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Recap
Discussed in last talk:
I Undecidability of FOL problems

Validity
intuitionistic Provability
Satisfiability, Kripe Validity, Kripke Satisfiability

I Minimal version of these problems
Only a single binary predicate
∀ →-fragment
Without ⊥ (excluding Satisfiability)

I Source problem UDPC:
List of constraints of shape (x, y)#(a, b)⇔ a = x+ y + 1 ∧ 2 · b = y2 + y
In Coq: L (V2 × V2)
Structurality allows elegantly simple axiomatizations

I All mechanized in Coq
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Finite Model Theory
New restriction: Models of a theory must be finite.

I Classical conception: Model is given as a table
I Problem FSAT ϕ :⇔ ∃M,M finite ∧M � ϕ

I FSAT is undecidable [Trakhtenbrot, 1950]:
Encode Turing Machine execution as a finite model (see [Libkin, 2004])
For minimal syntax, perform compression until a single binary predicate remains

I FSAT is enumerable
finite Validity is co-enumerable and undecidable
finite FOL has no sound, complete and effective axiom system

I FSAT reduces to many problems in e.g. Program Verification
[Calcagno et al., 2001]
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Finite Model Theory in Coq
In Coq:
I Models must be listable
I Atomic predicates must be decidable
⇒ For fixed M , M � ϕ is decidable.

I Previous results are mechanized in [Kirst and Larchey-Wendling, 2020]:
Show FSAT undecidable by reducing from PCP.
Perform signature compression to minimal form

I We propose instead:
Show FSAT undecidable by reducing from UDPC.
Signature is already minimal
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Reductions into FSAT
Reduce UDPC to FSAT:
I Reduction function F : L

(
V2 × V2

)
→ FOL

I Show that UDPCh→ FSAT (F h)

I Show that FSAT (F h)→ UDPCh
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I Second direction: Deconstruct solution using elimination axioms
I First direction: Construct concrete finite model
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Reductions into FSAT
Reduce UDPC to FSAT:
I Reduction function F : L

(
V2 × V2

)
→ FOL

I Show that UDPCh→ FSAT (F h)

I Show that FSAT (F h)→ UDPCh

Reduction function F : L
(
V2 × V2

)
→ FOL:

F h := ∃ 0m,Axioms ∧ ∃
v∈V(h)

, codeh

code ∅ := >
code ((a, b)#(c, d) :: hs) := rel a b c dm ∧ codehs

where rel a b c dm encodes that both (a, b)#(c, d) and m bounds a, b, c, d.
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Coming up with axioms
Last talk:
I Axioms should “build up” solution in arbitrary model

Now:
I Axioms should “deconstruct” solution in arbitrary model
I Approach: Turn old axioms into eliminators
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Coming up with axioms
Last talk:
I Axioms should “build up” solution in arbitrary model

Now:
I Axioms should “deconstruct” solution in arbitrary model
I Approach: Turn old axioms into eliminators

The axioms (so far):
I Predecessor axiom
I Eliminator laws for #
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FSAT (F h)→ UDPCh

Idea: extract solution from finite model

I Find numbers representing points from model
I Induction on points of model along <

I < is well-founded in model
Axiom asserting it is transitive
Define < :=≤ ∧ 6≡, so < is irreflexive by definition
Fact: Transitive, irreflexive relations on finite types are well-founded.

I Deconstruct rel a b c dm using induction on b.
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UDPCh→ FSAT (F h)

Idea: construct concrete finite model
I Prefix of standard model from last talk.

Model M = N≤m ∪ N2
≤m: numbers up to m, and their pairs

Interpretation of #:
I (x, y)#(a, b) as defined above
I n1#(a, b) := n1 = a
I (x, y)#n2 := y = n2

I n1#n2 := n1 ≤ n2

I m is the highest number in the solution of h
I Show that all axioms hold
I In Coq:

M needs to be listable
I ≤ on N has derivation uniqueness

# is decidable: N is discrete, ≤ is decidable
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Axioms, summarized
In total, we have 5 axioms:

I ∀xyz, x < y → y < z → x < z

I ∀a,N a→ a 6≡ 0→ ∃a′, (a′, 0)#(a, 0)

I ∀ab, (a, 0)#(b, 0)→ a < b ∧ ∀k, k < b→ k ≤ a

I ∀abcd, (a, b)#(c, d)→ b 6≡ 0→
∃b′c′d′, (b′, 0)#(b, 0) ∧ (c′, 0)#(c, 0) ∧ (a, b′)#(c′, d′) ∧ (d′, b′)#(d, d′) ∧ d′ < d

I ∀acd, (a, 0)#(c, d)→ d ≡ 0

Elimination principles for #
Derived from old axioms for #
Surprisingly elegant, given that they characterize # rather completely.
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More compression

I FSAT shown undecidable for minimal signature

I What about ∀ →-fragment?

Satisfiability for fixed model is decidable
Trivial reduction into small fragment by double-negation translation

I What about Friedman translation / ⊥ eliminiation?
Impossible for FSAT
If formula is positive, it is satisfied by trivial model
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Summary
We have done:
I Mechanized above reductions in Coq

I in total: < 1000 LoC
I [Kirst and Larchey-Wendling, 2020]: 10k LoC

My contributions:
I Adapt # for FSAT
I Adapt old and find new axioms
I Formalization in Coq

Not my contributions:
I Original axioms for, and definitions of #
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Bachelor project
Accomplished goals:
I Mechanize minimal reductions for validity, provability: X
I Mechanize minimal reductions for FSAT : X

Remaining goals:
I Clean up Coq formalization
I Distill into dependency-less formalization
I Upstream into Coq Library of Undecidability Proofs [Forster et al., 2020]

We may want to change the definition of undecidability
Optional goals:
I Finite Validity reduction with Friedman translation
I Analyze reducing quantifier prefix
I What about classical proof systems
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[Trakhtenbrot, 1950]

I Very ancient notation
I Given a general-recursive function f , construct formula U that is finitely satisfied

only if f has a root
I Construction by induction on syntax of f
I Paper leaves actual construction to the reader
I Reduction is an interesting approach which might be elegantly mechanizable
I Paper is not concerned with minimal representation

[Kalmár, 1937] already published a reduction from FOL to FOL with minimal
signature
[Kalmár, 1937] claims the reduction should work for finite models without
presenting proof
The fact that one can reduce to a binary signature was folklore knowledge in
1950
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[Kirst and Larchey-Wendling, 2020]
Part on Trakhenbrot:
I Show FSAT undecidable by reducing from PCP
I Signature compression chain:

Arbitrary FOL with equality to arbitrary FOL without equality
I Take quotient over first-order indistinguishability

Arbitrary FOL to single predicate FOL
I Actually three different reductions
I Compress functions to predicates
I Compress predicates to one predicate + unary functions
I Compress functions to free variables

single predicate to binary predicate
I Construction using ∈ and HF-sets

Other results:
I Monadic signature is shown decidable

Function and relation symbols have arity ≤ 1, or
Relation symbols have arity 0
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[Libkin, 2004]

I Textbook on Finite Model Theory
I Interesting section for us is 9.1
I Reduction from Turing Machine Halting Problem to FSAT
I Making this use minimal signature is (explicitly) left to the reader
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The full reduction

1. Syntactic sugar:
N k := k#k
P ′ k := k#k → ⊥
P p l r := P ′ p ∧N l ∧N r ∧ l#p ∧ p#r
(a, b)#(c, d) := ∃p q, P p a b ∧ P q c d ∧ p#q
x ≡ y := ∀k, k#x↔ k#y ∧ x#k ↔ y#k
x ≤ y := N x ∧N y ∧ x#y
x < y := x ≤ y ∧ x 6≡ y
rel a b c dm := (a, b)#(c, d) ∧ a ≤ m ∧ b ≤ m ∧ c ≤ m ∧ d ≤ m

2. Axioms:
∀xyz, x < y → y < z → x < z
∀a,N a→ a 6≡ 0→ ∃a′, (a′, 0)#(a, 0)
∀ab, (a, 0)#(b, 0)→ a < b ∧ ∀k, k < b→ k ≤ a
∀abcd, (a, b)#(c, d)→ b 6≡ 0→
∃b′c′d′, (b′, 0)#(b, 0)∧ (c′, 0)#(c, 0)∧ (a, b′)#(c′, d′)∧ (d′, b′)#(d, d′)∧ d′ < d
∀acd, (a, 0)#(c, d)→ d ≡ 0
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