# The Undecidability of First-Order Logic over Small Signatures 

Final Bachelor Talk
Advisors: Andrej Dudenhefner, Dominik Kirst Supervisor: Prof. Gert Smolka

Johannes Hostert

October 14, 2021, Saarland University

## First-Order Logic

Quantifying over individuals: $\forall a b . a+b=b+a$

- Foundation of mathematics


## First-Order Logic

Quantifying over individuals: $\forall a b . a+b=b+a$

- Foundation of mathematics
- "Truth" of FOL formulas undecidable in general [Church, 1936, Turing, 1936]


## First-Order Logic

Quantifying over individuals: $\forall a b . a+b=b+a$

- Foundation of mathematics
- "Truth" of FOL formulas undecidable in general [Church, 1936, Turing, 1936]
- Can we simplify FOL formulas to recover decidability?
- Restrict signature?
- Restrict logical connectives?
- Restrict semantics?


## First-Order Logic

Quantifying over individuals: $\forall a b . a+b=b+a$

- Foundation of mathematics
- "Truth" of FOL formulas undecidable in general [Church, 1936, Turing, 1936]
- Can we simplify FOL formulas to recover decidability?
- Restrict signature?

■ Restrict logical connectives?

- Restrict semantics?
- Semantics: what does "truth" mean?
- Satisfaction in all models
- Satisfaction in finite models
- Abstract deduction system


## (Un)decidable fragments of FOL

Decidability results:

- FOL decidable for unary signature [Löwenheim, 1915]


## (Un)decidable fragments of FOL

Decidability results:

- FOL decidable for unary signature [Löwenheim, 1915]
- FOL undecidable once there is an at least binary relation
- Even when restricting to $\forall, \rightarrow,(\perp)$ logical fragment


## (Un)decidable fragments of FOL

Decidability results:

- FOL decidable for unary signature [Löwenheim, 1915]
- FOL undecidable once there is an at least binary relation
- Even when restricting to $\forall, \rightarrow,(\perp)$ logical fragment

| Paper | Binary <br> signature | Small <br> fragment | Coq | Reduction |
| :--- | :---: | :---: | :---: | :--- |
| [Church, 1936] | $\times$ | $\times$ | $\times$ | $\lambda$ calculus |
| [Turing, 1936] | $\times$ | $\times$ | $\times$ | TM |

## (Un)decidable fragments of FOL

Decidability results:

- FOL decidable for unary signature [Löwenheim, 1915]
- FOL undecidable once there is an at least binary relation
- Even when restricting to $\forall, \rightarrow,(\perp)$ logical fragment

| Paper | Binary <br> signature | Small <br> fragment | Coq | Reduction |
| :--- | :---: | :---: | :---: | :--- |
| [Church, 1936] | $\times$ | $\times$ | $\times$ | $\lambda$ calculus |
| [Turing, 1936] | $\times$ | $\times$ | $\times$ | TM |
| [Kalmár, 1937] | $\checkmark$ | $\times$ | $\times$ | signature compression |
| [Gentzen, 1936] |  | $\checkmark^{1}$ | $\times$ | double negation |

## (Un)decidable fragments of FOL

Decidability results:

- FOL decidable for unary signature [Löwenheim, 1915]
- FOL undecidable once there is an at least binary relation
- Even when restricting to $\forall, \rightarrow,(\perp)$ logical fragment

| Paper | Binary <br> signature | Small <br> fragment | Coq | Reduction |
| :--- | :---: | :---: | :---: | :--- |
| [Church, 1936] | $\times$ | $\times$ | $\times$ | $\lambda$ calculus |
| [Turing, 1936] | $\times$ | $\times$ | $\times$ | TM |
| [Kalmár, 1937] | $\checkmark$ | $\times$ | $\times$ | signature compression |
| [Gentzen, 1936] |  | $\checkmark^{1}$ | $\times$ | double negation |
| [Forster et al., 2019] | $\times$ | $\checkmark$ | $\checkmark$ | PCP |
| [Kirst and Hermes, 2021] | $\checkmark$ | $\times$ | $\checkmark$ | ZF |

[^0]
## (Un)decidable fragments of FOL

Decidability results:

- FOL decidable for unary signature [Löwenheim, 1915]
- FOL undecidable once there is an at least binary relation
- Even when restricting to $\forall, \rightarrow,(\perp)$ logical fragment

| Paper | Binary <br> signature | Small <br> fragment | Coq | Reduction |
| :--- | :---: | :---: | :---: | :--- |
| [Church, 1936] | $\times$ | $\times$ | $\times$ | $\lambda$ calculus |
| [Turing, 1936] | $\times$ | $\times$ | $\times$ | TM |
| [Kalmár, 1937] | $\checkmark$ | $\times$ | $\times$ | signature compression |
| [Gentzen, 1936] |  | $\checkmark 1$ | $\times$ | double negation |
| [Forster et al., 2019] | $\times$ | $\checkmark$ | $\checkmark$ | PCP |
| [Kirst and Hermes, 2021] | $\checkmark$ | $\times$ | $\checkmark$ | ZF |
| This thesis | $\checkmark$ | $\checkmark$ | $\checkmark$ | H10 variant |

[^1]
## Problems in FOL

Show undecidability of the following problems:

- Validity VAL: Is formula satisfied by all Tarski models?
- Satisfiability SAT: Is there a Tarski model satisfying formula?


## Problems in FOL

Show undecidability of the following problems:

- Validity VAL: Is formula satisfied by all Tarski models?
- Satisfiability SAT: Is there a Tarski model satisfying formula?
- Provability PRV: Is there a proof in intuitionistic ND system?


## Problems in FOL

Show undecidability of the following problems:

- Validity VAL: Is formula satisfied by all Tarski models?
- Satisfiability SAT: Is there a Tarski model satisfying formula?
- Provability PRV: Is there a proof in intuitionistic ND system?
- Finite satisfiability FSAT: Is formula satisfied by finite model?
- Finite validity FVAL, Kripke model semantics kSAT, kVAL


## Problems in FOL

Show undecidability of the following problems:

- Validity VAL: Is formula satisfied by all Tarski models?
- Satisfiability SAT: Is there a Tarski model satisfying formula?
- Provability PRV: Is there a proof in intuitionistic ND system?
- Finite satisfiability FSAT: Is formula satisfied by finite model?
- Finite validity FVAL, Kripke model semantics kSAT, kVAL

Reduction strategy:


## Uniform Diophantine Pair Constraints

$$
\begin{gathered}
\imath: \mathbb{N}^{2} \times \mathbb{N}^{2} \rightarrow \mathbb{P} \\
(a, b) \imath(c, d):=a+b+1=c \wedge d+d=b^{2}+b
\end{gathered}
$$

## Uniform Diophantine Pair Constraints

$$
\begin{gathered}
\imath: \mathbb{N}^{2} \times \mathbb{N}^{2} \rightarrow \mathbb{P} \\
(a, b) \imath(c, d):=a+b+1=c \wedge d+d=b^{2}+b
\end{gathered}
$$

Characterizing properties

- $(a, 0) 2(a+1,0)$
- $\left(a, b^{\prime}+1\right) 2\left(c^{\prime}+1, d\right)$ iff $\left(a, b^{\prime}\right) 々\left(c^{\prime}, d^{\prime}\right) \wedge\left(d^{\prime}, b^{\prime}\right) 々\left(d, d^{\prime}\right)$


## Uniform Diophantine Pair Constraints

$$
2: \mathbb{N}^{2} \times \mathbb{N}^{2} \rightarrow \mathbb{P}
$$

$$
\text { Base } \overline{(a, 0) \_(a+1,0)}
$$

$$
\text { Step } \frac{\left(a, b^{\prime}\right) \imath\left(c^{\prime}, d^{\prime}\right) \quad\left(d^{\prime}, b^{\prime}\right) \imath\left(d, d^{\prime}\right) \quad\left(b^{\prime}, 0\right) \imath(b, 0) \quad\left(c^{\prime}, 0\right) \imath(c, 0)}{(a, b) \imath(c, d)}
$$

## Uniform Diophantine Pair Constraints

$$
\begin{gathered}
\imath: \mathbb{N}^{2} \times \mathbb{N}^{2} \rightarrow \mathbb{P} \\
\text { Base } \frac{(a, 0) \imath(a+1,0)}{\left(c^{\prime}\right)} \\
\text { Step } \frac{\left(a, b^{\prime}\right) \imath\left(c^{\prime}, d^{\prime}\right) \quad\left(d^{\prime}, b^{\prime}\right) \imath\left(d, d^{\prime}\right) \quad\left(b^{\prime}, 0\right) \imath(b, 0) \quad\left(c^{\prime}, 0\right) \imath(c, 0)}{(a, b) \imath(c, d)}
\end{gathered}
$$

UDPC : $\mathscr{L}\left(\mathcal{V}^{2} \times \mathcal{V}^{2}\right) \rightarrow \mathbb{P}$ - Does list of constraint equations have solution?

## Uniform Diophantine Pair Constraints

$$
\begin{gathered}
\imath: \mathbb{N}^{2} \times \mathbb{N}^{2} \rightarrow \mathbb{P} \\
\text { Base } \frac{(a, 0) \imath(a+1,0)}{\left(d^{\prime}\right)} \\
\text { Step } \frac{\left(a, b^{\prime}\right) \imath\left(c^{\prime}, d^{\prime}\right) \quad\left(d^{\prime}, b^{\prime}\right) \imath\left(d, d^{\prime}\right) \quad\left(b^{\prime}, 0\right) \imath(b, 0) \quad\left(c^{\prime}, 0\right) \imath(c, 0)}{(a, b) \imath(c, d)}
\end{gathered}
$$

UDPC : $\mathscr{L}\left(\mathcal{V}^{2} \times \mathcal{V}^{2}\right) \rightarrow \mathbb{P}$ - Does list of constraint equations have solution?

- UDPC is undecidable
- Reduce from Diophantine constraints satisfiability [Matiyasevich, 1970]

■ Source problem already mechanized [Larchey-Wendling and Forster, 2019]

## Uniform Diophantine Pair Constraints

$$
\begin{gathered}
\imath: \mathbb{N}^{2} \times \mathbb{N}^{2} \rightarrow \mathbb{P} \\
\text { Base } \frac{(a, 0) \imath(a+1,0)}{\left(d^{\prime}\right)} \\
\text { Step } \frac{\left(a, b^{\prime}\right) \imath\left(c^{\prime}, d^{\prime}\right) \quad\left(d^{\prime}, b^{\prime}\right) \imath\left(d, d^{\prime}\right) \quad\left(b^{\prime}, 0\right) \imath(b, 0) \quad\left(c^{\prime}, 0\right) \imath(c, 0)}{(a, b) \imath(c, d)}
\end{gathered}
$$

UDPC : $\mathscr{L}\left(\mathcal{V}^{2} \times \mathcal{V}^{2}\right) \rightarrow \mathbb{P}$ - Does list of constraint equations have solution?

- UDPC is undecidable
- Reduce from Diophantine constraints satisfiability [Matiyasevich, 1970]

■ Source problem already mechanized [Larchey-Wendling and Forster, 2019]

- UDPC and 2 originally due to Andrej Dudenhefner

Mechanizing VAL undecidability
Idea: Reduce from UDPC

Mechanizing VAL undecidability
Idea: Reduce from UDPC

- Construct formula $F(h)$ with binary relation 22 valid iff $h$ has solution


## Mechanizing VAL undecidability

Idea: Reduce from UDPC

- Construct formula $F(h)$ with binary relation $<2$ valid iff $h$ has solution
- Standard model: $M=\mathbb{N}+\mathbb{N}^{2}$, interpret $l \geqslant 2 r$ as

|  | $r$ | $y: \mathbb{N}$ |
| :---: | :---: | :---: |
| $l \mid c, d): \mathbb{N}^{2}$ |  |  |
| $x: \mathbb{N}$ | $x=y$ | $x=c$ |
| $(a, b): \mathbb{N}^{2}$ | $y=b$ | $(a, b) 2(c, d)$ |

## Mechanizing VAL undecidability

Idea: Reduce from UDPC

- Construct formula $F(h)$ with binary relation $\ell 2$ valid iff $h$ has solution
- Standard model: $M=\mathbb{N}+\mathbb{N}^{2}$, interpret $l \geqslant 2 r$ as

|  | $r$ | $y: \mathbb{N}$ |
| :---: | :---: | :---: |
| $l \mid c, d): \mathbb{N}^{2}$ |  |  |
| $x: \mathbb{N}$ | $x=y$ | $x=c$ |
| $(a, b): \mathbb{N}^{2}$ | $y=b$ | $(a, b) 2(c, d)$ |

- $F$ formalizes characterizing properties/constructors of 2 in binary FOL
- $F(h)$ translates constraints $h$ into FOL


## Mechanizing VAL undecidability

Idea: Reduce from UDPC

- Construct formula $F(h)$ with binary relation $\ell 2$ valid iff $h$ has solution
- Standard model: $M=\mathbb{N}+\mathbb{N}^{2}$, interpret $l \geqslant 2 r$ as

|  | $r$ | $y: \mathbb{N}$ |
| :---: | :---: | :---: |
| $l \mid c, d): \mathbb{N}^{2}$ |  |  |
| $x: \mathbb{N}$ | $x=y$ | $x=c$ |
| $(a, b): \mathbb{N}^{2}$ | $y=b$ | $(a, b) 2(c, d)$ |

- $F$ formalizes characterizing properties/constructors of 2 in binary FOL
- $F(h)$ translates constraints $h$ into FOL
- Correctness:
- UDPC $h \rightarrow \operatorname{VAL}(F h)$ : Construct proof in abstract model
- VAL $(F h) \rightarrow$ UDPC $h$ : Specialize standard model


## Mechanizing VAL undecidability

Idea: Reduce from UDPC

- Construct formula $F(h)$ with binary relation $\ell 2$ valid iff $h$ has solution
- Standard model: $M=\mathbb{N}+\mathbb{N}^{2}$, interpret $l \geqslant 2 r$ as

|  | $r$ | $y: \mathbb{N}$ |
| :---: | :---: | :---: |
| $l \mid c, d): \mathbb{N}^{2}$ |  |  |
| $x: \mathbb{N}$ | $x=y$ | $x=c$ |
| $(a, b): \mathbb{N}^{2}$ | $y=b$ | $(a, b) 2(c, d)$ |

- $F$ formalizes characterizing properties/constructors of 2 in binary FOL
- $F(h)$ translates constraints $h$ into FOL
- Correctness:
- UDPC $h \rightarrow \operatorname{VAL}(F h)$ : Construct proof in abstract model
- VAL $(F h) \rightarrow$ UDPC $h$ : Specialize standard model
$\Rightarrow$ VAL is undecidable for binary signature


## Sharper results for VAL

Restrict the admissible logical operators to $\forall, \rightarrow$

## Sharper results for VAL

Restrict the admissible logical operators to $\forall, \rightarrow$

1. Double negation translation [Gödel, 1933, Gentzen, 1936]

- Replace $\exists$ by $\neg \forall \neg$ etc.
- Not equivalent in intuitionistic meta-theory


## Sharper results for VAL

Restrict the admissible logical operators to $\forall, \rightarrow$

1. Double negation translation [Gödel, 1933, Gentzen, 1936]

- Replace $\exists$ by $\neg \forall \neg$ etc.
- Not equivalent in intuitionistic meta-theory

2. Friedman A-translation [Friedman, 1978]

- Replace $\perp$ by some formula $Q \ldots$


## Sharper results for VAL

Restrict the admissible logical operators to $\forall, \rightarrow$

1. Double negation translation [Gödel, 1933, Gentzen, 1936]

- Replace $\exists$ by $\neg \forall \neg$ etc.
- Not equivalent in intuitionistic meta-theory

2. Friedman A-translation [Friedman, 1978]

- Replace $\perp$ by some formula $Q \ldots$
- such that interpretation of $Q$ is UDPC $h \ldots$


## Sharper results for VAL

Restrict the admissible logical operators to $\forall, \rightarrow$

1. Double negation translation [Gödel, 1933, Gentzen, 1936]

- Replace $\exists$ by $\neg \forall \neg$ etc.
- Not equivalent in intuitionistic meta-theory

2. Friedman A-translation [Friedman, 1978]

- Replace $\perp$ by some formula $Q$...
- such that interpretation of $Q$ is UDPC $h \ldots$
- without introducing additional relation symbols


## Sharper results for VAL

Restrict the admissible logical operators to $\forall, \rightarrow$

1. Double negation translation [Gödel, 1933, Gentzen, 1936]

- Replace $\exists$ by $\neg \forall \neg$ etc.
- Not equivalent in intuitionistic meta-theory

2. Friedman A-translation [Friedman, 1978]

- Replace $\perp$ by some formula $Q \ldots$
- such that interpretation of $Q$ is UDPC $h \ldots$
- without introducing additional relation symbols
- Approach known from [Forster et al., 2019]


## Sharper results for VAL

Restrict the admissible logical operators to $\forall, \rightarrow$

1. Double negation translation [Gödel, 1933, Gentzen, 1936]

- Replace $\exists$ by $\neg \forall \neg$ etc.
- Not equivalent in intuitionistic meta-theory

2. Friedman A-translation [Friedman, 1978]

- Replace $\perp$ by some formula $Q$...
- such that interpretation of $Q$ is UDPC $h \ldots$
- without introducing additional relation symbols
- Approach known from [Forster et al., 2019]

In summary:

- VAL undecidable for binary signature over $\forall \rightarrow$-fragment
- SAT also undecidable for binary signature $\forall, \rightarrow$, $\perp$-fragment


## Sharper results for VAL

Restrict the admissible logical operators to $\forall, \rightarrow$

1. Double negation translation [Gödel, 1933, Gentzen, 1936]

- Replace $\exists$ by $\neg \forall \neg$ etc.
- Not equivalent in intuitionistic meta-theory

2. Friedman A-translation [Friedman, 1978]

- Replace $\perp$ by some formula $Q$...
- such that interpretation of $Q$ is UDPC $h \ldots$
- without introducing additional relation symbols
- Approach known from [Forster et al., 2019]

In summary:

- VAL undecidable for binary signature over $\forall \rightarrow$-fragment
- SAT also undecidable for binary signature $\forall, \rightarrow$, $\perp$-fragment

These are the minimal results

Provability

$$
\text { 4 } \square>4 \text { 路 }
$$

## Provability

- In a classical meta-theory: $\operatorname{VAL} \varphi \Rightarrow \operatorname{PRV}_{c} \varphi$ [Gödel, 1930]


## Provability

- In a classical meta-theory: $\operatorname{VAL} \varphi \Rightarrow \operatorname{PRV}_{c} \varphi$ [Gödel, 1930]
- In Coq: VAL $\varphi \Rightarrow \neg \neg \mathrm{PRV}_{c} \varphi$ for $\forall, \rightarrow, \perp$-fragment [Forster et al., 2020]


## Provability

- In a classical meta-theory: $\operatorname{VAL} \varphi \Rightarrow \operatorname{PRV}_{c} \varphi$ [Gödel, 1930]
- In Coq: VAL $\varphi \Rightarrow \neg \neg \operatorname{PRV}_{c} \varphi$ for $\forall, \rightarrow, \perp$-fragment [Forster et al., 2020]
- Soundness $\operatorname{PRV} \varphi \Rightarrow \operatorname{VAL} \varphi$ still holds


## Provability

- In a classical meta-theory: $\operatorname{VAL} \varphi \Rightarrow \operatorname{PRV}_{c} \varphi$ [Gödel, 1930]
- In Coq: VAL $\varphi \Rightarrow \neg \neg \operatorname{PRV}_{c} \varphi$ for $\forall, \rightarrow, \perp$-fragment [Forster et al., 2020]
- Soundness PRV $\varphi \Rightarrow \operatorname{VAL} \varphi$ still holds
- Dedicated reduction to (intuitionistic) PRV using same reduction function
- Correctness:
- UDPC $h \rightarrow \mathrm{PRV}(F h)$ : Construct abstract proof in natural deduction system
- PRV $(F h) \rightarrow$ UDPC $h$ : Soundness and standard model


## Provability

- In a classical meta-theory: $\operatorname{VAL} \varphi \Rightarrow \operatorname{PRV}_{c} \varphi$ [Gödel, 1930]
- In Coq: VAL $\varphi \Rightarrow \neg \neg \operatorname{PRV}_{c} \varphi$ for $\forall, \rightarrow, \perp$-fragment [Forster et al., 2020]
- Soundness $\operatorname{PRV} \varphi \Rightarrow \operatorname{VAL} \varphi$ still holds
- Dedicated reduction to (intuitionistic) PRV using same reduction function
- Correctness:
- UDPC $h \rightarrow \mathrm{PRV}(F h)$ : Construct abstract proof in natural deduction system
- PRV $(F h) \rightarrow$ UDPC $h$ : Soundness and standard model
- Results:
- PRV undecidable for binary signature over $\forall \rightarrow$-fragment
- Kripke semantics undecidable for binary signature over $\forall, \rightarrow,(\perp)$-fragment


## Provability

- In a classical meta-theory: $\operatorname{VAL} \varphi \Rightarrow \operatorname{PRV}_{c} \varphi$ [Gödel, 1930]
- In Coq: VAL $\varphi \Rightarrow \neg \neg \operatorname{PRV}_{c} \varphi$ for $\forall, \rightarrow, \perp$-fragment [Forster et al., 2020]
- Soundness $\operatorname{PRV} \varphi \Rightarrow \operatorname{VAL} \varphi$ still holds
- Dedicated reduction to (intuitionistic) PRV using same reduction function
- Correctness:
- UDPC $h \rightarrow \mathrm{PRV}(F h)$ : Construct abstract proof in natural deduction system
- PRV $(F h) \rightarrow$ UDPC $h$ : Soundness and standard model
- Results:
- PRV undecidable for binary signature over $\forall \rightarrow$-fragment
- Kripke semantics undecidable for binary signature over $\forall, \rightarrow,(\perp)$-fragment
- classical provability $\mathrm{PRV}_{c}$ similarly undecidable, assuming LEM


## Finite Satisfiability

- Restrict Tarski models to finite types
- Follow existing mechanization [Kirst and Larchey-Wendling, 2020]


## Finite Satisfiability

- Restrict Tarski models to finite types
- Follow existing mechanization [Kirst and Larchey-Wendling, 2020]
- Existing results:

| Paper | Binary <br> signature | Logical <br> fragment | Coq | Method |
| :--- | :---: | :---: | :---: | :--- |
| $[$ Kalmár, 1937] | $?$ | $\times$ | $\times$ | signature compression |

## Finite Satisfiability

- Restrict Tarski models to finite types
- Follow existing mechanization [Kirst and Larchey-Wendling, 2020]
- Existing results:

| Paper | Binary <br> signature | Logical <br> fragment | Coq | Method |
| :--- | :---: | :---: | :---: | :--- |
| [Kalmár, 1937] | $?$ | $\times$ | $\times$ | signature compression |
| [Trakhtenbrot, 1950] | $\times$ | $\times$ | $\times$ | $\mu$-recursive functions |

## Finite Satisfiability

- Restrict Tarski models to finite types
- Follow existing mechanization [Kirst and Larchey-Wendling, 2020]
- Existing results:

| Paper | Binary <br> signature | Logical <br> fragment | Coq | Method |
| :--- | :---: | :---: | :---: | :--- |
| [Kalmár, 1937] | $?$ | $\times$ | $\times$ | signature compression |
| [Trakhtenbrot, 1950] | $\times$ | $\times$ | $\times$ | $\mu$-recursive functions |
| [Libkin, 2004] | $(\checkmark)$ | $\times$ | $\times$ | TM |

## Finite Satisfiability

- Restrict Tarski models to finite types
- Follow existing mechanization [Kirst and Larchey-Wendling, 2020]
- Existing results:

| Paper | Binary <br> signature | Logical <br> fragment | Coq | Method |
| :--- | :---: | :---: | :---: | :--- |
| [Kalmár, 1937] | $?$ | $\times$ | $\times$ | signature compression |
| [Trakhtenbrot, 1950] | $\times$ | $\times$ | $\times$ | $\mu$-recursive functions |
| [Libkin, 2004] | $(\checkmark)$ | $\times$ | $\times$ | TM |
| [Kirst and | $\checkmark$ | $\times$ | $\checkmark$ | PCP |
| $\quad$ Larchey-Wendling, 2020] |  |  |  |  |

## Finite Satisfiability

- Restrict Tarski models to finite types
- Follow existing mechanization [Kirst and Larchey-Wendling, 2020]
- Existing results:

| Paper | Binary <br> signature | Logical <br> fragment | Coq | Method |
| :--- | :---: | :---: | :---: | :--- |
| [Kalmár, 1937] | $?$ | $\times$ | $\times$ | signature compression |
| [Trakhtenbrot, 1950] | $\times$ | $\times$ | $\times$ | $\mu$-recursive functions |
| [Libkin, 2004] | $(\checkmark)$ | $\times$ | $\times$ | TM |
| [Kirst and | $\checkmark$ | $\times$ | $\checkmark$ | PCP |
| $\quad$ Larchey-Wendling, 2020] | $\checkmark$ | $\checkmark$ | $\checkmark$ | H10 variant |
| This thesis |  |  |  |  |

## Finite Satisfiability

- Restrict Tarski models to finite types
- Follow existing mechanization [Kirst and Larchey-Wendling, 2020]
- Existing results:

| Paper | Binary <br> signature | Logical <br> fragment | Coq | Method |
| :--- | :---: | :---: | :---: | :--- |
| [Kalmár, 1937] | $?$ | $\times$ | $\times$ | signature compression |
| [Trakhtenbrot, 1950] | $\times$ | $\times$ | $\times$ | $\mu$-recursive functions |
| [Libkin, 2004] | $(\checkmark)$ | $\times$ | $\times$ | TM |
| [Kirst and | $\checkmark$ | $\times$ | $\checkmark$ | PCP |
| $\quad$ Larchey-Wendling, 2020] | $\checkmark$ | $\checkmark$ | $\checkmark$ | H10 variant |
| This thesis |  |  |  |  |

- FSAT mechanization build "inversely" to previous reduction
- Then: Encode given solution into model


## Finite Satisfiability

- Restrict Tarski models to finite types
- Follow existing mechanization [Kirst and Larchey-Wendling, 2020]
- Existing results:

| Paper | Binary <br> signature | Logical <br> fragment | Coq | Method |
| :--- | :---: | :---: | :---: | :--- |
| [Kalmár, 1937] | $?$ | $\times$ | $\times$ | signature compression |
| [Trakhtenbrot, 1950] | $\times$ | $\times$ | $\times$ | $\mu$-recursive functions |
| [Libkin, 2004] | $(\checkmark)$ | $\times$ | $\times$ | TM |
| [Kirst and | $\checkmark$ | $\times$ | $\checkmark$ | PCP |
| $\quad$ Larchey-Wendling, 2020] | $\checkmark$ | $\checkmark$ | $\checkmark$ | H10 variant |
| This thesis |  |  |  |  |

- FSAT mechanization build "inversely" to previous reduction
- Then: Encode given solution into model
- Now: Given model encoding solution, extract it


## Reduction for FSAT

Idea: Still reduce from UDPC

- We have to extract solution from arbitrary model


## Reduction for FSAT

Idea: Still reduce from UDPC

- We have to extract solution from arbitrary model
- Previous: axioms were resembling constructors


## Reduction for FSAT

Idea: Still reduce from UDPC

- We have to extract solution from arbitrary model
- Previous: axioms were resembling constructors
- Now: axioms resemble eliminators


## Reduction for FSAT

Idea: Still reduce from UDPC

- We have to extract solution from arbitrary model
- Previous: axioms were resembling constructors
- Now: axioms resemble eliminators
- Finite standard model: $M=\mathbb{N}_{\leq m}+\mathbb{N}_{\leq m}^{2}$
- Reduction pecularities require encoding $\leq$ into interpretation


## Reduction for FSAT

Idea: Still reduce from UDPC

- We have to extract solution from arbitrary model
- Previous: axioms were resembling constructors
- Now: axioms resemble eliminators
- Finite standard model: $M=\mathbb{N}_{\leq m}+\mathbb{N}_{\leq m}^{2}$
- Reduction pecularities require encoding $\leq$ into interpretation
- Correctness:
- UDPC $h \rightarrow \operatorname{FSAT}\left(F^{\prime} h\right)$ : Standard model
- FSAT $\left(F^{\prime} h\right) \rightarrow$ UDPC $h$ : Extract solution from given model


## Reduction for FSAT

Idea: Still reduce from UDPC

- We have to extract solution from arbitrary model
- Previous: axioms were resembling constructors
- Now: axioms resemble eliminators
- Finite standard model: $M=\mathbb{N}_{\leq m}+\mathbb{N}_{\leq m}^{2}$
- Reduction pecularities require encoding $\leq$ into interpretation
- Correctness:
- UDPC $h \rightarrow \operatorname{FSAT}\left(F^{\prime} h\right)$ : Standard model
- FSAT $\left(F^{\prime} h\right) \rightarrow$ UDPC $h$ : Extract solution from given model
$\Rightarrow$ FSAT is undecidable for binary signature

FVAL and the small fragment
What about the $\forall, \rightarrow, \perp$-fragment?

## FVAL and the small fragment

What about the $\forall, \rightarrow, \perp$-fragment?

- Finite models "behave classically": $M \vDash \varphi$ decidable


## FVAL and the small fragment

What about the $\forall, \rightarrow, \perp$-fragment?

- Finite models "behave classically": $M \vDash \varphi$ decidable
- Double negation translation holds in general


## FVAL and the small fragment

What about the $\forall, \rightarrow, \perp$-fragment?

- Finite models "behave classically": $M \vDash \varphi$ decidable
- Double negation translation holds in general
- FSAT is undecidable for binary signature over $\forall, \rightarrow, \perp$-fragment

What about FVAL?

## FVAL and the small fragment

What about the $\forall, \rightarrow, \perp$-fragment?

- Finite models "behave classically": $M \vDash \varphi$ decidable
- Double negation translation holds in general
- FSAT is undecidable for binary signature over $\forall, \rightarrow, \perp$-fragment


## What about FVAL?

- FVAL is undecidable for binary signature over $\forall, \rightarrow, \perp$-fragment
- using $\neg F^{\prime}(h)$ as reduction function


## FVAL and the small fragment

What about the $\forall, \rightarrow, \perp$-fragment?

- Finite models "behave classically": $M \vDash \varphi$ decidable
- Double negation translation holds in general
- FSAT is undecidable for binary signature over $\forall, \rightarrow, \perp$-fragment


## What about FVAL?

- FVAL is undecidable for binary signature over $\forall, \rightarrow, \perp$-fragment
- using $\neg F^{\prime}(h)$ as reduction function
- Conjecture: FVAL undecidable for binary signature over $\forall \rightarrow$-fragment


## FVAL and the small fragment

What about the $\forall, \rightarrow, \perp$-fragment?

- Finite models "behave classically": $M \vDash \varphi$ decidable
- Double negation translation holds in general
- FSAT is undecidable for binary signature over $\forall, \rightarrow, \perp$-fragment


## What about FVAL?

- FVAL is undecidable for binary signature over $\forall, \rightarrow, \perp$-fragment
- using $\neg F^{\prime}(h)$ as reduction function
- Conjecture: FVAL undecidable for binary signature over $\forall \rightarrow$-fragment
- Friedman translation should be possible
- Likely to require expanded standard model


## FVAL and the small fragment

What about the $\forall, \rightarrow, \perp$-fragment?

- Finite models "behave classically": $M \vDash \varphi$ decidable
- Double negation translation holds in general
- FSAT is undecidable for binary signature over $\forall, \rightarrow, \perp$-fragment


## What about FVAL?

- FVAL is undecidable for binary signature over $\forall, \rightarrow$, $\perp$-fragment
- using $\neg F^{\prime}(h)$ as reduction function
- Conjecture: FVAL undecidable for binary signature over $\forall \rightarrow$-fragment
- Friedman translation should be possible
- Likely to require expanded standard model
- There is no sound, complete, enumerable deduction system for finite semantics
- FVAL is co-enumerable and undecidable


## Summary

We have shown undecidability of

- PRV, VAL, kVAL for binary signature over $\forall \rightarrow$-fragment
- SAT, kSAT, FSAT, FVAL for binary signature over $\forall, \rightarrow, \perp$-fragment


## Summary

We have shown undecidability of

- PRV, VAL, kVAL for binary signature over $\forall \rightarrow \rightarrow$-fragment
- SAT, kSAT, FSAT, FVAL for binary signature over $\forall, \rightarrow, \perp$-fragment
- Note: We defined undecidable $P:=$ decidable $P \rightarrow$ semidecidable $\overline{\mathrm{H}_{\mathrm{TM}}}$


## Summary

We have shown undecidability ${ }^{2}$ of

- PRV, VAL, kVAL for binary signature over $\forall \rightarrow$-fragment
- SAT, kSAT, FSAT, FVAL for binary signature over $\forall, \rightarrow, \perp$-fragment

Coq mechanization:

- ~900 LoC for PRV and corollaries
- [Kirst and Hermes, 2021]: 4.5k LoC


## Summary

We have shown undecidability ${ }^{2}$ of

- PRV, VAL, kVAL for binary signature over $\forall \rightarrow$-fragment
- SAT, kSAT, FSAT, FVAL for binary signature over $\forall, \rightarrow, \perp$-fragment

Coq mechanization:

- ~900 LoC for PRV and corollaries
- ~1200 LoC for FSAT, FVAL
- [Kirst and Larchey-Wendling, 2020]: >5k LoC


## Summary

We have shown undecidability ${ }^{2}$ of

- PRV, VAL, kVAL for binary signature over $\forall \rightarrow$-fragment
- SAT, kSAT, FSAT, FVAL for binary signature over $\forall, \rightarrow, \perp$-fragment

Coq mechanization:

- ~900 LoC for PRV and corollaries
- ~1200 LoC for FSAT, FVAL
- ~200 LoC for UDPC
- Requires undecidability of H10 [Larchey-Wendling and Forster, 2019]: 8k LoC


## Summary

We have shown undecidability ${ }^{2}$ of

- PRV, VAL, kVAL for binary signature over $\forall \rightarrow$-fragment
- SAT, kSAT, FSAT, FVAL for binary signature over $\forall, \rightarrow, \perp$-fragment

Coq mechanization:

- ~900 LoC for PRV and corollaries
- ~1200 LoC for FSAT, FVAL
- ~200 LoC for UDPC

Pain points:

- Working with de Brujin indices and double negation is unintuitive


## Summary

We have shown undecidability ${ }^{2}$ of

- PRV, VAL, kVAL for binary signature over $\forall \rightarrow$-fragment
- SAT, kSAT, FSAT, FVAL for binary signature over $\forall, \rightarrow, \perp$-fragment

Coq mechanization:

- ~900 LoC for PRV and corollaries
- ~1200 LoC for FSAT, FVAL
- ~200 LoC for UDPC

Pain points:

- Working with de Brujin indices and double negation is unintuitive
- Constructing abstract deduction system proofs is painful
- Existing FOL toolbox [Hostert et al., 2021] could be expanded


## Summary

We have shown undecidability ${ }^{2}$ of

- PRV, VAL, kVAL for binary signature over $\forall \rightarrow$-fragment
- SAT, kSAT, FSAT, FVAL for binary signature over $\forall, \rightarrow, \perp$-fragment

Coq mechanization:

- ~900 LoC for PRV and corollaries
- ~1200 LoC for FSAT, FVAL
- ~200 LoC for UDPC

Pain points:

- Working with de Brujin indices and double negation is unintuitive
- Constructing abstract deduction system proofs is painful

Future work:

- FVAL for $\forall, \rightarrow$-fragment

[^2]
## Summary

We have shown undecidability ${ }^{2}$ of

- PRV, VAL, kVAL for binary signature over $\forall \rightarrow$-fragment
- SAT, kSAT, FSAT, FVAL for binary signature over $\forall, \rightarrow, \perp$-fragment

Coq mechanization:

- ~900 LoC for PRV and corollaries
- ~1200 LoC for FSAT, FVAL
- ~200 LoC for UDPC

Pain points:

- Working with de Brujin indices and double negation is unintuitive
- Constructing abstract deduction system proofs is painful

Future work:

- FVAL for $\forall, \rightarrow$-fragment
- $\mathrm{PRV}_{c}$ with MP

[^3]
## References

[Church, 1936] Church, A. (1936). A note on the Entscheidungsproblem. Journal of Symbolic Logic, 1(1):40-41.
 SIGPLAN International Conference on Certified Programs and Proofs, CPP 2019, page 38-51, New York, NY, USA. Association for Computing Machinery.
[Forster et al., 2020] Forster, Y., Kirst, D., and Wehr, D. (2020). Completeness Theorems for First-Order Logic Analysed in Constructive Type Theory. In Symposium on Logical Foundations Of Computer Science (LFCS 2020), January 4-7, 2020, Deerfield Beach, Florida, U.S.A.
 Heidelberg. Springer Berlin Heidelberg.
[Gentzen, 1936] Gentzen, G. (1936). Die Widerspruchsfreiheit der reinen Zahlentheorie. Mathematische Annalen, 112:493-565.
[Gödel, 1933] Gödel, K. (1928-1933). Zur intuitionistischen Arithmetik und Zahlentheorie - Ergebnisse eines Mathematischen Kolloquiums. pages 493-565.
 der Modernen Logik (vierte Auflage), pages 305-315. Akademie-Verlag, Berlin.
[Hostert et al., 2021] Hostert, J., Koch, M., and Kirst, D. (2021). A Toolbox for Mechanised First-Order Logic. In The Coq Workshop 2021.
[Kalmár, 1937] Kalmár, L. (1937). Zurückführung des Entscheidungsproblems auf den Fall von Formeln mit einer einzigen, binären, Funktionsvariablen. Compositio Mathematica,
$4: 137-144$.
 International Conference, ITP 2021, Rome, Italy. Schloss Dagstuhl-Leibniz-Zentrum für Informatik.
 Reasoning, pages 79-96, Cham. Springer International Publishing.
 and Deduction.
[Libkin, 2004] Libkin, L. (2004). Elements of Finite Model Theory. Springer.
[Löwenheim, 1915] Löwenheim, L. (1915). Ober Möglichkeiten im Relativkalkül. Mathematische Annalen, 76:447-470.
[Matiyasevich, 1970] Matiyasevich, Y. V. (1970). Enumerable sets are Diophantine. Doklady Akademii Nauk SSSR, 191:279-282.




[^0]:    ${ }^{1} \forall, \rightarrow, \wedge, \perp$

[^1]:    ${ }^{1} \forall, \rightarrow, \wedge, \perp$

[^2]:    ${ }^{2}$ defined by semidecidability of $\overline{\mathrm{H}_{\mathrm{TM}}}$

[^3]:    ${ }^{2}$ defined by semidecidability of $\overline{\mathrm{H}_{\mathrm{TM}}}$

