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FOL
Statements like
I ∀aN bN, a+ b = b+ a

I ∀aN, a 6= 0→ ∃bN, a = S b

Properties:

I Quantifiers range over
I Function symbols: +, ·, 0, S
I Relation symbols: =, <

FOL over {0, S,+, ·}; {=;<}
N is a (Tarski) model with usual interpretation for 0, S,+, ·,=, <
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Problems in FOL
ϕ a formula of FOL, is ϕ
I valid in all models?
I satisfied by a model?
I (intutitonistically) provable in the abstract deduction system?

All problems are undecidable [Church, 1936] [Turing, 1936]

In classical logic:
I All three problems coincide

In our inituitionistic formalization [Forster et al., 2019]:
I Mechanization in Coq Library of Undecidability Proofs [Forster et al., 2020]
I ϕ int. provable → ϕ valid
I ϕ valid → (¬¬ϕ) int. provable.
I Only shows HaltsTM � Satisfiability
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Special cases
Are there signatures where these problems are decidable?

I Only unary functions/relations: X [Löwenheim, 1915]
I Binary relation: ×
I Binary function, unary relation: ×

Proof:
I Textbook: Signature compression reduction chain [Kalmár, 1939]

Very hard to mechanize in Coq [Kirst and Larchey-Wendling, 2020]
I Our contribution: A single reduction

Straightforward mechanisation
No additional axioms
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Diophantine constraints

Definition (UDC)
For l : L (V3), l has property UDC iff

∃ρV→N, ∀(x, y, z) ∈ l, 1 + ρx+ (ρy)2 = ρz

l is a list of certain Diophantine equations over N. Is there a satisfying assignment?

I Satisfiability of Diophantine equations in N is undecidable [Matiyasevich, 1970]
I UDC is also undecidable
I UDC mechanized in Coq [Larchey-Wendling and Forster, 2019]
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Our new constraint UDPC

Definition (UDPC)
For (x, y)N

2
, (a, b)N

2
, we define (x, y)#(a, b) iff

a = x+ y + 1 and b+ b = y2 + y

A list l : L
(
V2 ∗ V2

)
has property UDPC iff

∃ρV→N,∀((x, y), (a, b)) ∈ l, (ρx, ρy)#(ρa, ρb)

Properties:
I Undecidability mechanized in Coq X

I Structurality:
(x, y)#(a, b)⇒ (x+ 1, y)#(a+ 1, b)
(x, y)#(a, b)⇒ (x, y + 1)#(a+ 1, y + b+ 1)



5/10

Our new constraint UDPC

Definition (UDPC)
For (x, y)N

2
, (a, b)N

2
, we define (x, y)#(a, b) iff

a = x+ y + 1 and b+ b = y2 + y

A list l : L
(
V2 ∗ V2

)
has property UDPC iff

∃ρV→N,∀((x, y), (a, b)) ∈ l, (ρx, ρy)#(ρa, ρb)

Properties:
I Undecidability mechanized in Coq X

I Structurality:
(x, y)#(a, b)⇒ (x+ 1, y)#(a+ 1, b)
(x, y)#(a, b)⇒ (x, y + 1)#(a+ 1, y + b+ 1)



5/10

Our new constraint UDPC

Definition (UDPC)
For (x, y)N

2
, (a, b)N

2
, we define (x, y)#(a, b) iff

a = x+ y + 1 and b+ b = y2 + y

A list l : L
(
V2 ∗ V2

)
has property UDPC iff

∃ρV→N,∀((x, y), (a, b)) ∈ l, (ρx, ρy)#(ρa, ρb)

Properties:
I Undecidability mechanized in Coq X

I Structurality:
(x, y)#(a, b)⇒ (x+ 1, y)#(a+ 1, b)
(x, y)#(a, b)⇒ (x, y + 1)#(a+ 1, y + b+ 1)



6/10

FOL standard model
Idea: Synthesize a FOL description of #

I Goal: Signature only has #
I Domain of discourse: N ∪ N2

I Extend # to numbers:
n#m :⇔ n = m
n#(l, r) :⇔ n = l
(l, r)#n :⇔ r = n

I N ∪ N2; # is standard model
I Task: Find first-order axioms for #
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FOL axiomatization

1. FOL Syntactic sugar:

N k := k#k

P ′ k := k#k → ⊥
P p l r := P ′ p ∧N l ∧N r ∧ l#p ∧ p#r
(a, b)#(c, d) := ∃p q, P p a b ∧ P q c d ∧ p#q

2. FOL Axioms:

N 0

ϕ1 := ∀x,∃a, (x, 0)#(a, 0)

ϕ2 := ∀abcxya′y′, (x, y)#(a, b)→ (b, y)#(c, b)→ (a, 0)#(a′, 0)→
(y, 0)#(y′, 0)→ (x, y′)#(a′, c)
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The reduction
Let h = [((x1, y1), (a1, b1)), . . . , ((xn, yn), (an, bn))] an instance of UDPC .

I Reduction function F : L
(
V2 ∗ V2

)
→ FOL{},{#}

F (h) = ∀0, N 0→ ϕ1 → ϕ2 → F ′(h)

F ′(h) = ∃
v∈V(h)

n∧
i=1

(xi, yi)#(ai, bi)

Note: 0 is a variable
I Reduction soundness: h ∈ UDPC if F (h) valid

F (h) holds in the standard model
I Reduction completeness: F (h) valid if h ∈ UDPC

Abstract proof in arbitrary model
Uses axioms ϕ1, ϕ2, etc

I Similar argument for int. provability.
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FOL deduction system

ϕ,A ` ψ
II
A ` ϕ→ ψ

A ` ϕ→ ψ A,ϕ ` ψ
IE

A ` ψ
ϕ ∈ A

Ctx
A ` ϕ

A ` ϕ x free in A
∀I

A ` ∀x, ϕ
A ` ∀x, ϕ

∀E
A ` ϕ

A ` ⊥⊥E
A ` ϕ

For a classical deduction system, we also assume Pierce’s law:

Pc
A `c (((ϕ→ ψ)→ ϕ)→ ϕ

In the mechanization, de Bruijn indices are used
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Reduction completeness
Show two lemmata:
1. ∀n ∈ N, ∃f : N→ D, which contains the “representation chain” of the first n

numbers in D.
Induction on n
Base case: N 0
Induction step: Axiom ϕ1

2. ∀xyab, if (x, y)#(a, b), and if we have a chain up to max{ϕx, ϕy, ϕa, ϕb}
represented by f , then (fx, fy)#(fa, fb) holds.

Induction on y, with x, a, b free.
Base case: Lemma 1
Induction step: Axiom ϕ2, IH for x, a, b; b, c, b and Lemma 1 for a, y.
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Showing UDPC undecidable
Known-undecidable constraint problem:

1 + x+ y2 = z

New constraints for each such constraint:

(a, a)#(b, t1)

(c, y)#(b, a)

(c, x)#(z, t2)

a, b, c, t1, t2 are fresh
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Details of the mechanisation

I FOL mechanisation uses de Bruijn indices
Formulas are hard to read
Keeping track of all the indices is hard
Deduction system manipulates indices in ∀I and ∀E rules

I Reasoning about the chain in the deduction system is hard
We can not have function N→ D
Bad idea: have representation at fixed indices
Better idea: data structure encoding de Bruijn indices of representations
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