The Undecidability of First-Order Logic over Small Signatures

First Bachelor Seminar Talk
Advisors: Andrej Dudenhefner, Dominik Kirst
Supervisor: Prof. Gert Smolka

Johannes Hostert

May 21, 2021, Saarland University

FOL

Statements like

- $\forall a^{\mathbb{N}} b^{\mathbb{N}}, a+b=b+a$
- $\forall a^{\mathbb{N}}, a \neq 0 \rightarrow \exists b^{\mathbb{N}}, a=S b$

Properties:

FOL

Statements like

- $\forall a^{\mathbb{N}} b^{\mathbb{N}}, a+b=b+a$
- $\forall a^{\mathbb{N}}, a \neq 0 \rightarrow \exists b^{\mathbb{N}}, a=S b$

Properties:

- Quantifiers range over \mathbb{N}

FOL

Statements like

- $\forall a b, a+b=b+a$
- $\forall a, a \neq 0 \rightarrow \exists b, a=S b$

Properties:

- Quantifiers range over individuals, not predicates

Statements like

- $\forall a b, a+b=b+a$
- $\forall a, a \neq 0 \rightarrow \exists b, a=S b$

Properties:

- Quantifiers range over individuals, not predicates
- Function symbols: $+, \cdot, 0, S$

Statements like

- $\forall a b, a+b=b+a$
- $\forall a, a \neq 0 \rightarrow \exists b, a=S b$

Properties:

- Quantifiers range over individuals, not predicates
- Function symbols: $+, \cdot, 0, S$
- Relation symbols: $=,<$

Statements like

- $\forall a b, a+b=b+a$
- $\forall a, a \neq 0 \rightarrow \exists b, a=S b$

Properties:

- Quantifiers range over individuals, not predicates
- Function symbols: $+, \cdot, 0, S$
- Relation symbols: $=,<$

FOL over $\{0, S,+, \cdot\} ;\{=;<\}$
\mathbb{N} is a (Tarski) model with usual interpretation for $0, S,+, \cdot,=,<$

Problems in FOL

φ a formula of FOL, is φ

- valid in all models?
- satisfied by a model?
- (intutitonistically) provable in the abstract deduction system?

Problems in FOL

φ a formula of FOL, is φ

- valid in all models?
- satisfied by a model?
- (intutitonistically) provable in the abstract deduction system?

All problems are undecidable [Church, 1936] [Turing, 1936]

Problems in FOL

φ a formula of FOL, is φ

- valid in all models?
- satisfied by a model?
- (intutitonistically) provable in the abstract deduction system?

All problems are undecidable [Church, 1936] [Turing, 1936]
In classical logic:

- All three problems coincide

Problems in FOL

φ a formula of FOL, is φ

- valid in all models?
- satisfied by a model?
- (intutitonistically) provable in the abstract deduction system?

All problems are undecidable [Church, 1936] [Turing, 1936]
In classical logic:

- All three problems coincide

In our inituitionistic formalization [Forster et al., 2019]:

Problems in FOL

φ a formula of FOL, is φ

- valid in all models?
- satisfied by a model?
- (intutitonistically) provable in the abstract deduction system?

All problems are undecidable [Church, 1936] [Turing, 1936]
In classical logic:

- All three problems coincide

In our inituitionistic formalization [Forster et al., 2019]:

- Mechanization in Coq Library of Undecidability Proofs [Forster et al., 2020]

Problems in FOL

φ a formula of FOL, is φ

- valid in all models?
- satisfied by a model?
- (intutitonistically) provable in the abstract deduction system?

All problems are undecidable [Church, 1936] [Turing, 1936]
In classical logic:

- All three problems coincide

In our inituitionistic formalization [Forster et al., 2019]:

- Mechanization in Coq Library of Undecidability Proofs [Forster et al., 2020]
- φ int. provable $\rightarrow \varphi$ valid

Problems in FOL

φ a formula of FOL, is φ

- valid in all models?
- satisfied by a model?
- (intutitonistically) provable in the abstract deduction system?

All problems are undecidable [Church, 1936] [Turing, 1936]
In classical logic:

- All three problems coincide

In our inituitionistic formalization [Forster et al., 2019]:

- Mechanization in Coq Library of Undecidability Proofs [Forster et al., 2020]
- φ int. provable $\rightarrow \varphi$ valid
- φ valid $\rightarrow(\neg \neg \varphi)$ int. provable.

Problems in FOL

φ a formula of FOL, is φ

- valid in all models?
- satisfied by a model?
- (intutitonistically) provable in the abstract deduction system?

All problems are undecidable [Church, 1936] [Turing, 1936]
In classical logic:

- All three problems coincide

In our inituitionistic formalization [Forster et al., 2019]:

- Mechanization in Coq Library of Undecidability Proofs [Forster et al., 2020]
- φ int. provable $\rightarrow \varphi$ valid
- φ valid $\rightarrow(\neg \neg \varphi)$ int. provable.
- Only shows $\overline{\text { Halts }_{T M}} \preceq$ Satisfiability

Special cases

Are there signatures where these problems are decidable?

Special cases

Are there signatures where these problems are decidable?

- Only unary functions/relations: \checkmark [Löwenheim, 1915]

Special cases

Are there signatures where these problems are decidable?

- Only unary functions/relations: \checkmark [Löwenheim, 1915]
- Binary relation: \times
- Binary function, unary relation:

Special cases

Are there signatures where these problems are decidable?

- Only unary functions/relations: \checkmark [Löwenheim, 1915]
- Binary relation: \times
- Binary function, unary relation:

Proof:

- Textbook: Signature compression reduction chain [Kalmár, 1939]
- Very hard to mechanize in Coq [Kirst and Larchey-Wendling, 2020]

Special cases

Are there signatures where these problems are decidable?

- Only unary functions/relations: \checkmark [Löwenheim, 1915]
- Binary relation: \times
- Binary function, unary relation:

Proof:

- Textbook: Signature compression reduction chain [Kalmár, 1939]
- Very hard to mechanize in Coq [Kirst and Larchey-Wendling, 2020]
- Our contribution: A single reduction
- Straightforward mechanisation
- No additional axioms

Diophantine constraints

Definition ($U D C$)

For $l: \mathscr{L}\left(\mathcal{V}^{3}\right), l$ has property $U D C$ iff

$$
\exists \rho^{\mathcal{V} \rightarrow \mathbb{N}}, \forall(x, y, z) \in l, 1+\rho x+(\rho y)^{2}=\rho z
$$

l is a list of certain Diophantine equations over \mathbb{N}. Is there a satisfying assignment?

Diophantine constraints

Definition ($U D C$)

For $l: \mathscr{L}\left(\mathcal{V}^{3}\right), l$ has property $U D C$ iff

$$
\exists \rho^{\mathcal{V} \rightarrow \mathbb{N}}, \forall(x, y, z) \in l, 1+\rho x+(\rho y)^{2}=\rho z
$$

l is a list of certain Diophantine equations over \mathbb{N}. Is there a satisfying assignment?

Diophantine constraints

Definition ($U D C$)

For $l: \mathscr{L}\left(\mathcal{V}^{3}\right), l$ has property $U D C$ iff

$$
\exists \rho^{\mathcal{V} \rightarrow \mathbb{N}}, \forall(x, y, z) \in l, 1+\rho x+(\rho y)^{2}=\rho z
$$

l is a list of certain Diophantine equations over \mathbb{N}. Is there a satisfying assignment?

- Satisfiability of Diophantine equations in \mathbb{N} is undecidable [Matiyasevich, 1970]

Diophantine constraints

Definition ($U D C$)

For $l: \mathscr{L}\left(\mathcal{V}^{3}\right), l$ has property $U D C$ iff

$$
\exists \rho^{\mathcal{V} \rightarrow \mathbb{N}}, \forall(x, y, z) \in l, 1+\rho x+(\rho y)^{2}=\rho z
$$

l is a list of certain Diophantine equations over \mathbb{N}. Is there a satisfying assignment?

- Satisfiability of Diophantine equations in \mathbb{N} is undecidable [Matiyasevich, 1970]
- $U D C$ is also undecidable

Diophantine constraints

Definition ($U D C$)

For $l: \mathscr{L}\left(\mathcal{V}^{3}\right), l$ has property $U D C$ iff

$$
\exists \rho^{\mathcal{V} \rightarrow \mathbb{N}}, \forall(x, y, z) \in l, 1+\rho x+(\rho y)^{2}=\rho z
$$

l is a list of certain Diophantine equations over \mathbb{N}. Is there a satisfying assignment?

- Satisfiability of Diophantine equations in \mathbb{N} is undecidable [Matiyasevich, 1970]
- $U D C$ is also undecidable
- UDC mechanized in Coq [Larchey-Wendling and Forster, 2019]

Our new constraint $U D P C$

Definition ($U D P C$)
For $(x, y)^{\mathbb{N}^{2}},(a, b)^{\mathbb{N}^{2}}$, we define $(x, y) \#(a, b)$ iff

$$
a=x+y+1 \text { and } b+b=y^{2}+y
$$

A list $l: \mathscr{L}\left(\mathcal{V}^{2} * \mathcal{V}^{2}\right)$ has property $U D P C$ iff

$$
\exists \rho^{\mathcal{L} \rightarrow \mathbb{N}}, \forall((x, y),(a, b)) \in l,(\rho x, \rho y) \#(\rho a, \rho b)
$$

Our new constraint $U D P C$

Definition ($U D P C$)
For $(x, y)^{\mathbb{N}^{2}},(a, b)^{\mathbb{N}^{2}}$, we define $(x, y) \#(a, b)$ iff

$$
a=x+y+1 \text { and } b+b=y^{2}+y
$$

A list $l: \mathscr{L}\left(\mathcal{V}^{2} * \mathcal{V}^{2}\right)$ has property $U D P C$ iff

$$
\exists \rho^{\mathcal{L} \rightarrow \mathbb{N}}, \forall((x, y),(a, b)) \in l,(\rho x, \rho y) \#(\rho a, \rho b)
$$

Properties:

- Undecidability mechanized in Coq \checkmark

Our new constraint $U D P C$

Definition ($U D P C$)

For $(x, y)^{\mathbb{N}^{2}},(a, b)^{\mathbb{N}^{2}}$, we define $(x, y) \#(a, b)$ iff

$$
a=x+y+1 \text { and } b+b=y^{2}+y
$$

A list $l: \mathscr{L}\left(\mathcal{V}^{2} * \mathcal{V}^{2}\right)$ has property $U D P C$ iff

$$
\exists \rho^{\mathcal{L} \rightarrow \mathbb{N}}, \forall((x, y),(a, b)) \in l,(\rho x, \rho y) \#(\rho a, \rho b)
$$

Properties:

- Undecidability mechanized in Coq \checkmark
- Structurality:

■ $(x, y) \#(a, b) \Rightarrow(x+1, y) \#(a+1, b)$
■ $(x, y) \#(a, b) \Rightarrow(x, y+1) \#(a+1, y+b+1)$

FOL standard model

Idea: Synthesize a FOL description of \#

FOL standard model

Idea: Synthesize a FOL description of \#

- Goal: Signature only has \#

FOL standard model

Idea: Synthesize a FOL description of \#

- Goal: Signature only has \#
- Domain of discourse: $\mathbb{N} \cup \mathbb{N}^{2}$

FOL standard model

Idea: Synthesize a FOL description of \#

- Goal: Signature only has \#
- Domain of discourse: $\mathbb{N} \cup \mathbb{N}^{2}$
- Extend \# to numbers:
- $n \# m: \Leftrightarrow n=m$
- $n \#(l, r): \Leftrightarrow n=l$
- $(l, r) \# n: \Leftrightarrow r=n$

FOL standard model

Idea: Synthesize a FOL description of \#

- Goal: Signature only has \#
- Domain of discourse: $\mathbb{N} \cup \mathbb{N}^{2}$
- Extend \# to numbers:
- $n \# m: \Leftrightarrow n=m$
- $n \#(l, r): \Leftrightarrow n=l$
- $(l, r) \# n: \Leftrightarrow r=n$
- $\mathbb{N} \cup \mathbb{N}^{2} ; \#$ is standard model

FOL standard model

Idea: Synthesize a FOL description of \#

- Goal: Signature only has \#
- Domain of discourse: $\mathbb{N} \cup \mathbb{N}^{2}$
- Extend \# to numbers:
- $n \# m: \Leftrightarrow n=m$
- $n \#(l, r): \Leftrightarrow n=l$
- $(l, r) \# n: \Leftrightarrow r=n$
- $\mathbb{N} \cup \mathbb{N}^{2} ; \#$ is standard model
- Task: Find first-order axioms for \#

FOL axiomatization

1. FOL Syntactic sugar:

FOL axiomatization

1. FOL Syntactic sugar:

- $N k:=k \# k$
- $N k$ in standard model: k is a number.

FOL axiomatization

1. FOL Syntactic sugar:

- $N k:=k \# k$
- $P^{\prime} k:=k \# k \rightarrow \perp$
- $P^{\prime} k$ in standard model: k is a pair.

FOL axiomatization

1. FOL Syntactic sugar:

- $N k:=k \# k$
- $P^{\prime} k:=k \# k \rightarrow \perp$
- Pplr $:=P^{\prime} p \wedge N l \wedge N r \wedge l \# p \wedge p \# r$
- Pplr in standard model: p is the pair (l, r)

FOL axiomatization

1. FOL Syntactic sugar:

- $N k:=k \# k$
- $P^{\prime} k:=k \# k \rightarrow \perp$
- Pplr $:=P^{\prime} p \wedge N l \wedge N r \wedge l \# p \wedge p \# r$
- $(a, b) \#(c, d):=\exists p q, P p a b \wedge P q c d \wedge p \# q$
- Necessary since we cannot simply construct pairs

FOL axiomatization

1. FOL Syntactic sugar:

- $N k:=k \# k$
- $P^{\prime} k:=k \# k \rightarrow \perp$
- Pplr $:=P^{\prime} p \wedge N l \wedge N r \wedge l \# p \wedge p \# r$
- $(a, b) \#(c, d):=\exists p q, P p a b \wedge P q c d \wedge p \# q$

2. FOL Axioms:

FOL axiomatization

1. FOL Syntactic sugar:

- $N k:=k \# k$
- $P^{\prime} k:=k \# k \rightarrow \perp$
- Pplr $:=P^{\prime} p \wedge N l \wedge N r \wedge l \# p \wedge p \# r$
- $(a, b) \#(c, d):=\exists p q, P p a b \wedge P q c d \wedge p \# q$

2. FOL Axioms:

- $N 0$
- 0 is a number

FOL axiomatization

1. FOL Syntactic sugar:

- $N k:=k \# k$
- $P^{\prime} k:=k \# k \rightarrow \perp$
- Pplr $:=P^{\prime} p \wedge N l \wedge N r \wedge l \# p \wedge p \# r$
- $(a, b) \#(c, d):=\exists p q, P p a b \wedge P q c d \wedge p \# q$

2. FOL Axioms:

- $N 0$
- $\varphi_{1}:=\forall x, \exists a,(x, 0) \#(a, 0)$
- All numbers have successors

FOL axiomatization

1. FOL Syntactic sugar:

- $N k:=k \# k$
- $P^{\prime} k:=k \# k \rightarrow \perp$
- Pplr $:=P^{\prime} p \wedge N l \wedge N r \wedge l \# p \wedge p \# r$
- $(a, b) \#(c, d):=\exists p q, P p a b \wedge P q c d \wedge p \# q$

2. FOL Axioms:

- $N 0$
- $\varphi_{1}:=\forall x, \exists a,(x, 0) \#(a, 0)$
- $\varphi_{2}:=\forall a b c x y a^{\prime} y^{\prime},(x, y) \#(a, b) \rightarrow(b, y) \#(c, b) \rightarrow(a, 0) \#\left(a^{\prime}, 0\right) \rightarrow$ $(y, 0) \#\left(y^{\prime}, 0\right) \rightarrow\left(x, y^{\prime}\right) \#\left(a^{\prime}, c\right)$
- Characerizes \#
- Reformulation of $(x, y) \#(a, b) \Rightarrow(x, y+1) \#(a+1, y+b+1)$

The reduction

Let $h=\left[\left(\left(x_{1}, y_{1}\right),\left(a_{1}, b_{1}\right)\right), \ldots,\left(\left(x_{n}, y_{n}\right),\left(a_{n}, b_{n}\right)\right)\right]$ an instance of $U D P C$.

- Reduction function $F: \mathscr{L}\left(\mathcal{V}^{2} * \mathcal{V}^{2}\right) \rightarrow F O L_{\{ \},\{\#\}}$

The reduction

Let $h=\left[\left(\left(x_{1}, y_{1}\right),\left(a_{1}, b_{1}\right)\right), \ldots,\left(\left(x_{n}, y_{n}\right),\left(a_{n}, b_{n}\right)\right)\right]$ an instance of $U D P C$.

- Reduction function $F: \mathscr{L}\left(\mathcal{V}^{2} * \mathcal{V}^{2}\right) \rightarrow F O L_{\{ \},\{\#\}}$
- $F(h)=\forall 0, N 0 \rightarrow \varphi_{1} \rightarrow \varphi_{2} \rightarrow F^{\prime}(h)$

The reduction

Let $h=\left[\left(\left(x_{1}, y_{1}\right),\left(a_{1}, b_{1}\right)\right), \ldots,\left(\left(x_{n}, y_{n}\right),\left(a_{n}, b_{n}\right)\right)\right]$ an instance of $U D P C$.

- Reduction function $F: \mathscr{L}\left(\mathcal{V}^{2} * \mathcal{V}^{2}\right) \rightarrow F O L_{\{ \},\{\#\}}$
- $F(h)=\forall 0, N 0 \rightarrow \varphi_{1} \rightarrow \varphi_{2} \rightarrow F^{\prime}(h)$
- $F^{\prime}(h)={\underset{v \in \mathcal{V}(h)}{\exists} \bigwedge_{i=1}^{n}\left(x_{i}, y_{i}\right) \#\left(a_{i}, b_{i}\right), ~(h)}^{n}$

The reduction

Let $h=\left[\left(\left(x_{1}, y_{1}\right),\left(a_{1}, b_{1}\right)\right), \ldots,\left(\left(x_{n}, y_{n}\right),\left(a_{n}, b_{n}\right)\right)\right]$ an instance of $U D P C$.

- Reduction function $F: \mathscr{L}\left(\mathcal{V}^{2} * \mathcal{V}^{2}\right) \rightarrow F O L_{\{ \},\{\#\}}$
- $F(h)=\forall 0, N 0 \rightarrow \varphi_{1} \rightarrow \varphi_{2} \rightarrow F^{\prime}(h)$
- $F^{\prime}(h)=\underset{v \in \mathcal{V}(h)}{\exists} \bigwedge_{i=1}^{n}\left(x_{i}, y_{i}\right) \#\left(a_{i}, b_{i}\right)$

■ Note: 0 is a variable

The reduction

Let $h=\left[\left(\left(x_{1}, y_{1}\right),\left(a_{1}, b_{1}\right)\right), \ldots,\left(\left(x_{n}, y_{n}\right),\left(a_{n}, b_{n}\right)\right)\right]$ an instance of $U D P C$.

- Reduction function $F: \mathscr{L}\left(\mathcal{V}^{2} * \mathcal{V}^{2}\right) \rightarrow F O L_{\{ \},\{\#\}}$
- $F(h)=\forall 0, N 0 \rightarrow \varphi_{1} \rightarrow \varphi_{2} \rightarrow F^{\prime}(h)$
- $F^{\prime}(h)={\underset{v \in \mathcal{V}}{ }(h)} \bigwedge_{i=1}^{n}\left(x_{i}, y_{i}\right) \#\left(a_{i}, b_{i}\right)$

■ Note: 0 is a variable

- Reduction soundness: $h \in U D P C$ if $F(h)$ valid
- $F(h)$ holds in the standard model

The reduction

Let $h=\left[\left(\left(x_{1}, y_{1}\right),\left(a_{1}, b_{1}\right)\right), \ldots,\left(\left(x_{n}, y_{n}\right),\left(a_{n}, b_{n}\right)\right)\right]$ an instance of $U D P C$.

- Reduction function $F: \mathscr{L}\left(\mathcal{V}^{2} * \mathcal{V}^{2}\right) \rightarrow F O L_{\{ \},\{\#\}}$
- $F(h)=\forall 0, N 0 \rightarrow \varphi_{1} \rightarrow \varphi_{2} \rightarrow F^{\prime}(h)$
- $F^{\prime}(h)={\left.\underset{v \in \mathcal{V}(h)}{ } \bigwedge_{i=1}^{n}\left(x_{i}, y_{i}\right) \#\left(a_{i}, b_{i}\right),{ }^{n}\right)}^{n}$

■ Note: 0 is a variable

- Reduction soundness: $h \in U D P C$ if $F(h)$ valid
- $F(h)$ holds in the standard model
- Reduction completeness: $F(h)$ valid if $h \in U D P C$
- Abstract proof in arbitrary model
- Uses axioms φ_{1}, φ_{2}, etc

The reduction

Let $h=\left[\left(\left(x_{1}, y_{1}\right),\left(a_{1}, b_{1}\right)\right), \ldots,\left(\left(x_{n}, y_{n}\right),\left(a_{n}, b_{n}\right)\right)\right]$ an instance of $U D P C$.

- Reduction function $F: \mathscr{L}\left(\mathcal{V}^{2} * \mathcal{V}^{2}\right) \rightarrow F O L_{\{ \},\{\#\}}$

■ $F(h)=\forall 0, N 0 \rightarrow \varphi_{1} \rightarrow \varphi_{2} \rightarrow F^{\prime}(h)$

- $F^{\prime}(h)={\underset{v \in \mathcal{V}(h)}{\exists} \bigwedge_{i=1}^{n}\left(x_{i}, y_{i}\right) \#\left(a_{i}, b_{i}\right), ~(h)}^{n}$
- Note: 0 is a variable
- Reduction soundness: $h \in U D P C$ if $F(h)$ valid
- $F(h)$ holds in the standard model
- Reduction completeness: $F(h)$ valid if $h \in U D P C$
- Abstract proof in arbitrary model
- Uses axioms φ_{1}, φ_{2}, etc
- Similar argument for int. provability.

Refinement

Can we make the signature even more minimal?

- Minimal signature \checkmark

Refinement

Can we make the signature even more minimal?

- Minimal signature \checkmark
- Minimal logical connectives:
- Double negation translation: Replace $\exists \varphi$ with $\neg \forall \neg \varphi$ etc.

Refinement

Can we make the signature even more minimal?

- Minimal signature \checkmark
- Minimal logical connectives:
- Double negation translation:

Replace $\exists \varphi$ with $\neg \forall \neg \varphi$ etc.

- Negation:
- Friedman translation:

Replace \perp with $c_{1} \# c_{2}$ for globally fixed c_{1}, c_{2}.

Refinement

Can we make the signature even more minimal?

- Minimal signature \checkmark
- Minimal logical connectives:
- Double negation translation:

Replace $\exists \varphi$ with $\neg \forall \neg \varphi$ etc.

- Negation:
- Friedman translation:

Replace \perp with $c_{1} \# c_{2}$ for globally fixed c_{1}, c_{2}.

- $F(h)$ only uses $\#, \forall, \rightarrow$.
- Stronger undecidability result

Conclusion

Reductions formalized for:

- Validity
- int. Provability
\Rightarrow int. Satisfiability
\Rightarrow Kripke validity/ int. satisfiability
About 1300 LoC

Conclusion

Reductions formalized for:

- Validity
- int. Provability
\Rightarrow int. Satisfiability
\Rightarrow Kripke validity/ int. satisfiability

About 1300 LoC

Future plans:

- Finite satisfiability
- look at classical provability
- Finish and refine Coq formalization

References

[Church, 1936] Church, A. (1936). A note on the Entscheidungsproblem. Journal of Symbolic Logic, 1(1):40-41.
[Forster et al., 2020] Forster, Y., Dominique, Larchey-Wendling, Andrej, Dudenhefner, Heiter, E., Kirst, D., Kunze, F., and Smolka, G. (2020). A coq library of undecidable problems. CoqPL 20.
[Forster et al., 2019] Forster, Y., Kirst, D., and Smolka, G. (2019). On Synthetic Undecidability in Coq, with an Application to the Entscheidungsproblem. In Proceedings of the 8th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2019, page 38-51, New York, NY, USA. Association for Computing Machinery.
[Kalmár, 1939] Kalmár, L. (1939). On the reduction of the decision problem. First paper. Ackermann prefix, a single binary predicate. Journal of Symbolic Logic, 4(1):1-9.
[Kirst and Larchey-Wendling, 2020] Kirst, D. and Larchey-Wendling, D. (2020). Trakhtenbrot's theorem in coq. In Peltier, N. and Sofronie-Stokkermans, V., editors, Automated Reasoning, pages 79-96, Cham. Springer International Publishing.
[Larchey-Wendling and Forster, 2019] Larchey-Wendling, D. and Forster, Y. (2019). Hilbert's Tenth Problem in Coq. 4th International Conference on Formal Structures for Computation and Deduction.
[Löwenheim, 1915] Löwenheim, L. (1915). Über Möglichkeiten im Relativkalkül. Mathematische Annalen, 76:447-470.
[Matiyasevich, 1970] Matiyasevich, Y. V. (1970). Enumerable sets are diophantine. Doklady Akademii Nauk SSSR, 191:279-282.
[Turing, 1936] Turing, A. M. (1936). On Computable Numbers, with an Application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 2(42):230-265.

FOL deduction system

$$
\begin{aligned}
\text { II } \frac{1 \mathrm{E}, A \vdash \psi}{A \vdash \varphi \rightarrow \psi} & & \operatorname{Ctx} \frac{\varphi \vdash \varphi \rightarrow \psi}{A \vdash \varphi} \\
\forall \mathrm{I} \frac{A \vdash \varphi \quad x \text { free in } A}{A \vdash \forall x, \varphi} & \forall \mathrm{E} \frac{A \vdash \forall x, \varphi}{A \vdash \varphi} & \perp \mathrm{E} \frac{A \vdash \perp}{A \vdash \varphi}
\end{aligned}
$$

For a classical deduction system, we also assume Pierce's law:

$$
\mathrm{Pc} \overline{A \vdash_{c}(((\varphi \rightarrow \psi) \rightarrow \varphi) \rightarrow \varphi}
$$

In the mechanization, de Bruijn indices are used

Reduction completeness

Show two lemmata:

1. $\forall n \in \mathbb{N}, \exists f: \mathbb{N} \rightarrow D$, which contains the "representation chain" of the first n numbers in D.

- Induction on n
- Base case: $N 0$
- Induction step: Axiom φ_{1}

2. $\forall x y a b$, if $(x, y) \#(a, b)$, and if we have a chain up to $\max \{\varphi x, \varphi y, \varphi a, \varphi b\}$ represented by f, then $(f x, f y) \#(f a, f b)$ holds.

- Induction on y, with x, a, b free.
- Base case: Lemma 1
- Induction step: Axiom φ_{2}, IH for $x, a, b ; b, c, b$ and Lemma 1 for a, y.

Showing $U D P C$ undecidable

Known-undecidable constraint problem:

$$
1+x+y^{2}=z
$$

New constraints for each such constraint:

$$
\begin{aligned}
& (a, a) \#\left(b, t_{1}\right) \\
& (c, y) \#(b, a) \\
& (c, x) \#\left(z, t_{2}\right)
\end{aligned}
$$

a, b, c, t_{1}, t_{2} are fresh

Details of the mechanisation

- FOL mechanisation uses de Bruijn indices
- Formulas are hard to read
- Keeping track of all the indices is hard
- Deduction system manipulates indices in $\forall I$ and $\forall E$ rules
- Reasoning about the chain in the deduction system is hard
- We can not have function $\mathbb{N} \rightarrow D$
- Bad idea: have representation at fixed indices
- Better idea: data structure encoding de Bruijn indices of representations

