -s u could hold are contained in items. Now it becomes clear why

Lemma 5.1 assumes s to be in SG. Because of the definition of items, Lemma 5.1
only holds for s ∈ SG. What is left to prove is the decidability of step since item is
obviously of decidable equality.

Lemma 5.2 stepM (s, v) is decidable.

Proof If s is a character, then step M (s, v) holds. The case of s = A is more dif-
ficult as there are infinitely many M ′ such that M ′ ⊆ M . The isolated compo-
nents A\(π1 M ′) ∈ G and v = concat(π2 M

′) are decidable. However, note that
proving the existence of an M ′ such that A\(π1 M ′) ∈ G is not strong enough.
But as G and M are finite, we can compute the set of all possible lists M ′ ⊆ M ,
where A\(π1 M ′) ∈ G holds. Then, we can decide for each element whether
v = concat(π2 M

′). �

We first prove the only-if-part of Lemma 5.1. We generalize the lemma to do induc-
tion on the derivation predicate. Basically, we prove that every derivation can be
split into parts such that every part is in D.

Lemma 5.3 Let w G
=⇒F v and v -s u. Assume that all symbols in w are in SG. Then

there is a listM such that π1 M = w, concat(π2 M) = v andM ⊆ D.

Note that this statement gives us an inductive hypothesis that fits to step. If w con-
sists of only one symbol, thenM has only one element which is in D.

https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Dec_Word.html#step_dec
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Proof (Lemma 5.3) By induction on w G
=⇒F v. We distinguish three cases.

• w = v. Let v = [s0, s1, . . . ]. Choose M := [(s0, [s0]), (s1, [s1]), . . . ]. Obviously,
π1 M = v and concat(π2 M) = v. Because of the definition of step and v -s u,
D contains all (s, [s]), if s ∈ v. Therefore,M ⊆ D.

• A\w ∈ G and w
G
=⇒F v. We choose M := [(A, v)]. We have π1 M = A and

concat(π2 M) = v. To prove M ⊆ D, we apply the closure lemma of FCI and
prove that (A, v) ∈ items and stepD (A, v). The first statement follows from our
assumptions. For the second, we use the listM ′ ⊆ D we get by induction where
π1 M

′ = w and concat(π2 M
′) = v hold. By the definition of step, we get step D

(A, v) .

• s
G
=⇒ w and w′ G

=⇒ v. By induction, M1 ⊆ D and M2 ⊆ D, where π1 M1 = s,
π1 M2 = w′, concat(π2 M1) = w and concat(π2 M2) = v. We choose M :=

M1 ++ M2 and all requirements are fulfilled. �

For the if-part, we assume (s, v) to be inD. By construction ofDwith FCI and items,
we know that v is a segment of u. Therefore, we only need to prove s G

=⇒F v.

Lemma 5.4 Let (s, v) ∈ D. Then s G
=⇒F v.

Proof We apply the induction lemma of FCI. So assume (s, v) ∈ items and a set
M , where for every element (s′, v′), s′ G=⇒F v′ holds. Furthermore, we have stepM
(s, v). If v = s, then s G

=⇒F v follows by definition. Otherwise, we have s = A and
a setM ′ ⊆M where A\π1 M ′ ∈ G and π2 M ′ = v. With transitivity of derivations,
we have to prove (π1 M ′)

G
=⇒F v. This can be done by induction onM ′ because of

the assumption that s′ G=⇒F v′ for every element (s′, v′) inM . �

Now we can conclude Lemma 5.1.

Proof (Lemma 5.1) Using Lemma 5.3 Lemma 5.4. �

To get rid of the restriction of s to SG, we observe the following fact.

Fact 5.5 Assume A G
=⇒ u and A is not in SG. Then u = A.

By using FCI we showed that D is computable. From Lemma 5.1, we obtain our
primary aim: The word problem for context-free languages is decidable.

Theorem 5.6 LAG u is decidable.

Proof If u is not a word, then ¬LAG u. Otherwise, ifA ∈ SG, thenA
G
=⇒ u iff (A, u) ∈

DG,u by Lemma 5.1. If A /∈ SG, then A
G
=⇒ u iff u = A by Fact 5.5. �

https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Dec_Word.html#DW_derf'
https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Derivation.html#symbs_der
https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Dec_Word.html#lang_dec


35

Remark

In this chapter, we presented a bottom-up chart parsing algorithm. One could de-
scribe it as a generalized version of a CYK parser because we do not expect the
grammar to be in CNF. We examine all possible segments of the word we want
to parse. In contrast, CYK can expect the grammar to be binary. Therefore, it is
sufficient to just consider all possible segment pairs of the word.





Chapter 6

Elimination of Epsilon Rules

In the next chapters we describe several grammar transformations that apply to
general context-free grammars. For each transformation we will have to prove two
different lemmas:

1. After the transformation, the grammar fulfils the intended property.
2. The transformation preserves all languages of the grammar (except for the

empty word ε).

In this chapter, we describe a grammar transformation that generates an ε-free
grammar, i.e. a grammar without ε-rule (rules of the form A\ε). We follow the
algorithm described in [4, 1]. It consists of two steps. First, we generate the e-
closure of the grammar which makes every ε-rule redundant. This is achieved by
adding all rules A\u we obtain from a rule A\u′ ∈ G by deleting some variables
that can derive ε from u′. In the second step, we delete every ε-rule. The gener-
ated grammar produces the same phrases except from ε. The following example
illustrates the algorithm.

Example 6.2

Consider the following grammar:

G := A\aBA B\AA
A\ε B\b

Obviously, A can derive ε. With A\aBA and B\AA we add A\aB, B\A and
B\ε to the grammar. But then we know that B, too, can derive ε. Therefore,
we can add A\aA and A\a. We obtain the ε-closed grammar where A\ε and
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B\ε are redundant.

Gε := A\aBA B\AA
A\aB B\A
A\aA B\ε
A\a B\b
A\ε

Removing all ε-rules results in the ε-free grammar.

Gε− := A\aBA B\AA
A\aB B\A
A\aA B\b
A\a

The grammar is equivalent to the start grammar, except that neither A nor B
can derive ε.

We have shown that the word problem of context-free languages is decidable. This
means in particular that it is decidable whether a variable A can derive the empty
word ε. We then call A nullable. We give an inductive characterization of nul-
lable variables which is more convenient in proofs. It resembles the definition of
productive variables in Chapter 4.

A\u ∈ G ∀s ∈ u.nullableG s
nullableG A

Fact 6.1 nullableG A iff A G
=⇒ ε.

To ease notation, we use NG instead of nullableG. In general, we do not indicate
G if it is clear from the context. To formalize the elimination algorithm, we make
use of sublists which turned out be very helpful in formal proofs. Note that the
right-hand side of every rule in the ε-closure is a sublist with respect to N of a
rule in the original grammar. For the following, we will assume the properties of
sublists established in Fact 2.4. With sublists, we can state the property we want
the ε-closure to fulfil.

Definition 6.2 A grammar G is ε-closed if for every rule A\u in G the following holds:
If v -N u, then A\v is in G.

https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.ElimE.html#nullable_derE_equi
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The following function computes the closure of a grammar with respect to a pred-
icate p:

closure : (symbol
dec−−→ Prop)→ grammar → grammar

closure p [] := []
closure p (A\u :: G) := map (λu′. A\u′) (slists p u) ++ closure p G

Fact 6.3 A\v ∈ closure p G iff there is a rule A\u ∈ G and v -p u.

Instantiating closure results in the e-closure of a grammar:

Gε := closure N G

Corollary 6.4 A\v ∈ Gε iff there is a rule A\u ∈ G and v -N u.

To prove thatGε is ε-closed, we prove thatGε has the same nullable variables asG.

Lemma 6.5 nullableG A iff nullableGε A.

Proof By induction on nullable for each direction using ??. �

Lemma 6.6 Gε is ε-closed.

Proof Let A\u ∈ Gε and v -NGε u. Using Corollary 6.4, we know that there is a
rule A\u′ in G and u -NG

u′. Using Lemma 6.5, transitively also v -NG
u′. But

then again with Corollary 6.4, A\v must be in Gε. �

Next, we show that the ε-closure preserves the language of a grammar. More gen-
eral, we prove u G

=⇒T v if and only if u Gε

=⇒T v. We observe that if v is a sublist of u
with respect to nullable variables, then we can derive v from u.

Lemma 6.7 If v -N u then u G
=⇒T v.

Proof By induction on v -N u. �

Lemma 6.8 A
G
=⇒T u iff A Gε

=⇒T u.

Proof By induction on=⇒T for both direction using Corollary 6.4 and Lemma 6.7.�

Corollary 6.9 LAG ≡ LAGε .

Proof By definition of LAG applying Lemma 6.8. �
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Weshowed that the ε-closure of a grammar fulfils the desired ε-closedness property
and that it preserves the language. In the next stepwe prove that removing all rules
A\ε from Gε preserves the language of every variable — except from ε which can
not be derived anymore.

The following function computes the new grammar:

•− : grammar → grammar

G− := filter (λ(A\u). u 6= ε) G

The function G− is obviously correct:

Fact 6.10 G− is ε-free.

Fact 6.11 A\u ∈ G− iff u 6= ε and A\u ∈ G.

We now aim to prove the following lemma:

Lemma 6.12 Let G be ε-closed and u 6= ε. Then A G
=⇒ u iff A G−

==⇒ u.

The only-if-part is easy. SinceG− is a subset ofG, we can just take the same deriva-
tion . For the if-part, we need to prove that we need no ε-rules. In [8], the proof is
described as follows: Assume we do a derivation that uses an ε-rule A\ε, i.e. we
eliminate A. For a derivation in G−, we have to decide that we want to eliminate A
at the point where A is introduced. Instead of choosing the rule that contains A, in
an ε-closed grammar, there is the similar rule without A.

Formally, we want to find another proof as formalizing the notion of introducing
variables is unnecessarily complicated. Instead, we generalize the statement. We
prove that if G can derive u, then G− can derive every subphrase of u, where some
nullable variables are deleted. This gives us a strong inductive hypothesis. We use
the right-linear predicate =⇒L which allows us to argue about every rewriting step.

Lemma 6.13 Assume G is ε-closed, A G
=⇒L u, u′ -N u and u′ 6= ε. Then A G−

==⇒L u′.

Proof By induction on A G
=⇒L u. We have two cases.

• u = A. As u′ 6= ε, we have u′ = A and therefore A G−
==⇒L u′.

• A
G
=⇒L v1Bv3 and B\v2 ∈ G. We have u′ -N v1v2v3, so u′ = u1u2u3 and

u1 -N v1, u2 -N v2 and u3 -N v3. As G is ε-closed, we get B\u2 ∈ G. We
distinguish between u2 = ε and u2 6= ε.
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– u2 = ε and B is nullable. So u1u3 -N v1Bv3. By induction, we get directly

A
G−
==⇒L u1u3.

– u2 6= ε. Asu1Bu3 -s v1Bv3, we have by inductionA G−
==⇒L u1Bu3. Therefore,

A
G−
==⇒L u1u2u3 by definition. �

As - is reflexive, with Lemma 6.13, G− derives the same phrases as G except for ε.
Therewith, we can prove Lemma 6.12.

Proof (Lemma 6.12) It is left to show that A G−
==⇒ u implies A G

=⇒ u. Since G− ⊆ G,

the proof can be done with an easy induction on A G−
==⇒ u. �

Since Gε is ε-closed, we apply the removal operation to it and receive a grammar
that is ε-free.

Theorem 6.14 Gε− is ε-free.

Proof Follows from Fact 6.10. �

Theorem 6.15 LAG\{ε} ≡ LAGε−

Proof Using Corollary 6.9 and Lemma 6.12. �

Discussion

Using the notion of sublists to prove ε-elimination correct is, as far as we know, a
new approach. Thereby, we can avoid induction on the length of the derivation as
proposed byHopcroft andUllman [5]. Previous formalizations like [4, 1, 9] seem to
follow this idea. However, in our setting, sublists reduce the effort of formal proofs
considerably.
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Chapter 7

Elimination of Unit Rules

Unit rules are rules of the form A\B. We remove those rules by replacing them
by abbreviatory rules. Assume, A\B ∈ G. For every rule B\u ∈ G, we add A\u.
Then, we delete A\B from G, which is redundant now. Note that this technique
preserves the domain and the range of a grammar. Therefore, we can again make
use of finite closure iteration because all rules of the resulting grammar will be a
combination of an old left-hand side and an old right-hand side.

The required grammar GU can be best described by an inductive predicate.

A\u ∈ G ∀B. u 6= B

A\u ∈ GU
A\B ∈ G B\u ∈ GU

A\u ∈ GU

Every rule of G which is no unit rule is also a rule of GU . In addition, GU contains
all abbreviatory rules we get by simulating the use of a unit rule.

Similar to the algorithm that decides the word problem, we transfer this inductive
characterization to FCI. To give the upper boundN , wemake use of the generalized
product function ∗ introduced in Chapter 2. Therewith,N can be defined in terms
of a product using the rule constructor \.

NG := DG ∗\ RG

The step predicate implements the inductive characterization of GU .

stepG M (A\u) := A\u ∈ G ∧ ¬ ∃B. u = B

∨ ∃B. A\B ∈ G ∧ B\u ∈M

Fact 7.1 stepG is decidable.

We now obtain a grammar without unit rules.

https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.ElimU.html#step_dec
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GU := FCI stepG NG

Remember that in order to proveGU correct, we have to prove two statements. First,
GU does not contain any unit rule. In addition, it does not change the language LAG
for any variableA. The first property follows directly from the definition of the step
predicate and can be proved using the induction lemma of FCI (Lemma 2.3).

Theorem 7.2 GU does not contain any unit rule.

Proof By applying the induction lemma of FCI. �

In order to prove the preservation of all languages we prove that every word de-
rived by GU can also be derived by G and vice versa. Note that this statement only
holds for words, not for phrases in general: Right-hand sides of unit rules can be
derived byG but not byGU . We make use of the tree-like derivation predicate=⇒F ,
whose induction principle fits best to the definition of step. If we used =⇒L or =⇒T ,
we could not apply the inductive hypothesis as the interim phrase uBw is not a
word.

Soundness of GU regarding derivability follows with a simple induction, we just
have to prove that every rule in GU can be simulated by G.

Lemma 7.3 If A\u ∈ GU , then A G
=⇒F u.

Proof Using the induction lemma of FCI. �

Lemma 7.4 If A GU
==⇒F u then A G

=⇒F u.

Proof By induction on A GU
==⇒F u using Lemma 7.3 and the transitivity of =⇒F . �

For completeness, we have to prove that the step function yields the expected gram-
mar.

Lemma 7.5 If B\u ∈ GU and A\B ∈ G, then A\u ∈ GU .

Proof By applying the closure lemma of FCI. �

Lemma 7.6 If A\u ∈ G and u is not a single variable, then A\u ∈ GU .

Proof By applying the closure lemma of FCI. �

Now we can prove what we aimed for.

Lemma 7.7 If A G
=⇒F x then A GU

==⇒F x.

https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.ElimU.html#unitfree_elimU
https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.ElimU.html#Lemma elimU_corr3
https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.ElimU.html#derfelimU_derfG
https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.ElimU.html#elimU_corr2
https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.ElimU.html#elimU_corr
https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.ElimU.html#derfG_derfelimU
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Proof By induction on A G
=⇒F x. We distinguish three cases.

• x = A. By definition, A GU
==⇒F x.

• A\u ∈ G and by induction, u GU
==⇒F x. If u 6= B for all B, then A\u ∈ GU by

Lemma 7.6 and we are done. Otherwise, we have u = B for some B. Because
of B GU

==⇒F x and x 6= B as x is a word, there must be a rule B\v ∈ GU and
v

GU
==⇒F x (this can be proved with a simple induction on B GU

==⇒F x). With
Lemma 7.5, we have A\v ∈ GU and we are done.

• Follows directly from inductive hypotheses. �

Having Lemma 7.4 and Lemma 7.7, we can conclude the preservation of languages.

Theorem 7.8 LAG ≡ LAGU

Discussion

We eliminated unit rules by replacing themwith abbreviatory rules. This idea was
inspired by Firsov and Uustalu [4]. However, they do not use an iterative context.
An alternative approach is to insert all unit rules. This means that for A\B and
C\uAv, we add C\uBv. We gave up on this idea since it does not preserve the
range of a grammar. It would then have been much more difficult to use FCI, a
technique that simplifies proofs significantly.

https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.ElimU.html#unit_language




Chapter 8

Elimination of Deterministic Variables

Assume a grammarGwhich contains a ruleA\u. If this rule is the only rule withA
on the left-hand side, we call A deterministic. Deterministic rules are, in a sense,
superfluous, since one could replace every occurrence of A with u, an operation
we call inlining. We now want to formalize on which conditions we can sim-
plify a grammar by inlining one (or more) rules of the grammar. The following
function substitutes a symbol in a grammar and can thus be used to inline a rule.

substG : grammar → symbol → phrase → grammar

substG G s u := map (λ(B\v). B\v[s→ u]) G

WewriteG[A→ u] for substGA u. For the following, we assume several properties
of substG to hold. Some are properties of general substitution (Fact 2.9) lifted to
substitution in grammars.

Fact 8.1

1. (G1 ++ G2)[s→ u] = G1[s→ u] ++ G2[s→ u] (Split)
2. If s /∈ v, then (A\v :: G)[s→ u] = A\v :: G[s→ u]. (Skip 1)
3. If s /∈ SG, then G[s→ u] = G. (Skip 2)
4. If B is fresh in G, then (G[s→ B]) [B → s] = G. (Reversible substitution)

5. If B\v ∈ G, then u G
=⇒T u[B → v].

6. DG = DG[s→u]

We aim to prove that eliminating a deterministic variable preserves the languages
of the remaining variables of the grammar. Therefore, we consider themore general
problem A

G
=⇒ u and state under which conditions we can prove that the inlined

grammar preserves derivability.

Lemma 8.2 We define G′ := G[B → v] and want to derive a phrase u from A. Assume

https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Inlining.html#substG
https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Inlining.html#der_substG_G_equiv
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1. B /∈ DG and
2. B /∈ v and
3. B /∈ u and
4. A 6= B.

Then A G′
=⇒ u iff A B\v::G

====⇒ u.

A rule can be inlined if its left-hand side is unique inG and the rule is not recursive,
i.e. the left-hand side does not appear on the right-hand side. In addition, the
inlined grammar can not derive phrases that contain the inlined variable. Note that
this is the case when we consider only words, which do not contain any variables.
Moreover, the derivation must not start with the inlined variable.

We begin with the if-part of Lemma 8.2. We just have to prove that every rule in an
inlined grammar can be simulated by a derivation.

Lemma 8.3 If A\u ∈ G[B → v], then A B\v::G
====⇒ u.

Proof From A\u ∈ G[B → v] we know that there is a rule A\u′ ∈ G where
u = u′[B → v]. Moreover, we have u′ B\v::G

====⇒T (u′[B → v]). The claim holds
by transitivity of =⇒. �

With this auxiliary lemma, we can prove the if-part. Here, the definition of =⇒
allows us to directly apply Lemma 8.3 in the case of the third rule.

Lemma 8.4 If A G[B→v]
=====⇒ u, then A B\v::G

====⇒ u.

Proof By induction on A G[B→v]
=====⇒ u using Lemma 8.3. �

For the only-if part we need to prove a corresponding lemma for substitution on
phrases: With an inlined grammar we can derive inlined phrases. For this proof,
the linear derivation predicate =⇒L is more convenient then =⇒, as the numerous
assumptions of the claim would complicate the two inductive hypotheses of the
third rule of =⇒.

Lemma 8.5 Let A B\v::G
====⇒L u be given. We assume that A 6= B, B /∈ DG and B /∈ v.

Then A G[B→v]
=====⇒L u[B → v].

Proof By induction on A B\v::G
====⇒L u. We distinguish two cases.

• u = A. From A 6= B, we get u[B → v] = u and the claim holds by definition.

https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Inlining.html#in_substG_der
https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Inlining.html#der_substG_G
https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Inlining.html#der_G_substG'
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• A
B\v::G
====⇒L uB′w and B′\v′ ∈ B\v :: G. By induction we have A G[B→v]

=====⇒L
(uB′w)[B → v]. If B′ = B, then v = v′ because B /∈ DG. Then (uB′w)[B →
v] = (uv′w)[B → v] because B /∈ v and we are done. Otherwise, B′ 6= B, and
B′\v′ ∈ G. Therefore, B′\v′[B → v] ∈ G[B → v]. So by definition of =⇒L and
the inductive hypothesis we have A G[B→v]

=====⇒L (uv′w)[B → v] which is what we
aimed for. �

This lemma directly yields the only-if-part.

Lemma 8.6 Let A B\v::G
====⇒L u be given. We assume that A 6= B, B /∈ DG, B /∈ v and

additionally B /∈ u. Then A G[B→v]
=====⇒L u.

Proof From B /∈ uwe have u[B → v] = u and we can apply Lemma 8.5. �

Together, we can prove what we aimed for, Lemma 8.2.

Proof (Lemma 8.2) By using Lemma 8.4 and Lemma 8.6. �

Theorem 8.7 If A 6= B, B /∈ DG and B /∈ v, then LAG[B→v] ≡ L
A
B\v::G.

The technique of inlining rules of a grammar will turn out to be a useful tool for
the grammar transformations that are yet to come. In the context of this thesis,
we will only inline a single rule. However, we still discuss how to inline a list of
deterministic rules in a grammar. The inlining function is defined as expected and
is based on substG.

inlL : grammar → list rule → grammar

inlL G [] := G

inlL G (A\u :: M) := (inlL G M)[A→ u]

We lift the conditions stated in Lemma 8.2 to lists. They can be described with an
inductive predicate that is inspired by a predicate defining unification in [10]. We
use ‖ to indicate that two lists are disjoint.

inlinableG nil

A /∈ u A /∈ DM u ‖ DM inlinableG M

inlinableG (A\u ::M)

Of course, the empty list can be inlined into a grammar. Furthermore, assume that
M can be inlined intoG. Note, that inlL inlines a list of rules from right to left. There-
fore, if we want to inline an additional rule on the left, its left-hand side should not
appear in the rest of the list. Otherwise, we would inline a non-deterministic rule.

https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Inlining.html#der_G_substG
https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Inlining.html#inl_language_equiv
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Furthermore, u must be disjoint from the left-hand sides of M because we drop
rules we inline. With the same argument we state that the inlined rule should not
be recursive.

Lemma 8.8 We define G′ := inlL GM . Assume

1. inlinableG M and
2. u ‖ DM and
3. A ∈ DG.

Then A G′
=⇒ v iff A G ++M

====⇒ u.

Both, the if-part and the only-if-part are similar to the case of inlining a single rule.
For the if-part, we prove that every rule in the inlined grammar can be simulated
by the old grammar in several steps.

Lemma 8.9 If A\u ∈ inlL GM , then A G ++M
====⇒ u.

Proof By induction onM . �

With this lemma we conclude the if-part.

Lemma 8.10 If A inlL G M
=====⇒ u, then A G ++M

====⇒ u.

Proof By induction on A inlL G M
=====⇒ u using Lemma 8.9. �

For the only-if-part, we can profit from the only-if-part of Lemma 8.2 because
inlinableG justs lifts the conditions of Lemma 8.2 to lists.

Lemma 8.11 Let A G ++M
====⇒ u. Assume inlinableG M , u ‖ DM and A ∈ DG. Then

A
inlL G M
=====⇒ u.

Proof By induction onM using Lemma 8.6. �

Now we can prove Lemma 8.8.

Proof (Lemma 8.8) Using Lemma 8.10 and Lemma 8.11. �

With Lemma 8.8, we obtain the desired property of inlining deterministic variables.

Theorem 8.12 If inlinableG M and A ∈ DG, then LAinlL G M ≡ LAG ++M .

https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Inlining.html#inlL_langauge_equiv
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Remark

Note that we do not automatically eliminate all deterministic variables of a gram-
mar. This would not be possible without changing the languages of the grammar
(e.g. consider a deterministic rule A\x). Instead, we explicitly state which rule (or
list of rules) we inline into a given grammar. However, one could automatically
eliminate all deterministic rules whose right-hand sides are not a word. This task
might be interesting for future work.





Chapter 9

Separation of Grammars

In this chapterwe describe how to generate a uniform grammar. A grammar is uni-
form, if every rule has a single character on its right-hand side or a list of variables.
We achieve this by separating characters from the rest of the grammar: We intro-
duce a new rule A\a for every character a that appears on the right-hand side of a
rule; except from rules that are already of the form B\a. Afterwards, a is replaced
by A in the entire grammar, where Amust be fresh.

We define uniformness formally:

uniformG := ∀A\u ∈ G. ∀a. a ∈ u→ u = a.

We realize separation with finite fixed point iteration (FFPI). In every step, we sep-
arate one character from the grammar. Note that in this case, we can not apply
finite closure iteration. We would have to give a list N such that every rule of the
resulting grammar is in N . However, the resulting grammar contains rules with
fresh variables. Therefore, giving N would require too much effort.

In order to apply FFPI, we need to provide

1. A step function f : grammar → grammar that separates one character if possible
and does not change the grammar otherwise.

2. A size function σ : grammar → N that decreases with every step f G, ifG is not
a fixed point of f .

Note that in contrast to FCI, f is a function and not a decidable predicate. We
observe that ifG is not uniform, then we can pick a character that can be separated
from G. We prove this statement with the help of an informative type.

Lemma 9.1 {a | ∃A\u ∈ G. a ∈ u ∧ |u| ≥ 2} + uniformG

Proof By induction onG. Weuse that if u is not character-free, then the type {a | a ∈
u} is inhabited. �

https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Separate.html#pickCharRule
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With this lemmawe construct a function getChar : grammar → option char which
yields Some a, if there is a character a than can be separated and None otherwise.
Below, we assume such a function getChar. Remember that for every grammar we
can assume a generator for fresh variables (Fact 3.8). Therewith, we define the step
function.

step : grammar → grammar

step G := match getChar G with
| None ⇒ G

| Some a ⇒ let A := fresh G

in A\a :: (G[a→ A])

Furthermore, assume a function countChars : phrase → Nwhich counts the number
of characters in a phrase. Its implementation is obvious and is omitted at this point.
Therewith, we give a size function count that counts the number of characters in
rules others than A\a.

count : grammar → N
count [] := 0
count (A\u :: G) := if |u| < 2 then count G

else countChars u + count G

Now we define the uniform grammar with the help of FFPI.

GS := FFPI step count

Before proving that GS preserves the languages of G, we prove that GS is indeed
uniform. Therefore, we show that count and step meet the requirements of FFPI
such that it returns a fixed point. Afterwards, we prove that every fixed point of
step must be a uniform grammar.

For the first point we need to prove that count decreases if we have not yet reached a
fixed point (Lemma 2.2). Wemake two observations. First, if we replace a character
with a variable, count will not increase. Second, if this character can be found in a
rule that does not just map to a character, then count decreases.

Lemma 9.2 count G ≥ count (G[a→ A])

Proof By induction on G using that countChars u ≥ countChars u[a→ A]. �

Lemma 9.3 Assume A\u ∈ G, a ∈ u and u 6= a. Then count G > count (G[a→ B])

Proof It suffices to prove count [A\u] > count ([A\u][a → B]) as count will not
decrease for the rest of the grammar (Lemma 9.2). But then we have countChars
u > countChars u[a→ A] because a ∈ u. �

https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Separate.html#count_sep_substL
https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Separate.html#count_sep_decr


55

Now it is easy to prove what we aimed for.

Lemma 9.4 If step G 6= G then count G > count(step G).

Proof Using Lemma 9.3. �

With the fixed point lemma we get that GS is a fixed point.

Lemma 9.5 GS is a fixed point of step.

Proof We apply the fixed point lemma of FFPI Lemma 2.2. Therefore, we need to
prove that for every n either stepn G is a fixed point or count G > count (step G).
This follows with Lemma 9.4. �

It is left to prove is that a fixed point of step is uniform.

Lemma 9.6 Let G be a fixed point of step. Then G is uniform.

Proof A step step G yields either G or B\a :: G[a → B] for some fresh variable
B. In the first case, G is uniform by construction (Lemma 9.1). The second case is
contradictory. We have G = stepG = B\a :: G[a → B]. But by construction, B is
fresh in G. �

Theorem 9.7 GS is uniform.

Proof GS is a fixed point of step (Lemma 9.5) and every fixed point of step is uni-
form (Lemma 9.6). �

Next, we prove that LAG ≡ LAGS . As we might have added fresh variables to GS ,
we can only prove this statement for variables that are in the domain of G. Again,
FFPI shortens our proofs. It suffices to show that the step function preserves the
language because the induction lemma of FFPI lifts this proof toGS . We prove that
we obtain the original grammar by inlining the rule that step might add. Since we
proved that inlining preserves derivability (on certain conditions) in Chapter 8, we
obtain the intended result. However, we need to assume the derived phase to be a
word because otherwise, it could contain a freshly introduced variable.

Lemma 9.8 Assume A ∈ DG. Then A
step G
====⇒ x iff A G

=⇒ x.

Proof We have stepG = G or stepG = B\a :: G[a → B] for some fresh variable B.
The first case is easy. For the second, we prove both parts of the equivalence. In
both proofs, we can substitute G with (G[a → B])[B → a] as B is fresh. Now we
can apply the correctness lemma of inlining (Lemma 8.2). �

https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Separate.html#count_decr
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The FFPI induction lemma yields the correctness of GS . Therefore, we need to
prove that step G subsumes the domain of G.

Lemma 9.9 DG ⊆ Dstep G

Proof By induction on G. �

Lemma 9.10 Assume A ∈ DG. Then A
G
=⇒ u iff A GS

==⇒ u.

Proof We generalize the claim toA G
=⇒ u iffA stepn G

====⇒ u and do induction on n ∈ N
using the induction lemma of FFPI (Lemma 2.2), Lemma 9.9 and Lemma 9.8. �

Theorem 9.11 Assume A ∈ DG. Then LAGS ≡ LAG.

Discussion

We assumed a function getChar : grammar → option char to exist. In Coq, we did
not realize thiswith an option type. Instead, the step function is describedwithCoq
tactics which work directly with the informative type in Lemma 9.1. The desired
function is then given as a proof term that Coq constructs. These proof terms are
meant to prove the existence of a functions with the desired properties, not to be
executed in practice. However, in this case, this approach requires considerably
less work than giving the function explicitly and then proving it correct. The proof
of FCI in [10] follows the same approach.

In this chapter (and others), we profit from an abstraction for fixed point iteration.
We only have to prove the correctness of a step function. However, there are algo-
rithms that work more efficiently. As an example, one would expect the function
getChar to search the whole grammar for a new character. This is done in every
step, even though we could start the search at the point where the last character
has been found.

https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Separate.html#step_dom
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Chapter 10

Binarization of Grammars

Context-free grammars are, in a sense, two-dimensional. Every grammar has arbi-
trarily many rules and the right-hand sides of the rules can be arbitrarily long. In
a binary grammar, every right-hand side counts at most two symbols. This means
that the grammar becomes one-dimensional and easier to handle in proofs. We
show that every grammar can be transformed into a binary counterpart. As be-
fore, we make use of finite fixed point iteration and show that the transformation
preserves the languages of the grammar.

If a grammar G is not binary, there is a rule A\su with three or more symbols on
the right-hand side. We can shorten this rule by replacing A\su with two rules
A\sB and B\uwhere B is a fresh variable. This is an operation inverse to inlining,
similar to separation described in Chapter 9. Hence, we again use inlining to prove
it correct. We implement the idea with the following step function.

step’ : grammar → grammar → grammar

step’ G′ [] := []
step’ G′ (A\[] :: G) := A\[] :: step’ G′ G

step’ G′ (A\[s0] :: G) := A\[s0] :: step’ G′ G

step’ G′ (A\[s0;s1] :: G) := A\[s0;s1] :: step’ G′ G

step’ G′ (A\(s0::u) :: G):= let B := fresh G′

in A\[s0;B] :: B\u :: G

step : grammar → grammar

step G := step’ G G

In contrast to prior step functions, we need to implement step with an auxiliary
function step’ which takes a second grammar as argument to remember which
grammar to choose a new variable from. Apart from the step function, we pro-
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vide a size function to apply FFPI. The following function adds the length of all
rules that are not binary. This number decreases with every step.

count : grammar → N
count [] := 0
count (A\u :: G) := if |u| ≤ 2 then count G

else |u| + count G

We obtain the binary counterpart for each grammar with the help of FFPI.

G2 := FFPI step count

Proving that G2 is binary is straightforward. Similar to Chapter 9, we first prove
that step decreases for grammars that are no fixed point of step. Together with the
lemmas of FFPI we prove thatG2 is a fixed point of step. Afterwards, we show that
every fixed point of step is binary. Therefrom, we then obtain that G2 is binary.

Lemma 10.1 If step G 6= G, then count G > count (step G).

Proof By induction onG. The base case is contradictory. So assumeG = A\u :: Gr.
IfA\u is binary, thenGr 6= step′ GGr and the statement follows with the inductive
hypothesis. Otherwise, we have u = s :: u′ and we add a binary rule, which is not
counted, and |u′| < |u|. �

Lemma 10.2 G2 is a fixed point of step.

Proof We apply the fixed point lemma of FFPI (Lemma 2.2). Therefore, we need
to prove that for every n either stepn G is a fixed point or count G > count (step G).
This follows with Lemma 10.1. �

Lemma 10.3 Let G be a fixed point of step. Then G is binary.

Proof By induction on G. �

Theorem 10.4 G2 is binary.

Proof G2 is a fixed point of step (Lemma 10.2) and every fixed point of step is binary
(Lemma 10.3). �

To prove that G2 preserves the language of G we proceed similar to Chapter 9. It
suffices to show that step preserves the language of G. Again, we can prove our
goal only for variables from DG.

Lemma 10.5 Assume, A ∈ DG. Then A
G
=⇒ x if and only if A step G

====⇒ x.

https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Binarize.html#count_decr
https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Binarize.html#fp_bin
https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Binarize.html#fp_binary
https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Binarize.html#bin_binary
https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Binarize.html#step_der_equiv


59

Proof We distinguish two cases. If step G = G, then the claim follows directly.
Otherwise, one rule of G has been shortened, i.e. G ≡ A\su :: Gr, stepG ≡ A\sB ::

B\u :: Gr and B is a fresh variable. Therefore, G ≡ (A\sB :: Gr)[B → u]. Since
B is fresh and x is a word, the goal follows with the correctness lemma of inlining
(Lemma 8.2). �

To lift this lemma to G2, we need to prove that step G subsumes the domain of G.

Lemma 10.6 DG ⊆ Dstep G

Proof By induction on G. �

With this lemma it follows the correctness of G2.

Corollary 10.7 Assume, A ∈ DG. Then A
G
=⇒ x if and only if A G2

=⇒ x.

Proof We generalize toA G
=⇒ u iffA stepn G

====⇒ u and do induction on n ∈ N using the
induction lemma of FFPI (Lemma 2.2), Lemma 10.5 and Lemma 10.6. �

Theorem 10.8 Assume, A ∈ DG. Then LAG ≡ LAG2 .

Discussion

The inlining tool to eliminate deterministic variables turned out to be useful in the
last two chapters. It implements an inverse operation to both, a step of separation
and a step of binarization. Therewith, proving the correctness of both transforma-
tions was easy. This kind of generalization has, as far as we know, not yet been
discussed in formalizations of context-free grammars.
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Chapter 11

Chomsky Normal Form

In the last chapters, we discussed all grammar transformations that are required
for the transformation of a grammar to Chomsky normal form.

Definition 11.1 A grammar G is in Chomsky normal form (CNF) if

1. G is ε-free and
2. G is binary and
3. G is uniform and
4. G does not contain any unit rules.

Classically, G is not assumed to be completely ε-free as this would forbid ε to be in
its language. Therefore, a rule S\ε is allowed, if S is the start symbol. As we do not
care about start symbols, we assume ε not to be in any language of G. Otherwise
—we proved that this is a decidable problem— it is easy to add rules S\A and S\ε
after normalization that fixes S (or rather A, if we want to derive something else
then ε) to be the start symbol.

11.1 Transformation to Chomsky Normal Form

For a grammar G, we obtain a grammar GN in CNF by first applying binariza-
tion, followed by separation, elimination of ε-rules and elimination of unit rules.
To prove that GN is indeed in Chomsky normal form, we need to prove that non
of our transformations destroys the progress we already achieved. Note that the
order in which we apply the single transformations does matter. For example, the
elimination of ε-rules could add new unit rules. Hence, we should eliminate unit
rules after eliminating ε-rules. Since all described transformations work on gen-
eral grammars, we can, for example, assumeGε− to be ε-free , irrespective of which
transformations we applied before.

https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Chomsky.html#chomsky
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To obtain a grammar in CNF, we first apply binarization. Therefore, we prove that
the other transformations do not create non-binary rules when applied to a binary
grammar.

Lemma 11.2 Separation and the elimination of ε-rules and unit rules preserve binarity.

1. If G is binary, then also GS is.
2. If G is binary, then also Gε− is.
3. If G is binary, then also GU is.

Proof

1. We apply the induction lemmaof FFPI andneed to show that the separating step
function (we call it stepS) preserves binarity for someG′. Assume stepS G′ = G′,
then the claim follows by assumption. Otherwise stepS G′ = B\a :: G′[a→ B].
As G′ is binary, also G′[a→ B] is. B\a is obviously binary.

2. Every right-hand side of a rule inGε− is a sublist of a right-hand side inG. Since
sublists to not increase the length of a list, Gε− is binary.

3. Follows directly asRG = RGU . �

Corollary 11.3 GN is binary.

Proof Follows from Lemma 11.2 together with Theorem 10.4. �

Next, we prove that GN is uniform.

Lemma 11.4 The elimination of ε-rules and unit rules preserve uniformness of a gram-
mar.

1. If G is uniform, then also Gε− is.
2. If G is uniform, then also GU is.

Proof

1. Assume A\u ∈ Gε− and a ∈ u. It follows that there is a u′ such that A\u′ ∈ G
and u -N u′. Therefore, a ∈ u′. As G is uniform, it follows u′ = a. As u is a
sublist of u′ and Gε− is ε-free, u = a.

2. Follows directly asRG = RGU . �

Corollary 11.5 GN is uniform.

Proof Follows from Lemma 11.4 together with Theorem 9.7. �

https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Chomsky.html#binary_sep
https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Chomsky.html#excluded_free
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Finally. we need to prove that GN is ε-free.

Lemma 11.6 If G is ε-free, then also GU is.

Proof Follows directly asRG = RGU . �

Corollary 11.7 GN is ε-free.

Proof Follows from Lemma 11.6 together with Theorem 6.14. �

Theorem 11.8 GN is in Chomsky normal form.

Proof Follows fromCorollary 11.3, Corollary 11.5 andCorollary 11.7 togetherwith
Theorem 7.2. �

Now that we know that GN is in Chomsky normal form, it remains to prove that
GN has the same languages. Because of how we defined ε-elimination, we exclude
ε from that statement. Moreover, aswe added fresh symbols to the grammar during
transformation, we only consider languages of variables that are in the domain of
the original grammar. This is whywe show that binarization subsumes the domain
of a grammar in order to apply the correctness lemma of separation.

Lemma 11.9 DG ⊆ DG2

Proof With the induction lemma of FFPI using that the step function used for bi-
narization subsumes the domain (Lemma 10.6). �

Finally, we can prove that normalization preserves the languages of the grammar.

Theorem 11.10 Assume A ∈ DG and u 6= ε. Then LAG ≡ LAGN .

Proof Follows from the correctness theorems of each chapter (Theorem 6.15, The-
orem 7.8, Theorem 9.11, Theorem 10.8) together with Lemma 11.9. �

https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Chomsky.html#efree_unit
https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Chomsky.html#chomsky_normalform
https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Chomsky.html#bin_dom
https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/CFG.Chomsky.html#language_normalform




Chapter 12

Conclusion

In this thesis, we gave a formalization of context-free grammars based on lists. We
described algorithms to decide the emptiness and the word problem. In addition,
we discussed four grammar transformations (elimination of ε-rules, elimination
of unit rules, separation and binarization) necessary to give the Chomsky normal
form of a grammar. Both decidability results and the transformations can be ap-
plied to general CFGs, we do not assume it to be binary or in CNF.

It turned out that the decision functions and all transformations can be described
as bounded iterations on grammars. Hence, we were able to apply abstractions for
finite fixed point and closure iterations. Thereby, we obtained intuitive algorithms
and simple correctness proofs.

12.1 Future Work

The theory of context-free grammars and languages is broad. Thismeans that there
are many results that we did not discuss in this thesis. First of all, it would be inter-
esting to prove that the finiteness problem of context-free languages is decidable.
Intuitively, a language should be finite if productive variables do not appear in
circles. We already described how to detect productive variables. We assume rec-
ognizing circles in a grammar to be a feasible task. As far as we know, this problem
has not yet been formalized in a proof assistant.

Furthermore, one could consider to formalize the elimination of useless symbols
which is not included in the transformation to CNF. In [9], Ramos describes an
approach which is formalized in Coq.

In addition, we did not discuss closure properties of context-free languages, some
of them involving regular languages. In his PhD thesis [9], Ramos proves that
context-free languages are closed under union, concatenation and Kleene star. The
work of Barthwal [1] additionally includes that context-free languages are closed
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under the image of a homomorphism and substitution. In this thesis, we already
alluded to substitution (Chapter 8) which could be extended.



Appendix A

Coq Realization

This work is carried out in the proof assistant Coq [11], compiled with version
8.5pl2 (July 2016). All results can be found at https://www.ps.uni-saarland.de/
~hofmann/bachelor.php. The development counts about 2000 lines (the Base li-
brary not included). The organization of the files mainly follows the chapters of
this thesis.

Definitions and Preliminaries

We use the Base.v library that was developed for [10] as basis. Here, you can find
the definition of finite closure and finite fixed point iteration. The file Lists.v adds
some definitions and lemmas about lists. This includes everything which is dis-
cussed in Chapter 2, i.e. sublists, segments, substitution and other functions.

Context-Free Grammars

Context-free grammars are defined in Definitions.v. The definitions of the do-
main, range, etc. can be found in Symbols.v. This also includes several lemmas
about fresh variables. All definitions and equivalences concerning derivability are
proved in Derivation.v. The content of these three files is described in Chapter 3.

Decidability Results

In Dec_Empty.v, you can find the results of Chapter 4, i.e. the decidability of
the emptiness problem. The decidability of the word problem is formalized in
Dec_Word.v.

https://www.ps.uni-saarland.de/~hofmann/bachelor.php
https://www.ps.uni-saarland.de/~hofmann/bachelor.php
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Transformations and Chomsky Normal Form

The elimination of ε-rules is given in ElimE.v, the elimination of unit rules in
ElimU.v. In Inlining.v, we discuss substitution in grammars and the elimination
of deterministic variables. The results are used in Separate.v and Binarize.v,
where the separation of characters and the binarization of grammars can be found.
Finally, in Chomsky.v, we prove a transformation to Chomsky normal form correct.



Appendix B

Use of Derivation Predicates

In this thesis, wemakeus of different characterizations of derivations. In the follow-
ing table, you can find for each chapter that involves discussions about derivability
which predicate we apply for the main proofs.

Chapter 4: Decidability of Emptiness Problem =⇒F

Chapter 5: Decidability of Word Problem =⇒F

Chapter 6: Elimination of Epsilon Rules =⇒T , =⇒L

Chapter 7: Elimination of Unit Rules =⇒F

Chapter 8: Elimination of Deterministic Variables =⇒, =⇒L

Chapter 9: Separation of Grammars =⇒

Chapter 10: Binarization of Grammars =⇒



Appendix C

Variable and Function Names

C.1 Variable Names

grammars G

phrases u, v, w

words (terminal phrases) x, y, z

rules r

symbols s

characters a, b, c, . . .

variables A, B, C, . . .

C.2 Transformations and Function Names

ε-free grammar Gε−

grammar without unit rules GU

uniform grammar GS

binary grammar G2

grammar in CNF GN

domain DG

range RG

symbols SG
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