Undecidability of Finitie FOL Satisfiability over Small Signatures

Bachelor Proposal Talk

Advisors: Andrej Dudenhefner, Dominik Kirst Supervisor: Prof. Gert Smolka

Johannes Hostert

July 27, 2021, Saarland University

Recap

Discussed in last talk:

- Undecidability of FOL problems
- Validity
- intuitionistic Provability
- Satisfiability, Kripe Validity, Kripke Satisfiability

Recap

Discussed in last talk:

- Undecidability of FOL problems
- Validity
- intuitionistic Provability
- Satisfiability, Kripe Validity, Kripke Satisfiability
- Minimal version of these problems
- Only a single binary predicate

■ $\forall \rightarrow$-fragment

- Without \perp (excluding Satisfiability)

Recap

Discussed in last talk:

- Undecidability of FOL problems
- Validity
- intuitionistic Provability
- Satisfiability, Kripe Validity, Kripke Satisfiability
- Minimal version of these problems
- Only a single binary predicate
- $\forall \rightarrow$-fragment
- Without \perp (excluding Satisfiability)
- Source problem UDPC:
- List of constraints of shape $(x, y) \#(a, b) \Leftrightarrow a=x+y+1 \wedge 2 \cdot b=y^{2}+y$
- In Coq: $\mathscr{L}\left(\mathcal{V}^{2} \times \mathcal{V}^{2}\right)$
- Structurality allows elegantly simple axiomatizations

Recap

Discussed in last talk:

- Undecidability of FOL problems
- Validity
- intuitionistic Provability
- Satisfiability, Kripe Validity, Kripke Satisfiability
- Minimal version of these problems
- Only a single binary predicate
- $\forall \rightarrow$-fragment
- Without \perp (excluding Satisfiability)
- Source problem UDPC:
- List of constraints of shape $(x, y) \#(a, b) \Leftrightarrow a=x+y+1 \wedge 2 \cdot b=y^{2}+y$
- In Coq: $\mathscr{L}\left(\mathcal{V}^{2} \times \mathcal{V}^{2}\right)$
- Structurality allows elegantly simple axiomatizations
- All mechanized in Coq

Finite Model Theory

New restriction: Models of a theory must be finite.

Finite Model Theory

New restriction: Models of a theory must be finite.

- Classical conception: Model is given as a table
- Problem FSAT $\varphi: \Leftrightarrow \exists M, M$ finite $\wedge M \vDash \varphi$

Finite Model Theory

New restriction: Models of a theory must be finite.

- Classical conception: Model is given as a table
- Problem FSAT $\varphi: \Leftrightarrow \exists M, M$ finite $\wedge M \vDash \varphi$
- FSAT is undecidable [Trakhtenbrot, 1950]:
- Encode Turing Machine execution as a finite model (see [Libkin, 2004])
- For minimal syntax, perform compression until a single binary predicate remains

Finite Model Theory

New restriction: Models of a theory must be finite.

- Classical conception: Model is given as a table
- Problem FSAT $\varphi: \Leftrightarrow \exists M, M$ finite $\wedge M \vDash \varphi$
- FSAT is undecidable [Trakhtenbrot, 1950]:
- Encode Turing Machine execution as a finite model (see [Libkin, 2004])
- For minimal syntax, perform compression until a single binary predicate remains
- FSAT is enumerable
- finite Validity is co-enumerable and undecidable
- finite FOL has no sound, complete and effective axiom system

Finite Model Theory

New restriction: Models of a theory must be finite.

- Classical conception: Model is given as a table
- Problem FSAT $\varphi: \Leftrightarrow \exists M, M$ finite $\wedge M \vDash \varphi$
- FSAT is undecidable [Trakhtenbrot, 1950]:
- Encode Turing Machine execution as a finite model (see [Libkin, 2004])
- For minimal syntax, perform compression until a single binary predicate remains
- FSAT is enumerable
- finite Validity is co-enumerable and undecidable
- finite FOL has no sound, complete and effective axiom system
- FSAT reduces to many problems in e.g. Program Verification [Calcagno et al., 2001]

Finite Model Theory in Coq
In Coq:

- Models must be listable
- Atomic predicates must be decidable
\Rightarrow For fixed $M, M \vDash \varphi$ is decidable.

Finite Model Theory in Coq

In Coq:

- Models must be listable
- Atomic predicates must be decidable
\Rightarrow For fixed $M, M \vDash \varphi$ is decidable.
- Previous results are mechanized in [Kirst and Larchey-Wendling, 2020]:
- Show FSAT undecidable by reducing from PCP.
- Perform signature compression to minimal form

Finite Model Theory in Coq

In Coq:

- Models must be listable
- Atomic predicates must be decidable
\Rightarrow For fixed $M, M \vDash \varphi$ is decidable.
- Previous results are mechanized in [Kirst and Larchey-Wendling, 2020]:
- Show FSAT undecidable by reducing from PCP.
- Perform signature compression to minimal form
- We propose instead:
- Show FSAT undecidable by reducing from UDPC.
- Signature is already minimal

Reductions into FSAT

Reduce UDPC to FSAT:

- Reduction function $F: \mathscr{L}\left(\mathcal{V}^{2} \times \mathcal{V}^{2}\right) \rightarrow F O L$
- Show that UDPCh $\rightarrow \operatorname{FSAT}(F h)$
- Show that $\operatorname{FSAT}(F h) \rightarrow U D P C h$

Reductions into FSAT

Reduce UDPC to FSAT:

- Reduction function $F: \mathscr{L}\left(\mathcal{V}^{2} \times \mathcal{V}^{2}\right) \rightarrow F O L$
- Show that UDPCh $\rightarrow \operatorname{FSAT}(F h)$
- Show that $\operatorname{FSAT}(F h) \rightarrow$ UDPCh

Reduction idea:

- Encode solution to UDPC into finite model
- Reduction formula asserts a solution exists

Reductions into FSAT

Reduce UDPC to FSAT:

- Reduction function $F: \mathscr{L}\left(\mathcal{V}^{2} \times \mathcal{V}^{2}\right) \rightarrow F O L$
- Show that UDPCh $\rightarrow \operatorname{FSAT}(F h)$
- Show that $\operatorname{FSAT}(F h) \rightarrow$ UDPCh

Reduction idea:

- Encode solution to UDPC into finite model
- Reduction formula asserts a solution exists
- Second direction: Deconstruct solution using elimination axioms
- First direction: Construct concrete finite model

Reductions into FSAT

Reduce UDPC to FSAT:

- Reduction function $F: \mathscr{L}\left(\mathcal{V}^{2} \times \mathcal{V}^{2}\right) \rightarrow F O L$
- Show that UDPCh \rightarrow FSAT $(F h)$
- Show that $\operatorname{FSAT}(F h) \rightarrow$ UDPCh

Reduction function $F: \mathscr{L}\left(\mathcal{V}^{2} \times \mathcal{V}^{2}\right) \rightarrow F O L:$

$$
\begin{aligned}
F h & :=\exists 0 m, \text { Axioms } \wedge \underset{v \in \mathcal{V}(h)}{\exists}, \operatorname{codeh} \\
\text { code } \emptyset & :=\top
\end{aligned}
$$

$$
\operatorname{code}((a, b) \#(c, d):: h s):=r e l a b c d m \wedge \text { codehs }
$$

where relabcdm encodes that both $(a, b) \#(c, d)$ and m bounds a, b, c, d.

Coming up with axioms

Last talk:

- Axioms should "build up" solution in arbitrary model

Coming up with axioms

Last talk:

- Axioms should "build up" solution in arbitrary model

Now:

- Axioms should "deconstruct" solution in arbitrary model
- Approach: Turn old axioms into eliminators

Coming up with axioms

Last talk:

- Axioms should "build up" solution in arbitrary model

Now:

- Axioms should "deconstruct" solution in arbitrary model
- Approach: Turn old axioms into eliminators

Example:

$$
\forall a, N a \rightarrow \exists a^{\prime}, N a^{\prime} \wedge(a, 0) \#\left(a^{\prime}, 0\right)
$$

Coming up with axioms

Last talk:

- Axioms should "build up" solution in arbitrary model

Now:

- Axioms should "deconstruct" solution in arbitrary model
- Approach: Turn old axioms into eliminators

Example:

$$
\begin{aligned}
\forall a, N a & \rightarrow \exists a^{\prime}, N a^{\prime} \wedge(a, 0) \#\left(a^{\prime}, 0\right) \\
\forall a^{\prime}, N a^{\prime} & \rightarrow \exists a, N a \wedge(a, 0) \#\left(a^{\prime}, 0\right)
\end{aligned}
$$

Coming up with axioms

Last talk:

- Axioms should "build up" solution in arbitrary model

Now:

- Axioms should "deconstruct" solution in arbitrary model
- Approach: Turn old axioms into eliminators

Example:

$$
\begin{aligned}
\forall a, N a & \rightarrow \exists a^{\prime}, N a^{\prime} \wedge(a, 0) \#\left(a^{\prime}, 0\right) \\
\forall a, N a^{\prime} \rightarrow a \not \equiv 0 & \rightarrow \exists a, N a \wedge(a, 0) \#\left(a^{\prime}, 0\right)
\end{aligned}
$$

Coming up with axioms

Last talk:

- Axioms should "build up" solution in arbitrary model

Now:

- Axioms should "deconstruct" solution in arbitrary model
- Approach: Turn old axioms into eliminators

The axioms (so far):

- Predecessor axiom
- Eliminator laws for \#
$F S A T(F h) \rightarrow U D P C h$
Idea: extract solution from finite model
$F S A T(F h) \rightarrow U D P C h$
Idea: extract solution from finite model
- Find numbers representing points from model
- Induction on points of model along <
$F S A T(F h) \rightarrow U D P C h$
Idea: extract solution from finite model
- Find numbers representing points from model
- Induction on points of model along $<$
- < is well-founded in model
- Axiom asserting it is transitive
- Define $<:=\leq \wedge \not \equiv$, so $<$ is irreflexive by definition
- Fact: Transitive, irreflexive relations on finite types are well-founded.
$F S A T(F h) \rightarrow U D P C h$
Idea: extract solution from finite model
- Find numbers representing points from model
- Induction on points of model along <
- < is well-founded in model
- Axiom asserting it is transitive
- Define $<:=\leq \wedge \not \equiv$, so $<$ is irreflexive by definition
- Fact: Transitive, irreflexive relations on finite types are well-founded.
- Deconstruct relabcdm using induction on b.

$U D P C h \rightarrow F S A T(F h)$

Idea: construct concrete finite model

- Prefix of standard model from last talk.

$U D P C h \rightarrow F S A T(F h)$

Idea: construct concrete finite model

- Prefix of standard model from last talk.
- Model $M=\mathbb{N}_{\leq m} \cup \mathbb{N}_{\leq m}^{2}$: numbers up to m, and their pairs

$U D P C h \rightarrow F S A T(F h)$

Idea: construct concrete finite model

- Prefix of standard model from last talk.
- Model $M=\mathbb{N}_{\leq m} \cup \mathbb{N}_{\leq m}^{2}$: numbers up to m, and their pairs
- Interpretation of \#:
- $(x, y) \#(a, b)$ as defined above

$U D P C h \rightarrow F S A T(F h)$

Idea: construct concrete finite model

- Prefix of standard model from last talk.
- Model $M=\mathbb{N}_{\leq m} \cup \mathbb{N}_{\leq m}^{2}$: numbers up to m, and their pairs
- Interpretation of \#:
- $(x, y) \#(a, b)$ as defined above
- $n_{1} \#(a, b):=n_{1}=a$
- $(x, y) \# n_{2}:=y=n_{2}$

$U D P C h \rightarrow F S A T(F h)$

Idea: construct concrete finite model

- Prefix of standard model from last talk.
- Model $M=\mathbb{N}_{\leq m} \cup \mathbb{N}_{\leq m}^{2}$: numbers up to m, and their pairs
- Interpretation of \#:
- $(x, y) \#(a, b)$ as defined above
- $n_{1} \#(a, b):=n_{1}=a$
- $(x, y) \# n_{2}:=y=n_{2}$
- $n_{1} \# n_{2}:=n_{1} \leq n_{2}$

$U D P C h \rightarrow F S A T(F h)$

Idea: construct concrete finite model

- Prefix of standard model from last talk.
- Model $M=\mathbb{N}_{\leq m} \cup \mathbb{N}_{\leq m}^{2}$: numbers up to m, and their pairs
- Interpretation of \#:
- $(x, y) \#(a, b)$ as defined above
- $n_{1} \#(a, b):=n_{1}=a$
- $(x, y) \# n_{2}:=y=n_{2}$
- $n_{1} \# n_{2}:=n_{1} \leq n_{2}$
- m is the highest number in the solution of h

$U D P C h \rightarrow F S A T(F h)$

Idea: construct concrete finite model

- Prefix of standard model from last talk.
- Model $M=\mathbb{N}_{\leq m} \cup \mathbb{N}_{\leq m}^{2}$: numbers up to m, and their pairs
- Interpretation of \#:
- $(x, y) \#(a, b)$ as defined above
- $n_{1} \#(a, b):=n_{1}=a$
- $(x, y) \# n_{2}:=y=n_{2}$
- $n_{1} \# n_{2}:=n_{1} \leq n_{2}$
- m is the highest number in the solution of h
- Show that all axioms hold

$U D P C h \rightarrow F S A T(F h)$

Idea: construct concrete finite model

- Prefix of standard model from last talk.
- Model $M=\mathbb{N}_{\leq m} \cup \mathbb{N}_{\leq m}^{2}$: numbers up to m, and their pairs
- Interpretation of \#:
- $(x, y) \#(a, b)$ as defined above
- $n_{1} \#(a, b):=n_{1}=a$
- $(x, y) \# n_{2}:=y=n_{2}$
- $n_{1} \# n_{2}:=n_{1} \leq n_{2}$
- m is the highest number in the solution of h
- Show that all axioms hold
- In Coq:
- M needs to be listable
- \leq on \mathbb{N} has derivation uniqueness
- \# is decidable: \mathbb{N} is discrete, \leq is decidable

Axioms, summarized
In total, we have 5 axioms:

Axioms, summarized

In total, we have 5 axioms:

- $\forall x y z, x<y \rightarrow y<z \rightarrow x<z$

Axioms, summarized

In total, we have 5 axioms:

- $\forall x y z, x<y \rightarrow y<z \rightarrow x<z$
- $\forall a, N a \rightarrow a \neq 0 \rightarrow \exists a^{\prime},\left(a^{\prime}, 0\right) \#(a, 0)$

Axioms, summarized

In total, we have 5 axioms:

- $\forall x y z, x<y \rightarrow y<z \rightarrow x<z$
- $\forall a, N a \rightarrow a \not \equiv 0 \rightarrow \exists a^{\prime},\left(a^{\prime}, 0\right) \#(a, 0)$
- $\forall a b,(a, 0) \#(b, 0) \rightarrow a<b \wedge \forall k, k<b \rightarrow k \leq a$

Axioms, summarized

In total, we have 5 axioms:

- $\forall x y z, x<y \rightarrow y<z \rightarrow x<z$
- $\forall a, N a \rightarrow a \not \equiv 0 \rightarrow \exists a^{\prime},\left(a^{\prime}, 0\right) \#(a, 0)$
- $\forall a b,(a, 0) \#(b, 0) \rightarrow a<b \wedge \forall k, k<b \rightarrow k \leq a$
- $\forall a b c d,(a, b) \#(c, d) \rightarrow b \not \equiv 0 \rightarrow$ $\exists b^{\prime} c^{\prime} d^{\prime},\left(b^{\prime}, 0\right) \#(b, 0) \wedge\left(c^{\prime}, 0\right) \#(c, 0) \wedge\left(a, b^{\prime}\right) \#\left(c^{\prime}, d^{\prime}\right) \wedge\left(d^{\prime}, b^{\prime}\right) \#\left(d, d^{\prime}\right) \wedge d^{\prime}<d$
- $\forall a c d,(a, 0) \#(c, d) \rightarrow d \equiv 0$
- Elimination principles for \#
- Derived from old axioms for \#
- Surprisingly elegant, given that they characterize \# rather completely.

More compression

- FSAT shown undecidable for minimal signature
- What about $\forall \rightarrow$-fragment?

More compression

- FSAT shown undecidable for minimal signature
- What about $\forall \rightarrow$-fragment?
- Satisfiability for fixed model is decidable
- Trivial reduction into small fragment by double-negation translation

More compression

- FSAT shown undecidable for minimal signature
- What about $\forall \rightarrow$-fragment?
- Satisfiability for fixed model is decidable
- Trivial reduction into small fragment by double-negation translation
- What about Friedman translation $/ \perp$ eliminiation?
- Impossible for FSAT

More compression

- FSAT shown undecidable for minimal signature
- What about $\forall \rightarrow$-fragment?
- Satisfiability for fixed model is decidable
- Trivial reduction into small fragment by double-negation translation
- What about Friedman translation $/ \perp$ eliminiation?
- Impossible for FSAT
- If formula is positive, it is satisfied by trivial model

Summary

We have done:

- Mechanized above reductions in Coq

Summary

We have done:

- Mechanized above reductions in Coq
- in total: < 1000 LoC
- [Kirst and Larchey-Wendling, 2020]: 10k LoC

Summary

We have done:

- Mechanized above reductions in Coq
- in total: < 1000 LoC
- [Kirst and Larchey-Wendling, 2020]: 10k LoC

My contributions:

- Adapt \# for FSAT
- Adapt old and find new axioms
- Formalization in Coq

Summary

We have done:

- Mechanized above reductions in Coq
- in total: < 1000 LoC
- [Kirst and Larchey-Wendling, 2020]: 10k LoC

My contributions:

- Adapt \# for FSAT
- Adapt old and find new axioms
- Formalization in Coq

Not my contributions:

- Original axioms for, and definitions of \#

Bachelor project

Accomplished goals:

- Mechanize minimal reductions for validity, provability: \checkmark
- Mechanize minimal reductions for FSAT: \checkmark

Bachelor project

Accomplished goals:

- Mechanize minimal reductions for validity, provability: \checkmark
- Mechanize minimal reductions for FSAT: \checkmark

Remaining goals:

- Clean up Coq formalization
- Distill into dependency-less formalization
- Upstream into Coq Library of Undecidability Proofs [Forster et al., 2020]
- We may want to change the definition of undecidability

Bachelor project

Accomplished goals:

- Mechanize minimal reductions for validity, provability:
- Mechanize minimal reductions for FSAT: \checkmark

Remaining goals:

- Clean up Coq formalization
- Distill into dependency-less formalization
- Upstream into Coq Library of Undecidability Proofs [Forster et al., 2020]
- We may want to change the definition of undecidability

Optional goals:

- Finite Validity reduction with Friedman translation
- Analyze reducing quantifier prefix
- What about classical proof systems

References

[Calcagno et al., 2001] Calcagno, C., Yang, H., and O'Hearn, P. W. (2001). Computability and complexity results for a spatial assertion language for data structures. In Hariharan, R., Vinay, V., and Mukund, M., editors, FST TCS 2001: Foundations of Software Technology and Theoretical Computer Science, pages 108-119, Berlin, Heidelberg. Springer Berlin Heidelberg.
[Forster et al., 2020] Forster, Y., Dominique, Larchey-Wendling, Andrej, Dudenhefner, Heiter, E., Kirst, D., Kunze, F., and Smolka, G. (2020). A coq library of undecidable problems. CoqPL 20.
[Kalmár, 1937] Kalmár, L. (1937). Zurückführung des Entscheidungsproblems auf den Fall von Formeln mit einer einzigen, binären, Funktionsvariablen. Compositio Mathematica, 4:137-144.
[Kirst and Larchey-Wendling, 2020] Kirst, D. and Larchey-Wendling, D. (2020). Trakhtenbrot's theorem in coq. In Peltier, N. and Sofronie-Stokkermans, V., editors, Automated Reasoning, pages 79-96, Cham. Springer International Publishing.
[Libkin, 2004] Libkin, L. (2004). Elements of Finite Model Theory. Springer.
[Trakhtenbrot, 1950] Trakhtenbrot, B. (1950). The impossibility of an algorithm for the decidability problem on finite classes. Proceedings of the USSR Academy of Sciences.

[Trakhtenbrot, 1950]

- Very ancient notation
- Given a general-recursive function f, construct formula \mathfrak{U} that is finitely satisfied only if f has a root
- Construction by induction on syntax of f
- Paper leaves actual construction to the reader
- Reduction is an interesting approach which might be elegantly mechanizable
- Paper is not concerned with minimal representation
- [Kalmár, 1937] already published a reduction from FOL to FOL with minimal signature
- [Kalmár, 1937] claims the reduction should work for finite models without presenting proof
- The fact that one can reduce to a binary signature was folklore knowledge in 1950

[Kirst and Larchey-Wendling, 2020]

Part on Trakhenbrot:

- Show FSAT undecidable by reducing from $P C P$
- Signature compression chain:
- Arbitrary FOL with equality to arbitrary FOL without equality
- Take quotient over first-order indistinguishability
- Arbitrary FOL to single predicate FOL
- Actually three different reductions
- Compress functions to predicates
- Compress predicates to one predicate + unary functions
- Compress functions to free variables
- single predicate to binary predicate
- Construction using \in and HF -sets

Other results:

- Monadic signature is shown decidable
- Function and relation symbols have arity ≤ 1, or
- Relation symbols have arity 0

[Libkin, 2004]

- Textbook on Finite Model Theory
- Interesting section for us is 9.1
- Reduction from Turing Machine Halting Problem to FSAT
- Making this use minimal signature is (explicitly) left to the reader

The full reduction

1. Syntactic sugar:

- $N k:=k \# k$
- $P^{\prime} k:=k \# k \rightarrow \perp$
- Pplr $:=P^{\prime} p \wedge N l \wedge N r \wedge l \# p \wedge p \# r$
- $(a, b) \#(c, d):=\exists p q, P p a b \wedge P q c d \wedge p \# q$
- $x \equiv y:=\forall k, k \# x \leftrightarrow k \# y \wedge x \# k \leftrightarrow y \# k$
- $x \leq y:=N x \wedge N y \wedge x \# y$
- $x<y:=x \leq y \wedge x \not \equiv y$
- rel $a b c d m:=(a, b) \#(c, d) \wedge a \leq m \wedge b \leq m \wedge c \leq m \wedge d \leq m$

2. Axioms:

- $\forall x y z, x<y \rightarrow y<z \rightarrow x<z$
- $\forall a, N a \rightarrow a \not \equiv 0 \rightarrow \exists a^{\prime},\left(a^{\prime}, 0\right) \#(a, 0)$
- $\forall a b,(a, 0) \#(b, 0) \rightarrow a<b \wedge \forall k, k<b \rightarrow k \leq a$
- $\forall a b c d,(a, b) \#(c, d) \rightarrow b \not \equiv 0 \rightarrow$ $\exists b^{\prime} c^{\prime} d^{\prime},\left(b^{\prime}, 0\right) \#(b, 0) \wedge\left(c^{\prime}, 0\right) \#(c, 0) \wedge\left(a, b^{\prime}\right) \#\left(c^{\prime}, d^{\prime}\right) \wedge\left(d^{\prime}, b^{\prime}\right) \#\left(d, d^{\prime}\right) \wedge d^{\prime}<d$
- $\forall a c d,(a, 0) \#(c, d) \rightarrow d \equiv 0$

