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First-Order Logic
Quantifying over individuals: ∀ab.a+ b = b+ a

I Foundation of mathematics

I “Truth” of FOL formulas undecidable in general [Church, 1936, Turing, 1936]
I Can we simplify FOL formulas to recover decidability?

Restrict signature?
Restrict logical connectives?
Restrict semantics?

I Semantics: what does “truth” mean?
Satisfaction in all models
Satisfaction in finite models
Abstract deduction system
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(Un)decidable fragments of FOL
Decidability results:
I FOL decidable for unary signature [Löwenheim, 1915]

I FOL undecidable once there is an at least binary relation
Even when restricting to ∀,→, (⊥) logical fragment

Paper
Binary

signature
Small

fragment
Coq Reduction

[Church, 1936] × × × λ calculus
[Turing, 1936] × × × TM
[Kalmár, 1937] X × × signature compression
[Gentzen, 1936] X × double negation
[Forster et al., 2019] × X X PCP
[Kirst and Hermes, 2021] X × X ZF
This thesis X X X H10 variant

!! Stress that current mechanizations are infeasbly large !!
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Problems in FOL
Show undecidability of the following problems:
I Validity VAL: Is formula satisfied by all Tarski models?
I Satisfiability SAT: Is there a Tarski model satisfying formula?

I Provability PRV: Is there a proof in intuitionistic ND system?
I Finite satisfiability FSAT: Is formula satisfied by finite model?
I Finite validity FVAL, Kripke model semantics kSAT, kVAL

Reduction strategy:

VAL SAT
PRV

kVAL kSAT

FSAT FVAL

HTM H10 UDPC
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Uniform Diophantine Pair Constraints

∼ : N2 × N2 → P
(a, b) ∼(c, d) := a+ b+ 1 = c ∧ d+ d = b2 + b

UDPC : L (V2 × V2)→ P – Does list of constraint equations have solution?

I UDPC is undecidable
Reduce from Diophantine constraints satisfiability [Matiyasevich, 1970]
Source problem already mechanized [Larchey-Wendling and Forster, 2019]

I UDPC and ∼ originally due to Andrej Dudenhefner
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Mechanizing VAL undecidability
Idea: Reduce from UDPC

I Construct formula F (h) with binary relation ≈ valid iff h has solution
I Standard model: M = N+ N2, interpret l ≈ r as

l r y : N (c, d) : N2

x : N x = y x = c

(a, b) : N2 y = b (a, b) ∼(c, d)
I F formalizes characterizing properties/constructors of ∼ in binary FOL
I F (h) translates constraints h into FOL
I Correctness:

UDPCh→ VAL(F h): Construct proof in abstract model
VAL(F h)→ UDPCh: Specialize standard model

⇒ VAL is undecidable for binary signature



5/11

Mechanizing VAL undecidability
Idea: Reduce from UDPC
I Construct formula F (h) with binary relation ≈ valid iff h has solution

I Standard model: M = N+ N2, interpret l ≈ r as

l r y : N (c, d) : N2

x : N x = y x = c

(a, b) : N2 y = b (a, b) ∼(c, d)
I F formalizes characterizing properties/constructors of ∼ in binary FOL
I F (h) translates constraints h into FOL
I Correctness:

UDPCh→ VAL(F h): Construct proof in abstract model
VAL(F h)→ UDPCh: Specialize standard model

⇒ VAL is undecidable for binary signature



5/11

Mechanizing VAL undecidability
Idea: Reduce from UDPC
I Construct formula F (h) with binary relation ≈ valid iff h has solution
I Standard model: M = N+ N2, interpret l ≈ r as

l r y : N (c, d) : N2

x : N x = y x = c

(a, b) : N2 y = b (a, b) ∼(c, d)

I F formalizes characterizing properties/constructors of ∼ in binary FOL
I F (h) translates constraints h into FOL
I Correctness:

UDPCh→ VAL(F h): Construct proof in abstract model
VAL(F h)→ UDPCh: Specialize standard model

⇒ VAL is undecidable for binary signature



5/11

Mechanizing VAL undecidability
Idea: Reduce from UDPC
I Construct formula F (h) with binary relation ≈ valid iff h has solution
I Standard model: M = N+ N2, interpret l ≈ r as

l r y : N (c, d) : N2

x : N x = y x = c

(a, b) : N2 y = b (a, b) ∼(c, d)
I F formalizes characterizing properties/constructors of ∼ in binary FOL
I F (h) translates constraints h into FOL

I Correctness:
UDPCh→ VAL(F h): Construct proof in abstract model
VAL(F h)→ UDPCh: Specialize standard model

⇒ VAL is undecidable for binary signature



5/11

Mechanizing VAL undecidability
Idea: Reduce from UDPC
I Construct formula F (h) with binary relation ≈ valid iff h has solution
I Standard model: M = N+ N2, interpret l ≈ r as

l r y : N (c, d) : N2

x : N x = y x = c

(a, b) : N2 y = b (a, b) ∼(c, d)
I F formalizes characterizing properties/constructors of ∼ in binary FOL
I F (h) translates constraints h into FOL
I Correctness:

UDPCh→ VAL(F h): Construct proof in abstract model
VAL(F h)→ UDPCh: Specialize standard model

⇒ VAL is undecidable for binary signature



5/11

Mechanizing VAL undecidability
Idea: Reduce from UDPC
I Construct formula F (h) with binary relation ≈ valid iff h has solution
I Standard model: M = N+ N2, interpret l ≈ r as

l r y : N (c, d) : N2

x : N x = y x = c

(a, b) : N2 y = b (a, b) ∼(c, d)
I F formalizes characterizing properties/constructors of ∼ in binary FOL
I F (h) translates constraints h into FOL
I Correctness:

UDPCh→ VAL(F h): Construct proof in abstract model
VAL(F h)→ UDPCh: Specialize standard model

⇒ VAL is undecidable for binary signature



6/11

Sharper results for VAL
Restrict the admissible logical operators to ∀,→

1. Double negation translation [Gödel, 1933, Gentzen, 1936]
Replace ∃ by ¬∀¬ etc.
Not equivalent in intuitionistic meta-theory

2. Friedman A-translation [Friedman, 1978]
Replace ⊥ by some formula Q...
such that interpretation of Q is UDPCh...
without introducing additional relation symbols

I Approach known from [Forster et al., 2019]
In summary:
I VAL undecidable for binary signature over ∀,→-fragment
I SAT also undecidable for binary signature ∀,→,⊥-fragment

These are the minimal results
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Provability

I In a classical meta-theory: VALϕ⇒ PRVc ϕ [Gödel, 1930]
I In Coq: VALϕ⇒ ¬¬PRVc ϕ for ∀,→,⊥-fragment [Forster et al., 2020]
I Soundness PRVϕ⇒ VALϕ still holds
I Dedicated reduction to (intuitionistic) PRV using same reduction function
I Correctness:

UDPCh→ PRV(F h): Construct abstract proof in natural deduction system
PRV(F h)→ UDPCh: Soundness and standard model

I Results:
PRV undecidable for binary signature over ∀,→-fragment
Kripke semantics undecidable for binary signature over ∀,→, (⊥)-fragment
classical provability PRVc similarly undecidable, assuming LEM
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Finite Satisfiability

I Restrict Tarski models to finite types
Follow existing mechanization [Kirst and Larchey-Wendling, 2020]

I Existing results:

Paper
Binary

signature
Logical
fragment

Coq Method

[Kalmár, 1937] ? × × signature compression
[Trakhtenbrot, 1950] × × × µ-recursive functions
[Libkin, 2004] (X) × × TM
[Kirst and
Larchey-Wendling, 2020]

X × X PCP

This thesis X X X H10 variant
I FSAT mechanization build “inversely” to previous reduction

Then: Encode given solution into model
Now: Given model encoding solution, extract it
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Reduction for FSAT
Idea: Still reduce from UDPC
I We have to extract solution from arbitrary model

Previous: axioms were resembling constructors
Now: axioms resemble eliminators

I Finite standard model: M = N≤m + N2
≤m

Reduction pecularities require encoding ≤ into interpretation
I Correctness:

UDPCh→ FSAT(F ′ h): Standard model
FSAT(F ′ h)→ UDPCh: Extract solution from given model

⇒ FSAT is undecidable for binary signature
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FVAL and the small fragment
What about the ∀,→,⊥-fragment?

I Finite models “behave classically”: M � ϕ decidable
I Double negation translation holds in general
I FSAT is undecidable for binary signature over ∀,→,⊥-fragment

What about FVAL?
I FVAL is undecidable for binary signature over ∀,→,⊥-fragment

using ¬F ′(h) as reduction function
I Conjecture: FVAL undecidable for binary signature over ∀,→-fragment

Friedman translation should be possible
Likely to require expanded standard model

I There is no sound, complete, enumerable deduction system for finite semantics
FVAL is co-enumerable and undecidable
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I SAT, kSAT,FSAT,FVAL for binary signature over ∀,→,⊥-fragment

Coq mechanization:
I ∼900 LoC for PRV and corollaries
I ∼1200 LoC for FSAT,FVAL
I ∼200 LoC for UDPC

Pain points:
I Working with de Brujin indices and double negation is unintuitive
I Constructing abstract deduction system proofs is painfulFuture work:
I FVAL for ∀,→-fragment I PRVc with MP
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