
Mechanized Undecidability of Halting
Problems for Reversible Machines

Final Seminar Talk

Hizbullah A. A. Jabbar
Advisor: Andrej Dudenhefner
Supervisor: Prof. Gert Smolka

Saarland University

19/01/2022

1 / 32



Outline

Recap

Counter Machine
Morita’s Construction
Graph representation
Generic simulation lemmas

Cellular Automata

Future Work

2 / 32



Outline

Recap

Counter Machine
Morita’s Construction
Graph representation
Generic simulation lemmas

Cellular Automata

Future Work

3 / 32



Reversible Machines
I Reversible machines are those whose operations are

injective.
I Reversibility is a dual to determinism.
I Interests in reversible machines stem from Landauer’s

Principe (Landauer, 1961). . .
I . . . where its converse is widely accepted to

hold (Bennett, 2003).

4 / 32



Goal
The goal of this thesis is to mechanize in Coq the
(un)-decidability of the halting problem for:
I Reversible 2-counters counter machine, and
I Reversible 2-dimensional cellular automata.

5 / 32



About FRACTRAN
I We showed that the halting problem for reversible

FRACTRAN is decidable. . .
I . . . because it is difficult to store computation history in

FRACTRAN.
I FRACTRAN is an example of a Turing-complete machine

whose reversible counterpart has decidable halting
problem.

6 / 32



Outline

Recap

Counter Machine
Morita’s Construction
Graph representation
Generic simulation lemmas

Cellular Automata

Future Work

7 / 32



Counter Machine
I Initially, we wanted to use existing counter machine

formalizations in CLUP.
I The most notable are MinskyMachine (MM/MMA) and

CounterMachine (CM) with two instructions: increment
and decrement.

I However, it turns out that the halting problem for
reversible MM and CM are decidable 1. . .

I . . . due to not having enough flexible control flow
mechanism.

I Hence we use a different formalization: Morita’s counter
machine (Morita, 1996).

1https://github.com/uds-psl/coq-library-undecidability/pull/138
8 / 32



Morita’s Counter Machine
I There are 5 instructions: increment, decrement,

unconditional jump, zero test, and positive test.
I We model Morita’s counter machine (MOR) as a list of

quadruples.
I A quadruple (p, x , i , j) contains an instruction p, operates

on the counter x , and relating the internal states i and j .
I A MOR is therefore a graph, where every quadruple

(p, x , i , j) is an edge connecting state i to state j .
I We say that the quadruple (p, x , i , j) is at state i and

points to state j .
I Translating a MMA/CM into a MOR is straightforward.

9 / 32



Morita’s Counter Machine
I A MOR configuration is a pair (i ,−→v ).
I Suppose we have the following MOR A:

[(INC, 0, 0, 1), (DEC, 0, 0, 1), (INC, 0, 1, 0)].
I Starting from (0, [0, 0]), A could go to

(1, [1, 0]), (0, [2, 0]), (1, [1, 0]), . . .

I Alternatively, it could go to
(1, [1, 0]), (0, [2, 0]), (1, [3, 0]), . . .

I A MOR M terminates starting from a configuration s iff
there exists a configuration t such that M takes some
steps from s to t where it get stuck.

I A MOR M is extensionally reversible iff for all
configurations s, t, and u: if M takes a step from s to u
and it also takes a step from t to u then it must be that
s = t.

10 / 32



Intensional Reversibility

A = [(INC, 0, 0, 1), (DEC, 0, 0, 1), (INC, 0, 1, 0)]

I A is not extensionally reversible: The configuration
(1, [4, 0]) can be reached in one step from (0, [3, 0]) or
(0, [5, 0]).

I (Morita, 1996) proposed a syntactic criteria for
reversibility via the so-called range overlap.

I Intuitively, two quadruples a and b overlap in range iff a
and b point to the same state and they contain
instructions that can change the value of the counters.

I A MOR is intensionally reversible iff none of its
quadruples overlap in range.

11 / 32



Intensional Reversibility

A = [(INC, 0, 0, 1), (DEC, 0, 0, 1), (INC, 0, 1, 0)]

I A is not intensionally reversible: (INC, 0, 0, 1) and
(DEC, 0, 0, 1) overlap in range.

I In fact, intensional reversibility implies extensional
reversibility.

I However, the converse is not true: there are MORs which
are extensionally reversible but are not intensionally
reversible.

12 / 32



Morita’s Construction
I Morita’s construction (Morita, 1996) provides a way to

convert any k-MOR into an intensionally reversible
2-MOR.

I Undecidability of the halting problem of reversible MOR is
then established via reduction from the halting problem of
MMA.

13 / 32



Morita’s Construction
Let M be a MOR with indegree n.
1. If n ≤ 1 we are done. Otherwise, reduce the indegree to 2.
2. Add two extra counters to keep track of history, together

with extra quadruples to work with them for every pair of
quadruples that overlap in range.

3. Compress via prime exponentiation: instead of working
with counters −→v = [v1, v2, v3, v4], use [pv11 pv22 pv33 pv44 , 0]
where p1, p2, p3, p4 are primes.

14 / 32



Graph representation
I It is more convenient to use a representation of MORs

that has more structure.
I Specifically, since it is a graph, one can represent it as an

adjacency list (= list of list), where each sublist contains
quadruples that point to the same state.

I Furthermore, quadruples in different sublists point to
different states.

I Computing indegree is trivial: the indegree of M is the
length of the longest sublist in the graph representation of
M .

15 / 32



Graph representation
The graph representation satisfies the following invariants:
uniformity For each sublists, every quadruples in the sublists

point to the same state.
disjointness Quadruples in different sublists point to different

states.

Lemma (Horizontal composability)
If every sublists is intensionally reversible, then the graph is
intensionally reversible.

16 / 32



Generic simulation lemmas
I Morita’s construction proceeds in stages where there are

proof obligations to show that a stage simulates the
preceeding one.

I As such, it is convenient to have a generic lemmas that,
as long as those are satisfied, guarantee simulation with
respect to termination, similar to e.g. (Leroy, 2009).

I Works for any machine whose termination is defined as
“taking some steps and then get stuck”.

17 / 32



Generic simulation lemmas
Let ⇒: X → X → P and ⇒: Y → Y → P be the step
relations of two machines. There are two variants of the
simulation lemmas so far:
I Lockstep simulation: For every step that ⇒ takes, ⇒ also

takes a step.
I Many-step simulation: For every step that ⇒ takes, ⇒

takes at least one step.

18 / 32



Lockstep simulation
Let sync : X → Y → P be a relation over configurations. If
we have:
I For all s, t, and s ′, if given s ⇒ t and sync s s ′, then we

have ∃t ′, s ′ ⇒ t ′ ∧ sync t t ′.
I For all s ′, t ′, and s, if given s ′ ⇒ t ′ and sync s s ′, then

we have ∃t, s ⇒ t ∧ sync t t ′.
Then we have that for all s and s ′ that are in sync, ⇒
terminates on s iff ⇒ terminates on s ′.

19 / 32



Many-step simulation
Let sync : X → Y → P be a relation over configurations such
that for all s ′, either ∃s, sync s s ′ or ∀s, ¬sync s s ′. If we
have
I For all s, t, and s ′, if given s ⇒ t and sync s s ′, then we

have ∃t ′, s ′ ⇒+ t ′ ∧ sync t t ′.
I For all s ′, t ′, s, and t, if given s ′ ⇒+ t ′, sync s s ′, and

sync t t ′, then we have s ⇒+ t.
Then we have that for all s and s ′ that are in sync, ⇒
terminates on s iff ⇒ terminates on s ′.

20 / 32



Outline

Recap

Counter Machine
Morita’s Construction
Graph representation
Generic simulation lemmas

Cellular Automata

Future Work

21 / 32



Cellular Automata
I A one-dimensional cellular automaton (CA) is a triple

(Σ, r , f ).
I Σ is a finite set of alphabet which is also called states in

e.g. (Kari and Ollinger, 2008).
I r ∈ N is the neighborhood radius.
I f : Σ2r+1 → Σ is the local update rule.
I The configurations of a CA are elements of ΣZ which

changes through simultaneous applications of f :
c ′(i) = f (c(i − r), c(i − r + 1), . . . , c(i + r − 1), c(i + r)).
This is the parallel map of a CA.

I CAs represent massively parallel computations.

22 / 32



Reversible Cellular Automata
I Any d-dimensional CA can be simulated by a reversible

d + 1-dimensional CA (Toffoli, 1977).
I The undecidability of halting for a reversible 2-dimensional

CA is established via undecidability of halting for 2-MOR.
I Need to construct a 1-dimensional CA that simulates a

MOR.

23 / 32



Constructing 1-CA
I Instead of defining configurations as ΣZ , we define a

configuration (l , a, r) : (N→ opt Σ, opt Σ,N → opt Σ).
I The parallel map is then defined accordingly e.g.

a′ = f (l 0, a, r 0).
I A halting configuration is defined as

chalt = ∃n, l n = None ∧ ∃n, r n = None ∧ a = None.

24 / 32



Outline

Recap

Counter Machine
Morita’s Construction
Graph representation
Generic simulation lemmas

Cellular Automata

Future Work

25 / 32



What has been done
I Full mechanization of reduction from MMA to MOR.
I Partial echanization of Morita’s construction based on

MOR.
I Mechanization of 1-CA and its halting problem.

26 / 32



Future work
Must-have goals:
I Finish mechanization of Morita’s construction.
I Mechanize the reduction from 2-counter MOR to

1-dimensional CA.
I Mechanize the Toffoli construction (Toffoli, 1977).

27 / 32



Thank you for your attention!

28 / 32



MOR semantics

(INC, x , i , j) ∈ M v [x ] = w

M ` (i ,−→v )⇒ (j ,−→v [w + 1/x ])

(NOP, x , i , j) ∈ M

M ` (i ,−→v )⇒ (j ,−→v )

(DEC, x , i , j) ∈ M v [x ] = 1 + w

M ` (i ,−→v )⇒ (j ,−→v [w/x ])

(ZER, x , i , j) ∈ M v [x ] = 0
M ` (i ,−→v )⇒ (j ,−→v )

(POS, x , i , j) ∈ M v [x ] = 1 + w

M ` (i ,−→v )⇒ (j ,−→v )

29 / 32



Range Overlap
Let a = (p1, x1, i1, j1) and b = (p2, x2, i2, j2) be two quadruples
and let D = {INC, DEC, NOP}.

Definition (Range overlap)
α and β overlap in range iff

j1 = j2 ∧ (x1 6= x2 ∨ p1 = p2 ∨ p1 ∈ D ∨ p2 ∈ D

30 / 32



Constructing Graph Representation
Let f : X → X → P.

to_graph [] = []

to_graph (h : t) = (filter (f h) t)

:: to_graph (filter (¬ (f h))

31 / 32



CA Parallel Map
Let A be a 1-dimensional CA. Let f : (Σ,Σ,Σ)→ Σ be its
local update rule and
c = (l , a, r) : (N→ opt Σ, opt Σ,N → opt Σ) be one of its
configurations.

a′ = f (l 0, a, r 0)

l ′ = λn→ [0⇒ f (l 1, l 0, a) |S n′ ⇒ f (l (S n), l n, l n′)]

r ′ = λn→ [0⇒ f (l 1, l 0, a) |S n′ ⇒ f (r n′, r n, r (S n))]

32 / 32


	Recap
	Counter Machine
	Morita's Construction
	Graph representation
	Generic simulation lemmas

	Cellular Automata
	Future Work

