
Synthetic Formalization of Posts Problem
Bachelor Seminar Talk

Felix Jahn

May 26, 2020

Advisor: Yannick Forster
Supervisor: Gert Smolka

2

Posts Problem Simple Predicates Construction Reducibility Notions

How to show Undecidability?

Q.: Show the Totality Problem
undecidable.

A.: We reduce from H:

. . .

Q.: Show TSAT undecidable.
A.: We reduce from H:

. . .

Q.: Show PCP undecidable.
A.: We reduce from H:

. . .

Q.: Show the Verification
Problem undecidable.

A.: We reduce from H:

. . .

2

Posts Problem Simple Predicates Construction Reducibility Notions

How to show Undecidability?

Q.: Show the Totality Problem
undecidable.

A.: We reduce from H:

. . .

Q.: Show TSAT undecidable.
A.: We reduce from H:

. . .

Q.: Show PCP undecidable.
A.: We reduce from H:

. . .

Q.: Show the Verification
Problem undecidable.

A.: We reduce from H:

. . .

2

Posts Problem Simple Predicates Construction Reducibility Notions

How to show Undecidability?

Q.: Show the Totality Problem
undecidable.

A.: We reduce from H:

. . .

Q.: Show TSAT undecidable.
A.: We reduce from H:

. . .

Q.: Show PCP undecidable.
A.: We reduce from H:

. . .

Q.: Show the Verification
Problem undecidable.

A.: We reduce from H:

. . .

2

Posts Problem Simple Predicates Construction Reducibility Notions

How to show Undecidability?

Q.: Show the Totality Problem
undecidable.

A.: We reduce from H:

. . .

Q.: Show TSAT undecidable.
A.: We reduce from H:

. . .

Q.: Show PCP undecidable.
A.: We reduce from H:

. . .

Q.: Show the Verification
Problem undecidable.

A.: We reduce from H:

. . .

2

Posts Problem Simple Predicates Construction Reducibility Notions

How to show Undecidability?

Q.: Show the Totality Problem
undecidable.

A.: We reduce from H:

. . .

Q.: Show TSAT undecidable.
A.: We reduce from H:

. . .

Q.: Show PCP undecidable.
A.: We reduce from H:

. . .

Q.: Show the Verification
Problem undecidable.

A.: We reduce from H:

. . .

3

Posts Problem Simple Predicates Construction Reducibility Notions

Undecidabilty Library

λ

TM

SR

PCP

bin. stack machines register machines

FRACTRAN

H10

µ-rec

FOL

CFG

Sys. F

HOU

ILL

All enumerable but undecidable problems seem to reduce from the
halting problem.

3

Posts Problem Simple Predicates Construction Reducibility Notions

Undecidabilty Library

λ

TM

SR

PCP

bin. stack machines register machines

FRACTRAN

H10

µ-rec

FOL

CFG

Sys. F

HOU

ILL

All enumerable but undecidable problems seem to reduce from the
halting problem.

4

Posts Problem Simple Predicates Construction Reducibility Notions

Posts Problem

Figure: Posts Paper from 1944

Posts Problem for ≤
Is there an enumerable, but undecidable set P with H � P?

Many-one reduction ≤m

Simple sets, solving Posts Problem for ≤m

4

Posts Problem Simple Predicates Construction Reducibility Notions

Posts Problem

Figure: Posts Paper from 1944

Posts Problem for ≤
Is there an enumerable, but undecidable set P with H � P?

Many-one reduction ≤m

Simple sets, solving Posts Problem for ≤m

5

Posts Problem Simple Predicates Construction Reducibility Notions

Simple Set1

Definition (Traditional Simple Set)

A set S ⊆ N is called simple if it is enumerable, co-infinite,
and contains an element from every enumerable, infinite set.

Remember the desired properties of a simple set S:

S should be enumerable.

S should be undecidable.

H should not many-one reduce to S.

Theorem (Post)

There exists a simple set.

1originally by Post (1944), we follow the presentation by Rogers (1967)

5

Posts Problem Simple Predicates Construction Reducibility Notions

Simple Set1

Definition (Traditional Simple Set)

A set S ⊆ N is called simple if it is enumerable, co-infinite,
and contains an element from every enumerable, infinite set.

Remember the desired properties of a simple set S:

S should be enumerable.

S should be undecidable.

H should not many-one reduce to S.

Theorem (Post)

There exists a simple set.

1originally by Post (1944), we follow the presentation by Rogers (1967)

5

Posts Problem Simple Predicates Construction Reducibility Notions

Simple Set1

Definition (Traditional Simple Set)

A set S ⊆ N is called simple if it is enumerable, co-infinite,
and contains an element from every enumerable, infinite set.

Remember the desired properties of a simple set S:

S should be enumerable.

S should be undecidable.

H should not many-one reduce to S.

Theorem (Post)

There exists a simple set.

1originally by Post (1944), we follow the presentation by Rogers (1967)

5

Posts Problem Simple Predicates Construction Reducibility Notions

Simple Set1

Definition (Traditional Simple Set)

A set S ⊆ N is called simple if it is enumerable, co-infinite,
and contains an element from every enumerable, infinite set.

Remember the desired properties of a simple set S:

S should be enumerable.

S should be undecidable.

H should not many-one reduce to S.

Theorem (Post)

There exists a simple set.

1originally by Post (1944), we follow the presentation by Rogers (1967)

6

Posts Problem Simple Predicates Construction Reducibility Notions

Synthetic Approach2

Abstract from a concrete model of computation! Instead, take Coq
as the model of computation:

Definition (Decidability and Enumerability)

For a predicate p : X → P we define:

D p := ∃(f : X → B).∀x.px↔ fx = tt

E p := ∃(f : N→ OX).∀x.px↔ ∃n.fn = Some x

Definition (Many-One Reduction)

For a predicates p : X → P and q : Y → P we define:

p ≤m q := ∃(f : X → Y).∀x.px↔ q(fx)

2explored by Richman (1983) and Bauer (2006)

6

Posts Problem Simple Predicates Construction Reducibility Notions

Synthetic Approach2

Abstract from a concrete model of computation! Instead, take Coq
as the model of computation:

Definition (Decidability and Enumerability)

For a predicate p : X → P we define:

D p := ∃(f : X → B).∀x.px↔ fx = tt

E p := ∃(f : N→ OX).∀x.px↔ ∃n.fn = Some x

Definition (Many-One Reduction)

For a predicates p : X → P and q : Y → P we define:

p ≤m q := ∃(f : X → Y).∀x.px↔ q(fx)

2explored by Richman (1983) and Bauer (2006)

7

Posts Problem Simple Predicates Construction Reducibility Notions

Synthetic Approach3: Axioms

Coq has for example no universal program. Therefore, we have to
make some assumptions about the non-concrete model:

An enumerator W : N→ (X → P) for enumerable predicates:

∀p. Ep↔ (∃c.∀x.px↔Wcx)

”Wcx iff program with index c halts on input x”.

The enumerability of W.

The computability of the index of programs deciding finite
predicates.

A corollary from the S-M-N-Theorem.

3explored by Richman (1983) and Bauer (2006)

7

Posts Problem Simple Predicates Construction Reducibility Notions

Synthetic Approach3: Axioms

Coq has for example no universal program. Therefore, we have to
make some assumptions about the non-concrete model:

An enumerator W : N→ (X → P) for enumerable predicates:

∀p. Ep↔ (∃c.∀x.px↔Wcx)

”Wcx iff program with index c halts on input x”.

The enumerability of W.

The computability of the index of programs deciding finite
predicates.

A corollary from the S-M-N-Theorem.

3explored by Richman (1983) and Bauer (2006)

7

Posts Problem Simple Predicates Construction Reducibility Notions

Synthetic Approach3: Axioms

Coq has for example no universal program. Therefore, we have to
make some assumptions about the non-concrete model:

An enumerator W : N→ (X → P) for enumerable predicates:

∀p. Ep↔ (∃c.∀x.px↔Wcx)

”Wcx iff program with index c halts on input x”.

The enumerability of W.

The computability of the index of programs deciding finite
predicates.

A corollary from the S-M-N-Theorem.

3explored by Richman (1983) and Bauer (2006)

7

Posts Problem Simple Predicates Construction Reducibility Notions

Synthetic Approach3: Axioms

Coq has for example no universal program. Therefore, we have to
make some assumptions about the non-concrete model:

An enumerator W : N→ (X → P) for enumerable predicates:

∀p. Ep↔ (∃c.∀x.px↔Wcx)

”Wcx iff program with index c halts on input x”.

The enumerability of W.

The computability of the index of programs deciding finite
predicates.

A corollary from the S-M-N-Theorem.

3explored by Richman (1983) and Bauer (2006)

7

Posts Problem Simple Predicates Construction Reducibility Notions

Synthetic Approach3: Axioms

Coq has for example no universal program. Therefore, we have to
make some assumptions about the non-concrete model:

An enumerator W : N→ (X → P) for enumerable predicates:

∀p. Ep↔ (∃c.∀x.px↔Wcx)

”Wcx iff program with index c halts on input x”.

The enumerability of W.

The computability of the index of programs deciding finite
predicates.

A corollary from the S-M-N-Theorem.

3explored by Richman (1983) and Bauer (2006)

8

Posts Problem Simple Predicates Construction Reducibility Notions

Simple Predicate

Definition (Constructive Simple Predicate)

A predicate p : X → P is called simple if it is enumerable,
co-infinite and its complement contains no enumerable, infinite
subset, e.g

E p ∧ infinite p ∧ ∀q : infinite q → E q → q * p.

p infinite via injection f
⇒ Ran f is an infinite and enumerable subset of p.

8

Posts Problem Simple Predicates Construction Reducibility Notions

Simple Predicate

Definition (Constructive Simple Predicate)

A predicate p : X → P is called simple if it is enumerable,
co-infinite and its complement contains no enumerable, infinite
subset, e.g

E p ∧ infinite p ∧ ∀q : infinite q → E q → q * p.

p infinite via injection f
⇒ Ran f is an infinite and enumerable subset of p.

8

Posts Problem Simple Predicates Construction Reducibility Notions

Simple Predicate

Definition (Constructive Simple Predicate)

A predicate p : X → P is called simple if it is enumerable,
co-infinite and its complement contains no enumerable, infinite
subset, e.g

E p ∧ infinite p ∧ ∀q : infinite q → E q → q * p.

Definition

p : X → P is infinite, if there exists an injection f : N → X
with Ran f ⊆ p.

p infinite via injection f
⇒ Ran f is an infinite and enumerable subset of p.

8

Posts Problem Simple Predicates Construction Reducibility Notions

Simple Predicate

Definition (Constructive Simple Predicate)

A predicate p : X → P is called simple if it is enumerable,
co-infinite and its complement contains no enumerable, infinite
subset, e.g

E p ∧ infinite p ∧ ∀q : infinite q → E q → q * p.

Definition

p : X → P is infinite, if there exists an injection f : N → X
with Ran f ⊆ p.

p infinite via injection f

⇒ Ran f is an infinite and enumerable subset of p.

8

Posts Problem Simple Predicates Construction Reducibility Notions

Simple Predicate

Definition (Constructive Simple Predicate)

A predicate p : X → P is called simple if it is enumerable,
co-infinite and its complement contains no enumerable, infinite
subset, e.g

E p ∧ infinite p ∧ ∀q : infinite q → E q → q * p.

Definition

p : X → P is infinite, if there exists an injection f : N → X
with Ran f ⊆ p.

p infinite via injection f
⇒ Ran f is an infinite and enumerable subset of p.

8

Posts Problem Simple Predicates Construction Reducibility Notions

Simple Predicate

Definition (Constructive Simple Predicate)

A predicate p : X → P is called simple if it is enumerable,
co-infinite and its complement contains no enumerable, infinite
subset, e.g

E p ∧ infinite p ∧ ∀q : infinite q → E q → q * p.

Definition

p : X → P is infinite, if there exists an injection f : N → X
with Ran f ⊆ p.

p infinite via injection f
⇒ Ran f is an infinite and enumerable subset of p.

8

Posts Problem Simple Predicates Construction Reducibility Notions

Simple Predicate

Definition (Constructive Simple Predicate)

A predicate p : X → P is called simple if it is enumerable,
co-infinite and its complement contains no enumerable, infinite
subset, e.g

E p ∧ infinite p ∧ ∀q : infinite q → E q → q * p.

Definition

p is infinite, if it is not finite, e.g. ¬∃L.∀x.px→ x ∈ L.

p infinite via injection f
⇒ Ran f is an infinite and enumerable subset of p.

9

Posts Problem Simple Predicates Construction Reducibility Notions

Infinite criterias

Lemma

p : X → P is infinite if for every n:

∃L. |L| ≥ n ∧ NoDup L ∧ ∀x. x ∈ L→ px

How do you show the existence of such a list?

Compute it!

⇒ Show the Double Negation!

¬¬

9

Posts Problem Simple Predicates Construction Reducibility Notions

Infinite criterias

Lemma

p : X → P is infinite if for every n:

∃L. |L| ≥ n ∧ NoDup L ∧ ∀x. x ∈ L→ px

How do you show the existence of such a list?

Compute it!

⇒ Show the Double Negation!

¬¬

9

Posts Problem Simple Predicates Construction Reducibility Notions

Infinite criterias

Lemma

p : X → P is infinite if for every n:

∃L. |L| ≥ n ∧ NoDup L ∧ ∀x. x ∈ L→ px

How do you show the existence of such a list?

Compute it!

⇒ Show the Double Negation!

¬¬

10

Posts Problem Simple Predicates Construction Reducibility Notions

Construction of a synthetic simple predicate

Remember the assumed enumerator for enumerable predicates:

W : N→ (N→ P) with ∀p. Ep↔ (∃c.∀x.px↔Wcx).

Consider the predicate: C(x, y) :=Wxy ∧ y > 2x.
Defining S as Ran C?

| | | | | | | | | | | | | | | | | | |
0 c> 2c> c⊥

We need a mapping ψ with C(x, ψx).
Unfortunately, ψ can’t be total.

10

Posts Problem Simple Predicates Construction Reducibility Notions

Construction of a synthetic simple predicate

Remember the assumed enumerator for enumerable predicates:

W : N→ (N→ P) with ∀p. Ep↔ (∃c.∀x.px↔Wcx).

Consider the predicate: C(x, y) :=Wxy ∧ y > 2x.
Defining S as Ran C?

| | | | | | | | | | | | | | | | | | |
0 c> 2c> c⊥

We need a mapping ψ with C(x, ψx).
Unfortunately, ψ can’t be total.

10

Posts Problem Simple Predicates Construction Reducibility Notions

Construction of a synthetic simple predicate

Remember the assumed enumerator for enumerable predicates:

W : N→ (N→ P) with ∀p. Ep↔ (∃c.∀x.px↔Wcx).

Consider the predicate: C(x, y) :=Wxy ∧ y > 2x.
Defining S as Ran C?

| | | | | | | | | | | | | | | | | | |
0 c> 2c> c⊥

We need a mapping ψ with C(x, ψx).
Unfortunately, ψ can’t be total.

10

Posts Problem Simple Predicates Construction Reducibility Notions

Construction of a synthetic simple predicate

Remember the assumed enumerator for enumerable predicates:

W : N→ (N→ P) with ∀p. Ep↔ (∃c.∀x.px↔Wcx).

Consider the predicate: C(x, y) :=Wxy ∧ y > 2x.
Defining S as Ran C?

| | | | | | | | | | | | | | | | | | |
0 c> 2c> c⊥

We need a mapping ψ with C(x, ψx).
Unfortunately, ψ can’t be total.

10

Posts Problem Simple Predicates Construction Reducibility Notions

Construction of a synthetic simple predicate

Remember the assumed enumerator for enumerable predicates:

W : N→ (N→ P) with ∀p. Ep↔ (∃c.∀x.px↔Wcx).

Consider the predicate: C(x, y) :=Wxy ∧ y > 2x.
Defining S as Ran C?

| | | | | | | | | | | | | | | | | | |
0 c> 2c> c⊥

We need a mapping ψ with C(x, ψx).
Unfortunately, ψ can’t be total.

10

Posts Problem Simple Predicates Construction Reducibility Notions

Construction of a synthetic simple predicate

Remember the assumed enumerator for enumerable predicates:

W : N→ (N→ P) with ∀p. Ep↔ (∃c.∀x.px↔Wcx).

Consider the predicate: C(x, y) :=Wxy ∧ y > 2x.
Defining S as Ran C?

| | | | | | | | | | | | | | | | | | |
0 c> 2c> c⊥

We need a mapping ψ with C(x, ψx).
Unfortunately, ψ can’t be total.

10

Posts Problem Simple Predicates Construction Reducibility Notions

Construction of a synthetic simple predicate

Remember the assumed enumerator for enumerable predicates:

W : N→ (N→ P) with ∀p. Ep↔ (∃c.∀x.px↔Wcx).

Consider the predicate: C(x, y) :=Wxy ∧ y > 2x.
Defining S as Ran C?

| | | | | | | | | | | | | | | | | | |
0 c> 2c> c⊥

We need a mapping ψ with C(x, ψx).

Unfortunately, ψ can’t be total.

10

Posts Problem Simple Predicates Construction Reducibility Notions

Construction of a synthetic simple predicate

Remember the assumed enumerator for enumerable predicates:

W : N→ (N→ P) with ∀p. Ep↔ (∃c.∀x.px↔Wcx).

Consider the predicate: C(x, y) :=Wxy ∧ y > 2x.
Defining S as Ran C?

| | | | | | | | | | | | | | | | | | |
0 c> 2c> c⊥

We need a mapping ψ with C(x, ψx).

Unfortunately, ψ can’t be total.

10

Posts Problem Simple Predicates Construction Reducibility Notions

Construction of a synthetic simple predicate

Remember the assumed enumerator for enumerable predicates:

W : N→ (N→ P) with ∀p. Ep↔ (∃c.∀x.px↔Wcx).

Consider the predicate: C(x, y) :=Wxy ∧ y > 2x.
Defining S as Ran C?

| | | | | | | | | | | | | | | | | | |
0 c> 2c> c⊥

We need a mapping ψ with C(x, ψx).
Unfortunately, ψ can’t be total.

11

Posts Problem Simple Predicates Construction Reducibility Notions

µ - Operator

If p : N→ P is decidable, ∃n.pn→ Σn.pn

∧ ∀y.py → n ≤ y.
(Guarded minimisation operator µN)

Theorem (µE - Operator)

For a enumerable predicate p : Y → P with ∃y.py, we can
compute a (unique) y with py by the µE - Operator.

Given x with ∃y.C(x, y), define ψ using µE for the enumerable
predicate λy.C(x, y).

⇒ ψ : ∀x.
(
∃y.C(x, y)

)
→ N

with C(x, ψxH).

11

Posts Problem Simple Predicates Construction Reducibility Notions

µ - Operator

If p : N→ P is decidable, ∃n.pn→ Σn.pn ∧ ∀y.py → n ≤ y.
(Guarded minimisation operator µN)

Theorem (µE - Operator)

For a enumerable predicate p : Y → P with ∃y.py, we can
compute a (unique) y with py by the µE - Operator.

Given x with ∃y.C(x, y), define ψ using µE for the enumerable
predicate λy.C(x, y).

⇒ ψ : ∀x.
(
∃y.C(x, y)

)
→ N

with C(x, ψxH).

11

Posts Problem Simple Predicates Construction Reducibility Notions

µ - Operator

If p : N→ P is decidable, ∃n.pn→ Σn.pn ∧ ∀y.py → n ≤ y.
(Guarded minimisation operator µN)

Theorem (µE - Operator)

For a enumerable predicate p : Y → P with ∃y.py, we can
compute a (unique) y with py by the µE - Operator.

Given x with ∃y.C(x, y), define ψ using µE for the enumerable
predicate λy.C(x, y).

⇒ ψ : ∀x.
(
∃y.C(x, y)

)
→ N

with C(x, ψxH).

11

Posts Problem Simple Predicates Construction Reducibility Notions

µ - Operator

If p : N→ P is decidable, ∃n.pn→ Σn.pn ∧ ∀y.py → n ≤ y.
(Guarded minimisation operator µN)

Theorem (µE - Operator)

For a enumerable predicate p : Y → P with ∃y.py, we can
compute a (unique) y with py by the µE - Operator.

Given x with ∃y.C(x, y), define ψ using µE for the enumerable
predicate λy.C(x, y).

⇒ ψ : ∀x.
(
∃y.C(x, y)

)
→ N

with C(x, ψxH).

11

Posts Problem Simple Predicates Construction Reducibility Notions

µ - Operator

If p : N→ P is decidable, ∃n.pn→ Σn.pn ∧ ∀y.py → n ≤ y.
(Guarded minimisation operator µN)

Theorem (µE - Operator)

For a enumerable predicate p : Y → P with ∃y.py, we can
compute a (unique) y with py by the µE - Operator.

Given x with ∃y.C(x, y), define ψ using µE for the enumerable
predicate λy.C(x, y).

⇒ ψ : ∀x.
(
∃y.C(x, y)

)
→ N

with C(x, ψxH).

11

Posts Problem Simple Predicates Construction Reducibility Notions

µ - Operator

If p : N→ P is decidable, ∃n.pn→ Σn.pn ∧ ∀y.py → n ≤ y.
(Guarded minimisation operator µN)

Theorem (µE - Operator)

For a enumerable predicate p : Y → P with ∃y.py, we can
compute a (unique) y with py by the µE - Operator.

Given x with ∃y.C(x, y), define ψ using µE for the enumerable
predicate λy.C(x, y).

⇒ ψ : ∀x.
(
∃y.C(x, y)

)
→ N

with C(x, ψxH).

12

Posts Problem Simple Predicates Construction Reducibility Notions

Simple Predicate S

Definition

We define the simple predicate S : N→ P as

Sy := ∃x.∃H.ψxH = y.

S should be simple and therefore

1. enumerable,

X

2. co-infinite,

3. S should not contain an enumerable and infinite subset.

X

12

Posts Problem Simple Predicates Construction Reducibility Notions

Simple Predicate S

Definition

We define the simple predicate S : N→ P as

Sy := ∃x.ψx = y.

S should be simple and therefore

1. enumerable,

X

2. co-infinite,

3. S should not contain an enumerable and infinite subset.

X

12

Posts Problem Simple Predicates Construction Reducibility Notions

Simple Predicate S

Definition

We define the simple predicate S : N→ P as

Sy := ∃x.ψx = y.

S should be simple and therefore

1. enumerable,

X

2. co-infinite,

3. S should not contain an enumerable and infinite subset.

X

12

Posts Problem Simple Predicates Construction Reducibility Notions

Simple Predicate S

Definition

We define the simple predicate S : N→ P as

Sy := ∃x.ψx = y.

S should be simple and therefore

1. enumerable, X
2. co-infinite,

3. S should not contain an enumerable and infinite subset.

X

12

Posts Problem Simple Predicates Construction Reducibility Notions

Simple Predicate S

Definition

We define the simple predicate S : N→ P as

Sy := ∃x.ψx = y.

S should be simple and therefore

1. enumerable, X
2. co-infinite,

3. S should not contain an enumerable and infinite subset. X

13

Posts Problem Simple Predicates Construction Reducibility Notions

Co-Infinity

Lemma

For all x : N: C(x, ψ x) and therefore ψ x > 2x.

Definition

We say L lists p up to a bound b iff ∀x.x ∈ L↔ px ∧ x ≤ b.

⇒ If (duplicate free) L lists S up to 2n: |L| ≤ n

13

Posts Problem Simple Predicates Construction Reducibility Notions

Co-Infinity

Lemma

For all x : N: C(x, ψ x) and therefore ψ x > 2x.

ψ 0 ψ 1

0 1 2 3 4

Definition

We say L lists p up to a bound b iff ∀x.x ∈ L↔ px ∧ x ≤ b.

⇒ If (duplicate free) L lists S up to 2n: |L| ≤ n

13

Posts Problem Simple Predicates Construction Reducibility Notions

Co-Infinity

Lemma

For all x : N: C(x, ψ x) and therefore ψ x > 2x.

ψ 0 ψ 1

0 1 2 3 4

ψ 0 ψ 1 ψ 2

0 1 2 3 4 5 6

Definition

We say L lists p up to a bound b iff ∀x.x ∈ L↔ px ∧ x ≤ b.

⇒ If (duplicate free) L lists S up to 2n: |L| ≤ n

13

Posts Problem Simple Predicates Construction Reducibility Notions

Co-Infinity

Lemma

For all x : N: C(x, ψ x) and therefore ψ x > 2x.

ψ 0 . . . ψ(n−1)

0 1 2 . . . 2n− 1 2n

Definition

We say L lists p up to a bound b iff ∀x.x ∈ L↔ px ∧ x ≤ b.

⇒ If (duplicate free) L lists S up to 2n: |L| ≤ n

13

Posts Problem Simple Predicates Construction Reducibility Notions

Co-Infinity

Lemma

For all x : N: C(x, ψ x) and therefore ψ x > 2x.

ψ 0 . . . ψ(n−1)

0 1 2 . . . 2n− 1 2n

⇒ [0, 1, ..., 2n] contains at most n elements in S.

Definition

We say L lists p up to a bound b iff ∀x.x ∈ L↔ px ∧ x ≤ b.

⇒ If (duplicate free) L lists S up to 2n: |L| ≤ n

13

Posts Problem Simple Predicates Construction Reducibility Notions

Co-Infinity

Lemma

For all x : N: C(x, ψ x) and therefore ψ x > 2x.

ψ 0 . . . ψ(n−1)

0 1 2 . . . 2n− 1 2n

⇒ [0, 1, ..., 2n] contains at most n elements in S.

Definition

We say L lists p up to a bound b iff ∀x.x ∈ L↔ px ∧ x ≤ b.

⇒ If (duplicate free) L lists S up to 2n: |L| ≤ n

13

Posts Problem Simple Predicates Construction Reducibility Notions

Co-Infinity

Lemma

For all x : N: C(x, ψ x) and therefore ψ x > 2x.

ψ 0 . . . ψ(n−1)

0 1 2 . . . 2n− 1 2n

⇒ [0, 1, ..., 2n] contains at most n elements in S.

Definition

We say L lists p up to a bound b iff ∀x.x ∈ L↔ px ∧ x ≤ b.

⇒ If (duplicate free) L lists S up to 2n: |L| ≤ n

14

Posts Problem Simple Predicates Construction Reducibility Notions

Co-Infinity

Definition

We say L lists p up to a bound b iff ∀x.x ∈ L↔ px ∧ x ≤ b.

Lemma

We can show the ”Non-Non Existence”
of a list L that lists p up to b.

Lemma

infinite p
↔ ∀n.¬¬∃L. . . .

Theorem

S is co-infinite.

14

Posts Problem Simple Predicates Construction Reducibility Notions

Co-Infinity

Definition

We say L lists p up to a bound b iff ∀x.x ∈ L↔ px ∧ x ≤ b.

Lemma

We can show the ”Non-Non Existence”
of a list L that lists p up to b.

Lemma

infinite p
↔ ∀n.¬¬∃L. . . .

Theorem

S is co-infinite.

14

Posts Problem Simple Predicates Construction Reducibility Notions

Co-Infinity

Definition

We say L lists p up to a bound b iff ∀x.x ∈ L↔ px ∧ x ≤ b.

Lemma

We can show the ”Non-Non Existence”
of a list L that lists p up to b.

Lemma

infinite p
↔ ∀n.¬¬∃L. . . .

Theorem

S is co-infinite.

14

Posts Problem Simple Predicates Construction Reducibility Notions

Co-Infinity

Definition

We say L lists p up to a bound b iff ∀x.x ∈ L↔ px ∧ x ≤ b.

Lemma

We can show the ”Non-Non Existence”
of a list L that lists p up to b.

Lemma

infinite p
↔ ∀n.¬¬∃L. . . .

Theorem

S is co-infinite.

15

Posts Problem Simple Predicates Construction Reducibility Notions

Posts Problem

Theorem (Post)

There exists a simple
predicate.

Corollary

There exists an undecidable,
but enumerable predicate S
with H �m S.

Corollary

≤m and ≤1 just like ≡m and
≡1 do not coincide.

15

Posts Problem Simple Predicates Construction Reducibility Notions

Posts Problem

Theorem (Post)

There exists a simple
predicate.

Corollary

There exists an undecidable,
but enumerable predicate S
with H �m S.

Corollary

≤m and ≤1 just like ≡m and
≡1 do not coincide.

16

Posts Problem Simple Predicates Construction Reducibility Notions

Many-One vs. One-One

”A one-one reduction is an injective many-one reduction”

Definition

p ≤1 q iff there is an injective function f , s.t. px↔ q(fx).

Definition (Computability Degrees)

p ≡1 q := p ≤1 q ∧ q ≤1 p

p ≡m q := p ≤m q ∧ q ≤m p

For a simple predicate S:

S �1 S ×N (Proof by notion of cylinder)

S ≤m S × N
S 6≡1 S × N
S ≡m S × N

16

Posts Problem Simple Predicates Construction Reducibility Notions

Many-One vs. One-One

”A one-one reduction is an injective many-one reduction”

Definition

p ≤1 q iff there is an injective function f , s.t. px↔ q(fx).

Definition (Computability Degrees)

p ≡1 q := p ≤1 q ∧ q ≤1 p

p ≡m q := p ≤m q ∧ q ≤m p

For a simple predicate S:

S �1 S ×N (Proof by notion of cylinder)

S ≤m S × N

S 6≡1 S × N
S ≡m S × N

16

Posts Problem Simple Predicates Construction Reducibility Notions

Many-One vs. One-One

”A one-one reduction is an injective many-one reduction”

Definition

p ≤1 q iff there is an injective function f , s.t. px↔ q(fx).

Definition (Computability Degrees)

p ≡1 q := p ≤1 q ∧ q ≤1 p

p ≡m q := p ≤m q ∧ q ≤m p

For a simple predicate S:

S �1 S ×N

(Proof by notion of cylinder)

S ≤m S × N

S 6≡1 S × N
S ≡m S × N

16

Posts Problem Simple Predicates Construction Reducibility Notions

Many-One vs. One-One

”A one-one reduction is an injective many-one reduction”

Definition

p ≤1 q iff there is an injective function f , s.t. px↔ q(fx).

Definition (Computability Degrees)

p ≡1 q := p ≤1 q ∧ q ≤1 p

p ≡m q := p ≤m q ∧ q ≤m p

For a simple predicate S:

S �1 S ×N

(Proof by notion of cylinder)

S ≤m S × N
S 6≡1 S × N
S ≡m S × N

17

Posts Problem Simple Predicates Construction Reducibility Notions

Conclusion

Theorem (Post)

There exists a simple
predicate.

Corollary

There exists an undecidable,
but enumerable predicate S
with H �m S.

Corollary

≤m and ≤1 just like ≡m and
≡1 do not coincide on enu-
merable predicates.

18

Posts Problem Simple Predicates Construction Reducibility Notions

Conclusion

Contributions:

Synthetic approach for a formalization of:

Simple predicates
Posts Problem for ≤m

Distinction of ≤1 and ≤m

⇒ Complete mechanization in Coq (∼ 2350 lines)

Careful study of infinite predicates

Roadmap:

Closer look at the synthetic axioms

Myhills-Theorem

Truth-table and Turing reduction, especially Posts Problem for
these reductions

18

Posts Problem Simple Predicates Construction Reducibility Notions

Conclusion

Contributions:

Synthetic approach for a formalization of:

Simple predicates
Posts Problem for ≤m

Distinction of ≤1 and ≤m

⇒ Complete mechanization in Coq (∼ 2350 lines)

Careful study of infinite predicates

Roadmap:

Closer look at the synthetic axioms

Myhills-Theorem

Truth-table and Turing reduction, especially Posts Problem for
these reductions

19

Backup Slides

20

Main References

Emil Leon Post. 1944. Recursively enumerable sets of positive integers
and their decision problems. Bulletin of the American Mathematical
Society 50 (1944), 284–316.

Hartley Rogers. 1967. The Theory of Recursive Functions and Effective
Computability, MIT Press, 77-178.

Nigel Cutland. 1980. Computability. Cambridge University Press,
121-142.

Fred Richman. 1983. Church’s thesis without tears. The Journal of
symbolic logic 48, 3 (1983), 797–803.

Andrej Bauer. 2006. First steps in synthetic computability theory.
Electronic Notes in Theoretical Computer Science 155 (2006), 5–31.

Yannick Forster and Dominik Kirst and Gert Smolka. 2019. On Synthetic
Undecidability in Coq, with an Application to the Entscheidungsproblem.
8th ACM SIGPLAN International Conference on Certified Programs and
Proofs, 38-51.

21

Coq Development

spec proof

Preliminaries 415 748

Infinity 75 184

Posts Problem 353 568

TOTAL 843 1500

22

Synthetic Axioms

In the construction of S:

An enumerator W : N→ (X → P) for enumerable predicates:

∀p. Ep↔ (∃c.∀x.px↔Wcx).

Enumerability of W.

In the proofs of the simple predicate properties:

The computability of the program-index deciding finite
predicates:

ΣC.∀nL.(∀x.Wnx↔ x ∈ L)

→ ∀mx.W(Cmn)x↔ x ∈ (m :: L).

Corollary from S-M-N:

∀f.∃g.∀nx.W(gn)x↔Wn(fx).

23

Definition (M-Completeness)

A predicate p : X → P is m-complete if it is enumerable and for
all datatypes Y and all predicates q : Y → P, Eq → q ≤m p.

Definition (Productiveness)

A predicate p : X → P is productive if there is a function
g : N→ X with

∀n.Wn ⊆ p→ p(gn) ∧ ¬Wn(gn).

Definition (Creativeness)

A predicate p : X → P is creative if it is enumerable and its
complement is productive.

24

Co-Infinity

Definition

We say L lists p up to a bound b iff ∀x.x ∈ L↔ px ∧ x ≤ b.

Lemma

We can show the ”Non-Non Existence”
of a list L that lists p up to b.

Lemma

infinite p
⇔ ∀n.¬¬∃L. . . .

If L lists S up to 2n:

[0, ..., 2n]\L lists S up to 2n.

|L| ≤ n
|[0, ..., 2n]\L| ≥ n

Theorem

S is co-infinite.

24

Co-Infinity

Definition

We say L lists p up to a bound b iff ∀x.x ∈ L↔ px ∧ x ≤ b.

Lemma

We can show the ”Non-Non Existence”
of a list L that lists p up to b.

Lemma

infinite p
⇔ ∀n.¬¬∃L. . . .

If L lists S up to 2n:

[0, ..., 2n]\L lists S up to 2n.

|L| ≤ n
|[0, ..., 2n]\L| ≥ n

Theorem

S is co-infinite.

24

Co-Infinity

Definition

We say L lists p up to a bound b iff ∀x.x ∈ L↔ px ∧ x ≤ b.

Lemma

We can show the ”Non-Non Existence”
of a list L that lists p up to b.

Lemma

infinite p
⇔ ∀n.¬¬∃L. . . .

If L lists S up to 2n:

[0, ..., 2n]\L lists S up to 2n.

|L| ≤ n
|[0, ..., 2n]\L| ≥ n

Theorem

S is co-infinite.

24

Co-Infinity

Definition

We say L lists p up to a bound b iff ∀x.x ∈ L↔ px ∧ x ≤ b.

Lemma

We can show the ”Non-Non Existence”
of a list L that lists p up to b.

Lemma

infinite p
⇔ ∀n.¬¬∃L. . . .

If L lists S up to 2n:

[0, ..., 2n]\L lists S up to 2n.

|L| ≤ n
|[0, ..., 2n]\L| ≥ n

Theorem

S is co-infinite.

24

Co-Infinity

Definition

We say L lists p up to a bound b iff ∀x.x ∈ L↔ px ∧ x ≤ b.

Lemma

We can show the ”Non-Non Existence”
of a list L that lists p up to b.

Lemma

infinite p
⇔ ∀n.¬¬∃L. . . .

If L lists S up to 2n:

[0, ..., 2n]\L lists S up to 2n.

|L| ≤ n
|[0, ..., 2n]\L| ≥ n

Theorem

S is co-infinite.

25

Definition (Cylinder)

A predicate p : X → P is a cylinder, if there exists an isomorph
type Y and q : Y → Prop with p ≡1 q × (λy.>).

Theorem

cylinder p↔ p ≡1 p× (λx.>)

26

One-One Reducibility

”A one-one reduction is an injective many-one reduction”

Definition

p ≤1 q iff there is an injective function f , s.t. px↔ q(fx).

Interesting properties:

p ≤1 q ⇒ p ≤m q

p ≤m q ⇔ p× N ≤1 q × N and therefore

p× N ≤m q × N⇔ p× N ≤1 q × N

But do ≤1 and ≤m coincide on all predicates?

27

Many-One vs. One-One

For a simple predicate S:

S �1 S × N (proof by notion of cylinder)

S ≤m S × N via λx.(x, 0) and S × N ≤m S via λ(x, n).x.

Definition

We define computability degrees:

p ≡1 q := p ≤1 q ∧ q ≤1 p

p ≡m q := p ≤m q ∧ q ≤m p

Clearly p ≡1 q implies p ≡m q, but

S 6≡1 S × N and S ≡m S × N.

	Posts Problem
	Simple Predicates
	Construction
	Reducibility Notions
	Appendix

