
State of my Bachelor Thesis
The Undecidability of First-Order Logic over Small Signatures

Johannes Hostert

June 8, 2021

Contents
1 Introduction 2

2 Hilbert’s 10th problem 2

3 Uniform Diophantine Pair Constraints 2

4 Our First-Order instance and its models 3

5 Validity 4

6 Provability 5

7 Corollaries 6

8 Remarks on the Coq formalization 7

9 Further work 7

10 Overview of related literature 7
10.1 Church 1936; Turing 1936 . 7
10.2 Kalmár 1937 . 8
10.3 Forster et al, 2019 . 8
10.4 Kirst and Hermes, 2021 . 8
10.5 Kirst and Larchey-Wendling, 2020 . 8

References 8

Johannes Hostert

1 Introduction

It is known that various interesting properties of First-Order Logic (FOL) are undecidable. These in-
clude Validity, Provability and Satisfiability, which denote the property that a formula is satisfied
in all models, is provable using a deduction system for FOL, or that there exists at least one model
in which a formula is true. For a classical context, these problems have been shown undecidable by
Church[2] and Turing[12]. In an intutionistic context like the one will be working in, they are still
undecidable, but the proof is a bit more involved. The details can be found in Forster, et al [4]. We
will use their development as a starting ground.

While these decision problems are undecidable in the general case, it might still be possible to decide
them in special cases. For example, Löwenheim [9] showed that FOL is decidable as long as the
used signature only has (at most) unary function and relation symbols. Contrarily, as soon as one
introduces a function or relation with arity greater 1, the above problems become undecidable again
[5]. This has already been mechanized in Coq in [6]

One usually shows this by giving several reductions, each of which “compresses” the signature, until
eventually only a single binary relation remains. We, however, will show the undecidability of these
problems for FOL with a signature containing exactly one binary relation using a single explicit
reduction from a problem (i.e. a certain Diophantine constraints problem) not immediately related
to FOL. We will formalize this in Coq, working within the Coq Library of Undecidability Proofs
[3].

We will thus be working within the framework of synthetic computability theory [1]. This means that
we will implement all our computable functions in Coq. Since all functions definable in Coq’s type
theory are computable, we do not need to show this explicitly. However, we cannot show that a certain
function is undecidable this way. Thus we just assume that i.e. the halting problem is undecidable,
and then formalize reductions from this problem.

2 Hilbert’s 10th problem
In the following sections, we will be working with a discrete, countably infinite collection of variables
x, y, z, w, ... : V.

Hilbert’s 10th problem famously asked for a decision procedure for whether a set of Diophantine equa-
tions has a solution. It later was established that this is undecidable [11]. A Diophantine equation is
an equation over V, where the variables are interpreted as integers and valid operations are +, ∗.

There are many variations of this problem, many of which are undecidable, too. One of these unde-
cidable variations is the following:

The problem UDC is defined over a finite collection of triplets of V:

[(x1, y1, z1), . . . , (xn, yn, zn)] ∈ UDC

:⇔∃φ : V → N, ∀1 ≤ i ≤ n, 1 + φx+ (φy)2 = φz

The collection of tuples (xi, yi, zi) can be understood as a list of Diophantine equations. Undecidability
of this problem is already formalized in the library [8].

3 Uniform Diophantine Pair Constraints
We will first give another problem equivalent to UDC , which we will call Uniform Diophantine
Pair Constrains (UDPC). A system of pair constraints is a list of V pair pairs ((ai, bi), (ci, di)) :
(V ∗ V) ∗ (V ∗ V). We first define the relation (a, b)#(c, d) :⇔ 1 + a + b = c ∧ b · (1 + b) = 2d. The

Page 2 / 9

Johannes Hostert

decision problem UDPC is then defined as

{((a1, b1), (c1, d1)), . . . , ((an, bn), (cn, dn))} ∈ UDPC

:⇔∃φ : V → N, ∀1 ≤ i ≤ n, (φai, φbi)#(φci, φdi)

This again can be understood as a collection of Diophantine equations.

We can show that this problem is undecidable by reducing from UDC . The reduction function can be
given as

f(H) := concat [[((a, a), (b, t1)), ((c, y), (b, a)), ((c, x), (z, t2))] | (x, y, z) ∈ H]

where a, b, c, t1, t2 are fresh variables, and concat : L (LX) → LX. Verifying this in Coq is rather
straightforward, it can be found in theories/DiophantineConstraints/H10UC_to_UDPC.v.

We remark two interesting properties of the relation #:

1. If (a, 0)#(b, 0), then b = S a = a+ 1. As a consequence, ∀a : ∃b : (a, 0)#(b, 0).

2. If (a, b)#(c, d), then (a, S b)#(S c, b+ d+ 1). This can be reformulated into the following state-
ment: ∀abcdeb′c′, (a, b)#(c, d) ∧ (d, b)#(e, d) ∧ (b, 0)#(b′, 0) ∧ (c, 0)#(c′, 0) → (a, b′)#(c′, e).

Both of these statements are formulated without reference to functions operating on integers, they
only use variables and our relation #. This will become important in the next section.

4 Our First-Order instance and its models
As mentioned, we will show that validity, provability and satisfiability are undecidable for signatures
with binary relations. We do this by constructing several many-one reductions from our seed problem
UDPC towards a term in FOL over a signature (∅,#) - that is, our siganture only contains the binary
predicate #, and no functions.

Here, we overload the symbol #, which represents both as the relation on N2, and as a syntactic
symbol for terms in the syntax of FOL over the aforementioned signature. To resolve ambiguities, we
sometimes denote the latter as #2.

We will now gradually build up an FOL axiomatization of our # relation. At each step, we will consider
the developed machinery in a “standard model”. This standard model has objects M := N2 +N, and
a#Mb, the interpretation of #2 in M is defined as follows (with n,m, x, y : N):

n#Mm := n = m

n#M(z, w) := n = z

(x, y)#Mm := y = m

(x, y)#M(z, w) := (x, y)#(z, w)

Since #M is an extension of # to M which is compatible with the original definition of #, we may
also omit the M.

We now start with the following definitions:

N k :=k#k

P ′ k :=N k → ∀xy, x#y

N k means that k is a number, because k#k only holds in this case. P ′ k denotes that k is a pair.
Note that ∀xy, x#y is contradictory in M.

Page 3 / 9

Johannes Hostert

We now define:

P p l r ϕ := P ′ p→ N l → N r → l#p→ p#2r → ϕ

rel p q a b c d ϕ := P p a b (P q c d (p#q → ϕ))

P denotes that p = (l, r) in our standard model, i.e. p is a pair with l as the left and r as the right
component. rel denotes that (a, b)#(c, d), where p, q are the pairs witnessing this.

We can now write our two properties from above as FOL terms:

φ1 :=∀n,N n→ ¬∀lsr, rel l r n 0 s 0⊥
φ2 :=∀p1p2p3p4p5p6p7p8abcdeb′c′,

rel p1 p2 a b c d (rel p3 p4 d b e d (rel p5 p6 b 0 b
′ 0 (rel p7 p8 c 0 c

′ 0 (ψ)))),

where ψ := ¬∀lr, rel l r a b′ c′ e⊥

Note that we have encoded the ∃-quantifier as ¬∀¬. This is because our reduction actually targets
the universal-implicative fragment of FOL, where the only allowed logical connectives are →, ∀,¬. We
are also able to eliminate the ¬ by employing a Friedman translation, where we simply define:

⊥ :=c1#2c2

¬ϕ :=ϕ→ ⊥

c1 and c2 are two variables bound somewhere. The same holds for 0 in the other terms above.
Importantly, 0 is not understood as a nullary function.

Armed with these definitions, we can now define the final reduction function F , which, given an
instance h of UDPC , gives a FOL statement:

single a b c d := ¬∀lr, rel l r a b c d⊥

F [((a1, b1), (c1, d1)), . . . ((an, bn), (cn, dn))] := ∀0c1c2, N 0 → φ1 → φ2 → ¬ ∀
i:V(h)

xi , ψ, where

m := 1 + max{a1, b1, c1, d1, . . . , an, bn, cn, dn}
ψ := single xa1 xb1 xc1 xd1 → · · · → single xan xbn xcn xdn → ⊥

single denotes that (a, b)#(c, d). The complete reduction function first assumes the points c1, c2, and
0, then the axioms N 0, φ1, and φ2. Then, behind a negation, we generate ∀-quantifiers which bind
a new variable xi for each variable used in the input. We then add a chain of preconditions, one for
each constraint from our constraint set. Once these preconditions are met, we get ⊥, allowing us to
show the introduced negation.

As mentioned, our formula uses the minimal signature discussed above. Apart from that, we only
have variables, ∀ and →, which places us in the universal-implicative positive segment of FOL. This
is desirable because it is a very weak form of FOL, so our undecidability result is stronger.

5 Validity
Formally, we show that it is undecidable whether a formula in our first-order logic is valid in all Tarski
models by reducing from UDPC , using the above reduction functions. Now, two things remain to
show for an arbitrary instance h of UDPC .

• If h ∈ UDPC , then F (h) is valid in all models of L.

• If F (h) is valid in all models of L, then h ∈ UDPC .

The second fact is the easier one, since, if F (h) is valid in all models, it is valid in the standard model.
For the actual proof, we use a slightly modified model - we define n#2m := n = m ∨ (n = 0 ∧m =
1 ∧ h ∈ UDPC). We will use this later by specifying c1 and c2 such that ⊥M ⇔ h ∈ UDPC .

Page 4 / 9

Johannes Hostert

We then obtain that f(h) is valid in the standard model. We specialize F (h) with 0 := 0, c1 :=
0, c2 := 1. We then show that N 0, φ1 and φ2 are indeed valid in this model. Finally, we arrive at the
implication chain, which gives us all the necessary preconditions to actually show that h actually is
∈ UDPC , since single a b c d is equivalent to (a, b)#(c, d) in our standard model.

The other direction is harder. We need to show that F (h) is valid in any model M (with domain
D ̸= ∅). We assume that N 0,Ax1 and Ax2 are valid for certain points 0, c1, c2 ∈ D. We also get a φ
which consistently assigns values to all “variables” in h, since h ∈ UDPC . We then need to establish
two main lemmas before we can show that F (h) is valid:

Lemma 1 (Chain). For any n ∈ N, we can construct a “chain” f : N → D, which contains the
“representation” of the first n numbers in D.

Formally, we have: N (f0) ∧ ∀0 ≤ i ≤ n, ∃lr, l is the pair (fi, 0)∧ r is the pair (f(i+ 1), 0) ∧ l# r.

Proof by induction on n.
We use the axiom φ1 for the induction step. The base is shown by N 0.

Lemma 2. For all pairs (a, b), (c, d), if (a, b)#(c, d),
and if we have a chain up to max{φa, φb, φc, φd} represented by f , then single (fa) (fb) (fc) (fd) holds.

Proof by induction on b, generalized over a, b, d.
We use axiom φ2 and the following straightforward inversion laws:

• ∀acd, (a, 0)#(c, d) → d = 0 ∧ c = a+ 1

• ∀abcd, (a, b+ 1)#(c, d) → ∃c′d′, (a, b)#(c′, d′) ∧ c = c′ + 1 ∧ (d′, b)#(d, d′)

Given a, b, c, d, if b = 0, then d = 0, c = a + 1, and we can use the constructed chain f . For the
inductive step, we need to use the induction hypothesis twice, once for (a, b)#(c, d), and again for
(d, b)#(e, d).

This then allows us to find a proof of ⊥ by first constructing a chain f up to 1 + m′, where
m′ = max1≤i≤m, φ i, then specializing (∀xi)m - quantification chain using f(φ0), f(φ1) Then,
the preconditions of kind single x(ai) x(bi) x(ci) x(di) must be true since xai = f(φ(ai)) and so on, and
we can apply Lemma 2.

This then concludes the proof. As a result, it is undecidable in general whether a formula is valid in
all models of FOL with our signature

6 Provability
Instead of investigating whether a formula ψ is valid in all models of our theory L, we can also
investigate whether ψ is provable in the abstract deduction system of first-order logic. The specific
system we are using denotes intuitionistic provability in the universal-implicative fragment without
negation, because this again yields the strongest undecidability result. We write ⊢ ψ if a formula is
provable in that system. In order to show that provability is undecidable, we use the same approach
we used with validity. We again need to show both directions:

• If h ∈ UDPC , then F (h) is provable in the proof system.

• If F (h) has a proof in the proof system, then h ∈ UDPC .

The second direction is again far easier: Since the proof system is sound, we can assume that F (h) is
valid in the standard model. We’ve already shown that this implies h ∈ UDPC .

The concrete deduction system used is sound, which means that any formula proved with this system
is valid in all models. This means that we can simply show that h ∈ UDPC if F (h) is provable, by
reusing the earlier proof, by applying the soundness result.

Page 5 / 9

Johannes Hostert

Furthermore, it is quasi-complete, which means that for any formula ψ valid in all Tarski models,
we can show that its negation (assuming we allow falsity in our FOL) is refutable. This means that,
without additional axioms like Markov’s principle or excluded middle, we can not simply conclude
that our formula is provable if it is valid in all (Tarski) models. Furthermore, if we show that our
formula is provable, we then also could conclude that our formula is valid in all Kripke models, whereas
previously we only talked about Tarski models. Thus, showing that our formula has an abstract proof
allows us to easily show other problems undecidable, too.

The general structure of constructing the abstract proof is similar to the earlier proof of “if h ∈ UDPC ,
then F (h) is valid”. We use similar lemmas, which can be shown with similar inductions, and so
on.

However, we are now significantly constrained by our deduction system. Instead of having our chain
represented by an f : N → D, along with the statement that “∀1 ≤ i ≤ n, f(i) is a valid part of the
chain”, we are now working with an explicit list of hypotheses, which are in the syntax of first-order
logic, which means we can not use functions explicitly in our formulas. This means that we must
change the way we represent our chain - instead of a function along with a proof that certain pairs
exist, we now give an explicit list containing the variables making up our chain. In our deduction
system, we then have a list of hypotheses generated from our chain data which basically state “the
variables used in the chain form a valid chain”. While there are many different ways to represent the
chain data, we use an index-inductive type, which has the upper bound n up to which the chain is
valid as part of the type.

Armed with this representation, we can then state and prove the counterparts of Lemma 1 and 2 from
the validity section:

Lemma 3 (Lemma 1 (Chain) for provability). For any n, A ⊢ ψ can be shown by showing that for
any chain c up to heigth n, chain_exists c + +A ⊢ ψ. Here, chain_exists generates the hypotheses
stating that c is a valid chain, as discussed before.

Lemma 4 (Lemma 2 for provability). For all abcd ∈ N, if cc is a chain containing a, b, c and d,
and if (a, b)#(c, d), then chain_exists c + +A ⊢ ⊥ can be shown by showing chain_exists c + +A ⊢
single (fa) (fb) (fc) (fd)

These lemmata can then be proven similarly to the corresponding lemmata from the last section.

One can thus conclude that it is also undecidable whether a certain formula ψ of FOL over our
signature can be proven in the corresponding deduction system.

7 Corollaries
By showing provability undecidiable, we can already subsume half of the proof we did before, because
we can now show that F (h) is valid in all models of L by showing that F (h) is provable, and applying
the soundness theorem.

Even further, we obtain a similar undecidability result for Kripke validity, i.e. it is undecidable whether
a formula of our logic L is valid in all Kripke models. The reduction here is trivial, since one direction
can be shown using the provability result, while the other direction can be shown by using the fact
that if a formula is valid in all Kripke models, it is valid in all Tarski models, so one can use part of
the proof from the validity section.

One can furthermore show that satisfiability is undecidable: A formula ψ of our logic L is satisfied
if there exists a model M in which ψ holds. This can be shown by reducing from UDPC , using the
reduction function F ′(h) = ¬F (h) (where ¬ is native to the syntax). Then, if F ′(h) is satisfied, this
means that there is a model where F (h) does not hold, thus F (h) is not valid, thus h ∈ UDPC , since
otherwise F (h) must be valid. Similarly, if h ∈ UDPC , then our standard model satisfies F ′(h), since
if F (h) was true, h ∈ UDPC would hold.

Page 6 / 9

Johannes Hostert

A similar argument is likely to work for Kripke satisfiability.

8 Remarks on the Coq formalization
A major difference between our presentation here and the formalisation in Coq is that in Coq, de
Bruijn indices are used instead of variables. For the proofs regarding the undecidability of validity,
this is not a large issue, since interpreting these de Bruijn-formulas in a model resolves the indices to
the usual binder scheme.

However, for the provability undecidability proof, this presented a significant hardship. A lot of
infrastructure is needed to properly work with theorems, since one has to make sure the indices are
manipulated properly.

Furthermore, when formalizing Lemma 1 (the “chain”) for the provability reduction, it became im-
portant how the chain is represented. While we eventually settled on the approach of having a data
structure which contain the de Bruijn indices of the parts of the chain, along with a list of hypotheses
stating that these indices actually form a chain, we originally tried using specific indices for specific
parts of the chain (e.g. the representation of number k in the chain is exactly the variable 3 ∗ k + 1).
This made some parts of the proof easier. However, we ultimately decided against it, because it re-
quired more elaborate housekeeping to make sure all the indices are proper, which made the proof
harder to understand.

9 Further work
The Coq formalization currently only has the reductions formalized. The actual undecidability results
still need to be written down. Also, the formalization needs to be split up, modularized and refactored.
Furthermore, it might be worth investigating whether the provability proof can be shortened, even
though this seems unlikely: Despite this proof undergoing significant reworkings, it has not gotten
shorter. We tried several ideas, and while we ended up making the proof simpler, it did not become
much shorter, with all approaches having roughly the same number of lines of Coq code. We do not
expect further refactors to change this. While more refactors might make the proof easier to read or
understand, we do not expect significant improvement here, either. However, a recently developed
Proof Mode for FOL [10], which aims at making these proofs simpler, might help here.

Other related properties that can be shown undecidable are finite satisfiability, which is similar to
satisfiability, except that the model must be finite.

Also, it might be worth investigating whether a similar approach can be used to show that the discussed
problems (validity, provability, ...) are undecidable for FOL over signatures with a binary function
symbol (and an unary relation symbol).

10 Overview of related literature

10.1 Church 1936; Turing 1936

The paper [2] and [12] are seminal papers in computability theory. They establish the undecidability
of the halting problem, and employ reductions to show that the Entscheidungsproblem as posed by
Hilbert is undecidable. Formally, they show that it is undecidable whether a formula in FOL is valid.
Turing’s proof employs a signature containing at least 5 binary relations, though the actual number
depends on the implementation details of the specific Turing machine one reduces from. Church’s
reduction partially formalizes first-order Peano arithmetic.

Page 7 / 9

Johannes Hostert

10.2 Kalmár 1937

Kalmár’s paper [5] is part of “reduction theory”, which tried to find “simple” FOL terms for arbitrary
FOL terms. Here, “simple” can refer to the number or arity of the used relation symbols, or of the
amount and alternation sequence of the used quantifiers. Kalḿar shows that for each FOL term U
over an arbitrary signature, there is an equivalent FOL B term with an certain quantifier prefix and
a single binary relation. His reduction performs syntax compression by finding a new binary relation,
which can express the relation symbols in U. This compression step expands the domain of discourse.
Interestingly, his reduction claims to also preserve finite satisfiability. The reduction heavily relies
on previous work by Kalmar and others, which had already shown that for each formula there is an
equivalent one with three binary relations.

10.3 Forster et al, 2019

The paper by Forster et al [4] mechanizes the result of Church [2] and Turing [12] in Coq. They
work within the context of an intiuitionistic (meta)-theory. Their reduction does not consider the
halting problem as the source problem, but instead uses Post’s correspondence problem, which had
already been mechanized in Coq [3]. Their reduction is already within the universal-implicative
fragment, however, they use a signature consisting of one unary and two binary functions, as well as one
nullary and two binary relations. They also cover classical provability by performing a Gödel-Gentzen-
Friedman translation to construct an intuitionistic formula valid whenever the original formula was
valid in classical logic.

10.4 Kirst and Hermes, 2021

The paper by Kirst and Hermes [6] mechanizes the undecidability of validity and (inutitionistic as well
as classical) provability in several variants of Peano arithmetic and ZF set theory. Importantly, they
obtain the result that ZF with a single binary relation is undecidable. Their result, however, is not
within the universal-implicative fragment. They assume LEM to work with classical formulas.

10.5 Kirst and Larchey-Wendling, 2020

The paper by Kirst and Larchey-Wendling [7] mechanizes Trakhtenbrot’s theorem in Coq. This
theorem states that it is undecidable whether a first-order formula is finitely satisfiable as soon as
there is a single binary relation. They show this by first showing that finite satisfiability over an
arbitrary signature is undecidable, by reducing from PCP. Then they perform a sequence of signature
reductions to eventually get a formula that has just one binary relation symbol. They also investigate
differences between different formalisations of finite models in Coq, by considering models with and
without an explicit equality operation.

References

[1] A. Bauer. First Steps in Synthetic Computability Theory. Electronic Notes in Theoretical Com-
puter Science, 155:5–31, 2006. Proceedings of the 21st Annual Conference on Mathematical
Foundations of Programming Semantics (MFPS XXI).

[2] A. Church. A note on the Entscheidungsproblem. Journal of Symbolic Logic, 1(1):4041, 1936.

[3] Y. F. et al. A Coq Library of Undecidable Problems. CoqPL 20, 2020.

[4] Y. Forster, D. Kirst, and G. Smolka. On Synthetic Undecidability in Coq, with an Application to
the Entscheidungsproblem. In Proceedings of the 8th ACM SIGPLAN International Conference
on Certified Programs and Proofs, CPP 2019, page 3851, New York, NY, USA, 2019. Association
for Computing Machinery.

[5] L. Kalmár. Zurückführung des Entscheidungsproblems auf den Fall von Formeln mit einer einzi-
gen, binären, Funktionsvariablen. Compositio Mathematica, 4:137–144, 1937.

Page 8 / 9

Johannes Hostert

[6] D. Kirst and M. Hermes. Synthetic Undecidability and Incompleteness of First-Order Axiom
Systems in Coq. In Interactive Theorem Proving - 12th International Conference, ITP 2021,
Rome, Italy. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2021. To appear.

[7] D. Kirst and D. Larchey-Wendling. Trakhtenbrot’s theorem in coq: A constructive approach to
finite model theory. In International Joint Conference on Automated Reasoning (IJCAR 2020),
Paris, France, Paris, France, 2020. Springer.

[8] D. Larchey-Wendling and Y. Forster. Hilbert’s Tenth Problem in Coq. In H. Geuvers, edi-
tor, 4th International Conference on Formal Structures for Computation and Deduction (FSCD
2019), volume 131 of Leibniz International Proceedings in Informatics (LIPIcs), pages 27:1–27:20,
Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[9] L. Löwenheim. Über Möglichkeiten im Relativkalkül. Mathematische Annalen, 76:447–470, 1915.

[10] D. K. Mark Koch. A first order logic proof mode in Coq. https://github.com/mark-koch/
firstorder-proof-mode. Accessed 2021-07-05.

[11] Y. V. Matiyasevich. Enumerable sets are Diophantine. Doklady Akademii Nauk SSSR, 191:279–
282, 1970.

[12] A. M. Turing. On Computable Numbers, with an Application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society, 2(42):230–265, 1936.

Page 9 / 9

https://github.com/mark-koch/firstorder-proof-mode
https://github.com/mark-koch/firstorder-proof-mode

	Introduction
	Hilbert's 10th problem
	Uniform Diophantine Pair Constraints
	Our First-Order instance and its models
	Validity
	Provability
	Corollaries
	Remarks on the Coq formalization
	Further work
	Overview of related literature
	Church 1936; Turing 1936
	Kalmár 1937
	Forster et al, 2019
	Kirst and Hermes, 2021
	Kirst and Larchey-Wendling, 2020

	References

