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Reversible Machines

I A reversible machines are those whose computations can
be retraced back in time (Kari and Ollinger, 2008).

I Injective step relations.
I Interests in reversible machines stem from Landauer’s

Principle (Landauer, 1961).
I See (Bennett, 2003) for a more thorough treatment on

Landauer’s Principle.
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Goal
The goal of this thesis is to mechanize in Coq the
(un)-decidability of halting problems for:

I Reversible FRACTRANs
I Reversible 2-counter machines
I Weakly-reversible 2-dimensional cellular automata
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(Extensional) Reversibility

A machine M is extensionally reversible iff for all its
configurations s, t, and u, if M steps from s to u and from t
to u then s = t.

Exactly the dual notion of determinism.

A machine M is weakly reversible iff for all its configurations
s, t, and u, if M steps from s to u and from t to u and u is
not halting then s = t.
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FRACTRAN

FRACTRAN is a simple computation model with undecidable
halting problems (Conway, 1987).

A FRACTRAN program is a list of fractions whose
configurations are natural numbers.
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FRACTRAN
Theorem
Reversible FRACTRAN programs have decidable halting
problems.

Proof.
The key observation here is that reversible FRACTRAN
programs essentially contain at most one fraction1, for which
one can construct halting deciders for.

1with insights from a private communication with Dominique
Larchey-Wendling
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Counter Machines

I Counter machines are one of the most well-studied
computation models with undecidable halting
problems (Minsky, 1967).

I A counter machine is a list of instructions (from some
instruction set)

whose configurations are pairs (i, v) of
addresses i and counters values v.
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Counter Machines

I Two existing counter machine formalizations in the Coq
Library of Undecidability Proofs (Forster et al., 2020):
MM and MMA/CM.

I They are essentially lists of increment and decrement
instructions.

I INC x at address i increments the counter x and jumps to
i+ 1.

I For MM, DEC x j at address i jumps to j if the counter x
contains zero (leaving it unchanged), otherwise
decrements the counter x and jumps to i+ 1.

I For MMA/CM, DEC x j at address i decrements the
counter x and jumps to j if it contains a positive number,
otherwise it leaves x unchanged and jumps to i+ 1.

12



Counter Machines
I Two existing counter machine formalizations in the Coq

Library of Undecidability Proofs (Forster et al., 2020):
MM and MMA/CM.

I They are essentially lists of increment and decrement
instructions.

I INC x at address i increments the counter x and jumps to
i+ 1.

I For MM, DEC x j at address i jumps to j if the counter x
contains zero (leaving it unchanged), otherwise
decrements the counter x and jumps to i+ 1.

I For MMA/CM, DEC x j at address i decrements the
counter x and jumps to j if it contains a positive number,
otherwise it leaves x unchanged and jumps to i+ 1.

12



Counter Machines
I Two existing counter machine formalizations in the Coq

Library of Undecidability Proofs (Forster et al., 2020):
MM and MMA/CM.

I They are essentially lists of increment and decrement
instructions.

I INC x at address i increments the counter x and jumps to
i+ 1.

I For MM, DEC x j at address i jumps to j if the counter x
contains zero (leaving it unchanged), otherwise
decrements the counter x and jumps to i+ 1.

I For MMA/CM, DEC x j at address i decrements the
counter x and jumps to j if it contains a positive number,
otherwise it leaves x unchanged and jumps to i+ 1.

12



Counter Machines
I Two existing counter machine formalizations in the Coq

Library of Undecidability Proofs (Forster et al., 2020):
MM and MMA/CM.

I They are essentially lists of increment and decrement
instructions.

I INC x at address i increments the counter x and jumps to
i+ 1.

I For MM, DEC x j at address i jumps to j if the counter x
contains zero (leaving it unchanged), otherwise
decrements the counter x and jumps to i+ 1.

I For MMA/CM, DEC x j at address i decrements the
counter x and jumps to j if it contains a positive number,
otherwise it leaves x unchanged and jumps to i+ 1.

12



Counter Machines
I Two existing counter machine formalizations in the Coq

Library of Undecidability Proofs (Forster et al., 2020):
MM and MMA/CM.

I They are essentially lists of increment and decrement
instructions.

I INC x at address i increments the counter x and jumps to
i+ 1.

I For MM, DEC x j at address i jumps to j if the counter x
contains zero (leaving it unchanged), otherwise
decrements the counter x and jumps to i+ 1.

I For MMA/CM, DEC x j at address i decrements the
counter x and jumps to j if it contains a positive number,
otherwise it leaves x unchanged and jumps to i+ 1.

12



Counter Machines
I Two existing counter machine formalizations in the Coq

Library of Undecidability Proofs (Forster et al., 2020):
MM and MMA/CM.

I They are essentially lists of increment and decrement
instructions.

I INC x at address i increments the counter x and jumps to
i+ 1.

I For MM, DEC x j at address i jumps to j if the counter x
contains zero (leaving it unchanged), otherwise
decrements the counter x and jumps to i+ 1.

I For MMA/CM, DEC x j at address i decrements the
counter x and jumps to j if it contains a positive number,
otherwise it leaves x unchanged and jumps to i+ 1.

12



Counter Machines

I Two-counter MMs have decidable halting
problems (Dudenhefner, 2022).

I Reversible two-counter MMA/CMs also have decidable
halting problems (Dudenhefner, 2022).

I Hence we use Morita’s counter machines (Morita, 1996).
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Morita’s Counter Machine

I A Morita’s counter machine (Morita, 1996) have 5
operations: increment, decrement, unconditional jump,
zero test, and positive test.

I MM and MMA/CMs are deterministic by constructions:
only one instruction per address.

I But Morita’s counter machines can be non-deterministic.
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Morita’s Counter Machine

A Morita’s counter machine is a list of instructions (p, x, i, j)

e.g. (INC, 2̂, 2, 1).

DEC 1̂

NOP 1̂

INC 2̂

POS 2̂

ZER 1̂

1 2

3
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Morita’s construction

I Morita’s construction (Morita, 1996) is a reduction from
the halting problems of deterministic k-Morita’s counter
machines to the halting problems of deterministic and
reversible 2-Morita’s counter machines.

I We partially mechanize Morita’s construction for
2-Morita’s counter machines.

Need to characterize reversible Morita’s counter machines
syntatically.

16



Morita’s construction

I Morita’s construction (Morita, 1996) is a reduction from
the halting problems of deterministic k-Morita’s counter
machines to the halting problems of deterministic and
reversible 2-Morita’s counter machines.

I We partially mechanize Morita’s construction for
2-Morita’s counter machines.

Need to characterize reversible Morita’s counter machines
syntatically.

16



Morita’s construction

I Morita’s construction (Morita, 1996) is a reduction from
the halting problems of deterministic k-Morita’s counter
machines to the halting problems of deterministic and
reversible 2-Morita’s counter machines.

I We partially mechanize Morita’s construction for
2-Morita’s counter machines.

Need to characterize reversible Morita’s counter machines
syntatically.

16



Morita’s construction

I Morita’s construction (Morita, 1996) is a reduction from
the halting problems of deterministic k-Morita’s counter
machines to the halting problems of deterministic and
reversible 2-Morita’s counter machines.

I We partially mechanize Morita’s construction for
2-Morita’s counter machines.

Need to characterize reversible Morita’s counter machines
syntatically.

16



Morita’s construction

I Morita’s construction (Morita, 1996) is a reduction from
the halting problems of deterministic k-Morita’s counter
machines to the halting problems of deterministic and
reversible 2-Morita’s counter machines.

I We partially mechanize Morita’s construction for
2-Morita’s counter machines.

Need to characterize reversible Morita’s counter machines
syntatically.

16



Intensional Reversibility

I Morita proposed a syntactic criterion for reversibility
using the so-called range overlap.

I Distinct instructions (p1, x1, i1, j1) and (p2, x2, i2, j2)
overlap in range iff j1 = j2 and either

x1 6= x2 or

p1 = p2
or

either p1 or p2 are increment, decrement, or
unconditional jump operations.

I (ZER, 1̂, 1, 1) and (POS, 2̂, 1, 1) overlap in range, but
(ZER, 1̂, 1, 1) and (POS, 1̂, 1, 1) do not.

I A Morita’s counter machine is intensionally reversible if
none of its instructions overlap in range.
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Morita’s construction in steps

1. Reduce the indegree of each address to two or less.
2. For each pair of instructions that overlap in range, record

which instructions were executed as a binary number
using two extra counters.

3. Compression: reduce the number of counters back to two
using Gödel numbering.

We partially mechanize Morita’s construction by using graph
representations.
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Graph representation

Recall that a Morita’s counter machine is formalized as a list
of instructions (p, x, i, j).

Lemma
If every sublists is intensionally reversible, then the whole
graph is intensionally reversible.

Each step of Morita’s construction can then be implemented
as a simple map or flat-map.
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Recording history

I Two extra counters were added: 1̂ to store history and 2̂
as an auxillary counter.

I Suppose that the current history value is n.
I If the left instruction was executed, store 2n at counter 1̂.
I Otherwise, the right instruction was executed, store

2n+ 1 at counter 1̂.
I Need a way to construct reversible loops.
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Recording history

ZER 2̂ZER 1̂

POS 2̂

DEC 2̂

INC 1̂

INC 1̂

POS 1̂
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Compression

I Reducing the number of counters back to two via Gödel
encoding is a well-understood process.

I Instead of working with counters [v1, v2, v3, . . . , vk], one
works with [2v13v25v5 . . . pvkk , 0].

I Thus incrementing the first counter becomes
multiplication by 2, for example.

I The crucial point here is to preserve reversibility,

but we
already know how to construct loops that preserve
reversibility.

I We did not mechanize this step due to time constraint.
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Cellular Automata

I Cellular automata represent massively parallel
computations.

I Famous example: Wolfram’s Rule 110, which has been
shown to be computationally universal (Wolfram, 2002).

I A cellular automaton is a characterized by its local update
rule defined over a neighborhood

whose simultaneous
applications determine its next configuration.

I The local update rule is applied homogenously, globally.
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One-dimensional Cellular Automata

I A one-dimensional cellular automaton (CA1) is a triple
(Σ, f, r) where

Σ is a finite alphabet,

f : Σ2r+1 → Σ is a
local update function, and

r is the neighborhood radius.

I Its configurations are functions s : Z → Σ, which can be
thought of as arrays of cells.

I There is a quiescent letter: q ∈ Σ such that
f(q, q, . . . , q) = q.

I A CA1 configuration is spatially-finite iff beyond some
bound ±n, every cell contains a quiescent letter.

I A CA1 configuration is halting if it is filled with quiescent
letters.
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CA1, Mechanized

I We consider CA1s with neighborhood radius 1.
I Defining termination using quiescent configurations

trivially breaks reversibility due to self-loops.
I Instead, cells contain O(Σ) instead of Σ:

a configuration
is halting if a cell contains ∅.

I Consequently, local update rules return O(Σ) instead of
Σ.

I We consider only spatially-finite configurations.
I Reduction from binary Turing Machines is relatively

straightforward:

one needs to also track where the head
of the Turing Machine is.
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Two-dimensional Cellular Automata

I A two-dimensional cellular automaton (CA2) is a triple
(Σ, f,N) where N is a neighborhood vector.

I Most common neighborhood vector: von Neumann (left)
and Moore (right).

I Its configurations are functions s : Z → Z → Σ.
I Similar to CA1s, there are quiescent letters and

spatially-finite configurations.
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Weakly-reversible CA2, Mechanized

I We mechanize von Neumann CA2s with neighborhood
radius 1 where cells contain O(Σ) instead of Σ.

I Reduction from CA1 is done by storing the history in the
additional dimension; the idea goes back to Toffoli
in (Toffoli, 1977).
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Lessons Learned

Reversibility is about storing history, which requires a certain
degree of control flow management.

I It is very hard (if not impossible) to store history in
FRACTRAN.

I MM has a very restrictive control flow mechanism.
I MMA/CM has a more flexible control flow mechanism

but it is still not enough.
I Morita’s counter machine has a flexible enough control

flow mechanism.
I Cellular automata can have almost arbitrary control flow

mechanisms.
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Challenges Faced

I Morita’s construction involves creating a lot of fresh
variables.

We found that using a pairing function results
in a more elegant mechanization.

I Morita’s counter machines, viewed as lists, do not provide
enough structure to implement Morita’s construction.
Our graph representation significantly simplifies our
mechanization of Morita’s construction.

I The old version of binary Turing machine in the library
contains too many edge cases. The new version of binary
Turing machine2 in the library was partly influenced by
our discussion on reduction to CA1.

2https://github.com/uds-psl/coq-library-undecidability/pull/143
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Our Contributions

As far as we are aware, we are the first to mechanize the
following in Coq:
I The fact that reversible FRACTRAN programs have

decidable halting problems,
I Partial Morita’s construction: deterministic 2-Morita’s

counter machine to reversible and deterministic
4-Morita’s counter machine,

I One-dimensional and two-dimensional cellular automata,
and

I Reduction from CA1 to weakly-reversible CA2.
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Thank you for your attention!
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Domain overlap

I Distinct instructions (p1, x1, i1, j1) and (p2, x2, i2, j2)
overlap in range iff j1 = j2 and either x1 6= x2 or p1 = p2
or either p1 or p2 are increment, decrement, or
unconditional jump operations.

I Distinct instructions (p1, x1, i1, j1) and (p2, x2, i2, j2)
overlap in domain iff i1 = i2 and either x1 6= x2 or
p1 = p2 or either p1 or p2 are increment, decrement, or
unconditional jump operations.

I A Morita’s counter machine is intensionally deterministic
iff none of its instructions overlap in domain.

I Intensional determinism is also sound.
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Deterministic simulation

Let ⇒1 and ⇒2 be step relations. Assuming the following
hold:
I For all configurations s1, s2, and t1, if s1 ⇒ t1 and

sync s1 s2 then there exists t2 such that s2 ⇒+
2 t2 and

sync t1 t2.
I For all configurations s1 and s2, if ⇒1 is stuck at s1 and

sync s1 s2 then ⇒2 terminates starting from s2.
I ⇒1 is decidable.
I ⇒2 is deterministic.

then we have that for all configurations s1 and s2 that are in
sync, ⇒1 terminates starting from s1 iff ⇒2 terminates
starting from s2.
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