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Quantifying over individuals: Vab.a +b=0b+a
» Foundation of mathematics
» “Truth” of FOL formulas undecidable in general [Church, 1936, Turing, 1936]
» Can we simplify FOL formulas to recover decidability?

m Restrict signature?
m Restrict logical connectives?
m Restrict semantics?
» Semantics: what does “truth” mean?
m Satisfaction in all models
m Satisfaction in finite models
m Abstract deduction system
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Show undecidability of the following problems:
» Validity VAL: Is formula satisfied by all Tarski models?
» Satisfiability SAT: Is there a Tarski model satisfying formula?
» Provability PRV: |s there a proof in intuitionistic ND system?
» Finite satisfiability FSAT: Is formula satisfied by finite model?
» Finite validity FVAL, Kripke model semantics kSAT, kVAL
Reduction strategy:

KVAL kSAT
PRV
VAL SAT
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» UDPC is undecidable

m Reduce from Diophantine constraints satisfiability [Matiyasevich, 1970]
m Source problem already mechanized [Larchey-Wendling and Forster, 2019]

» UDPC and? originally due to Andrej Dudenhefner
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1. Double negation translation [Godel, 1933, Gentzen, 1936]

m Replace 3 by -V etc.
m Not equivalent in intuitionistic meta-theory

2. Friedman A-translation [Friedman, 1978]

m Replace L by some formula Q...
m such that interpretation of ) is UDPCh...
m without introducing additional relation symbols

» Approach known from [Forster et al., 2019]
In summary:

» VAL undecidable for binary signature over V, —-fragment

» SAT also undecidable for binary signature V, —, | -fragment
These are the minimal results
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m UDPCh — PRV(F h): Construct abstract proof in natural deduction system
m PRV(F h) — UDPCh: Soundness and standard model

» Results:

m PRV undecidable for binary signature over V, —-fragment
m Kripke semantics undecidable for binary signature over ¥V, —, (L)-fragment
m classical provability PRV, similarly undecidable, assuming LEM
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[Libkin, 2004] (v) X x | TM
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This thesis v v v' | H10 variant

m Then: Encode given solution into model

m Now: Given model encoding solution, extract it

» FSAT mechanization build “inversely” to previous reduction
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m Previous: axioms were resembling constructors
m Now: axioms resemble eliminators

> Finite standard model: M = N, + N2 |
m Reduction pecularities require encoding < into interpretation

» Correctness:

m UDPCh — FSAT(F’h): Standard model
m FSAT(F"h) — UDPCh: Extract solution from given model

= FSAT is undecidable for binary signature
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What about FVAL?
» FVAL is undecidable for binary signature over V, —, | -fragment
m using = F’(h) as reduction function
» Conjecture: FVAL undecidable for binary signature over V, —-fragment

m Friedman translation should be possible
m Likely to require expanded standard model

» There is no sound, complete, enumerable deduction system for finite semantics
m FVAL is co-enumerable and undecidable
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