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Abstract

A reversible machine is a machine where no information is ever lost throughout
the course of its computation. Interests in reversible machines stem from Lan-
dauer’s Principle which implies that a reversible machine is capable of operating at
a much lower energy consumption level compared to a non-reversible one, which
also opens up possibilities of significant performance improvements.

From the point of view of computability theory, many reversible machines are as
expressive as their non-reversible counterparts. It has been shown that reversible
Turing machines, reversible counter machines, and reversible cellular automata
(up to two dimension) are universal. However, to the best of our knowledge,
none of the aforementioned results have been mechanized in the Coq Proof As-
sistant. As such, this work aims to close the gap and mechanize in Coq the (un)-
decidability results of reversible machines, namely reversible FRACTRAN pro-
grams, reversible counter machines, and reversible cellular automata using a syn-
thetic approach.
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Chapter 1

Introduction

1.1 Reversible Machines

A reversible machine is a machine whose computation can be traced back in time [16].
As such, no information is ever lost. If one considers machines as step relations be-
tween states of computations (often called configurations), then reversible machines
are exactly those whose step relations are left-unique. Viewed this way, reversibil-
ity is a dual notion to determinism.

Interests in reversible machines stem from Landauer’s Principle [17], stating
that a decrease in entropy in the Information Bearing Degrees of Freedom (IBDF)
must be accompanied by an increase in the Non-Information-Bearing Degrees of
Freedom (NIBDF). For example, one may consider the voltage levels of the transis-
tors inside a CPU as its IBDF whereas the temperature of its wirings as one of its
NIBDFs. When a bit of information is deleted, the entropy of the IBDF decreases
because there is less information contained within. By Landauer’s Principle, the
entropy of the NIBDFs must increase by the same amount via e.g. temperature
increase in the wirings. If, on the other hand, the operations performed on the
informations inside the IBDF are reversible, then by the same principle the CPU
would avoid emitting the heat to its wirings, thus saving energy and potentially
allowing for better performance [12]. See Bennett [4] for a more thorough treat-
ment of Landauer’s Principle.

From the point of view of computability theory, many reversible machines
retain the expressive power of their non-reversible counterparts. For example,
the (computational) universality of reversible Turing machines [3] [23], reversible
counter machines [21], reversible logic gates [13], reversible one-dimensional cel-
lular automata [22], and reversible two-dimensional cellular automata [26] have
been shown. However, at the time of writing, we are not aware of any other mech-
anization efforts in Coq on those results.
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1.2 Outline

We begin by recapitulating basic definitions in Chapter 2 including a brief intro-
duction to synthetic undecidability, which is the mechanization approach that we
use.

In Chapter 3, we showed and mechanized the fact that reversible FRACTRAN [5]
is not universal, thereby providing an example of a computation model whose
reversible variant is strictly less expressive. Our results here relies on various
number-theoretic facts already mechanized in the Coq library of undecidability
proofs [11].

We then present our partial mechanization of Morita’s construction [21] in
Chapter 4, showing that any deterministic two-counter machine can be simulated
by a reversible and deterministic four-counter machine. Here we propose a mech-
anization framework that arguably simplifies our mechanization of Morita’s con-
struction and allows us to composably reason about reversibility. Later on, we
argue that the last step from a reversible and deterministic four-counter machine
to a reversible and deterministic two-counter machine—a compression algorithm
that preserves reversibility—can be implemented on top of our framework with
minimal adjustments.

Finally, in Chapter 5 we mechanize one-dimensional and two-dimensional cel-
lular automata and the computational universality of both one-dimensional cellu-
lar automata and reversible two-dimensional cellular automata, under a weaker
notion of reversibility. To the best of our knowledge, we are the first to mechanize
one-dimensional and two-dimensional cellular automata in Coq.

1.3 Contributions

This thesis includes the following contributions:

• Full mechanization of the decidability of the halting problem for reversible
FRACTRAN (Theorem 3.20) which relies on various number-theoretic facts
already mechanized in the Coq library of undecidability proofs [11].

• Partial mechanization of Morita’s construction [21] (sans the compression
step). Our mechanization approach based on Morita graph (Section 4.4) ar-
guably simplifies the overall mechanization effort while at the same time
allows for composable reasoning of reversibility.

• To the best of our knowledge, the first Coq mechanization of one-dimensional
and two-dimensional cellular automata. Additionally, we showed and mech-
anized the universality of one-dimensional cellular automata and reversible
two-dimensional cellular automata, under a weaker notion of reversibility.
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Many important facts and lemmas in the online version of this thesis is hyper-
linked with an accompanying documentation of our Coq development. Neverthe-
less, readers are encouraged to also see the overall aforementioned Coq documen-
tation at

https://www.ps.uni-saarland.de/~jabbar/master/coqdoc/.

https://www.ps.uni-saarland.de/~jabbar/master/coqdoc/
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Chapter 2

Preliminaries

2.1 Basic Types and Definitions

We work inside a constructive type theory as implemented in the Coq Proof Assis-
tant (henceforth, Coq’s type theory) [25], with a cumulative hierarchical universe
of types Ti for natural numbers i and an impredicative universe of proposition
P ⊆ T . Throughout this thesis, we use the following (inductive) data types and
definitions most extensively.

Definition 2.1 (Product type and projections) Given types X and Y, one can con-
struct a product of X and Y, written as X × Y. If x : X and y : Y, then (x, y) : X × Y.
Furthermore, if a : X×Y then a|1 : X and b|2 : Y are called the first and second projection
of a, respectively.

Definition 2.2 (Sum types and injections) Given types X and Y, one can construct a
disjoint union of X and Y, written as X + Y. Constructing an element of a X + Y can
be done using injections: if x : X then inl x : X + Y (left injection) and if y : Y then
inr y : X + Y (right injection).

Definition 2.3 (Boolean) A boolean b : B is either tt or ff, denoting the boolean truth
and falsity, respectively.

Definition 2.4 (Decidable equality) We say that a type X has a decidable equality iff
there is a function f : X → X → B such that for all x, y : X we have x =P y iff
f x y =B tt.

Remark 2.5 We use = to denote both boolean and propositional equality when it is clear
from the context.

Definition 2.6 (Natural numbers) A natural number n : N is either 0 or a successor
of a natural number n′, written as S n′.

Fact 2.7 For all n, m ∈N, n = m is decidable.
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Proof One can use a boolean equality decider f : N→N→ B as follows.

f 0 0 = tt
f 0 (S m) = ff
f (S n) 0 = ff

f (S n) (S m) = f n m

Definition 2.8 (Option) An option type O X of a type X is either a ∅ or ◦x for some
x : X.

Given a function f : X → O Y, we denote by f ↑ the application of the monadic
bind operator to f , defined below. Note that f ↑ : O X → O Y.

Definition 2.9 (Monadic bind, option type)

f ↑ ∅ = ∅

f ↑ (◦x) = f x

Definition 2.10 (List) A list type L X of a type X is either an empty list [] or an element
x : X prepended in front of another list L : L X, written as x :: L. We write [a; b; c] as a
notation for a :: b :: c :: [].

The following standard functions over list are used throughout the thesis (espe-
cially in Chapter 4) and we include them here for the sake of self-containment.

Definition 2.11 (++ ) Let L1 and L2 be lists of a type X. We define L2 appended to L1,
written as L1 ++ L2, as follows.

[] ++ L2 = L2

(x :: L) ++ L2 = x :: (L ++ L2)

Definition 2.12 (map) Given a function f : X → Y and a list L : L X, map f L is an
element of L Y. More precisely,

map f [] = []

map f (x :: L) = f x :: map f L

Fact 2.13 For all f and L, if x′ ∈ map f L then there exists x such that x ∈ L and
x′ = f x.

Proof Follows by induction on L.
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Definition 2.14 (filter) Let f : X → B be a function from a type X to booleans and
L : L X be a list.

filter f [] = []

filter f (x :: L) =

{
x :: filter f L f x = tt
filter f L f x = ff

Definition 2.15 (concat) Let L : L (L X) be a list of list of X.

concat [] = []

concat (x :: L) = x ++ concat L

Definition 2.16 (flat-map) Let L : L X be a list of X and f : X → L X.

flat-map f = concat ◦map f

Definition 2.17 (Iteration) Let a f : X → X for some type X. We use f n(x) for n ∈N

and x : X to denote a n-fold application of f starting from x.

Definition 2.18 (Pairing function) A pairing function π : N×N → N and its in-
verse π−1 : N→N×N forms a bijection between pairs of natural numbers and natural
numbers.

2.2 Reversibility and Determinism

We speak of extensional reversibility and extensional determinism as properties of a
relation⇒ over some types X and Y.

Definition 2.19 (Extensional reversibility) We say that a relation⇒: X → Y → P

is extensionally reversible iff for all s, t, and u, whenever s⇒ u and t⇒ u then s = t.

Definition 2.20 (Extensional determinism) We say that a relation⇒: X → Y → P

is extensionally deterministic iff for all s, t, and u, whenever s⇒ t and s⇒ u then t = u.

Remark 2.21 Extensional reversibility and extensional determinism are dual.

2.3 Synthetic Undecidability

We follow the synthetic computability approach of Forster [8] where one works
with computability theory without explicit computation models. Without getting
too much into the field of synthetic computability, it is sufficient for our purpose to
simply assume that every function definable in Coq’s type theory is computable.
This leads to a very elegant definition of many-one reductions.
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Definition 2.22 (Many-one reduction) Let X and Y be types. We say that a problem
P : X → P reduces to a problem Q : Y → P iff there is a function f : X → Y such that
for all x : X, we have that P x iff Q ( f x).

Using this approach, a problem Q can be shown to be undecidable if one can con-
struct a many-one reduction from a seed problem P that is assumed to be undecid-
able [9]. In the Coq library of undecidable proofs [11], one can use various seed
problems such as the halting problem for single-tape two symbol Turing machines,
the Post Correspondence Problem, and the halting problem for two counter Min-
sky machines.
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Chapter 3

On Reversible FRACTRAN

3.1 Introduction

FRACTRAN is one of the simplest computational models that has been shown to
be universal [5]. Due to its simplicity, it has been used as an intermediate reduc-
tion step in the Coq library of undecidable proofs [11]. For example, in the process
of establishing a reduction from k-counter machines to two-counter machines, a k-
counter machine is first compiled into a FRACTRAN program 1 and the resulting
FRACTRAN program is then compiled into a two-counter machine 2. This is of
special interest to us, because constructing a reversible two-counter machine out
of a two-counter machine involves adding extra counters followed by a "compres-
sion" to reduce the number of counters back to two (cf. Chapter 4). However, it
turns out that the halting problem for reversible FRACTRAN programs is decid-
able (Theorem 3.20). Consequently, any counter machine compression algorithm
implemented using FRACTRAN as an intermediate step does not preserve both
reversibility and universality.

3.2 FRACTRAN

We begin by recalling the definition of a FRACTRAN program and its step relation
from Conway [5]. For the step relation, we follow the presentation of Larchey-
Wendling and Forster [19].

Definition 3.1 (FRACTRAN programs) A FRACTRAN program L is a list of frac-
tions (represented as pairs of natural numbers) (c, d) ∈N×N.

1theories/FRACTRAN/FRACTRAN/mm_fractran.v in [11]
2theories/MinskyMachines/MMA/fractran_mma.v in [11]
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Definition 3.2 (FRACTRAN step relation) A FRACTRAN program L induces a step
relation L ⊢ s→ t between its configurations s, t ∈N as follows.

FRAC-0
c · s = d · t

(c, d) :: L ⊢ s⇒ t

FRAC-1
d ∤ c · s L ⊢ s⇒ t
(c, d) :: L ⊢ s⇒ t

We write L ⊢ s⇒n t for an n-fold iteration of the step relation between s and t.

Definition 3.3 (FRACTRAN stuck) We say that a FRACTRAN program L is stuck at
a configuration s iff for all configuration t, it is not the case that L ⊢ s⇒ t.

Definition 3.4 (FRACTRAN halting) A FRACTRAN program L halts on an input s,
written as L ⊢ x ⇓, iff there exists t and n such that L ⊢ s⇒n t and L is stuck at t.

Problem 3.5 (FRACTRAN halting problem) Given a FRACTRAN program L and
input s, does L halt on s?

Fact 3.6 (Decidability of FRACTRAN step relation) For any s ∈ N and FRAC-
TRAN program L, it is decidable whether L can make a step from s or not. That is, either
there exists t such that L ⊢ s⇒ t or L is stuck at s.

Proof Follows by induction on L and case analysis on d | (c · s) in the inductive
case.

3.3 Decidability of Reversible FRACTRAN Halting

We are ready to show that the halting problem of reversible FRACTRAN programs
is decidable. The main idea is to use the fact that any FRACTRAN program with
at least two elements (a, b) :: (c, d) :: L that is non-redundant (cf. Definition 3.7) is
necessarily irreversible (Lemma 3.9).

Definition 3.7 (Redundant FRACTRAN) For all a, b, c, d ∈ N and FRACTRAN
program L, we say that (a, b) :: (c, d) :: L is a redundant FRACTRAN program iff
gcd(c, d) = 1 and b | d.

Let (a, b) :: (c, d) :: L be a redundant FRACTRAN program. The first key
observation is that the fraction (c, d) will never be executed since any s ∈ N that
divides d also divides b. Consequently, (a, b) :: (c, d) :: L behaves the same as
(a, b) :: L.

Lemma 3.8 For all redundant FRACTRAN programs (a, b) :: (c, d) :: L, we have that
for all s, t ∈N, (a, b) :: (c, d) :: L ⊢ s⇒ t iff (a, b) :: L ⊢ s⇒ t
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Proof The proof relies on a number-theoretic fact: if gcd(c, d) = 1 and b | d then
for all s ∈ N, if d | (c · s) then b | (c · s). In both directions, the claim follows by
inversion on the assumption.

The second key observation is the fact that a non-redundant FRACTRAN pro-
gram with at least two fractions is necessarily irreversible.

Lemma 3.9 For all a, b, c, d ∈ N and FRACTRAN program L, if gcd(a, b) = 1 and
b ∤ d then there exists s, t, u ∈ N such that (a, b) :: (c, d) :: L ⊢ s ⇒ u and (a, b) ::
(c, d) :: L ⊢ t⇒ u but s ̸= t.

Proof The claim follows by picking s = c · b, t = a · d, and u = a · c, while relying
on the fact that for all p, q ∈N, if gcd(p, q) = 1 and p | (q · k), then p | k.

Together, Lemma 3.8 and Lemma 3.9 state that any reversible FRACTRAN pro-
gram is either empty or a singleton. Since an empty FRACTRAN program trivially
always halts, we only need to build a decider for singleton FRACTRAN programs.

Fact 3.10 For any s, d ∈ N and FRACTRAN program L, it is not the case that (0, d) ::
L ⊢ s ⇓.

Proof Follows by case analysis on d.

Fact 3.11 For any s, a, b, d ∈ N and FRACTRAN program L, it is not the case that
(1 + a, b) :: (0, d) :: L ⊢ s ⇓.

Proof If b | (1 + a) then we are done. Otherwise, there exists some t such that
(1 + a, b) :: (0, d) :: L ⊢ s ⇒ t where it get stuck. If b | ((1 + a) · t) then we are
done, otherwise we apply FRAC-1. Since (1 + a, b) :: (0, d) : L ⊢ t ⇒ 0, we have
the desired contradiction.

Fact 3.12 For any c ∈N, we have that [(1 + c, 0)] ⊢ s ⇓.

Proof Follows by case analysis on s, picking some non-zero t if s is zero.

Definition 3.13 (Regular FRACTRAN) A FRACTRAN program L is called regular
iff none of its denominators are zero.

Fact 3.14 For any s ∈ N and regular FRACTRAN program L, L ⊢ 0 ⇒ s implies that
s = 0.

Proof Follows by induction on L with inversion on the assumption in both cases.

Corollary 3.15 For any s ∈ N and regular FRACTRAN program L, we have that for
all n ∈N, L ⊢ 0⇒n s implies that s = 0.
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Proof Follows by induction on n and Fact 3.14.

Corollary 3.16 For any regular FRACTRAN program L, it is not the case that for all
n ∈N, L ⊢ 0 ⇓.

Proof Follows from Corollary 3.15.

Lemma 3.17 For any non-zero s, c, d ∈N, if d ∤ c then [(c, d)] ⊢ s ⇓.

Proof The proof relies on a number-theoretic fact: if d ∤ c, then there is a prime
factor p such that for all s, t ∈N, if s · c = t · d then the exponent of p in t is strictly
less than the exponent of p in s. The claim then follows by complete induction on
the exponent of p in s and case analysis on whether [(c, d)] can make a step from s
or not (Fact 3.6).

Lemma 3.18 If L = [(c, d)] for some c, d ∈ N and d ̸= 0, then the halting problem for
L is decidable.

Proof Let s be the input. We pick a decider f as follows:

f (s) =

{
ff s = 0, c = 0
d | c s > 0, c > 0

→ We proceed by case analysis on s. If s = 0, the claim follows from Corol-
lary 3.16. Otherwise, we proceed case analysis on c. If c = 0, the claim
follows from Fact 3.10. Otherwise, the claim follows by case analysis on d | c.

← We proceed by case analysis on s followed by case analysis on c, noting that the
claim follows trivially when s = 0 or c = 0. Otherwise, the claim follows by
case analysis on d | c and Lemma 3.17.

Lemma 3.19 If L = [(c, d)] for some c, d ∈ N, then the halting problem for L is decid-
able.

Proof Let s be the input. We proceed by case analysis on d and c.

1. If d = 0 and c = 0, we pick f (s) = ff as the decider and the claim follows
from Fact 3.10.

2. If d = 0 and c = c′ + 1 for some c′, we pick f (s) = tt as the decider and the
claim follows from Fact 3.12.

3. Otherwise d ̸= 0 and the claim follows from Lemma 3.18.

https://www.ps.uni-saarland.de/~jabbar/master/coqdoc/Undecidability.FRACTRAN.FRACTRAN.reversibility_facts.html#fractran_singleton_halt_dec_regular
https://www.ps.uni-saarland.de/~jabbar/master/coqdoc/Undecidability.FRACTRAN.FRACTRAN.reversibility_facts.html#fractran_singleton_halt_dec
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Theorem 3.20 For any reversible FRACTRAN program L, its halting problem is decid-
able.

Proof We proceed by induction on the length of L. If L = [], the claim follows by
picking f (s) = tt as a decider. If L = [(a, b)] for some a, b ∈ N, the claim follows
from Lemma 3.19. Otherwise, L = (a, b) :: (c, d) :: L′ for some L′ and we proceed
by case analysis on a.

• If a = 0, the claim follows from Fact 3.10.

• Otherwise, a is non-zero. Here we rely on a number-theoretic fact: one can
always reduce the fraction (a, b) into (a′, b′) such that gcd(a′, b′) = 1 and for
all x, y ∈ N, x · a = y · b implies x · a′ = y · b′. Next, we proceed by case
analysis on c.

– If c = 0, the claim follows from Fact 3.11.

– Otherwise, c is non-zero, which allows us to reduce (c, d) into (c′, d′)
such that gcd(c′, d′) = 1 and for all x, y ∈ N, x · c = y · d implies x ·
c′ = y · c′. If b′ | d′, then by Lemma 3.8 our assumption reduces to
assuming that (a, b) :: L′ is reversible, which allows us to apply the
inductive hypothesis. Otherwise b′ ∤ d′, which together with Lemma 3.9
contradicts the assumption that L is reversible.

3.4 Discussion and Related Work

FRACTRAN is an example of a universal model of computation whose reversible
counterpart is not universal. Intuitively, this is because there is no way for a FRAC-
TRAN program to store its computation history, in contrast to e.g. counter ma-
chines where one can simply add extra counters to remember which instructions
were executed up to this point (cf. Chapter 4). Indeed, at each step of a FRAC-
TRAN computation, one always start from the first fraction.

Conway [5] was the first to show the universality of FRACTRAN by showing
that FRACTRAN halting can simulate counter machine halting. This was later
mechanized using a synthetic approach by e.g. Larchey-Wendling and Forster [19]
as part of a mechanization of the DPRM Theorem [6]. Additionally, Larchey-
Wendling [18] used FRACTRAN to show that entailment in Multiplicative Sub-
Exponential Linear Logic is undecidable, using the same synthetic approach. As
far as we are aware, we are the first to show and mechanize the fact that reversible
FRACTRAN programs have decidable halting problems 3.

3with insights from a private communication with Dominique Larchey-Wendling

https://www.ps.uni-saarland.de/~jabbar/master/coqdoc/Undecidability.FRACTRAN.FRACTRAN.reversibility_facts.html#fractran_reversible_halt_dec
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Chapter 4

On Reversible Counter Machines

4.1 Introduction

In this chapter, we present our partial mechanization of Morita’s construction [21,
Section 3] to show that a deterministic two-counter machine can be simulated by a
deterministic and reversible two-counter machine. Morita’s construction consists
of three main steps:

1. reducing indegree of adresses [21, Lemma 3.1] which is explained in Sec-
tion 4.6,

2. adding extra counters to record the computation history [21, Theorem 3.1]
which is explained in Section 4.7, and

3. reversibly compressing back to two counters using Gödel numbering [21,
Theorem 4.1].

We fully mechanize step one and two (under reasonable assumptions) and later
on we argue in Section 4.9 that Morita’s reversibility-preserving compression step
can be done in the framework of our current mechanization. Our mechanization
framework, based on Morita graphs (Section 4.4), not only results in arguably sim-
ple mechanizations, but also allows us to composably reason about reversibility:
given a number of reversible counter machines, one can trivially compose them
into a reversible counter machine (Lemma 4.25).

Remark 4.1 Morita presents another step between step 2 and step 3 above, whose purpose
is to reversibly erase the computation history [21, Theorem 3.2]. However, this step is not
essential with respect to reversibility.

The first step reduces the indegrees of the addresses to two or less. The no-
tion of indegree for addresses stems from the fact that a counter machine can be
viewed as a graph where addresses are nodes and instructions are edges (we fur-
ther motivate and formalize this view in Section 4.4). Our choice to work with
Morita’s formalization of counter machines (henceforth, Morita machines) instead
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of a plethora of existing counter machine formalizations is motivated by recent
decidability results (cf. Section 4.2). The reason that the indegrees are reduced to
two or less is because the computation history is stored as a binary number in the
second step. The final step then compresses the 4-counter Morita machine back to
a 2-counter Morita machine, in a manner similar to Minsky [20, Theorem 14.1-1].

Since Morita’s construction proceeds in steps, there are obligations to show that
a Morita machine constructed in a step simulates the Morita machine constructed
in the previous step with respect to termination. To ease this process, we use a
number of simulation lemmas (Section 4.3), which given few relatively straight-
forward preconditions yield the desired simulation.

Each step of Morita’s construction involves generating fresh quadruples with
fresh addresses. This necessitates an auxillary step (Section 4.5) to transform the
quadruples into a form that is more amenable to create and reason about fresh
quadruples and addresses. In fact, this auxillary step will be used each time we
need to create fresh quadruples.

Finally, we present our overall mechanization Morita’s construction without
the compression step, together with its proof of correctness in Section 4.8. We then
conclude with a discussions and future work in Section 4.10.

4.2 Morita Machines

When we started our mechanization of Morita’s construction, there were at least
two counter machine formalizations in the Coq library of undecidable proofs [11],
namely MM and MMA, which are deterministic by construction. Both counter ma-
chines have the same instruction set {+,−} containing an increment and decre-
ment instructions, respectively, where the latter is also used for jumps. The dif-
ference lies in the semantics of their decrement instructions: a MM jumps on 0
whereas MMA jumps on positive.

Two-counter MMs, whose instructions are a subset of Minsky’s original def-
inition [20, Table 11.1] (MM is short for "Minsky Machine"), turns out to have a
decidable halting problem [7, Remark 1]. Two-counter MMAs ("Minsky Machine
Alternative") turn out to be still universal, so we were hoping to use MMAs as
the base of our mechanization. In fact, the existing counter machine compression
algorithm mentioned in Chapter 3 works on MMA. However, not only that the
aforementioned compression algorithm turns out to be not reversibility-preserving
(cf. Theorem 3.20), two-counter reversible MMAs also turns out to have decidable
halting problems [7, Theorem 21]. As a result, we chose to use Morita machines
instead, despite the fact that they can be non-deterministic.

We begin by recapitulating the formal definitions of Morita machines [21, Def-
inition 2.1].
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Definition 4.2 (Instructions) A Morita machine has a 5-element instruction set
I = {Z, P, 0,−,+} containing zero test, positive test, unconditional jump, decrement,
and increment, respectively.

Definition 4.3 (Quadruples) A k-quadruple a, b, c is an element of I × {1, . . . , k} ×
N ×N. Let a = (p, x, i, j) be a quadruple. We say that a contains an instruction p,
works on a counter x, located at an address i, and points to an address j. In this case, we
have that at a = i and to a = j.

Definition 4.4 (Morita machines) A k-counter Morita machine is a list of k-quadruples.

Definition 4.5 (Morita configurations) Similar to other counter machines, a k-Morita
configuration is a pair (i,−→v ) where i ∈ N is the current address and −→v is a vector of k
natural numbers representing the current values of the counters.

Fact 4.6 Equality on morita configurations is decidable.

Proof Follows from Fact 2.7.

We chose to present the small-step semantics of Morita machines in the style
similar to existing counter machine formalization in the Coq library of undecidable
proofs [11] instead of Morita’s original presentation [21, Definition 2.2] because it
is more amenable to mechanization.

Definition 4.7 (Step relation) A k-counter Morita machine m induces a step relation
M ⊢ s⇒ t between its configurations s, t as follows.

INC
v[x] = w (+, x, i, j) ∈ m
m ⊢ (i, v)⇒ (j, v[w + 1/x])

DEC
v[x] = 1 + w (−, x, i, j) ∈ m

m ⊢ (i, v)⇒ (j, v[w/x])

NOP
(0, x, i, j) ∈ m

m ⊢ (i, v)⇒ (j, v)

ZER
v[x] = 0 (Z, x, i, j) ∈ m

m ⊢ (i, v)⇒ (j, v)

POS
v[x] = 1 + w (P, x, i, j) ∈ m

m ⊢ (i, v)⇒ (j, v)

where v[i] denotes the i-th component of v and v[n/i] denotes the update of the i-th compo-
nent of v to n. Furthermore, we write⇒∗ and⇒+ as the reflexive transitive and transitive
closure of⇒, respectively.

Fact 4.8 For all Morita machines m, n and configurations s, t, if m ⊢ s ⇒ t and m ⊆ n
then n ⊢ s⇒ t.
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Proof Follows by inversion on m ⊢ s⇒ t.

Fact 4.9 For all Morita machines m, n and configurations s, t, if m ⊢ s⇒∗ t and m ⊆ n
then n ⊢ s⇒∗ t.

Proof Follows by induction on the number of steps and Fact 4.9.

Definition 4.10 (Stuck) We say that a k-counter Morita machine m is stuck at a config-
uration s iff for all configuration t, it is not the case that m ⊢ s⇒ t.

Fact 4.11 (Propositional decidability of Morita machine step relation) For all Morita
machine m and configurations s, either there exists t such that m ⊢ s⇒ t or m is stuck at
s.

Definition 4.12 (Morita termination) A k-counter Morita machine m terminates start-
ing from a configuration s, written as m ⊢ s ⇓, iff there exists a configuration t such that
m ⊢ s⇒∗ t and m stuck at t.

Problem 4.13 (Morita machine halting problem) Given a k-counter Morita machine
m and an input configuration s, does m terminate starting from s?

As previously mentioned, given a deterministic two-counter Morita machine
m, Morita’s construction (Section 4.8) constructs a deterministic and reversible
two-counter Morita machine m′ that simulates m. As such, there is a need for a
syntactic characterization of reversibility that only depends on m, which is defined
using the so-called range overlap [21, Definition 2.3].

Definition 4.14 (Range overlap) Let D = {−, 0,+}.
Two distinct quadruples a = (p1, x1, i1, j1) and b = (p2, x2, i2, j2) overlap in range iff

j1 = j2 ∧ (x1 ̸= x2 ∨ p1 = p2 ∨ p1 ∈ D ∨ p2 ∈ D).

In other words, a and b overlap in range iff they point to the same address and either they
work on different counters, contain the same instruction, or at least one of their instruc-
tions are in D.

At a first glance, for a Morita machine m to be not reversible there must be at
least two quadruples a, b ∈ m that point to the same address. However, not all
such pairs of quadruples cause non-reversibility; for example, despite the fact that
a = (Z, 1̂, i1, j) and b = (P, 1̂, i2, j) point to the same address j, work on the same
counter 1̂, and contain two different instructions, a and b by themselves are still
reversible. This is because 1̂ cannot contain a positive number and zero at the same
time, which means that only one of them will be executed at a time (if at all).

https://www.ps.uni-saarland.de/~jabbar/master/coqdoc/Undecidability.Morita.Utils.common.html#range_overlap
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Remark 4.15 In our development, we use a slightly different presentation based on an
inductive predicate to ensure that if any two quadruples a and b overlap in range, then
a ̸= b.

Definition 4.16 (Intensional reversibility) A k-counter Morita machine m is inten-
sionally (or syntactically) reversible iff for all distinct quaduples a, b ∈ m, a and b do not
overlap in range.

It turns out that Definition 4.16 is sound but not complete; that is, any inten-
sionally reversible Morita machine is also extensionally reversible, but there is an
extensionally reversible Morita machine that is not intensionally reversible.

Theorem 4.17 (Soundness, intensional reversibility) A k-counter machine m that
is intensionally reversible is also extensionally reversible.

Proof We proceed by case analysis on equality of s and t. If s = t then we are done.
Otherwise, we use the hypothesis that for all distinct quadruples a, b ∈ m, a and b
do not overlap in range to derive a contradiction by showing that a ̸= b and a and
b overlap in range, which follows from inversion on m ⊢ s⇒ u and m ⊢ t⇒ u.

Lemma 4.18 There is an extensionally reversible counter machine that is not intension-
ally reversible.

Proof Let m = [(Z, 1, i, i), (P, 1, i, i), (0, 1, i, i)] be a 1-counter Morita machine that
does not change its configurations i.e. for all s and t, if m ⊢ s ⇒ t then s = t
(this can be shown easily by inversion). This machine is therefore extensionally
reversible, but (Z, 1, i, i) and (0, 1, i, i) overlap in range.

4.3 Simulation Lemmas

Let⇒1 and⇒2 be two step relations. We consider two types of simulation lemmas:

• lockstep simulation, where each step of ⇒1 corresponds to one step of ⇒2,
and

• deterministic simulation, where each step of⇒1 corresponds to one or more
steps of⇒2, with the added condition that⇒2 is deterministic.

In both cases, we use a notion of synchronicity sync : X → Y → P between config-
urations of⇒1 (with type X) and⇒2 (with type Y).

Lemma 4.19 (Lockstep simulation) Let s be a configuration of⇒1 and s′ be a config-
uration of⇒2. Assuming that the following holds:

https://www.ps.uni-saarland.de/~jabbar/master/coqdoc/Undecidability.Morita.Utils.common.html#mor_reversible_int
https://www.ps.uni-saarland.de/~jabbar/master/coqdoc/Undecidability.Morita.Utils.common.html#mor_reversible_int_sound
https://www.ps.uni-saarland.de/~jabbar/master/coqdoc/Undecidability.Morita.Utils.simulation.html#lock_terminates_transport
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• for all configurations s, t, and s′, if s ⇒1 t and sync s s′ then there exists t′ such
that s′ ⇒2 t′ and sync t t′, and

• for all configurations s′, t′, and s, if s′ ⇒2 t′ and sync s s′ then there exists t such
that s⇒1 t and sync t t′,

then we have that ⇒1 terminates starting from s iff ⇒2 terminates starting from s′ if
sync s s′.

Proof For all s, t, s′, and t′, we have that s ⇒∗1 t iff s′ ⇒∗2 t′ by induction on the
number of steps. Additionally, we have that⇒1 is stuck at s iff⇒2 is stuck at s′ by
our assumptions.

Lemma 4.20 (Deterministic simulation) Let s be a configuration of ⇒1 and s′ be a
configuration of⇒2. Assuming that the following holds:

• for all configurations s, t, and s′, if s ⇒1 t and sync s s′, then there exists t′ such
that s′ ⇒+

2 t′ and sync t t′.

• for all s and s′, if M1 is stuck at s and sync s s′, then M2 terminates starting from
s′,

• ⇒1 is propositionally decidable, and

• ⇒2 is deterministic,

then we have that ⇒1 terminates starting from s iff ⇒2 terminates starting from s′ if
sync s s′.

Proof The left-to-right direction follows by induction on the number of steps,
whereas the right-to-left direction requires a complete induction on the number
of steps.

Remark 4.21 In our development, we chose to use a different, simpler approach 1 to show
Lemma 4.20. In particular, we show both directions using induction on suitable (inductive)
propositions instead of the number of steps. The left-to-right direction can be shown using
induction on⇒∗1 . For the right-to-left direction, we use the fact that⇒2 is deterministic
to conclude that if⇒2 terminates starting from s′ then s′ is accessible, i.e. it satisfies the
accessibility predicate [24, Section 26.1]. The claim then follows from the induction on the
accessibility predicate on s′ and the fact that⇒1 is propositionally decidable.

1in collaboration with Andrej Dudenhefner

https://www.ps.uni-saarland.de/~jabbar/master/coqdoc/Undecidability.Morita.Utils.simulation.html#det_terminates_transport


4.4. Morita Graphs 21

4.4 Morita Graphs

The notion of Morita graph is the heart of our mechanization of Morita’s construc-
tion. In fact, we mechanize the main steps of Morita’s construction as Morita graph
transformations. As we will see later, this allows for arguably simple mechaniza-
tions since each step can be defined by using map or flat-map, which in turn admits
relatively simple inductive proofs.

Simply put, a Morita graph is just a list of Morita machines where each distinct
pair of Morita machines in it are disjoint.

Definition 4.22 (Disjointness) A pair of Morita machines m and n is said to be disjoint
iff it is not the case that there is a ∈ m and b ∈ n such that to a = to b. This notion of
disjointness is lifted to a list of Morita machines: we say that a list of Morita machines M
is disjoint iff each distinct pair m, n ∈ M is disjoint.

Definition 4.23 (Morita graph) A Morita graph M is a disjoint list of Morita ma-
chines.

It turns out that disjointness is a sufficient condition to composably reason
about reversibility.

Fact 4.24 For all Morita machines m and n, if m and N are disjoint, then no quadruples
a ∈ M and b ∈ N overlap in range.

Proof By Definition 4.14, a and b overlap in range if, in particular, they are pointing
to the same address; this of course contradicts the disjointness assumption.

Lemma 4.25 Let M be a Morita graph. If for each m ∈ M, m is intensionally reversible,
then concat M is intensionally reversible.

Proof Follows by structural induction on M and Fact 4.24.

Definition 4.26 (Morita graph configurations) A Morita graph configuration is ex-
actly a Morita machine configuration.

Definition 4.27 (Morita graph step relation) A Morita graph M induces a step rela-
tion between its configurations as follows.

IN
m ⊢ s⇒ t m ∈ M

M ⊢ s⇒ t

Fact 4.28 For all Morita graphs M, N and configurations s, t, if M ⊢ s ⇒∗ t and
M ⊆ N then N ⊢ s⇒∗ t.

https://www.ps.uni-saarland.de/~jabbar/master/coqdoc/Undecidability.Morita.Utils.common.html#reversible_comp
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Proof Follows from Fact 4.9.

Remark 4.29 The definition of Morita graph stuckness and termination are analoguos to
the Morita machine i.e. Definition 4.10 and Definition 4.12.

Fact 4.30 (Propositional decidability of Morita graph step relation) For all Morita
graph M and configurations s, either there exists t such that M ⊢ s ⇒ t or M is stuck at
s.

Proof Follows from Fact 4.11.

Given a Morita machine m, one can construct a Morita graph M such that M
simulates m with respect to termination using the to-graph function defined below.

Definition 4.31 (to-graph)

to-graph [] = []

to-graph (h :: t) = (h :: filter (λq.to q = to h) t) :: to-graph (filter (λa.to a ̸= to h) t)

Remark 4.32 One can trivially convert a Morita graph back into a Morita machine by
using concat.

Fact 4.33 For all Morita machine m, to-graph m is disjoint.

Proof Follows from induction on m and the fact that for all quadruples a ∈ filter (λa.to a ̸=
to h) t, it is not the case that to h = to a.

Of course, to-graph does not add nor remove quadruples; it merely rearranges
them.

Fact 4.34 () For all Morita machine m and quadruple a, if a ∈ m then there exists m′

such that m′ ∈ to-graph m and a ∈ m′.

Proof Follows from induction on m.

In fact, to-graph also gives us uniformity in addition to disjointness. Even though
uniformity is not necessary when dealing with reversibility, it nonetheless turns
out to be necessary to show simulation in the indegree reduction step in Section 4.6
and the adding counters step in Section 4.7.

Definition 4.35 (Uniformity) We say that a Morita machine m is uniform iff for all
a ∈ m, there exists j such that to a = j. In other words, every quadruples in m points to
the same address. As with disjointness, we lift this notion to a list of Morita machines: a
list of Morita machines M is uniform iff for all m ∈ M, m is uniform.

https://www.ps.uni-saarland.de/~jabbar/master/coqdoc/Undecidability.Morita.Utils.to_graph.html#all_disj
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Fact 4.36 For all Morita machine m, we have that to-graph m is uniform.

Proof Follows from induction on m.

Finally, we show that for all Morita machines m, to-graph m simulates m with
respect to termination. Here we use the lockstep simulation lemma (Lemma 4.19),
which requires us to pick a notion of synchronicity between configurations of m
and to-graph m; by Definition 4.26, equality is sufficient.

Fact 4.37 For all m, s, and t, m ⊢ s⇒ t iff (to-graph m) ⊢ s⇒ t.

Proof Follows from Fact 4.34.

Lemma 4.38 (to-graph simulation) For all Morita machine m and configurations s,
m ⊢ s ⇓ iff (to-graph m) ⊢ s ⇓.

Proof Follows from Lemma 4.19 using Fact 4.37.

Fact 4.39 (Preservation of determinism) For all Morita machine m, if m is determin-
istic then to-graph m is also deterministic.

Proof Follows from Fact 4.37.

4.5 Pairing Step

We use a pairing function π to create fresh addresses. In order to do so, we map
existing addresses i 7→ π (i, 0); fresh addresses can then be created by setting the
suffixes (i.e. the second component of the argument of π) to a positive number.

Definition 4.40 (transform-address) Let fwd (p, x, i, j) = (p, x, π (i, 0), π (j, 0)).
We transform the addresses by applying fwd to each quadruple:

transform-address M = map (map fwd) M.

Definition 4.41 (Transformed) We say that a Morita machine m is transformed iff for
each a ∈ m, there exists j such that to a = π (j, 0). As usual, we also lift this notion to
Morita graphs: a Morita graph M is transformed iff for each m ∈ M, m is transformed.

Fact 4.42 For all M, transform-address M is transformed.

Proof Follows directly from Definition 4.40.

We show that this transformation preserves the structure of the input Morita
graph.

https://www.ps.uni-saarland.de/~jabbar/master/coqdoc/Undecidability.Morita.Utils.to_graph.html#to_graph_unif
https://www.ps.uni-saarland.de/~jabbar/master/coqdoc/Undecidability.Morita.Utils.to_graph.html#fsim
https://www.ps.uni-saarland.de/~jabbar/master/coqdoc/Undecidability.Morita.Utils.to_graph.html#to_graph_forward_simulation
https://www.ps.uni-saarland.de/~jabbar/master/coqdoc/Undecidability.Morita.Utils.to_graph.html#det_preserve
https://www.ps.uni-saarland.de/~jabbar/master/coqdoc/Undecidability.Morita.Utils.transform_states.html#transform_states_spec
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Fact 4.43 (Preservation of disjointness) If M is disjoint then transform-address M is
also disjoint.

Proof Follows from the injectivity of π.

Fact 4.44 (Preservation of uniformity) If M is uniform then transform-address M is
also uniform.

Proof Follows from the injectivity of π.

Fact 4.45 (Preservation of length) If for each m ∈ M, m has length at most k, then for
each m′ ∈ transform-address M, m′ also has length at most k.

Proof Follows from the fact that for all m, map m has the same length as m.

Finally, we show that for all Morita graph M, transform-address M simulates
M with respect to termination, in a lockstep fashion; the notion of synchronicity
between configurations that we need is straightforward.

Definition 4.46 (Sync) Configurations (i,−→v ) and (i′,
−→
v′ ) are in sync, written as

sync (i,−→v ) (i′,−→v ), iff i′ = π (i, 0) and
−→
v′ = −→v .

Fact 4.47 For all M, s, t, and s′, if M ⊢ s ⇒ t and sync s s′, then there exists t′ such
that (transform-address M) ⊢ s′ ⇒ t′ and sync t t′.

Proof Follows from inversion on M ⊢ s⇒ t.

Fact 4.48 For all M, s′, t′, and s, if (transform-address M) ⊢ s′ ⇒ t′ and sync s s′, then
there exists t such that M ⊢ s⇒ t and sync t t′.

Proof Follows from inversion on M ⊢ s⇒ t and the injectivity of π.

Lemma 4.49 (transform-address simulation) For all Morita graph M and configura-
tion (i,−→v ), M ⊢ (i,−→v ) ⇓ iff (transform-address M) ⊢ (π (i, 0),−→v ).

Proof Follows from Lemma 4.19 using Fact 4.47 and Fact 4.48.

Fact 4.50 (Preservation of determinism) If M is deterministic then transform-address M
is also deterministic.

Proof Follows from Fact 4.48.

https://www.ps.uni-saarland.de/~jabbar/master/coqdoc/Undecidability.Morita.Utils.transform_states.html#all_disj
https://www.ps.uni-saarland.de/~jabbar/master/coqdoc/Undecidability.Morita.Utils.transform_states.html#unif_preserve
https://www.ps.uni-saarland.de/~jabbar/master/coqdoc/Undecidability.Morita.Utils.transform_states.html#len_preserve
https://www.ps.uni-saarland.de/~jabbar/master/coqdoc/Undecidability.Morita.Utils.transform_states.html#transform_states_forward_simulation
https://www.ps.uni-saarland.de/~jabbar/master/coqdoc/Undecidability.Morita.Utils.transform_states.html#det_preserve
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4.6 Reducing Indegree

As mentioned previously, we reduce the indegree of each addresses to two or less
because the computation history will be stored as a binary number. It turns out
that a uniform Morita graph M provides us with a good structure to do this, since
each m ∈ M contains exactly the quadruples that point to an address. In other
words, reducing the indegree of an address to two or less amounts to reducing the
length of its corresponding list to two or less.

First, we need to define a number of auxillary functions.

Definition 4.51 (GOTO) We define an unconditional jump GOTO from address i to
address j via the first counter 1̂ as follows:

GOTO i j = (0, 1̂, i, j)

Remark 4.52 The choice of counter does not matter since the instruction 0 is really un-
conditional.

Definition 4.53 (ch-addr-to) Let a = (p, x, i, j).

ch-addr-to a j′ = (p, x, i, j′)

Definition 4.54 (reduce-indegree-aux) reduce-indegree-aux takes a uniform Morita ma-
chine m and returns a Morita graph.

reduce-indegree-aux [] = []

reduce-indegree-aux [a] = [[a]]
reduce-indegree-aux [a; b] = [[a; b]]

reduce-indegree-aux (a :: b :: c :: m′) = [ch-addr-to a j′; ch-addr-to b j′] ::
reduce-indegree-aux (GOTO j′ (to a) :: c :: m′)

where j′ = π (π−1(to p)|1, 1 + length m′).

Intuitively, if m contains two or fewer quadruples, reduce-indegree-aux leaves m
unchanged. Otherwise, m contains three or more quadruples a :: b :: c :: m′, which
reduce-indegree-aux,

1. takes the first two quadruples a and b and points them to a fresh address j′,

2. creates a fresh quadruple GOTO j′ (to a) that jumps from that fresh address
to the old address that a and b were pointing to (recall that each quadruple
in m points to the same address due to uniformity), and

3. recursively calls itself with the fresh quadruple together with the quadruples
in m′.
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This ensures that each m′′ ∈ reduce-indegree-aux m is uniform (Fact 4.58) and has
length at most 2 (Fact 4.59). Furthermore, since m′ gets smaller in the successive
recursive calls to reduce-indegree-aux, each recursive calls will have a different fresh
address j′, which ensures disjointness (Lemma 4.57).

Fact 4.55 (Prefix) For all uniform Morita machine m and quadruple a, if m = h :: m′ for
some m′ and a ∈ concat (reduce-indegree-aux m) then (π−1 (to a))|1 = (π−1 (to h))|1.
That is, each quadruple in reduce-indegree-aux m points to an address which shares a
common prefix with the original quadruples in m.

Proof Follows from induction on m and the uniformity assumption.

Fact 4.56 (Suffix) For all transformed Morita machine m and quadruple a,
if a ∈ concat (reduce-indegree-aux m) then (π−1 (to a))|1 ≤ length m− 2.

Proof Follows from induction on m and injectivity of π. Note that the assumption
that m is transformed is crucial.

Fact 4.57 For all transformed Morita machine m, reduce-indegree-aux m is disjoint.

Proof Follows from induction on m and Fact 4.56.

Fact 4.58 For all Morita machine m, if m is uniform, then for each m′ ∈ reduce-indegree-aux m,
m′ is also uniform.

Proof Follows from induction on m.

Fact 4.59 For all Morita machine m we have that for each m′ ∈ reduce-indegree-aux m,
m′ has length at most 2.

Proof Follows from induction on m.

Next, we show that for all Morita machine m, reduce-indegree-aux m simulates m
with respect to termination. In this case, one step made by m corresponds to one or
more steps made by reduce-indegree-aux m since fresh quadruples were involved.
As before, we need to define a notion of synchronicity between configurations of
m and reduce-indegree-aux m. Since m does not contain fresh quadruples, m can
only make a step between configurations (i,−→v ) and (j,−→w ) where i = π (i′, 0) and
j = π (j′, 0) for some i′ and j′. Thus, the following definition of synchronicity
suffices.

Definition 4.60 (Sync) Configurations (i,−→v ) and (j,−→w ) are in sync, written as
sync (i,−→v ) (j,−→w ), iff i = j, −→v = −→w , and there exists j′ such that j = π (j′, 0).
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Fact 4.61 For all transformed and uniform Morita machine m and configurations s and
t, if m ⊢ s⇒ t then (reduce-indegree-aux m) ⊢ s⇒+ t.

Proof We proceed by induction on m. If length m ≤ 2 then the claim is immediate.
Otherwise, we need to scrutinize which quadruple was executed by inversion on
m ⊢ s ⇒ t. If one of the first two quadruples in m was executed, then by Defini-
tion 4.54 we know that there is an additional step taken by reduce-indegree-aux m;
in this case, the claim follows from transitivity of⇒+, Fact 4.28, and the inductive
hypothesis. Otherwise, the claim follows directly from the inductive hypothesis.

Corollary 4.62 For all transformed and uniform Morita machine m and configurations
s, t, and s′, if m ⊢ s⇒ t and sync s s′ then there exists t′ such that (reduce-indegree-aux m) ⊢
s′ ⇒+ t′ and sync t t′.

Proof Follows from Fact 4.61.

Fact 4.63 For all transformed and uniform Morita machine m and configuration s′, t′,
and s, if (reduce-indegree-aux m) ⊢ s′ ⇒ t′ and sync s s′ then there exists t such that
m ⊢ s⇒ t.

Proof Follows by inversion on (reduce-indegree-aux m) ⊢ s′ ⇒ t′ followed by in-
duction on m.

Remark 4.64 At a first glance, the statement of Fact 4.63 seems strange. We claim that
one step of m corresponds to one or more steps of reduce-indegree-aux m but Fact 4.63 as-
sumes that reduce-indegree-aux m made one step and concludes that m also made one step.
However, as we will see, this fact is used to show that if m is stuck at some configuration s,
then reduce-indegree-aux m terminates starting from a synchronized configuration s′.

Remark 4.65 Note that the transform-address step is crucial to be able to prove Fact 4.57,
Corollary 4.62, and Fact 4.63, because it provides the exact precondition to those facts.

Finally, we are ready to define the reduce-indegree step itself and show that for
all transformed and uniform Morita graph M, reduce-indegree M simulates M with
respect to termination.

Definition 4.66 (reduce-indegree)

reduce-indegree = flat-map reduce-indegree-aux

Fact 4.67 (Preservation of disjointness) For all transformed and uniform Morita graph
M, reduce-indegree M is a Morita graph.

Proof The fact that reduce-indegree M is a list of Morita machines is immediate,
so we only need to show that reduce-indegree M is disjoint. The disjointness of
reduce-indegree M follows by structural induction on M and Fact 4.57.
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Fact 4.68 (Preservation of uniformity) If M is uniform then reduce-indegree M is
also uniform.

Proof Follows from Fact 4.58.

Lemma 4.69 For all transformed and uniform Morita graph M and configurations s, t,
and s′, if M ⊢ s ⇒ t and sync s s′ then there exists t′ such that (reduce-indegree M) ⊢
s′ ⇒ t′ and sync t t′.

Proof Follows from Corollary 4.62 and Fact 4.28.

Lemma 4.70 For all transformed and uniform Morita graph M and configurations s and
s′, if M is stuck at s and sync s s′ then reduce-indegree M terminates starting from s′.

Proof Follows by picking t = s′ and Fact 4.63.

Lemma 4.71 (reduce-indegree simulation) For all deterministic, transformed, and uni-
form Morita graph M, an address i, and counter values−→v , we have that M ⊢ (π (i, 0),−→v ) ⇓
iff (reduce-indegree M) ⊢ (π (i, 0),−→v ) ⇓.

Proof Follows from Lemma 4.20 using Lemma 4.69, Lemma 4.70, and Fact 4.30,
together with the assumption that reduce-indegree preserves determinism.

Remark 4.72 We did not show the fact that reduce-indegree preserves determinism since
it would require a comparable effort to show determinism as it does to show reversibility.

4.7 Adding Counters

We begin by defining two of subroutines MOVE and DOUBLE. The former is a
subroutine to transfer the value of a counter into another and while the latter is a
subroutine to double the value of a counter.

Remark 4.73 Morita [21, Theorem 3.1] presents MOVE and DOUBLE as one subroutine.
Here (and in our development) we factor them out and present them separately for ease of
mechanization and presentation. Furthermore, we are being explicit in how we create fresh
quadruples with disjoint addresses using a pairing function π, which means that we have
to pick the correct arguments to π.

Definition 4.74 (MOVE) MOVE sp ss ep es src dst transfers the value of the counter
src to counter dst, with addresses starting from π (sp, ss) and ending in π (ep, es). It
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consists of the following quadruples:

(Z, dst, π (sp, ss), π (sp, 1 + ss)) (4.1)
(Z, src, π (sp, 1 + ss), π (ep, es)) (4.2)
(P, src, π (sp, 1 + ss), π (sp, 2 + ss)) (4.3)
(−, src, π (sp, 2 + ss), π (sp, 3 + ss)) (4.4)
(+, dst, π (sp, 3 + ss), π (sp, 4 + ss)) (4.5)
(P, dst, π (sp, 4 + ss), π (sp, 1 + ss)) (4.6)

Intuitively, MOVE is a loop that runs as long as src contains a positive number, decre-
menting src and incrementing dst at each iteration. Note that Quadruple 4.1 first checks
whether dst contains 0 which means that MOVE gets stuck if dst does not contain 0.

Remark 4.75 It may seem that the Quadruple 4.6 serves no purpose; after all, since coun-
ters contain natural numbers, an increment to a counter would ensure that said counter
contains a positive number. However, it turns out that this quadruple is crucial in defining
a loop without ranger overlap. Specifically, only Quadruple 4.1 and Quadruple 4.6 point
to the address π (sp, 1 + ss), but they do not overlap in range by Definition 4.14. Had we
not use Quadruple 4.6 and change the Quadruple 4.5 to point to π (sp, 1 + ss) instead,
we would have a range overlap.

Fact 4.76 For all prefixes sp ss, suffixes ep es, and natural number n, we have that

(MOVE sp ss ep es 1̂ 2̂) ⊢ (π (sp, ss), n :: 0 :: v)⇒+ (π (ep, es), 0 :: n :: v).

Proof Here we need to get rid of Quadruple 4.1 because we need to strengthen the
statement so that 2̂ contains m:

∀m, (MOVE sp ss ep es 1̂ 2̂) ⊢ (π (sp, 1+ ss), n :: m :: v)⇒+ (π (ep, es), 0 :: n+m :: v)

The claim then follows by transitivity of⇒+ and induction on n.

Definition 4.77 (DOUBLE) DOUBLE sp ss ep es dst src doubles the value of the
counter src and simultaneously moves it to the counter dst, with addresses starting from
π (sp, ss) and ending in π (ep, es). In other words, if the counter src contains n, by the
end of the execution of DOUBLE sp ss ep es dst src, dst will contain 2n and src will
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contain 0. It consists of the following quadruples:

(Z, src, π (sp, ss), π (ep, es)) (4.7)
(P, src, π (sp, ss), π (sp, 1 + ss)) (4.8)
(−, src, π (sp, 1 + ss), π (sp, 2 + ss)) (4.9)
(+, dst, π (sp, 2 + ss), π (sp, 3 + ss)) (4.10)
(P, dst, π (sp, 3 + ss), π (sp, 4 + ss)) (4.11)
(+, dst, π (sp, 4 + ss), π (sp, 5 + ss)) (4.12)
(P, dst, π (sp, 5 + ss), π (sp, ss)) (4.13)

Intuitively, DOUBLE is a loop that runs as long as src contains a positive number, decre-
menting src and incrementing dst twice at each iteration.

Remark 4.78 Note the trick with checking for positive number after an increment i.e.
Quadruple 4.11 and Quadruple 4.13.

Fact 4.79 For all prefixes sp ss, suffixes ep es, and natural number n, we have that

∀m, (DOUBLE sp ss ep es 1̂ 2̂) ⊢ (π (sp, ss), m :: n :: v)⇒+ (π (ep, es), 2n+m :: 0 :: v).

Proof Follows from induction on n.

Now we are ready to put the subroutines together.

Definition 4.80 (Upcast) Let a = (p, x, i, j) be a quadruple. The upcast operator ap-
plied to a, written as a↑, is defined as

(p, x, i, j)↑ = (p, x + 2, i, j),

that is, the counter of a is shifted by two to the right. In other words, if e.g. a works on the
counter 1̂, then a↑ works on the counter 3̂.

Definition 4.81 (add-counters-aux)

add-counters-aux [a; b] =[ch-addr-to a↑ (π (j, 1))] ++

MOVE j 1 j 11 1̂ 2̂ ++

[ch-addr-to b↑ (π (j, 6))] ++

MOVE j 6 j 15 1̂ 2̂ ++
DOUBLE j 11 j 0

add-counters-aux m =m

where j = (π−1 (to a))|1 i.e. the prefix of the address that a is pointing to.
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Definition 4.81 deserves a more thorough explanation. First of all, the suffixes are
defined such that if m contains two elements or fewer then reduce-indegree-aux m
contains no quadruples that overlap in range (Lemma 4.95). Furthermore, notice
that the second call to MOVE ends in suffix 15, which corresponds to Quadru-
ple 4.12 in DOUBLE.

As mentioned previously, the computation history is stored as a binary number.
Here we elected to use counter 1̂ to store the computation history and counter 2̂ as
an auxillary counter, hence the need for the upcast operator.

Remark 4.82 Given a k-counter Morita machine, Morita [21, Theorem 3.1] uses the
counters k + 1 and k + 2 as the history counter and the auxillary counter, respectively.

Suppose that during the course of its computation, the current value of 1̂ is n. If
a was executed by, then add-counters-aux first execute a, moves n to counter 2̂, and
then doubles the value of counter 2̂ and stores it in 1̂. As a result, the counter 1̂ now
contains 2n. Otherwise, b was executed, in which add-counters-aux first execute b,
moves n to counter 2̂, executes Quadruple 4.12 in DOUBLE which increments the
value in 1̂ to 1, and then doubles the value of counter 2̂ and stores it in 1̂. This
results in counter 1̂ now containing 2n + 1. We formalize these two intuitions into
the following facts.

Fact 4.83 Let m = [a; b] be a transformed Morita machine containing two quadruples a
and b. If the execution of a changes the configuration (i,−→v ) to (j,−→w ) then we have

(add-counters-aux m) ⊢ (i, n :: 0 :: v)⇒+ (j, 2n :: 0 :: v).

Proof Follows from transitivity of⇒+ together with Fact 4.76 and Fact 4.79.

Fact 4.84 Let m = [a; b] be a transformed Morita machine containing two quadruples a
and b. If the execution of b changes the configuration (i,−→v ) to (j,−→w ) then we have

(add-counters-aux m) ⊢ (i, n :: 0 :: v)⇒+ (j, 2n + 1 :: 0 :: v).

Proof Follows from transitivity of⇒+ together with Fact 4.76 and Fact 4.79.

The add-counters step itself can be defined by a simple map.

Definition 4.85 (add-counters)

add-counters = map add-counters-aux

Remark 4.86 Morita [21, Theorem 3.1] implements this step as applying add-counters-aux
for each pair of quadruples that overlap in range. Had we tried to define this step on a
Morita machine instead of a Morita graph, it would not be as simple as a map since the two
quadruples that overlap in range can be anywhere in the list. Furthermore, Definition 4.54
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does not check whether the input pair of quadruples overlap in range or not; we merely as-
sume uniformity. While this could result in more fresh quadruples than strictly necessary,
it arguably simplifies our proofs and more importantly, it does not affect reversibility.

Next, we show that add-counters preserves disjointness, which is essential in
ensuring that we can still composably reason about reversibility.

Fact 4.87 For all transformed Morita machines m and n whose lengths are at most 2, if
m and n are disjoint then add-counters-aux m and add-counters-aux n are also disjoint.

Proof Follows by case analysis on m and n and injectivity of π, noting that the pre-
fixes in the calls to MOVE and DOUBLE are different for m and n by our disjointness
assumption.

Lemma 4.88 (Preservation of disjointness) For all transformed Morita graph M such
that for all m ∈ M, length m ≤ 2, we have that add-counters M is also a Morita graph.

Proof The main obligation here is to show that add-counters M is disjoint, which
follows by induction on M and Fact 4.87.

As with the indegree reduction step in Section 4.6, each step made by m corre-
sponds to one or more steps made by add-counters-aux m due to a number of fresh
quadruples.

Definition 4.89 (Sync) We say that configurations (i,−→v ) and (j,−→w ) are in sync iff
i = j, i = π (k, 0) for some k, and −→w = n :: 0 :: −→v for some n.

Fact 4.90 For all transformed and uniform Morita machine m with at most two elements
and configurations s, t, and s′, if m ⊢ s ⇒ t and sync s s′ then there exists t′ such that
(add-counters-aux m) ⊢ s′ ⇒ t′ and sync t t′.

Proof We proceed by case analysis on m. If m is empty or a singleton, then the
claim is immediate by picking t′ = t. Otherwise, m = [a; b] for some quadruples
a and b. By inversion on m ⊢ s ⇒ t, we have that either a or b was executed. The
claim then follows from Fact 4.83 and Fact 4.84.

Lemma 4.91 For all transformed and uniform Morita graph M such that for all m ∈ M,
length m ≤ 2, and configurations s, t, and s′, if M ⊢ s⇒ t and sync s s′ then there exists
t′ such that (add-counters M) ⊢ s′ ⇒ t′ and sync t t′.

Proof By inversion on M ⊢ s ⇒ t, we have an m′ ∈ M such that m′ ⊢ s ⇒ t. The
claim follows from case analysis on m′ and Fact 4.90.

Lemma 4.92 For all transformed Morita graph M such that for all m ∈ M, length m ≤
2, and configurations s and s′, if M is stuck at s and sync s s′ then add-counters M
terminates starting from s′.
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Proof We start by picking t = s′. By inversion on (add-counters M) ⊢ s′ ⇒ t′,
we have an m′ ∈ add-counters M such that m′ ⊢ s′ ⇒ t′. By Fact 2.13, there is an
m ∈ M such that m′ = add-counters-aux m. The claim then follows by case analysis
on m.

Lemma 4.93 (add-counters simulation) For all deterministic, transformed, and uni-
form Morita graph M such that for each m ∈ M, length m ≤ 2,add-counters M simulates
M with respect to termination.

Proof Follows from Lemma 4.20 using Lemma 4.91, Lemma 4.92, and Fact 4.30,
together with the assumption that add-counters preserves determinism.

Remark 4.94 As before, we did not show the fact that reduce-indegree preserves deter-
minism. It would require a comparable effort to show determinism as it does to show
reversibility.

Finally, we show that this step creates an intensionally reversible Morita graph.

Lemma 4.95 For all transformed and uniform Morita machine m with at most two ele-
ments, add-counters-aux m is intensionally reversible.

Proof Follows from case analysis on m.

Remark 4.96 The proof of Lemma 4.95 is deceptively simple. Indeed, using a naive case
analysis to show Lemma 4.95 results in a large number of cases, because if m = [a; b] for
some quadruples a and b then add-counters-aux m is a Morita machine with 21 quadru-
ples. Since we have to check for every pair of quadruples, this can get unwieldy rather
quickly. Instead, by noting that only a small number of quadruples in add-counters-aux m
point to same addresses, we only need to consider them and not the whole machine. This
requires more effort in our development than a mere case distinction even though concep-
tually it is.

4.8 Morita’s Construction

Finally, we are ready to formally define our partial mechanization of Morita’s
construction [21] specialized to two counters, that is, given a deterministic two-
counter Morita machine, constructs a reversible and deterministic four-counter
Morita machine.

Definition 4.97 (morita-construction)

morita-construction =concat ◦
add-counters ◦ transform-address ◦
reduce-indegree ◦ transform-address ◦
to-graph
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Lemma 4.98 (morita-construction simulation) Let m be a deterministic two-counter
Morita machine and (i,−→v ) a two-counter Morita machine configuration. Assuming that
reduce-indegree and add-counters preserve determinism, we have that m ⊢ (i, v) ⇓ iff
(morita-construction m) ⊢ (π (π (i, 0), 0), 0 :: 0 :: −→v ).

Proof Follows from Lemma 4.38, Lemma 4.49, Lemma 4.71, and Lemma 4.93.

Theorem 4.99 Deterministic two-counter Morita machine halting reduces to determin-
istic and reversible four-counter Morita machine halting.

Proof Let m be a Morita machine and (i,−→v ) be a two-counter Morita machine
configuration. We use morita-construction to transform the input Morita machine m
and we transform the input configuration (i,−→v ) into (π (π (i, 0)),−→v ). The claim
follows from Lemma 4.98.

4.9 Compression

In this section, we briefly explain the compression algorithm used by Morita [21,
Theorem 4.1] adapted to our Morita graph framework and argue that it is indeed
reversibility-preserving. The idea behind the compression algorithm itself, namely
using Goedel numbering, is not new and goes back to at least Minsky [20]; the fact
that it is universality-preserving is well-understood and thus we will focus on its
reversibility-preserving aspect.

Specifically, suppose that M is a Morita graph whose counter values are [v1; v2; v3; v4].
One can then pack the four counter values into one counter value via prime expo-
nentiation, that is, one would work with [2v13v25v37v4 ; 0] instead (the counter 2̂ is
auxillary). Consequently, the operations of M must be adapted e.g. increments
becomes multiplications and decrements becomes divisions. A multiplication can
be done using a loop similar to MOVE and DOUBLE; in fact, MOVE followed by
DOUBLE is a subroutine to multiply by 2. Definition 4.100 provides us with a way
to divide by 2.

Definition 4.100 (HALVE) Let [v′1; v2] be the value of the two counters. Dividing the
v′1 by 2 can be done via the following.

1. Transfer the value of v′1 to counter 2̂ using MOVE (Definition 4.74). Recall that
MOVE first checks whether 2̂ is zero or not.
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2. Use the following quadruples to halve the value of the counter 2̂ and put it into the
counter 1̂:

(Z, 1̂, π (sp, ss), π (ep, es)) (4.14)

(P, 1̂, π (sp, ss), π (sp, 1 + ss)) (4.15)

(−, 1̂, π (sp, 1 + ss), π (sp, 2 + ss)) (4.16)

(−, 1̂, π (sp, 2 + ss), π (sp, 3 + ss)) (4.17)

(+, 2̂, π (sp, 3 + ss), π (sp, 4 + ss)) (4.18)

(P, 2̂, π (sp, 4 + ss), π (sp, ss)) (4.19)

Division by 3, 5, and 7 are analoguous i.e. instead of 2 decrements between Quadru-
ple 4.19 and Quadruple 4.18, one needs 3, 5, and 7 decrements, respectively, with
the appropriate adjustments on the suffixes.

Remark 4.101 Note that if the counter 2̂ is not divisible by 2 then HALVE would get
stuck. This is not a problem in terms of simulation, since this is equivalent to the original
Morita graph trying to decrement a counter that contains zero; in which case it would get
stuck as well.

Note the trick with checking for positive number after an increment in Defi-
nition 4.100 in Quadruple 4.18 and Quadruple 4.19. As previously mentioned in
Remark 4.75, this is the key insight in how one could construct a reversible loop.
Furthermore, since compression algorithm amounts to replacing a quadruple with
one or more quadruples e.g. a decrement would be replaced by HALVE, the over-
all procedure compress can be implemented using a flat-map over the input Morita
graph.

4.10 Discussion and Related Work

An important lesson from Morita’s construction [21] is how one can construct a
reversible loop using a seemingly redundant quadruple (Remark 4.75), which as
we have seen in e.g. Section 4.7, is crucial in showing the universality of reversible
Morita machines.

Another important aspect of Morita’s construction is the notion of intensional
reversibility (Definition 4.16) based on the notion of range overlap [21, Definition
2.3]. This syntactic notion is more convenient to work with for our mechanizations,
but first we had to make sure that it is a correct notion to use. Morita did not
explicitly show that intensional reversibility implies extensional reversibility even
though extensional reversibility is closer to the original notion of reversibility in
Physics. Nevertheless, we showed that intensional reversibility is indeed sound
(Theorem 4.17) but incomplete (Lemma 4.18).
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Compared to the existing counter machine mechanizations in the Coq library
of undecidable proofs [11], namely MM/MMA, Morita machines have a richer
instruction set and admit non-determinism. This results in reversible two-counter
Morita machines being more expressive than their MMA counterparts since the
latter has been shown to be non-universal [7, Theorem 21]. Non-determinism is
of course a downside, however, a reduction from MMA to Morita machines that
preserves determinism is straightforward.

As far as we are aware, we are the first to mechanize reversible counter ma-
chines in Coq. There are quite a number of mechanizations involving counter
machines in the Coq library of undecidable proofs [11] that use MMA as an in-
termediate problem [18] [19] [10].
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Chapter 5

On Reversible Cellular Automata

5.1 Introduction

In this chapter we show that any one-dimensional cellular automaton can be sim-
ulated by a two-dimensional reversible cellular automaton, under a weaker notion
of extensional reversibility where one does not consider halting configurations.
Furthermore, we establish the undecidability of the halting problem of weakly-
reversible, two-dimensional cellular automata via a reduction chain starting from
the halting problem of binary Turing Machines.

This chapter is organized as follows. We start by recalling the definition of bi-
nary Turing machines and one-dimensional cellular automata together with suit-
able definitions of their halting problems. We then show that cellular automata can
simulate binary Turing machines, thus establishing the fact that the halting prob-
lem of binary Turing machines reduces to the halting problem of one-dimensional
cellular automata. This is the first part of the reduction chain. Finally, we complete
the reduction chain by formalizing weakly-reversible (c.f. Definition 5.53) two-
dimensional cellular automata and showing that weakly-reversible two-dimensional
cellular automata simulate one-dimensional cellular automata.

5.2 Binary Turing Machine

We begin by recalling the definition of a simple binary Turing machine (SBTM)
from the Coq library of undecidable proofs [11]. Due to its simplicity, SBTM is an
excellent seed problem.

Definition 5.1 (Binary Turing machine) A binary Turing Machine M = (Q, δ) where
Q is a finite set of states and δ : Q×B→ O (Q×B× {left, right}) is a finite transition
table.

Definition 5.2 (Binary Turing machine configurations) An SBTM operates on a Boolean-
valued tape (l, b, r) : L B×B×L B, whose configurations are pairs of its states q ∈ Q
and the values of its tape.
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Like all Turing machines, an SBTM M operates by moving its head and writes
Boolean values on its tape.

Definition 5.3 (Move) We define a function θ that moves the head of a binary Turing
Machine along its tape t = (l, b, r) one step towards direction d ∈ {left, right} as follows:

θleft([], b, r) = ([], ff, b :: r)
θleft(h :: l, b, r) = (l, h, b :: r)

θright(l, b, []) = (b :: l, ff, [])
θright(l, b, h :: r) = (b :: l, h, r)

Definition 5.4 (Step) A binary Turing Machine M = (Q, δ) updates its configurations
using a function S defined as follows:

S(q, (l, b, r)) =

{
∅ δ(q, b) = ∅
◦(q′, θ d (l, b′, r)) δ(q, b) = ◦(q′, b′, d)

Finally, we define the SBTM halting problem as follows.

Definition 5.5 (SBTM halting) A binary Turing Machine halts on an input c iff there
exists n such that (S↑)n(◦c) = ∅.

Fact 5.6 It is decidable whether an SBTM configuration c is a halting configuration or
not.

Proof The claim follows by evaluating δ(c).

Problem 5.7 (SBTM halting problem) Given an SBTM M and a configuration c, does
M halts on c?

Note that due to the use of monadic bind (c.f. Definition 2.9), an SBTM techni-
cally can still make a step even though it is already in a halting configuration. In
other words, if an SBTM M = (Q, δ) does halt on an input configuration c, there
are many n such that (S↑)n(◦c). However, we are often interested in the least of
such n. This motivates the following definition of the SBTM halting problem.

Definition 5.8 (SBTM minimal halting) A binary Turing Machine halts on an input
c iff there exists n such that (S↑)n(◦c) = ∅ and for all m < n, (S↑)n(◦c) ̸= ∅.

Problem 5.9 (SBTM minimal halting problem) Given an SBTM M and a configu-
ration c, does M minimally halts on c?

Fact 5.10 Definition 5.5 and Definition 5.8 are equivalent.

Proof Definition 5.8 clearly implies Definition 5.5. The other direction follows
from [24, Corollary 17.3.3] and Fact 5.6.
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5.3 One-dimensional Cellular Automata

We begin by recapitulating the definition of a one-dimensional cellular automata
(CA1) from the literature.

Definition 5.11 (CA1 [16]) A CA1 is a triple (Σ, r, f ) where Σ is a finite and discrete
set of alphabet symbols (sometimes called states in the literature), r is the neighborhood
radius, and f : Σ2r+1 → Σ is the local update function. A CA1 configuration is a
function Z → Σ comprising of cells corresponding to each integers. A CA1 updates its
configurations c using its global update function G by simultaneous application of f ,

G(c)(i) = f (c(i− r), c(i− r + 1), . . . , c(i + r− 1), c(i + r) (5.1)

for all i ∈ Z.

For the remainder of this chapter, we assume that r = 1.
We mechanize CA1 configurations as triples (l, m, r) where l, r : N → O(Σ)

and m : O(Σ). We split the integers in this way because N is simpler to work with
in Coq. While it is clear that there is a bijection from N + () + N to Z, the choice
of using O(Σ) instead of Σ is motivated by the need to model halting:

Definition 5.12 (CA1 halting configuration) A CA1 configuration (l, m, r) is a halt-
ing configuration iff

m = ∅ ∨ ∃n.l(n) = ∅ ∨ ∃n.r(n) = ∅

Consequently, the local update function f now returns O(Σ) instead of Σ.
We define a CA1 global transition function G f with respect to a CA1 local up-

date function f as follows,

Definition 5.13 (CA1 global transition function)

G f (l, m, r) = (l′, m′, r′)

where

m′ = f ↑(l(0), m, r(0))

l′(n) =

{
f ↑(l(1), l(0), m) n = 0
f ↑(l(n + 1), l(n), l(n− 1)) n > 0

r′(n) =

{
f ↑(m, r(0), r(1)) n = 0
f ↑(r(n− 1), r(n), r(n + 1)) n > 0

Note that G f is deterministic when f is.
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Fact 5.14 For all configuration c, if c is a halting configuration then G f (c) is also a
halting configuration.

Corollary 5.15 For all n ∈ N and configuration c, if c is a halting configuration then
Gn

f (c) is also a halting configuration.

Next, we define a notion of finite configuration for CA1, which requires a no-
tion of quiescent states. Since we split the integers and modify the local update
function to take output optional values, we need to modify the definition of quies-
cent states and finite configurations [15, Subsection 2.3] as follows.

Definition 5.16 (Quiescent state) A state q ∈ Σ is called a quiescent state iff

f (q, q, q) = ◦q

Remark 5.17 A configuration containing only a quiescent state q is called a quiescent
configuration [15, Subsection 2.3]. Quiescent configurations have been used in the liter-
ature to model termination of cellular automata. Specifically, one can say that a cellular
automaton halts if it reaches a quiescent configuration [2]. However, since self-loop is triv-
ially non-reversible and quiescent states induce self-loop (cf. Definition 5.16), we chose to
model halting without using quiescent states but by using ∅ instead (Definition 5.12).

Definition 5.18 (Finite configuration) A configuration (l, m, r) is called (spatially) fi-
nite with respect to a quiescent state q iff

∃n.∀i >= n.l(i) = q ∧ r(i) = q.

Finally, we define the halting problem for CA1 as follows:

Definition 5.19 (CA1 minimal halting) A CA1 halts on a finite configuration c iff
there exists n ∈N such that Gn

f (c) is halting and ∀m < n.Gm
f (c) is not halting.

Problem 5.20 (CA1 minimal halting problem) Given a CA1 C and a finite configu-
ration c, does C halts starting from c?

Remark 5.21 We require the input configuration c to be finite to ensure that the CA1 is
not too powerful. Without this requirement, one could construct a CA1 that simulates a
Turing machine in only one step, for example.

Remark 5.22 One could formulate a simpler halting problem definition of CA1 by drop-
ping the second conjunct in Problem 5.20, similar to Problem 5.7 for SBTM. However,
since it is undecidable whether a CA1 configuration is halting or not, the two definitions of
the halting problem for CA1 are not equivalent. In this case, we use Problem 5.19 because
it simplifies the reduction proof in Section 5.6.
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5.4 From SBTM to CA1

In this section, we construct a CA1 from an SBTM M = (Q, δ) and shows that their
termination are equivalent. First, we define the alphabet Σ.

Definition 5.23 (ΣM) Since M’s tape contains only boolean values, it is enough to define
the alphabet as

ΣM = ◦Q×B.

Fact 5.24 ΣM is finite and discrete.

Then we define the local update function f .

Definition 5.25 ( fM) If δ(q, b) = ◦(q′, b′, d), then

fM(x) =



◦(∅, b′) x = ((∅, b1), (◦q, b), (∅, b2))
◦(∅, b) x = ((◦q, b1), (∅, b), (∅, b2)), d = L
◦(◦q′, b) x = ((◦q, b1), (∅, b), (∅, b2)), d = R
◦(◦q′, b) x = ((∅, b1), (∅, b), (◦q, b2)), d = L
◦(∅, b) x = ((∅, b1), (∅, b), (◦q, b2)), d = R
◦a x = (a, b, c)

otherwise fM(x) = ∅.

Fact 5.26 (∅,⊥) is a quiescent state with respect to fM.

Intuitively, if M, on state q and configuration c = (l, b, r), makes a step, then f
updates the current CA1 configuration locally as follows:

Case 1 if q is in the center cell, f updates the center cell with the new boolean
value,

Case 2 if q is in the left cell and the head of M moves to the left, f leaves the center
cell unchanged,

Case 3 if q is in the left cell and the head of M moves to the right, f moves q to the
center cell and leaves its boolean value unchanged,

Case 4 if q is in the right cell and the head of M moves to the left, f moves q to the
center cell and leaves its boolean value unchanged,

Case 5 if q is in the right cell and the head of M moves to the right, f leaves the
center cell unchanged, and

Case 6 if the head of M is not in the neighborhood, then f simply leaves the center
cell unchanged.
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Formally, we describe the construction in Definition 5.27.

Definition 5.27 (Construction) Given an SBTM M = (Q, δ), we define a CA1 C =
(Σ, f ) as follows:

• its alphabet Σ is defined in Definition 5.23, which admits a quiescent state (∅,⊥),

• its local update function f is defined in Definition 5.25.

We encode configurations of M into configurations of C as follows.

Definition 5.28 (Encode) The encoding of an SBTM configuration c = (l, b, r), start-
ing at state q, into a CA1 configuration, written as JcK, is defined as (JlK, ◦(◦q, b), JrK)
where J·K : L(B)→N→ O(Σ) is defined as follows:

JlK =


◦(∅,⊥) l = []
◦(∅, b) l = b :: l′, n = 0
Jl′K l = b :: l′, n > 0

Fact 5.29 For all l and n ∈N, JlK(n) ̸= ∅.

Fact 5.30 For all finite tape t, JtK is a finite CA1 configuration.

Fact 5.31 For all finite tape t, JtK is not a halting CA1 configuration.

Fact 5.32 Let M = (Q, δ). For all tape t = (l, b, r) and q ∈ Q, if δ(q, b) = ∅ then
G f (J(l, b, r)K) is a halting CA1 configuration.

Since SBTM moves its head around during its runs, we need to define a similar
operation for a CA1 configuration.

Definition 5.33 (Shift) We define a function σ that shifts a CA1 configuration c =
(l, m, r) one step towards direction d ∈ {left, right}. In case of d = left, it is defined as
follows:

σleft(l, m, r) = (l′, m′, r′)

where

m′ = l(0)
l′(n) = l(n + 1)

r′(n) =

{
m n = 0
r(n− 1) n > 0

The case for d = right is defined as follows:

σright(l, m, r) = (l′, m′, r′)
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where

m′ = r(0)
r′(n) = r(n + 1)

l′(n) =

{
m n = 0
l(n− 1) n > 0

Definition 5.34 (Inverse direction) If d = left then d = right and vice versa.

Fact 5.35 For all configurations c, σd(σd(c)) = c.

Fact 5.36 For all configurations c and directions d, if c is halting then σd(c) is also halt-
ing.

Corollary 5.37 For all configurations c and directions d, if σd(c) is halting then c is
halting.

Fact 5.38 (G commutes with σ) For all directions d, local update function f , and CA1
configurations c, we have that

G f (σd(c)) = σd(G f (c))

Corollary 5.39 For all n ∈ N, directions d, local update function f , and CA1 configu-
rations c, we have that

Gn
f (σd(c)) = σd(Gn

f (c))

Fact 5.40 Let M = (Q, δ). For all tape t = (l, b, r) and q ∈ Q, if δ(q, b) = ◦(q′, b′, d)
then

J(q′, θd(l, b′, r))K = σd(G f (J(q, (l, b, r))K))

Finally, we are ready to show that SBTM minimal halting problem reduces to
CA1 minimal halting problem.

Lemma 5.41 (Preservation) For all SBTM M and its input configuration (q, t), we
have that if M halts on (q, t) then a CA1 constructed using Definition 5.27 C halts on
J(q, t)K.

Proof We have that M halts on (q, t) after k steps and we have to show that C halts
on J(q, t)K after n steps for some n. We proceed by induction on k.

• If k = 0, we are done.

https://www.ps.uni-saarland.de/~jabbar/master/coqdoc/Undecidability.CellularAutomata.Reductions.SBTM_HALT_to_CA1_HALT.html#forward_simulation_min
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• Otherwise, k = k′ + 1 for some k′. The main idea here is to check whether
M halts on δ(q, b) i.e. after taking a step. If it is, then C halts after one step.
Otherwise, we can use the inductive hypothesis to choose the correct number
of steps taken by C before it halts.

In more detail, we have that
Sk′(S(q, t))

is a halting TM configuration and we show that

Gn(J(q, t)K)

is a halting configuration, for some n. Let t = (l, b, r) and we proceed by case
analysis on δ(q, b):

– If δ(q, b) = ∅ we chose n = 1 and the claim follows from Fact 5.32 and
Fact 5.31.

– Otherwise δ(q, b) = ◦(q′, b′, d). By the inductive hypothesis, we have
that

Gk′(J(q′, θ(d, (l, b′, r)))K)

is halting and for all m < k′,

Gm(J(q′, θ(d, (l, b′, r)))K)

is not halting. We chose n = k′ + 1 = k. By Fact 5.40 and Definition 5.34
we have

σd(J(q
′, θd(l, b′, r))K) = G f (J(q, (l, b, r))K)

which we can use to rewrite our assumption (together with Corollary 5.39)
to rewrite our proof obligation into showing that

σd(G
k′
f (J(q

′, θd(l, b′, r))K))

is a halting configuration. The claim then follows from Corollary 5.37
and the inductive hypothesis.

Lemma 5.42 (Reflection) For all SBTM M and its input configuration (q, t), we have
that if a CA1 constructed using Definition 5.27 C halts on J(q, t)K then M halts on (q, t).

Proof This direction is more straightforward than the previous one, since a mini-
mal halting condition is also a halting condition.

We have that C halts on J(q, t)K after n steps and we have to show that M halts
on (q, t) after k steps for some k. We chose k = n and we proceed by induction on
n.

https://www.ps.uni-saarland.de/~jabbar/master/coqdoc/Undecidability.CellularAutomata.Reductions.SBTM_HALT_to_CA1_HALT.html#inverse_simulation_min
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• If n = 0, we have that J(q, t)K is already a halting configuration, thus we
obtain a contradiction by Fact 5.31.

• Otherwise, n = n′ + 1 for some n′. We have that

Gn′
f (G f (J(q, t)K))

is a halting configuration and we show that

Sn′(S(q, t))

is a halting TM configuration. Let t = (l, b, r) and we proceed by case analy-
sis on δ(q, b):

– If δ(q, b) = ∅ then we are done.

– Otherwise δ(q, b) = ◦(q′, b′, d). By Fact 5.40 and Definition 5.34 we have

σd(J(q
′, θd(l, b′, r))K) = G f (J(q, (l, b, r))K)

which we can use to rewrite our assumption (together with Corollary 5.39)
to conclude that

σd(G
n′
f (J(q

′, θd(l, b′, r))K))

is a halting configuration. The claim then follows from Corollary 5.37
and the inductive hypothesis.

Theorem 5.43 SBTM minimal halting problem reduces to CA1 minimal halting prob-
lem.

Proof Construction 5.27 is a reduction function by Lemma 5.41 and Lemma 5.42.

5.5 Two-dimensional Cellular Automata

A two-dimensional cellular automata (CA2) is a triple (Σ, N, f ) where Σ is a finite
and discrete set of states, N ∈ (ΣZ2

)n is the neighborhood vector, and f : Σn → Σ
is the local update function [15, Subsection 2.1]. Given a neighborhood vector N =
(x⃗1, x⃗2, . . . , x⃗n), the neighbors of a cell x⃗ ∈ Z2 are the n cells located at x⃗ + x⃗i for
i = 1, 2, . . . , n.

A CA2 configuration is a function Z2 → Σ comprising of cells corresponding
to each elements of Z2. A CA2 updates its configurations c using its global update
function G by simultaneous application of f ,

G(c)(x⃗) = f (c(x⃗ + x⃗1), c(x⃗ + x⃗2), . . . , c(x⃗ + x⃗n) (5.2)

https://www.ps.uni-saarland.de/~jabbar/master/coqdoc/Undecidability.CellularAutomata.Reductions.SBTM_HALT_to_CA1_HALT.html#reduction_min
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(A) von Neumann neighborhood (B) Moore neighborhood

FIGURE 5.1: Two common neighborhoods in CA2

for all i = 1, 2, . . . , n.
The two common neighborhoods are the van Neumann and Moore neighbor-

hoods [15, Subsection 2.2], depicted in Figure 5.1, where the neighbors of the red
cell are itself and the gray cells. For the remainder of this chapter, we assume that
N is the von Neumann neighborhood.

Similar CA1 configurations, we formalize CA2 configurations as triples (a, c, b)
where a, b : N → N → O(Σ) and c : N → O(Σ). Since for all n, a(n), b(n),
and c are also a CA1 configuration, the definition of halting CA2 configuration is
straightforward:

Definition 5.44 (CA2 Halting configuration) A CA2 configuration (a, c, b) is a halt-
ing configuration iff either

• c is a halting CA1 configuration, or

• ∃n.a(n) is a halting CA1 configuration, or

• ∃n.b(n) is a halting CA1 configuration.

Remark 5.45 As it is the case with CA1, it is undecidable whether a CA2 configuration
is halting or not.

Next, we define a CA2 global transition function G f with respect to a CA2 local
update function f .

Definition 5.46 (next)

next((l1, m1, r1), (l, m, r), (l2, m2, r2)) = (l′, m′, r′)

where

m′ = f ↑(m1, l(0), m, r(0), m2)

l′(n) =

{
f ↑(l1(0), l(1), l(0), m, l2(0)) n = 0
f ↑(l1(n), l(n + 1), l(n), l2(n− 1), l2(n)) n > 0

r′(n) =

{
f ↑(r1(0), m, r(0), r(1), r2(0)) n = 0
f ↑(r1(n), r(n− 1), r(n), r(n + 1), r2(n)) n > 0
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Definition 5.47 (CA1 Global transition function)

G f (a, c, b) = (a′, c′, b′)

where

c′ = next(a(0), c, b(0))

a′(n) =

{
next(a(1), a(0), c) n = 0
next(a(n + 1), a(n), a(n− 1)) n > 0

b′(n) =

{
next(c, b(0), b(1)) n = 0
next(b(n− 1), b(n), b(n + 1)) n > 0

Note that G f is deterministic when f is.

Fact 5.48 For all CA2 configuration c, if c is a halting configuration then G f (c) is also a
halting configuration.

Corollary 5.49 For all n ∈ N and CA2 configuration c, if c is a halting configuration
then Gn

f (c) is also a halting configuration.

As with CA1, we modify the definition of quiescent states and finite configura-
tions [16, Subsection 2.2]. Additionally, we introduce a notion of pseudo-quiescent
states.

Definition 5.50 (Quiescent and pseudo-quiescent states) A state q ∈ Σ is called a
quiescent state iff

f (q, q, q, q, q) = ◦q.

Similarly, given a quiescent state q, state q′ is called a pseudo-quiescent state iff

f (q, q′, q′, q′, q) = ◦q′.

Remark 5.51 We introduce the notion of pseudo-quiescent state to simplify the reduction
from the halting problem of CA1 to the halting problem of CA2 as we will see in Chap-
ter 5.6. This weakening is justified since a pseudo-quiescent state q′ behaves almost the
same as a quiescent state, in the sense that q′ represents blanks or absence of informations,
which means that one can use q′ to define a notion of finite configurations (Definition 5.52).

Definition 5.52 (Finite configuration) Let q be a quiescent state and q′ be a pseudo-
quiescent state. We say that (a, c, b) is a spatially-finite CA2 configuration iff all the
following criteria hold.

• c is a finite CA1 configuration with respect to q′

• There exists a bound m such that
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– For all n < m, a(n) is a finite CA1 configuration with respect to q

– For all n ≥ m, a(n) is a blank CA1 configuration

• There exists a bound m such that

– For all n < m, b(n) is a finite CA1 configuration with respect to q

– For all n ≥ m, b(n) is a blank CA1 configuration.

Finally, we state the definition of the minimal halting problem of weakly re-
versible CA2 (Definition 5.53) that we are working with.

Definition 5.53 (Weak reversibility) Let C be a CA2 and G f be its associated global
transition function. For all CA2 configurations s and t, if G f (s) = G f (t) and both G f (s)
and G f (t) are not halting configurations, then C is reversible.

Definition 5.54 (CA2 minimal halting) A CA2 halts on a finite configuration c iff
there exists n ∈N such that Gn

f (c) is halting and ∀m < n.Gm
f (c) is not halting.

Problem 5.55 (CA2 minimal halting problem) Given a CA2 C and an input config-
uration c, does C halt starting from c?

5.6 From CA1 to Weakly Reversible CA2

In this section, we construct a weakly reversible (cf. Definition 5.53) CA2 from
a CA1. Since CA1 and CA2 share common notations, we distinguish them by
prepending a subscripts e.g. 1 f refer to local update functions of CA1 and 2 f refer
to local update functions of CA2. When it is clear from the context, we drop the
pre-subscript to simplify the notation.

Let C = (1Σ, 1 f ) be a CA1. Our main idea is, given a CA1 configuration 1c, to
construct a CA2 configuration 2(a, c, b) such that c = 1c, keeping all the rows of
2b blank, and using an appropriate CA2 local update function 2 f to store previous
values of 1c in the rows in 2a. Since local update functions can only observe cells in
the neighborhood (in particular, they do not now the global structure of CA2 con-
figurations), we need to mark the cells in the CA2 configuration that corresponds
with 1c. This motivates the definition of the CA2 states 2Σ below.

Definition 5.56 (2Σ)

2Σ = {M, U} × 1Σ

For any q ∈ 1Σ, a CA2 cell ◦(M, q) means that it is marked. Conversely, it is unmarked if
its value is ◦(U, q).

Fact 5.57 If 1Σ is finite and discrete then 2Σ is also finite and discrete.
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We define the CA2 local update function 2 f as follows.

Definition 5.58 (2 f ) Let 1q be a quiescent state in 1Σ.

2 f (x) =


J1 f (ql , qm, qr)K x = ((U, qa), (M, ql), (M, qm), (M, qr), (U, qb))
◦(U, q) x = ((M, qa), (U, ql), (U, qm), (U, qr), (U, qb))
◦(U, qb) x = ((U, qa), (U, ql), (U, qm), (U, qr), (x, qb))

∅ otherwise

where

J1 f (l, m, r)K =

{
◦(M, v) 1 f (l, m, r) = ◦v
∅ otherwise.

Fact 5.59 (U, q) is a quiescent state and (M, q) is a pseudo-quiescent state with respect
to 2 f .

Intuitively, for all CA1 configurations 1c, if 1(G f )(1c) is not a halting configura-
tion, then 2 f ensures that:

Case 1 if the center row is marked (and nothing else is marked) then 2 f marks the
output of 1 f ,

Case 2 if the marker is above (and every other cell is blank) then do nothing,

Case 3 if the marker is below or not in the neighborhood, copy the value from
below, and

Case 4 otherwise halt.

Formally, we describe the construction in Definition 5.60.

Definition 5.60 (Construction) Given a CA1 C = (1Σ, 1 f ), we define a two-dimensional
cellular automata C2 = (2Σ, 2 f ) as follows:

• its alphabet 2Σ is defined in Definition 5.56, which given a quiescent state q in 1Σ,
admits a quiescent state (U, q) and a pseudo-quiescent state (M, q), and

• its local update function 2 f is defined in Definition 5.58.

5.6.1 Showing Weak Reversibility

Definition 5.58 ensures that as long as a CA2 configuration c is not a halting config-
uration, one can recover c back from 2G f (c). We make this fact explicit by defining
a local update function 2g, which acts as an inverse to 2 f , as follows.
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FIGURE 5.2: Fact 5.64, pictorially

Definition 5.61 (2g)

2g(x) =


◦(U, qm) x = ((M, qa), (U, ql), (U, qm), (U, qr), (U, qb))
◦(M, qa) x = ((U, qa), (M, ql), (M, qm), (M, qr), (U, qb))
◦(U, qa) x = ((U, qa), (U, ql), (U, qm), (U, qr), (x, qb))

∅ otherwise

It is enough to show Fact 5.64 below to assert that 2G f is invertible, and thus C2
is weakly reversible. Even though Fact 5.64 can be shown using a simple case dis-
tinction, it is tedious to do so due to a large number of cases which are ultimately
irrelevant due to the assumptions. Instead, using an inductive predicate ◦ f (Defi-
nition 5.62) below, we characterize the happy paths i.e. those cells where applying

2G f followed by 2Gg on them result in a cell containing some σ ∈ 2Σ.

Definition 5.62 (◦ f ) Let q be a quiescent state with respect to 1 f .

f ◦-CENTER

1 f (l, m, r) = ◦v
◦ f (◦(U, a), ◦(M, l), ◦(M, m), ◦(M, r), ◦(U, b), (M, v))

f ◦-ABOVE

◦ f (◦(U, a), ◦(U, l), ◦(U, m), ◦(U, r), ◦(x, b), (U, b))

f ◦-BLANK

◦ f (◦(M, a), ◦(U, q), ◦(U, q), ◦(U, q), ◦(U, q), (U, q))

Intuitively, f ◦(i, j, k, l, m, n) represents the cases where 2 f ↑(i, j, k, l, m) = ◦n.

Fact 5.63 For all a, l, m, r, b, x ∈ 2Σ, if 2 f ↑(a, l, m, r, b) = ◦x then f ◦(a, l, m, r, b, x)
holds.
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Finally, we can show that 2G f is invertible.

Fact 5.64 (2 f is invertible) For all cells lc0 , lc1 , la0 , lb0 , mc, ma0 , ma1 , mb0 , mb1 , rc0 , rc1 ,
ra0 , and rb0 (c.f. Figure 5.2), let

m′a0
= 2 f ↑(ma1 , la0 , ma0 , ra0 , mc)

l′c0
= 2 f ↑(la0 , lc1 , lc0 , mc, lb0)

m′c = 2 f ↑(ma0 , lc0 , mc, rc0 , mb0)

r′c0
= 2 f ↑(ra0 , mc, rc0 , rc1 , rb0)

m′b0
= 2 f ↑(mc, lb0 , mb0 , rb0 , mb1).

If m′a0
̸= ∅, l′c0

̸= ∅, m′c ̸= ∅, r′c0
̸= ∅, and m′b0

̸= ∅ then we have

2g↑(m′a0
, l′c0

, m′c, r′c0
, m′b0

) = mc.

Proof We begin by case distinction on m′a0
, l′c0

, m′c, r′c0
, and m′b0

, noting that the
∅ cases directly contradict the assumptions. Otherwise, the claim follows using
inversion and Fact 5.63.

Fact 5.65 For all CA2 configuration c, if G f (c) is not halting then Gg(G f (c)) = c.

Proof Follows from Fact 5.64.

Lemma 5.66 C2 is weakly reversible.

Proof Let G f (s) and G f (t) be non-halting CA2 configurations. By Fact 5.65, we
have that Gg(G f (s)) = s and Gg(G f (t)) = t. Since G f (s) = G f (t), it follows that
s = t.

5.6.2 Showing Simulation

Looking at Definition 5.58, we observe that for each step that C takes during its
execution, C2 also takes a step as long as its configurations are of certain forms.
We make this fact explicit using the a notion of sensible CA2 configurations and a
notion of synchronicity between a CA1 configuration and a CA2 configuration.

Definition 5.67 (Sensible configurations) We say that a row 2(l, m, r) is unmarked
iff

• ∀n.∃1σ ∈ 1Σ.2l(n) = ◦(U, 1σ), and

• ∀n.∃1σ ∈ 1Σ.2r(n) = ◦(U, 1σ), and

• ∃1σ ∈ 1Σ.2m = ◦(U, 1σ).

https://www.ps.uni-saarland.de/~jabbar/master/coqdoc/Undecidability.CellularAutomata.Reductions.CA1_HALT_to_vNCA_REVERSIBLE_HALT_MIN.html#f_invertible
https://www.ps.uni-saarland.de/~jabbar/master/coqdoc/Undecidability.CellularAutomata.Reductions.CA1_HALT_to_vNCA_REVERSIBLE_HALT_MIN.html#step_inv
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Let 1q be a quiescent state in 1Σ. A CA2 configuration 2c = 2(a, c, b) is sensible iff
each rows in a and b are unmarked. Additionally, each cells in b contains 1q.

Definition 5.68 (Sync) We say that a CA2 configuration 2(a, c, b) is in sync with a CA1
configuration 1c iff c = 1c.

Given an input configuration c to C, we encode it into a CA2 configuration JcK
and we show that JcK is sensible, finite, and in sync with c.

Definition 5.69 (Encode) Let 1q be a quiescent state in 1Σ. The encoding of an CA1
configuration 1c = 1(l, m, r) into a CA2 configuration, written as JcK, is defined as

JcK = (λ_.λ_.◦(U, q), (λn.M↑(l′(n)), M↑(m′), λn.M↑(l′(n))), λ_.λ_.◦(U, q))

where
M(x) = ◦(M, x)

Fact 5.70 For any CA1 configuration c, JcK is sensible and in sync with c.

Fact 5.71 For any CA1 configuration c, JcK is finite.

Next, we show that during the course of its run simulating C, C2 maintains the
invariant that its configurations are sensible and in sync with the corresponding
configurations of C.

Fact 5.72 Let 1c be a CA1 configuration and 2c be a CA2 configuration. If 1c and 2c are
in sync, 2c is sensible, and 1c is not a halting configuration, then 1G f (c) and 2G f (c) are in
sync. Furthermore, 2G f (c) is also sensible.

Corollary 5.73 For all n ∈ N, CA1 configuration 1c, and CA2 configuration 2c, if 1c
and 2c are in sync, 2c is sensible, and

1
Gn

f (c) is not a halting configuration, then
1
Gn

f (c)
and

2
Gn

f (c) are in sync. Furthermore,
2
Gn

f (c) is also sensible.

Remark 5.74 The assumption that 1c is not halting in Fact 5.72 is crucial; without it,
we cannot show that 1G f (1c) and 2G f (2c) are in sync. However, since it is undecidable
whether a CA1 configuration is halting or not, we need to get this information from some-
where else. It turns out that the halting problem definitions in Definition 5.19 gives us this
information, which simplifies our proof.

Fact 5.75 Let 1c be a CA1 configuration and 2c be a sensible CA2 configuration which is
in sync with 1c. We have that 1c is a halting configuration iff 2c is a halting configuration.

Corollary 5.76 For all n ∈ N, CA1 configuration 1c, and CA2 configuration 2c, if 1c
and 2c are in sync, 2c is sensible, and

2
Gn

f (c) is not a halting configuration, then
1
Gn

f (c)
and

2
Gn

f (c) are in sync. Furthermore,
2
Gn

f (c) is also sensible.
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Finally, we are ready to show the reduction from CA1 to weakly-reversible
CA2.

Lemma 5.77 (Preservation) For all CA1 C and CA1 configuration 1c, if C halts on 1c
then a CA2 constructed using Definition 5.60 C2 halts on J1cK.

Proof We have that C halts on 1c after n steps such that ∀m < n,
1
Gm

f (c) is not
halting and we show that C2 halts on J1cK after k steps such that ∀m < k,

2
Gm

f (J1cK)
is not halting, for some k. We chose k = n and we proceed by case distinction on
n. If n = 0 then we are done, otherwise n = n′ + 1 for some n′. By Fact 5.75, it
is enough to show that

1
Gn′+1

f (c) and
2
Gn′+1

f (J1cK) are in sync and
2
Gn′+1

f (J1cK) is
sensible. This, in turns, follows from Corollary 5.73 and Fact 5.75.

Lemma 5.78 (Reflection) For all CA1 C and CA1 configuration 1c, if a CA2 constructed
using Definition 5.60 C2 halts on J1cK then C halts on 1c.

Proof We have that C2 halts on J1cK after n steps such that ∀m < n,
2
Gm

f (J1cK) is
not halting and we show that C halts on 1c after k steps such that ∀m < k,

1
Gm

f (c)
is not halting, for some k. We chose k = n and we proceed by case distinction
on n. If n = 0 then we are done, otherwise n = n′ + 1 for some n′. By Fact 5.75,
it is enough to show that

1
Gn′+1

f (c) and
2
Gn′+1

f (J1cK) are in sync and
2
Gn′+1

f (J1cK) is
sensible. This, in turns, follows from Corollary 5.76 and Fact 5.75.

Theorem 5.79 The halting problem of CA1 reduces to the halting problem of weakly-
reversible CA2.

Proof Construction 5.60 is a reduction function by Lemma 5.77 and Lemma 5.78.

5.7 Discussion and Related Work

Cellular automata represent a massively parallel computation in contrast to Turing
machines or counter machines. Nevertheless, cellular automata have been shown
to be computationally universal. Two well-known results in this regard are the
universality of Conway’s Game of Life [2] and the universality of Wolfram’s Rule
110 [27]. Since Rule 110 is a one-dimensional cellular automaton and Toffoli [26]
showed that any d-dimensional cellular automaton can be simulated by a d + 1-
dimensional cellular automaton, this implies that 2-dimensional cellular automata
are also universal. Morita and Harao [22] later showed a more direct result by
constructing a reversible one-dimensional cellular automaton that simulates a re-
versible Turing machine, which itself is also universal due to Bennett [3]. Regard-
ing the concept of reversibility in cellular automata itself, one can decide whether

https://www.ps.uni-saarland.de/~jabbar/master/coqdoc/Undecidability.CellularAutomata.Reductions.CA1_HALT_to_vNCA_REVERSIBLE_HALT_MIN.html#forward_simulation
https://www.ps.uni-saarland.de/~jabbar/master/coqdoc/Undecidability.CellularAutomata.Reductions.CA1_HALT_to_vNCA_REVERSIBLE_HALT_MIN.html#inverse_simulation
https://www.ps.uni-saarland.de/~jabbar/master/coqdoc/Undecidability.CellularAutomata.Reductions.CA1_HALT_to_vNCA_REVERSIBLE_HALT_MIN.html#reduction
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a given one-dimensional cellular automaton is reversible or not [1]. However, such
results does not extend to two-dimensional cellular automata [14].

To the best of our knowledge, none of the above results have been mechanized
before. Furthermore, at the time of writing, we are not aware of any other mecha-
nizations of cellular automata in Coq. As such, we made a number of trade-offs in
this work by weakening the notion of reversibility (cf. Definition 5.53) so that we
may define termination without trivially circumventing full extensional reversibil-
ity. We also use a weaker notion of finite two-dimensional cellular automata con-
figurations by introducing pseudo-quiescent states (Definition 5.50) to simplify the
reduction from one-dimensional cellular automata. This weakening is justified be-
cause pseudo-quiescent states still enforces (spatial) finiteness while at the same
time relaxing the specification of the local update function.
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