
Synthetic Formalization of Posts Problem
Bachelor Seminar Talk

Felix Jahn

May 26, 2020

Advisor: Yannick Forster
Supervisor: Gert Smolka



2

Posts Problem Simple Predicates Construction Reducibility Notions

How to show Undecidability?

Q.: Show the Totality Problem
undecidable.

A.: We reduce from H:

. . .

Q.: Show TSAT undecidable.
A.: We reduce from H:

. . .

Q.: Show PCP undecidable.
A.: We reduce from H:

. . .

Q.: Show the Verification
Problem undecidable.
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Undecidabilty Library

λ
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All enumerable but undecidable problems seem to reduce from the
halting problem.
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Posts Problem

Figure: Posts Paper from 1944

Posts Problem for ≤
Is there an enumerable, but undecidable set P with H � P?

Many-one reduction ≤m

Simple sets, solving Posts Problem for ≤m
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Simple Set1

Definition (Traditional Simple Set)

A set S ⊆ N is called simple if it is enumerable, co-infinite,
and contains an element from every enumerable, infinite set.

Remember the desired properties of a simple set S:

S should be enumerable.

S should be undecidable.

H should not many-one reduce to S.

Theorem (Post)

There exists a simple set.

1originally by Post (1944), we follow the presentation by Rogers (1967)



5

Posts Problem Simple Predicates Construction Reducibility Notions

Simple Set1

Definition (Traditional Simple Set)

A set S ⊆ N is called simple if it is enumerable, co-infinite,
and contains an element from every enumerable, infinite set.

Remember the desired properties of a simple set S:

S should be enumerable.

S should be undecidable.

H should not many-one reduce to S.

Theorem (Post)

There exists a simple set.

1originally by Post (1944), we follow the presentation by Rogers (1967)



5

Posts Problem Simple Predicates Construction Reducibility Notions

Simple Set1

Definition (Traditional Simple Set)

A set S ⊆ N is called simple if it is enumerable, co-infinite,
and contains an element from every enumerable, infinite set.

Remember the desired properties of a simple set S:

S should be enumerable.

S should be undecidable.

H should not many-one reduce to S.

Theorem (Post)

There exists a simple set.

1originally by Post (1944), we follow the presentation by Rogers (1967)



5

Posts Problem Simple Predicates Construction Reducibility Notions

Simple Set1

Definition (Traditional Simple Set)

A set S ⊆ N is called simple if it is enumerable, co-infinite,
and contains an element from every enumerable, infinite set.

Remember the desired properties of a simple set S:

S should be enumerable.

S should be undecidable.

H should not many-one reduce to S.

Theorem (Post)

There exists a simple set.

1originally by Post (1944), we follow the presentation by Rogers (1967)



6

Posts Problem Simple Predicates Construction Reducibility Notions

Synthetic Approach2

Abstract from a concrete model of computation! Instead, take Coq
as the model of computation:

Definition (Decidability and Enumerability)

For a predicate p : X → P we define:

D p := ∃(f : X → B).∀x.px↔ fx = tt

E p := ∃(f : N→ OX).∀x.px↔ ∃n.fn = Some x

Definition (Many-One Reduction)

For a predicates p : X → P and q : Y → P we define:

p ≤m q := ∃(f : X → Y ).∀x.px↔ q(fx)

2explored by Richman (1983) and Bauer (2006)
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Synthetic Approach3: Axioms

Coq has for example no universal program. Therefore, we have to
make some assumptions about the non-concrete model:

An enumerator W : N→ (X → P) for enumerable predicates:

∀p. Ep↔ (∃c.∀x.px↔Wcx)

”Wcx iff program with index c halts on input x”.

The enumerability of W.

The computability of the index of programs deciding finite
predicates.

A corollary from the S-M-N-Theorem.

3explored by Richman (1983) and Bauer (2006)
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Simple Predicate

Definition (Constructive Simple Predicate)

A predicate p : X → P is called simple if it is enumerable,
co-infinite and its complement contains no enumerable, infinite
subset, e.g

E p ∧ infinite p ∧ ∀q : infinite q → E q → q * p.

p infinite via injection f
⇒ Ran f is an infinite and enumerable subset of p.
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co-infinite and its complement contains no enumerable, infinite
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Infinite criterias

Lemma

p : X → P is infinite if for every n:

∃L. |L| ≥ n ∧ NoDup L ∧ ∀x. x ∈ L→ px

How do you show the existence of such a list? 

Compute it!

⇒ Show the Double Negation!

¬¬
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Construction of a synthetic simple predicate

Remember the assumed enumerator for enumerable predicates:

W : N→ (N→ P) with ∀p. Ep↔ (∃c.∀x.px↔Wcx).

Consider the predicate: C(x, y) :=Wxy ∧ y > 2x.
Defining S as Ran C?

| | | | | | | | | | | | | | | | | | |
0 c> 2c> c⊥

We need a mapping ψ with C(x, ψx).
Unfortunately, ψ can’t be total.
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µ - Operator

If p : N→ P is decidable, ∃n.pn→ Σn.pn

∧ ∀y.py → n ≤ y.
(Guarded minimisation operator µN)

Theorem (µE - Operator)

For a enumerable predicate p : Y → P with ∃y.py, we can
compute a (unique) y with py by the µE - Operator.

Given x with ∃y.C(x, y), define ψ using µE for the enumerable
predicate λy.C(x, y).

⇒ ψ : ∀x.
(
∃y.C(x, y)

)
→ N

with C(x, ψxH).
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Simple Predicate S

Definition

We define the simple predicate S : N→ P as

Sy := ∃x.∃H.ψxH = y.

S should be simple and therefore

1. enumerable,

X

2. co-infinite,

3. S should not contain an enumerable and infinite subset.

X
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Co-Infinity

Lemma

For all x : N: C(x, ψ x) and therefore ψ x > 2x.

Definition

We say L lists p up to a bound b iff ∀x.x ∈ L↔ px ∧ x ≤ b.

⇒ If (duplicate free) L lists S up to 2n: |L| ≤ n
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There exists a simple
predicate.

Corollary

There exists an undecidable,
but enumerable predicate S
with H �m S.

Corollary

≤m and ≤1 just like ≡m and
≡1 do not coincide.
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Many-One vs. One-One

”A one-one reduction is an injective many-one reduction”

Definition

p ≤1 q iff there is an injective function f , s.t. px↔ q(fx).

Definition (Computability Degrees)

p ≡1 q := p ≤1 q ∧ q ≤1 p

p ≡m q := p ≤m q ∧ q ≤m p

For a simple predicate S:

S �1 S ×N (Proof by notion of cylinder)

S ≤m S × N
S 6≡1 S × N
S ≡m S × N



16

Posts Problem Simple Predicates Construction Reducibility Notions

Many-One vs. One-One

”A one-one reduction is an injective many-one reduction”

Definition

p ≤1 q iff there is an injective function f , s.t. px↔ q(fx).

Definition (Computability Degrees)

p ≡1 q := p ≤1 q ∧ q ≤1 p

p ≡m q := p ≤m q ∧ q ≤m p

For a simple predicate S:

S �1 S ×N (Proof by notion of cylinder)

S ≤m S × N

S 6≡1 S × N
S ≡m S × N



16

Posts Problem Simple Predicates Construction Reducibility Notions

Many-One vs. One-One

”A one-one reduction is an injective many-one reduction”

Definition

p ≤1 q iff there is an injective function f , s.t. px↔ q(fx).

Definition (Computability Degrees)

p ≡1 q := p ≤1 q ∧ q ≤1 p

p ≡m q := p ≤m q ∧ q ≤m p

For a simple predicate S:

S �1 S ×N

(Proof by notion of cylinder)

S ≤m S × N

S 6≡1 S × N
S ≡m S × N



16

Posts Problem Simple Predicates Construction Reducibility Notions

Many-One vs. One-One

”A one-one reduction is an injective many-one reduction”

Definition

p ≤1 q iff there is an injective function f , s.t. px↔ q(fx).

Definition (Computability Degrees)

p ≡1 q := p ≤1 q ∧ q ≤1 p

p ≡m q := p ≤m q ∧ q ≤m p

For a simple predicate S:

S �1 S ×N

(Proof by notion of cylinder)

S ≤m S × N
S 6≡1 S × N
S ≡m S × N



17

Posts Problem Simple Predicates Construction Reducibility Notions

Conclusion

Theorem (Post)

There exists a simple
predicate.

Corollary

There exists an undecidable,
but enumerable predicate S
with H �m S.

Corollary

≤m and ≤1 just like ≡m and
≡1 do not coincide on enu-
merable predicates.
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Synthetic approach for a formalization of:

Simple predicates
Posts Problem for ≤m

Distinction of ≤1 and ≤m

⇒ Complete mechanization in Coq (∼ 2350 lines)

Careful study of infinite predicates

Roadmap:

Closer look at the synthetic axioms

Myhills-Theorem

Truth-table and Turing reduction, especially Posts Problem for
these reductions
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Synthetic Axioms

In the construction of S:

An enumerator W : N→ (X → P) for enumerable predicates:

∀p. Ep↔ (∃c.∀x.px↔Wcx).

Enumerability of W.

In the proofs of the simple predicate properties:

The computability of the program-index deciding finite
predicates:

ΣC.∀nL.(∀x.Wnx↔ x ∈ L)

→ ∀mx.W(Cmn)x↔ x ∈ (m :: L).

Corollary from S-M-N:

∀f.∃g.∀nx.W(gn)x↔Wn(fx).
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Definition (M-Completeness)

A predicate p : X → P is m-complete if it is enumerable and for
all datatypes Y and all predicates q : Y → P, Eq → q ≤m p.

Definition (Productiveness)

A predicate p : X → P is productive if there is a function
g : N→ X with

∀n.Wn ⊆ p→ p(gn) ∧ ¬Wn(gn).

Definition (Creativeness)

A predicate p : X → P is creative if it is enumerable and its
complement is productive.
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Co-Infinity

Definition

We say L lists p up to a bound b iff ∀x.x ∈ L↔ px ∧ x ≤ b.

Lemma

We can show the ”Non-Non Existence”
of a list L that lists p up to b.

Lemma

infinite p
⇔ ∀n.¬¬∃L. . . .

If L lists S up to 2n:

[0, ..., 2n]\L lists S up to 2n.

|L| ≤ n
|[0, ..., 2n]\L| ≥ n

Theorem

S is co-infinite.



24

Co-Infinity

Definition

We say L lists p up to a bound b iff ∀x.x ∈ L↔ px ∧ x ≤ b.

Lemma

We can show the ”Non-Non Existence”
of a list L that lists p up to b.

Lemma

infinite p
⇔ ∀n.¬¬∃L. . . .

If L lists S up to 2n:

[0, ..., 2n]\L lists S up to 2n.

|L| ≤ n
|[0, ..., 2n]\L| ≥ n

Theorem

S is co-infinite.



24

Co-Infinity

Definition

We say L lists p up to a bound b iff ∀x.x ∈ L↔ px ∧ x ≤ b.

Lemma

We can show the ”Non-Non Existence”
of a list L that lists p up to b.

Lemma

infinite p
⇔ ∀n.¬¬∃L. . . .

If L lists S up to 2n:

[0, ..., 2n]\L lists S up to 2n.

|L| ≤ n
|[0, ..., 2n]\L| ≥ n

Theorem

S is co-infinite.



24

Co-Infinity

Definition

We say L lists p up to a bound b iff ∀x.x ∈ L↔ px ∧ x ≤ b.

Lemma

We can show the ”Non-Non Existence”
of a list L that lists p up to b.

Lemma

infinite p
⇔ ∀n.¬¬∃L. . . .

If L lists S up to 2n:

[0, ..., 2n]\L lists S up to 2n.

|L| ≤ n
|[0, ..., 2n]\L| ≥ n

Theorem

S is co-infinite.



24

Co-Infinity

Definition

We say L lists p up to a bound b iff ∀x.x ∈ L↔ px ∧ x ≤ b.

Lemma

We can show the ”Non-Non Existence”
of a list L that lists p up to b.

Lemma

infinite p
⇔ ∀n.¬¬∃L. . . .

If L lists S up to 2n:

[0, ..., 2n]\L lists S up to 2n.

|L| ≤ n
|[0, ..., 2n]\L| ≥ n

Theorem

S is co-infinite.



25

Definition (Cylinder)

A predicate p : X → P is a cylinder, if there exists an isomorph
type Y and q : Y → Prop with p ≡1 q × (λy.>).

Theorem

cylinder p↔ p ≡1 p× (λx.>)
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One-One Reducibility

”A one-one reduction is an injective many-one reduction”

Definition

p ≤1 q iff there is an injective function f , s.t. px↔ q(fx).

Interesting properties:

p ≤1 q ⇒ p ≤m q

p ≤m q ⇔ p× N ≤1 q × N and therefore

p× N ≤m q × N⇔ p× N ≤1 q × N

But do ≤1 and ≤m coincide on all predicates?
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Many-One vs. One-One

For a simple predicate S:

S �1 S × N (proof by notion of cylinder)

S ≤m S × N via λx.(x, 0) and S × N ≤m S via λ(x, n).x.

Definition

We define computability degrees:

p ≡1 q := p ≤1 q ∧ q ≤1 p

p ≡m q := p ≤m q ∧ q ≤m p

Clearly p ≡1 q implies p ≡m q, but

S 6≡1 S × N and S ≡m S × N.
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