
Undecidability of Finitie FOL Satisfiability over Small Signatures
Bachelor Proposal Talk

Advisors: Andrej Dudenhefner, Dominik Kirst
Supervisor: Prof. Gert Smolka

Johannes Hostert

July 27, 2021, Saarland University

1/11

Recap
Discussed in last talk:
I Undecidability of FOL problems

Validity
intuitionistic Provability
Satisfiability, Kripe Validity, Kripke Satisfiability

I Minimal version of these problems
Only a single binary predicate
∀ →-fragment
Without ⊥ (excluding Satisfiability)

I Source problem UDPC:
List of constraints of shape (x, y)#(a, b)⇔ a = x+ y + 1 ∧ 2 · b = y2 + y
In Coq: L (V2 × V2)
Structurality allows elegantly simple axiomatizations

I All mechanized in Coq

1/11

Recap
Discussed in last talk:
I Undecidability of FOL problems

Validity
intuitionistic Provability
Satisfiability, Kripe Validity, Kripke Satisfiability

I Minimal version of these problems
Only a single binary predicate
∀ →-fragment
Without ⊥ (excluding Satisfiability)

I Source problem UDPC:
List of constraints of shape (x, y)#(a, b)⇔ a = x+ y + 1 ∧ 2 · b = y2 + y
In Coq: L (V2 × V2)
Structurality allows elegantly simple axiomatizations

I All mechanized in Coq

1/11

Recap
Discussed in last talk:
I Undecidability of FOL problems

Validity
intuitionistic Provability
Satisfiability, Kripe Validity, Kripke Satisfiability

I Minimal version of these problems
Only a single binary predicate
∀ →-fragment
Without ⊥ (excluding Satisfiability)

I Source problem UDPC:
List of constraints of shape (x, y)#(a, b)⇔ a = x+ y + 1 ∧ 2 · b = y2 + y
In Coq: L (V2 × V2)
Structurality allows elegantly simple axiomatizations

I All mechanized in Coq

1/11

Recap
Discussed in last talk:
I Undecidability of FOL problems

Validity
intuitionistic Provability
Satisfiability, Kripe Validity, Kripke Satisfiability

I Minimal version of these problems
Only a single binary predicate
∀ →-fragment
Without ⊥ (excluding Satisfiability)

I Source problem UDPC:
List of constraints of shape (x, y)#(a, b)⇔ a = x+ y + 1 ∧ 2 · b = y2 + y
In Coq: L (V2 × V2)
Structurality allows elegantly simple axiomatizations

I All mechanized in Coq

2/11

Finite Model Theory
New restriction: Models of a theory must be finite.

I Classical conception: Model is given as a table
I Problem FSAT ϕ :⇔ ∃M,M finite ∧M � ϕ

I FSAT is undecidable [Trakhtenbrot, 1950]:
Encode Turing Machine execution as a finite model (see [Libkin, 2004])
For minimal syntax, perform compression until a single binary predicate remains

I FSAT is enumerable
finite Validity is co-enumerable and undecidable
finite FOL has no sound, complete and effective axiom system

I FSAT reduces to many problems in e.g. Program Verification
[Calcagno et al., 2001]

2/11

Finite Model Theory
New restriction: Models of a theory must be finite.
I Classical conception: Model is given as a table
I Problem FSAT ϕ :⇔ ∃M,M finite ∧M � ϕ

I FSAT is undecidable [Trakhtenbrot, 1950]:
Encode Turing Machine execution as a finite model (see [Libkin, 2004])
For minimal syntax, perform compression until a single binary predicate remains

I FSAT is enumerable
finite Validity is co-enumerable and undecidable
finite FOL has no sound, complete and effective axiom system

I FSAT reduces to many problems in e.g. Program Verification
[Calcagno et al., 2001]

2/11

Finite Model Theory
New restriction: Models of a theory must be finite.
I Classical conception: Model is given as a table
I Problem FSAT ϕ :⇔ ∃M,M finite ∧M � ϕ

I FSAT is undecidable [Trakhtenbrot, 1950]:
Encode Turing Machine execution as a finite model (see [Libkin, 2004])
For minimal syntax, perform compression until a single binary predicate remains

I FSAT is enumerable
finite Validity is co-enumerable and undecidable
finite FOL has no sound, complete and effective axiom system

I FSAT reduces to many problems in e.g. Program Verification
[Calcagno et al., 2001]

2/11

Finite Model Theory
New restriction: Models of a theory must be finite.
I Classical conception: Model is given as a table
I Problem FSAT ϕ :⇔ ∃M,M finite ∧M � ϕ

I FSAT is undecidable [Trakhtenbrot, 1950]:
Encode Turing Machine execution as a finite model (see [Libkin, 2004])
For minimal syntax, perform compression until a single binary predicate remains

I FSAT is enumerable
finite Validity is co-enumerable and undecidable
finite FOL has no sound, complete and effective axiom system

I FSAT reduces to many problems in e.g. Program Verification
[Calcagno et al., 2001]

2/11

Finite Model Theory
New restriction: Models of a theory must be finite.
I Classical conception: Model is given as a table
I Problem FSAT ϕ :⇔ ∃M,M finite ∧M � ϕ

I FSAT is undecidable [Trakhtenbrot, 1950]:
Encode Turing Machine execution as a finite model (see [Libkin, 2004])
For minimal syntax, perform compression until a single binary predicate remains

I FSAT is enumerable
finite Validity is co-enumerable and undecidable
finite FOL has no sound, complete and effective axiom system

I FSAT reduces to many problems in e.g. Program Verification
[Calcagno et al., 2001]

3/11

Finite Model Theory in Coq
In Coq:
I Models must be listable
I Atomic predicates must be decidable
⇒ For fixed M , M � ϕ is decidable.

I Previous results are mechanized in [Kirst and Larchey-Wendling, 2020]:
Show FSAT undecidable by reducing from PCP.
Perform signature compression to minimal form

I We propose instead:
Show FSAT undecidable by reducing from UDPC.
Signature is already minimal

3/11

Finite Model Theory in Coq
In Coq:
I Models must be listable
I Atomic predicates must be decidable
⇒ For fixed M , M � ϕ is decidable.

I Previous results are mechanized in [Kirst and Larchey-Wendling, 2020]:
Show FSAT undecidable by reducing from PCP.
Perform signature compression to minimal form

I We propose instead:
Show FSAT undecidable by reducing from UDPC.
Signature is already minimal

3/11

Finite Model Theory in Coq
In Coq:
I Models must be listable
I Atomic predicates must be decidable
⇒ For fixed M , M � ϕ is decidable.

I Previous results are mechanized in [Kirst and Larchey-Wendling, 2020]:
Show FSAT undecidable by reducing from PCP.
Perform signature compression to minimal form

I We propose instead:
Show FSAT undecidable by reducing from UDPC.
Signature is already minimal

4/11

Reductions into FSAT
Reduce UDPC to FSAT:
I Reduction function F : L

(
V2 × V2

)
→ FOL

I Show that UDPCh→ FSAT (F h)

I Show that FSAT (F h)→ UDPCh

4/11

Reductions into FSAT
Reduce UDPC to FSAT:
I Reduction function F : L

(
V2 × V2

)
→ FOL

I Show that UDPCh→ FSAT (F h)

I Show that FSAT (F h)→ UDPCh

Reduction idea:
I Encode solution to UDPC into finite model
I Reduction formula asserts a solution exists

I Second direction: Deconstruct solution using elimination axioms
I First direction: Construct concrete finite model

4/11

Reductions into FSAT
Reduce UDPC to FSAT:
I Reduction function F : L

(
V2 × V2

)
→ FOL

I Show that UDPCh→ FSAT (F h)

I Show that FSAT (F h)→ UDPCh

Reduction idea:
I Encode solution to UDPC into finite model
I Reduction formula asserts a solution exists
I Second direction: Deconstruct solution using elimination axioms
I First direction: Construct concrete finite model

4/11

Reductions into FSAT
Reduce UDPC to FSAT:
I Reduction function F : L

(
V2 × V2

)
→ FOL

I Show that UDPCh→ FSAT (F h)

I Show that FSAT (F h)→ UDPCh

Reduction function F : L
(
V2 × V2

)
→ FOL:

F h := ∃ 0m,Axioms ∧ ∃
v∈V(h)

, codeh

code ∅ := >
code ((a, b)#(c, d) :: hs) := rel a b c dm ∧ codehs

where rel a b c dm encodes that both (a, b)#(c, d) and m bounds a, b, c, d.

5/11

Coming up with axioms
Last talk:
I Axioms should “build up” solution in arbitrary model

Now:
I Axioms should “deconstruct” solution in arbitrary model
I Approach: Turn old axioms into eliminators

5/11

Coming up with axioms
Last talk:
I Axioms should “build up” solution in arbitrary model

Now:
I Axioms should “deconstruct” solution in arbitrary model
I Approach: Turn old axioms into eliminators

5/11

Coming up with axioms
Last talk:
I Axioms should “build up” solution in arbitrary model

Now:
I Axioms should “deconstruct” solution in arbitrary model
I Approach: Turn old axioms into eliminators

Example:

∀a,N a→∃a′, N a′ ∧ (a, 0)#(a′, 0)

∀a,N a′ → a 6≡ 0→∃a,N a ∧ (a, 0)#(a′, 0)

5/11

Coming up with axioms
Last talk:
I Axioms should “build up” solution in arbitrary model

Now:
I Axioms should “deconstruct” solution in arbitrary model
I Approach: Turn old axioms into eliminators

Example:

∀a,N a→∃a′, N a′ ∧ (a, 0)#(a′, 0)

∀a′, N a′ →∃a,N a ∧ (a, 0)#(a′, 0)

∀a,N a′ → a 6≡ 0→∃a,N a ∧ (a, 0)#(a′, 0)

5/11

Coming up with axioms
Last talk:
I Axioms should “build up” solution in arbitrary model

Now:
I Axioms should “deconstruct” solution in arbitrary model
I Approach: Turn old axioms into eliminators

Example:

∀a,N a→∃a′, N a′ ∧ (a, 0)#(a′, 0)

∀a,N a′ → a 6≡ 0→∃a,N a ∧ (a, 0)#(a′, 0)

∀a,N a′ → a 6≡ 0→∃a,N a ∧ (a, 0)#(a′, 0)

5/11

Coming up with axioms
Last talk:
I Axioms should “build up” solution in arbitrary model

Now:
I Axioms should “deconstruct” solution in arbitrary model
I Approach: Turn old axioms into eliminators

The axioms (so far):
I Predecessor axiom
I Eliminator laws for #

6/11

FSAT (F h)→ UDPCh

Idea: extract solution from finite model

I Find numbers representing points from model
I Induction on points of model along <

I < is well-founded in model
Axiom asserting it is transitive
Define < :=≤ ∧ 6≡, so < is irreflexive by definition
Fact: Transitive, irreflexive relations on finite types are well-founded.

I Deconstruct rel a b c dm using induction on b.

6/11

FSAT (F h)→ UDPCh

Idea: extract solution from finite model
I Find numbers representing points from model
I Induction on points of model along <

I < is well-founded in model
Axiom asserting it is transitive
Define < :=≤ ∧ 6≡, so < is irreflexive by definition
Fact: Transitive, irreflexive relations on finite types are well-founded.

I Deconstruct rel a b c dm using induction on b.

6/11

FSAT (F h)→ UDPCh

Idea: extract solution from finite model
I Find numbers representing points from model
I Induction on points of model along <

I < is well-founded in model
Axiom asserting it is transitive
Define < :=≤ ∧ 6≡, so < is irreflexive by definition
Fact: Transitive, irreflexive relations on finite types are well-founded.

I Deconstruct rel a b c dm using induction on b.

6/11

FSAT (F h)→ UDPCh

Idea: extract solution from finite model
I Find numbers representing points from model
I Induction on points of model along <

I < is well-founded in model
Axiom asserting it is transitive
Define < :=≤ ∧ 6≡, so < is irreflexive by definition
Fact: Transitive, irreflexive relations on finite types are well-founded.

I Deconstruct rel a b c dm using induction on b.

7/11

UDPCh→ FSAT (F h)

Idea: construct concrete finite model
I Prefix of standard model from last talk.

Model M = N≤m ∪ N2
≤m: numbers up to m, and their pairs

Interpretation of #:
I (x, y)#(a, b) as defined above
I n1#(a, b) := n1 = a
I (x, y)#n2 := y = n2

I n1#n2 := n1 ≤ n2

I m is the highest number in the solution of h
I Show that all axioms hold
I In Coq:

M needs to be listable
I ≤ on N has derivation uniqueness

is decidable: N is discrete, ≤ is decidable

7/11

UDPCh→ FSAT (F h)

Idea: construct concrete finite model
I Prefix of standard model from last talk.

Model M = N≤m ∪ N2
≤m: numbers up to m, and their pairs

Interpretation of #:
I (x, y)#(a, b) as defined above
I n1#(a, b) := n1 = a
I (x, y)#n2 := y = n2

I n1#n2 := n1 ≤ n2

I m is the highest number in the solution of h
I Show that all axioms hold
I In Coq:

M needs to be listable
I ≤ on N has derivation uniqueness

is decidable: N is discrete, ≤ is decidable

7/11

UDPCh→ FSAT (F h)

Idea: construct concrete finite model
I Prefix of standard model from last talk.

Model M = N≤m ∪ N2
≤m: numbers up to m, and their pairs

Interpretation of #:
I (x, y)#(a, b) as defined above

I n1#(a, b) := n1 = a
I (x, y)#n2 := y = n2

I n1#n2 := n1 ≤ n2

I m is the highest number in the solution of h
I Show that all axioms hold
I In Coq:

M needs to be listable
I ≤ on N has derivation uniqueness

is decidable: N is discrete, ≤ is decidable

7/11

UDPCh→ FSAT (F h)

Idea: construct concrete finite model
I Prefix of standard model from last talk.

Model M = N≤m ∪ N2
≤m: numbers up to m, and their pairs

Interpretation of #:
I (x, y)#(a, b) as defined above
I n1#(a, b) := n1 = a
I (x, y)#n2 := y = n2

I n1#n2 := n1 ≤ n2

I m is the highest number in the solution of h
I Show that all axioms hold
I In Coq:

M needs to be listable
I ≤ on N has derivation uniqueness

is decidable: N is discrete, ≤ is decidable

7/11

UDPCh→ FSAT (F h)

Idea: construct concrete finite model
I Prefix of standard model from last talk.

Model M = N≤m ∪ N2
≤m: numbers up to m, and their pairs

Interpretation of #:
I (x, y)#(a, b) as defined above
I n1#(a, b) := n1 = a
I (x, y)#n2 := y = n2

I n1#n2 := n1 ≤ n2

I m is the highest number in the solution of h
I Show that all axioms hold
I In Coq:

M needs to be listable
I ≤ on N has derivation uniqueness

is decidable: N is discrete, ≤ is decidable

7/11

UDPCh→ FSAT (F h)

Idea: construct concrete finite model
I Prefix of standard model from last talk.

Model M = N≤m ∪ N2
≤m: numbers up to m, and their pairs

Interpretation of #:
I (x, y)#(a, b) as defined above
I n1#(a, b) := n1 = a
I (x, y)#n2 := y = n2

I n1#n2 := n1 ≤ n2

I m is the highest number in the solution of h

I Show that all axioms hold
I In Coq:

M needs to be listable
I ≤ on N has derivation uniqueness

is decidable: N is discrete, ≤ is decidable

7/11

UDPCh→ FSAT (F h)

Idea: construct concrete finite model
I Prefix of standard model from last talk.

Model M = N≤m ∪ N2
≤m: numbers up to m, and their pairs

Interpretation of #:
I (x, y)#(a, b) as defined above
I n1#(a, b) := n1 = a
I (x, y)#n2 := y = n2

I n1#n2 := n1 ≤ n2

I m is the highest number in the solution of h
I Show that all axioms hold

I In Coq:
M needs to be listable
I ≤ on N has derivation uniqueness

is decidable: N is discrete, ≤ is decidable

7/11

UDPCh→ FSAT (F h)

Idea: construct concrete finite model
I Prefix of standard model from last talk.

Model M = N≤m ∪ N2
≤m: numbers up to m, and their pairs

Interpretation of #:
I (x, y)#(a, b) as defined above
I n1#(a, b) := n1 = a
I (x, y)#n2 := y = n2

I n1#n2 := n1 ≤ n2

I m is the highest number in the solution of h
I Show that all axioms hold
I In Coq:

M needs to be listable
I ≤ on N has derivation uniqueness

is decidable: N is discrete, ≤ is decidable

8/11

Axioms, summarized
In total, we have 5 axioms:

I ∀xyz, x < y → y < z → x < z

I ∀a,N a→ a 6≡ 0→ ∃a′, (a′, 0)#(a, 0)

I ∀ab, (a, 0)#(b, 0)→ a < b ∧ ∀k, k < b→ k ≤ a

I ∀abcd, (a, b)#(c, d)→ b 6≡ 0→
∃b′c′d′, (b′, 0)#(b, 0) ∧ (c′, 0)#(c, 0) ∧ (a, b′)#(c′, d′) ∧ (d′, b′)#(d, d′) ∧ d′ < d

I ∀acd, (a, 0)#(c, d)→ d ≡ 0

Elimination principles for #
Derived from old axioms for #
Surprisingly elegant, given that they characterize # rather completely.

8/11

Axioms, summarized
In total, we have 5 axioms:
I ∀xyz, x < y → y < z → x < z

I ∀a,N a→ a 6≡ 0→ ∃a′, (a′, 0)#(a, 0)

I ∀ab, (a, 0)#(b, 0)→ a < b ∧ ∀k, k < b→ k ≤ a

I ∀abcd, (a, b)#(c, d)→ b 6≡ 0→
∃b′c′d′, (b′, 0)#(b, 0) ∧ (c′, 0)#(c, 0) ∧ (a, b′)#(c′, d′) ∧ (d′, b′)#(d, d′) ∧ d′ < d

I ∀acd, (a, 0)#(c, d)→ d ≡ 0

Elimination principles for #
Derived from old axioms for #
Surprisingly elegant, given that they characterize # rather completely.

8/11

Axioms, summarized
In total, we have 5 axioms:
I ∀xyz, x < y → y < z → x < z

I ∀a,N a→ a 6≡ 0→ ∃a′, (a′, 0)#(a, 0)

I ∀ab, (a, 0)#(b, 0)→ a < b ∧ ∀k, k < b→ k ≤ a

I ∀abcd, (a, b)#(c, d)→ b 6≡ 0→
∃b′c′d′, (b′, 0)#(b, 0) ∧ (c′, 0)#(c, 0) ∧ (a, b′)#(c′, d′) ∧ (d′, b′)#(d, d′) ∧ d′ < d

I ∀acd, (a, 0)#(c, d)→ d ≡ 0

Elimination principles for #
Derived from old axioms for #
Surprisingly elegant, given that they characterize # rather completely.

8/11

Axioms, summarized
In total, we have 5 axioms:
I ∀xyz, x < y → y < z → x < z

I ∀a,N a→ a 6≡ 0→ ∃a′, (a′, 0)#(a, 0)

I ∀ab, (a, 0)#(b, 0)→ a < b ∧ ∀k, k < b→ k ≤ a

I ∀abcd, (a, b)#(c, d)→ b 6≡ 0→
∃b′c′d′, (b′, 0)#(b, 0) ∧ (c′, 0)#(c, 0) ∧ (a, b′)#(c′, d′) ∧ (d′, b′)#(d, d′) ∧ d′ < d

I ∀acd, (a, 0)#(c, d)→ d ≡ 0

Elimination principles for #
Derived from old axioms for #
Surprisingly elegant, given that they characterize # rather completely.

8/11

Axioms, summarized
In total, we have 5 axioms:
I ∀xyz, x < y → y < z → x < z

I ∀a,N a→ a 6≡ 0→ ∃a′, (a′, 0)#(a, 0)

I ∀ab, (a, 0)#(b, 0)→ a < b ∧ ∀k, k < b→ k ≤ a

I ∀abcd, (a, b)#(c, d)→ b 6≡ 0→
∃b′c′d′, (b′, 0)#(b, 0) ∧ (c′, 0)#(c, 0) ∧ (a, b′)#(c′, d′) ∧ (d′, b′)#(d, d′) ∧ d′ < d

I ∀acd, (a, 0)#(c, d)→ d ≡ 0

Elimination principles for #
Derived from old axioms for #
Surprisingly elegant, given that they characterize # rather completely.

9/11

More compression

I FSAT shown undecidable for minimal signature

I What about ∀ →-fragment?

Satisfiability for fixed model is decidable
Trivial reduction into small fragment by double-negation translation

I What about Friedman translation / ⊥ eliminiation?
Impossible for FSAT
If formula is positive, it is satisfied by trivial model

9/11

More compression

I FSAT shown undecidable for minimal signature

I What about ∀ →-fragment?
Satisfiability for fixed model is decidable
Trivial reduction into small fragment by double-negation translation

I What about Friedman translation / ⊥ eliminiation?
Impossible for FSAT
If formula is positive, it is satisfied by trivial model

9/11

More compression

I FSAT shown undecidable for minimal signature

I What about ∀ →-fragment?
Satisfiability for fixed model is decidable
Trivial reduction into small fragment by double-negation translation

I What about Friedman translation / ⊥ eliminiation?
Impossible for FSAT

If formula is positive, it is satisfied by trivial model

9/11

More compression

I FSAT shown undecidable for minimal signature

I What about ∀ →-fragment?
Satisfiability for fixed model is decidable
Trivial reduction into small fragment by double-negation translation

I What about Friedman translation / ⊥ eliminiation?
Impossible for FSAT
If formula is positive, it is satisfied by trivial model

10/11

Summary
We have done:
I Mechanized above reductions in Coq

I in total: < 1000 LoC
I [Kirst and Larchey-Wendling, 2020]: 10k LoC

My contributions:
I Adapt # for FSAT
I Adapt old and find new axioms
I Formalization in Coq

Not my contributions:
I Original axioms for, and definitions of #

10/11

Summary
We have done:
I Mechanized above reductions in Coq
I in total: < 1000 LoC
I [Kirst and Larchey-Wendling, 2020]: 10k LoC

My contributions:
I Adapt # for FSAT
I Adapt old and find new axioms
I Formalization in Coq

Not my contributions:
I Original axioms for, and definitions of #

10/11

Summary
We have done:
I Mechanized above reductions in Coq
I in total: < 1000 LoC
I [Kirst and Larchey-Wendling, 2020]: 10k LoC

My contributions:
I Adapt # for FSAT
I Adapt old and find new axioms
I Formalization in Coq

Not my contributions:
I Original axioms for, and definitions of #

10/11

Summary
We have done:
I Mechanized above reductions in Coq
I in total: < 1000 LoC
I [Kirst and Larchey-Wendling, 2020]: 10k LoC

My contributions:
I Adapt # for FSAT
I Adapt old and find new axioms
I Formalization in Coq

Not my contributions:
I Original axioms for, and definitions of #

11/11

Bachelor project
Accomplished goals:
I Mechanize minimal reductions for validity, provability: X
I Mechanize minimal reductions for FSAT : X

Remaining goals:
I Clean up Coq formalization
I Distill into dependency-less formalization
I Upstream into Coq Library of Undecidability Proofs [Forster et al., 2020]

We may want to change the definition of undecidability
Optional goals:
I Finite Validity reduction with Friedman translation
I Analyze reducing quantifier prefix
I What about classical proof systems

11/11

Bachelor project
Accomplished goals:
I Mechanize minimal reductions for validity, provability: X
I Mechanize minimal reductions for FSAT : X

Remaining goals:
I Clean up Coq formalization
I Distill into dependency-less formalization
I Upstream into Coq Library of Undecidability Proofs [Forster et al., 2020]

We may want to change the definition of undecidability

Optional goals:
I Finite Validity reduction with Friedman translation
I Analyze reducing quantifier prefix
I What about classical proof systems

11/11

Bachelor project
Accomplished goals:
I Mechanize minimal reductions for validity, provability: X
I Mechanize minimal reductions for FSAT : X

Remaining goals:
I Clean up Coq formalization
I Distill into dependency-less formalization
I Upstream into Coq Library of Undecidability Proofs [Forster et al., 2020]

We may want to change the definition of undecidability
Optional goals:
I Finite Validity reduction with Friedman translation
I Analyze reducing quantifier prefix
I What about classical proof systems

1/5

References
[Calcagno et al., 2001] Calcagno, C., Yang, H., and O’Hearn, P. W. (2001). Computability and complexity results for a spatial assertion

language for data structures. In Hariharan, R., Vinay, V., and Mukund, M., editors, FST TCS 2001: Foundations of Software
Technology and Theoretical Computer Science, pages 108–119, Berlin, Heidelberg. Springer Berlin Heidelberg.

[Forster et al., 2020] Forster, Y., Dominique, Larchey-Wendling, Andrej, Dudenhefner, Heiter, E., Kirst, D., Kunze, F., and Smolka, G.
(2020). A coq library of undecidable problems. CoqPL 20.

[Kalmár, 1937] Kalmár, L. (1937). Zurückführung des Entscheidungsproblems auf den Fall von Formeln mit einer einzigen, binären,
Funktionsvariablen. Compositio Mathematica, 4:137–144.

[Kirst and Larchey-Wendling, 2020] Kirst, D. and Larchey-Wendling, D. (2020). Trakhtenbrot’s theorem in coq. In Peltier, N. and
Sofronie-Stokkermans, V., editors, Automated Reasoning, pages 79–96, Cham. Springer International Publishing.

[Libkin, 2004] Libkin, L. (2004). Elements of Finite Model Theory. Springer.

[Trakhtenbrot, 1950] Trakhtenbrot, B. (1950). The impossibility of an algorithm for the decidability problem on finite classes.
Proceedings of the USSR Academy of Sciences.

2/5

[Trakhtenbrot, 1950]

I Very ancient notation
I Given a general-recursive function f , construct formula U that is finitely satisfied

only if f has a root
I Construction by induction on syntax of f
I Paper leaves actual construction to the reader
I Reduction is an interesting approach which might be elegantly mechanizable
I Paper is not concerned with minimal representation

[Kalmár, 1937] already published a reduction from FOL to FOL with minimal
signature
[Kalmár, 1937] claims the reduction should work for finite models without
presenting proof
The fact that one can reduce to a binary signature was folklore knowledge in
1950

3/5

[Kirst and Larchey-Wendling, 2020]
Part on Trakhenbrot:
I Show FSAT undecidable by reducing from PCP
I Signature compression chain:

Arbitrary FOL with equality to arbitrary FOL without equality
I Take quotient over first-order indistinguishability

Arbitrary FOL to single predicate FOL
I Actually three different reductions
I Compress functions to predicates
I Compress predicates to one predicate + unary functions
I Compress functions to free variables

single predicate to binary predicate
I Construction using ∈ and HF-sets

Other results:
I Monadic signature is shown decidable

Function and relation symbols have arity ≤ 1, or
Relation symbols have arity 0

4/5

[Libkin, 2004]

I Textbook on Finite Model Theory
I Interesting section for us is 9.1
I Reduction from Turing Machine Halting Problem to FSAT
I Making this use minimal signature is (explicitly) left to the reader

5/5

The full reduction

1. Syntactic sugar:
N k := k#k
P ′ k := k#k → ⊥
P p l r := P ′ p ∧N l ∧N r ∧ l#p ∧ p#r
(a, b)#(c, d) := ∃p q, P p a b ∧ P q c d ∧ p#q
x ≡ y := ∀k, k#x↔ k#y ∧ x#k ↔ y#k
x ≤ y := N x ∧N y ∧ x#y
x < y := x ≤ y ∧ x 6≡ y
rel a b c dm := (a, b)#(c, d) ∧ a ≤ m ∧ b ≤ m ∧ c ≤ m ∧ d ≤ m

2. Axioms:
∀xyz, x < y → y < z → x < z
∀a,N a→ a 6≡ 0→ ∃a′, (a′, 0)#(a, 0)
∀ab, (a, 0)#(b, 0)→ a < b ∧ ∀k, k < b→ k ≤ a
∀abcd, (a, b)#(c, d)→ b 6≡ 0→
∃b′c′d′, (b′, 0)#(b, 0)∧ (c′, 0)#(c, 0)∧ (a, b′)#(c′, d′)∧ (d′, b′)#(d, d′)∧ d′ < d
∀acd, (a, 0)#(c, d)→ d ≡ 0

	Appendix

