
Saarland University
Faculty of Mathematics and Computer Science

Bachelor’s Thesis

Synthetic One-One, Many-One,
and Truth-Table Reducibility

in Coq

Author
Felix Jahn

Advisor
Yannick Forster

Reviewers
Prof. Dr. Gert Smolka
Prof. Dr. Markus Bläser

Submitted: September 15th, 2020

ii

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit selbstständig ver-
fasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet
habe.
Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen
in die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.
Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken, September 15th, 2020

Abstract

Reducibility is an essential concept for undecidability proofs in computability the-
ory. The idea behind reductions was conceived by Turing, who introduced the later
so-called Turing reduction based on oracle machines. In 1944, Post furthermore in-
troducedwith one-one,many-one, and truth-table reductions in comparison to Tur-
ing reductions more specific reducibility notions. Post then also started to analyze
the structure of the different reducibility notions and their computability degrees.
Most undecidable problems were reducible from the halting problem, since this
was exactly the method to show them undecidable. However, Post was able to con-
struct also semidecidable but undecidable sets that do not one-one, many-one, or
truth-table reduce from the halting problem.
This thesis formalizes and mechanizes parts of the traditional one-one, many-one,
and truth-table reducibility theory based on a synthetic approach in the construc-
tive type theory of the proof assistant Coq. The core idea of synthetic computability
theory is to work in a setting that allows to identify the notion of a functionwith the
notion of a computable function. As a programming language, Coq forms such a
synthetic setting by guaranteeing all definable and therefore appearing functions to
be immediately computable which avoids complex constructions in an underlying
computational model.
We show positive results like Myhill’s isomorphism theorem, order properties of
reductions, and characterize both many-one and truth-table reducibility in terms
of one-one reductions in axiom-free Coq. Distinctions of reducibility degrees as
stated for instance by Post are in contrast only provable using particular properties
of computational models like a universal machine. Constructing such a machine is
not possible when working synthetically without a concrete computational model
in hand. Assuming however abstract synthetic axioms concerning the computabil-
ity of functions allows us to prove also negative results synthetically. We follow
Post’s construction of a simple set and achieve an intermediate many-one degree
between decidable and many-one complete sets as well as further distinctions of
reducibility degrees like many-one and truth-table completeness.

Acknowledgements

First and foremost, I have to thank Yannick: Without his LaTex template, the thesis
would look different ;-) Seriously, very special thanks to Yannick for the great guid-
ance throughout the whole process, from motivating the topic to multiple proof-
reading, for innumerable exciting ideas and his inspiration for research shared in
countless discussions. His outstanding scientific advice but especially his support
beyond that were anything else than self-evident. Without him, this thesis would
definitely look different, it would not even exist.
Of course I would like to thank Professor Smolka, who introduced and inspired
me to the field of Computational Logic, gave me the opportunity to write the thesis
at his chair, and supervised the project. But also apart from this thesis, he men-
tored and supported me throughout my whole studies and was always available
for valuable advice.
I also want to thank all the other people of the Programming System Lab, who
made me fell comfortable at the chair right from the start.
Many thanks also to Professor Bläser for arousingmy interest in computability the-
ory early on and for reviewing this thesis.
Big thanks to all my fellow students I met and who accompanied and supported
me throughout the years and to all the people who fought their way through my
lines while proofreading, special thanks to Laura, Marcel, Jannis, and Simon.
Finally, I would like to thank those who always gave me their backing, who gave
me energy and motivation for my studies, but also reminded me again and again
that there is a life outside of university. Many thanks to my parents, to Mirjana,
and to all my friends!

Contents

Abstract iii

1 Introduction 1

2 Technical Preliminaries 9
2.1 Type Theory . 9
2.2 Preliminary Definitions . 10
2.3 Witness Operator and Inverse Functions 11
2.4 List Predicates and List Functions . 13

3 Synthetic Computability Theory 16
3.1 Basic Notions of Computability Theory 17
3.2 Basic Computability Theory Results 21
3.3 Axioms of Synthetic Computability Theory 25
3.4 Recursive µ-Operator . 30

4 Reduction Characterizations 33
4.1 Myhill’s Isomorphism Theorem . 33
4.2 Cylinders & Many-One Reductions as One-One Reductions 40
4.3 Truth-Table Reductions as One-One Reductions 42

5 Infinite Predicates 47
5.1 Functional Infinite Predicates . 47
5.2 Predicates Containing Elements of Any Number 48
5.3 Non-Finite Predicates . 49
5.4 Properties of Infinite Predicates . 51

6 Simple Predicates, Post’s Problem & Distinctions 54
6.1 Construction of a Simple Predicate . 56
6.2 Properties of Simple Predicates & Post’s Problem w.r.t. �m 60
6.3 Distinction of Many-One and Truth-Table Reducibility 65

vi Contents

7 Mechanization Details 69

8 Further Results in Reducibility Theory & Future Work 73
8.1 One-One and Many-One Completeness 73
8.2 Bounded Truth-Table Reductions . 74
8.3 Hyper-Simple Predicates & Post’s Problem w.r.t �tt 75
8.4 Turing Reductions and Post’s Problem for Turing Reductions 76
8.5 Precise Structure of Computability Degrees 77
8.6 Necessary Axioms and Questions of Reverse Mathematics 78

9 Conclusion 79

Bibliography 83

Chapter 1

Introduction

The foundation of what we know as computer science and especially theoretical
computer science is what is nowadays called computability theory, started by the
pioneering works of Church, Turing, Gödel, Post, Rosser, Kleene, and others in the
1930’s. After the Church-Turing thesis and the equivalence proof of several com-
putational models, Turing introduced the central concept of so-called reductions,
which initially served as a method for showing undecidability. Additionally, also
further questions regarding the various reduction concepts immediately arose and
provided many more insights into computability theory.
Working in the proof assistant Coq, we want to formalize and mechanize numer-
ous traditional results concerning one-one, many-one, and truth-table reductions
in constructive type theory. The thesis takes an approach known as synthetic com-
putability theory, which will allow to abstract from an underlying computational
model throughout the formalization andmechanization. Instead, we can focus on a
clear presentation and an advanced analysis of the mathematical and logical foun-
dations of the studied computability results.
Computability Theory The research on computability theory was motivated by
the question, which functions are "effectively calculable" and associated with that
which problems can be determined by an "effective computation". Independently
to the development of mechanical calculator machines, theoretical computability
models were developed in order to improve the understanding of the nature of
computable functions.
Positive results like the actual computability of functions could be justified by a
concrete description of the respective calculation: Human beings or also machines
follow an exactly given instruction and carry out the computation without further
insights, intuition, or ingenuity only based on the calculation "recipe". Such func-
tions were then called to be effectively calculable. However, this frequently used
but informal expression did not allow to address also negative results. Showing

2 Introduction

for instance the undecidability of a certain problem and therefore the non-existence
of effective calculations for particular functions was not provable without a formal
notion of such calculations.
Therefore, the intuitive notion of an effectively calculable function should be char-
acterized more formally by finding various (possibly incomplete) notions of com-
putation: Numerous models like λ-calculus introduced by Church [6][7] and
Kleene and Rosser [23], Gödel’s (general) µ-recursive functions [20] as well as the
nowadaysmost famous Turingmachines [36] were developed and the computabil-
ity of functions could be discussed under the perspective of the respective models.
Furthermore and already with the introduction of their computability models,
Church and Turing stated both in 1936 the thesis that λ-calculus or respectively
Turing machines compute exactly the effectively calculable functions and that their
models do not only cover a part of those functions.
While it was at first controversial or at least unclear whether "Church’s thesis"
and/or "Turing’s thesis" should be believed, Turing could support and substan-
tiate both theses: He showed still in the same year 1936 the computability models
λ-calculus and Turing machines to describe exactly the same functions and thus
"Church’s thesis" and "Turing’s thesis" to be equivalent [36]. The subsequently
called "Church-Turing thesis" made therefore the claim that "effectively calculable"
functions are exactly characterized by Turingmachines or any other equivalent and
consequently so-called Turing-complete model. Even though this statement is nei-
ther provable nor refutable but rather of philosophical nature, it was widely ac-
cepted and became the basis of further computability theory.
Based on the now consolidated concept of a computable function, the question of
computationally decidable problems could also be investigated further. This was
in some sense the founding moment of the theoretical research that had now the
possibility to formally define and prove undecidable problems such as the well-
known halting problem as also already done by Church and Turing in their initial
papers.
Reductions When considering further seemingly undecidable problems, the
methodology of so-called reductions was developed by Turing and extended by
Post. Reducing a certain problem A to another problem Bwas supposed to reduce
the question of the decidability of A by the help of the reduction to B. Following
this idea, the concept of a Turing reduction fromA to Bwas defined as the possibil-
ity to construct a deciding algorithm for A out of a deciding algorithm for B1[37].
Conversely, reductions could then be used to show further problems undecidable:

1"Deciding algorithm" is actually a somewhat imprecise term, which should above all convey in-
tuition. Turing reductions actually use so-called oracle machines, see chapter 8.4 for more details.

3

If an already proven undecidable problem A such as the halting problem could be
reduced to a further problem B, then also B had to be undecidable to not contradict
the undecidability of A.

In addition to decidability, two further essential concepts of computability theory
developed in the investigation of undecidable problems: Even if many problems
such as the halting problem are undecidable, they are semidecidable or equiva-
lently recursively enumerable. Semidecidability of a problem can be characterized
as the existence of a program (or Turing Machine, or λ-term, or other computa-
tional model) which terminates exactly on the instances of the problem. This, in
turn, led Post [28] to define the so-called reduction completeness with respect to
various reducibility notions. A problem P is for example called Turing (reduction)
complete, if it is itself semidecidable and if every other semidecidable problem is
Turing reducible to P. By the above mentioned understanding of semidecidability,
the halting problem is the canonical example for complete problems.

Post’s Problem&Computability Degrees On the other hand, as described above,
it was possible to prove the undecidability of many problems by reduction from
the halting problem. It even seemed that all semidecidable but undecidable prob-
lems are reducible from the halting problem. In 1944, this question was raised by
Post in his paper "Recursively enumerable sets of positive integers and their de-
cision problems" [28]: He specifically asked for the existence of a semidecidable
but undecidable set, which is not Turing reducible from the halting problem. This
question became then known as Post’s problem2. Even though he was not able to
find a set solving his problem for Turing reductions, he approached the problem
piecemeal and developed during the process important reducibility theory. He
introduced further reducibility notions like the today well-known one-one, many-
one, and truth-table reductions. Those notions were actually stronger reducibility
notions than the Turing reduction. He could then construct sets, so-called simple
and hyper-simple sets answering the question of Post’s problemwith respect to the
stronger reducibility notions positively. It was not until 1955 that Muchnik [24]
and Friedberg [17] independently solved the original Post’s problem with respect
to Turing reductions: Also for this reducibility notion, fitting sets solving the prob-
lem could be constructed by the so-called priority method.

The newly developed reducibility notions also gave room for further interesting
research: Many-one reductions transport for example not only decidability but
also semidecidability, which makes these reducibility notions very useful in order
to classify problems into different computability classes. Furthermore, all the re-
ducibility notions form a preorder and the computability degrees corresponding to
the different reductions were considered.

2not to be confused with the undecidable Post’s correspondence problem

4 Introduction

Those computability degrees, defined as the existence of reductions from set A to
B as well as conversely from B to A, form an equivalence relation on sets and dis-
tinguish problems in different classes of computability with respect to certain re-
duction notions. The definition of complete problems implies those problems to
form the class with maximal computability degree on the semidecidable sets. My-
hill [25], Post [28], Nerode [26], Fischer [11], andmany others continued to analyze
the structure, coherences and similarities as well as differences of reductions and
those degrees with respect to different reducibility notions more closely.

Traditional Computability Theory Since these developments in the 1930’s and
1940’s, many other important and interesting results about reductions were been
found and proven. In addition, many presentations and textbooks of computability
theorywere been published in the second half of the 20th century, like the literature
of Rogers [31], Cutland [8] and Soare [32], where the theory of reductions plays an
essential role. All this traditional computability theory works in the usual classical
logic system: The proofs use the classical principle of excluded middle or related
further classical proof principles. Various axioms of choice are also frequently used
as a support at appropriate points. Furthermore, there is no deviation from the
concept of a concrete model of computation, which was established at the latest by
the Church-Turing thesis: First, one or more computability models are introduced
to define the computability of a function based on those concrete model. With this
definition and the underlyingmodel of computation further results are then shown.

ConstructiveMathematics In addition to classical mathematics, various other for-
mal logic systems developed in the course of the 20th century that differed signifi-
cantly from the standard classical concept of logic. Such a new concept is construc-
tivemathematics, which does not include the law of excludedmiddle and therefore
no double negation elimination [5]. Instead, it follows the idea that a statement like
for example the existence of a mathematical object is only provable by constructing
the object. Various mathematical fields were then looked at again from a construc-
tive point of view, which led to new insights into the basics of logic as well as a
deeper understanding of the pure mathematical fields. Analyzing existing results
under a constructive perspective made it possible to work out exactly which prin-
ciples of classical logic are used at which points. In the attempt to constructivise
those proofs, other and possibly simpler proof lines could be found or correlations
discovered that explain why different axioms are even necessary to show certain
theorems. These connections and necessities of axioms became the core question
of the research field called reverse mathematics, among others explored under a
constructive perspective by Ishihara [22] refining Friedman’s reverse mathemat-
ics [18]. Also in the area of computability theory, this new logical approach as well
as a further analysis under the reverse mathematical viewpoint provided new in-
sights. For example Post’s theorem, stating that semidecidability of both the pred-

5

icate and its complement implies decidability, could be shown to be equivalent to
the classical axiom of Markov’s principle (cf. Troelstra and van Daalen [35]).

Synthetic Computability Theory With synthetic computability theory another
approach deviating from traditional theory was developed by among others Rich-
man [30] and Beeson [4]: Instead of introducing a concrete model of computation,
one works in a setting that allows to identify the notion of a function with the no-
tion of a computable function. Such settings are based on various general theories
of mathematical foundations justifying the computability of occurring functions.
A prominent example is Hyland [21], who uses category theory to construct what
he calls the "effective topos" as well as Bauer [3] and Richman[30] using (construc-
tive) set theory. The computability of the appearing functions, that is guaranteed
in a certain way, allows to abstract from the often fiddly details in traditional set-
tings when dealing with for instance Turing machines. The level of abstraction
offered by this synthetic approach pays off especially in the formalization and even
more blatantly in themechanization of computability theory as observed by Forster,
Kirst, and Smolka [14]. Due to the inconvenience of using concrete computational
models formally, these very places are often quite hand-wavy in traditional pre-
sentations. Programming in a rudimentary computability model becomes soon
extremely complex and exhausting. Therefore, one is traditionally often content
with an informal description of the program or uses phrases like "obviously com-
putable". A synthetic approach now offers the possibility of formalization and
mechanization without having to work primarily on those details. In return, it al-
lows to focus the attention on the "pure" mathematical theory.

Coq’s Type Theory The synthetic approach is maybe most natural in type theory,
where a notion of computation natively exists. Based on the so-called polymorphic
calculus of cumulative inductive constructions [34], the type theory of the interac-
tive proof assistant Coq is used also in general tomechanize various fields ofmathe-
matics and computer science in its constructive logic system. Under the assumption
of axioms, one can also use further proof principles in Coq, in its axiom-free type
theory it is however purely constructive.

Also differentmodels of computation are alreadymechanized inCoq or other proof
mechanization tools: There are several developments that mechanize the notion of
Turing machines (cf. Asperti and Ricciotti [1][2], Xu, Zhang, and Urban [38] or
Forster, Kunze, andWuttke [15]), Carneio and Larchey-Wendling work on amech-
anization of µ-recursive functions in Coq, and also different λ-calculi like the full
λ-calculus (Norrish [27])or the weak call-by-value λ-calculus (Forster and
Smolka [13]) are mechanized as models of computation. Even though these works
as well as related work on further models like stack or counter machines includes
often not only the model itself but also first basic results in computability theory

6 Introduction

by using their underlying model, it became quite hard to work formally with the
concrete model when proving advanced computability results.
However and similar to constructive set theory also Coq’s type theory can serve as a
synthetic setting in order to mechanize computability theory synthetically: Beside
the foundation of constructive mathematics, Coq also serves as a typed program-
ming language. This guarantees all functions definable in Coq and therefore all
functions occurring during the mechanization to be (effectively) computable func-
tions. One is again able to abstract from an explicit and often difficult computation
argument for an appearing function, since it is already given by defining the func-
tion in Coq. Coq itself justifies as a programming language the computability of
functions and therefore the validity of computability theory in its synthetic setting.
Coq’s type theory is therefore optimally suited for constructive and synthetic for-
malizations and mechanizations of computability theory. This was for instance al-
ready explored in the works of Forster, Kirst, and Smolka [14], who among other
things prove results about synthetic decidability, many-one reductions, and some
concrete problems like the Entscheidungsproblem. Also the numerousmechaniza-
tions of reductions in the Coq library of undecidable problems by Forster et al. [16]
take the advantage of Coq’s synthetic setting.
Synthetic Computability Axioms All of this work mechanizing computability
theory synthetically has in common, that it focuses on positive results like using
Coq to construct and verify deciders or reduction functions. Following further tra-
ditional results and their presentations of for instance undecidable problems or the
non-existence of particular reductions reveals another crucial difference of the syn-
thetic approach3: In contrast to the traditional presentations, synthetic computabil-
ity theory abstracts from the concrete model of computation and can therefore not
prove and especially use certain properties of this model. Traditional work is for
example based on a universal machine simulating a concretely given instance of the
computational model (or its encoding) on a given input. Without a computational
model in hand, it is not possible to construct such a universal machine and one can
therefore neither define numerous undecidable problems like the halting problem
nor show other negative results.
To show such results synthetically nevertheless, one has to assume the necessary
computational properties as abstract axioms. By assuming for instance an abstract
imitation of a universal machine as done in the fundamental axiom of synthetic
computability theory called Church’s thesis (cf. Troelstra and vanDaalen [35]) one
adds among other things undecidable problems to the setting. Assuming such syn-
thetic computability axioms was explored more closely by for instance

3not only appearing in the synthetic setting formed byCoq but appearing in generalwhenworking
synthetically

7

Richman [30] and Bauer [3], and in parts already formalized and mechanized by
Forster [12]. Similar to the constructive view on classical proofs, also the synthetic
approach using axioms leads to a precise analysis on what properties of the com-
putational model are used at which point. In addition, it opens again the field for
questions of reversemathematics regarding theweakest necessary set of axioms for
certain results.
Thesis Structure & Contributions This thesis aims to continue the constructive
formalization and mechanization of synthetic computability theory in the field of
reducibility theory. By using synthetic axioms, one of themain contributions of the
thesis is the formalization and mechanization of also negative results in synthetic
computability theory. There are already mechanizations of the halting problem as
well as further undecidable problems on concrete Turing machines or in lambda
calculus [13]. In contrast to those often inconvenient proofs because of the above
described problematic regarding the formal work with concrete models, we can
present clear and clean proofs and address more advanced results of reducibility
theory.
Therefore, we want to introduce different reducibility notions like one-one, many-
one, and truth-table reductions and show different results about these reducibility
notions and their corresponding degrees. We start in chapter 3 with the definitions
of basic terms of computability theory like (semi-)decidability and enumerability
as well as the different notions of reductions and prove their basic properties like
closure and transport properties. We will furthermore introduce axioms in syn-
thetic computability theory. It turns out, that it is not necessary to assume all the
strong properties of concrete computability models like for example a universal
machine. The for our results actually required axioms are discussed and justified
more precisely in chapter 3.3.
Chapter 4 continues with a formalization of Myhill’s isomorphism theorem, stat-
ing the coincide of recursive isomporphisms and the one-one degree. This proof
is as its name suggests due to Myhill and based on the notion of finite correspon-
dence sequences [25]. We focus on further characterizations of reductions and their
degrees and look at so-called cylinders and truth-table cylinders, that can express
many-one reductions in terms of one-one reductions as well as truth-table reduc-
tions in terms of one-one reductions.
We come back to the work of Post and want to address Post’s problem with respect
to many-one reducibility and formalize his class of simple sets. Using the universe
of propositions included in Coq’s type theory, we represent traditional sets (of for
example natural numbers) as predicates over those types. Accordingly, we will
from now on only speak about predicates instead of sets or problems4. For rea-

4with the exception of the "halting problem"

8 Introduction

sons of consistency and understanding, this will be maintained even in passages
regarding traditional mathematic or computability theory.
In order to formalize Post’s simple predicates that are defined as a subclass of infi-
nite predicates, we will have to address a formalization of infinite predicates. The
definition and behavior of those predicates in our constructive and synthetic setting
turns out to be highly interesting as well as essential for the actual results concern-
ing reducibility theory. Therefore, we formalize firstly different notions of infinite
predicates and their properties like for instance different closure properties of in
chapter 5. We thereby detect serious differences to the classical understanding of
infinite predicates by recognizing significant constructive differences between var-
ious notions of infinite predicates, that are in contrast classically seen to be equiv-
alent. Chapter 5 can be read largely independently from the computability theory
formalized in the rest of the thesis. In particular, it is possible to read this chapter
in altered order.
Using the work about infinite predicates and carefully chosen synthetic axioms,
we can then construct simple predicates in chapter 6 and show their characteris-
tics, that allow us to derive further results regarding reducibility notions: Firstly,
we can formalize Post’s problem for many-one reductions and therefore a distinc-
tion of different many-one degrees on the class of semidecidable but undecidable
predicates. Simple predicates yield furthermore a distinction of one-one andmany-
one reductions on this class of predicates as well as a distinction of many-one and
truth-table completeness.
All of those mentioned results from chapters 2 – 6 are not only formalized but also
mechanized in Coq’s proof assistant. The definitions, lemmas and theorems are
hyperlinked to a version of the development viewable in a webbrowser, the source
code is available under:

https://github.com/uds-psl/synthetic-reducibility-in-coq

We take a closer look at the mechanization in chapter 7 and point out some of the
important decisions as well as occurring difficulties during this development.
Lastly, we want to discuss possible future work in the fields discussed by this the-
sis. Since the theory of reductions is traditionally quite diverse and far-reaching,
there are many further results that are of great interest to analyze under a construc-
tive and synthetic perspective as well as to formalize and mechanize those results.
However, chapter 8 not only lists this possible future work, but also discusses in de-
tail further traditional computability results not addressed in this thesis. Besides
this embedding of our work in traditional theory, we also take a look at possible
future work regarding the foundations of our constructive and synthetic approach
to computability theory.

Chapter 2

Technical Preliminaries

In this chapter, we give a short introduction in Coq’s type theory and present basic
definitions, notations, and results required for our work.
2.1 Type Theory
We formalize and mechanize reducibility theory in the constructive type theory of
Coq [34], that is based on a universe of types T including an impredicative subuni-
verse of propositions P. Wemainly use the following (inductive) types throughout
this thesis:

n : N ::= 0 | Sn (natural numbers)
b : B ::= true | false (booleans)

o : O(X) ::= None | Some x where x : X (options)
L : L(X) ::= [] | x :: L where x : X (lists)
X+ Y ::= Lx | Ry where x : X and y : Y (sums)
X× Y ::= (x, y) where x : X and y : Y (products)

We use the common operations on natural numbers and Cantor’s bijective pairing
function 〈· , ·〉 : N → N → N with the respective inverses π1, π2 : N → N . ∨B is the
boolean disjunction, ∧B the boolean conjunction, and ¬B the boolean negation. hd
projects the first element of a non-empty lists. We overload π1 and π2 by denoting
also the projections out of a pair by these notions.
The function type for functions from type X to type Y is denoted as X → Y. Fur-
thermore, Coq includes a dependent function type ∀x : X.tx, where the type of the
function value depends on the argument x, i.e. t : X → T. We write functions of
both types X → Y and ∀x : X.tx as λx : X.s, where s : Y or s : tx respectively and x
may occur in s.
Similarly, Coq includes dependent pairs, where the type of the second component

10 Technical Preliminaries

depends on the first component of the pair:

Σx : X. tx ::= (x, s) where t : X→ T and xmay occur in s : tx.

The proposition > expresses truth, ⊥ falsity, ∧ logical conjunction, ∨ logical dis-
junction, and→ logical implication.
We denote logical universal quantification as ∀x.px and logical existential quantifi-
cation as ∃x.px, where p : X→ P.
⊥ implies every other proposition, i.e. ∀P : P. ⊥ → P. Logical negation of P : P is
defined as ¬P := P → ⊥. For our purposes crucially, one can prove the following
logical statement purely constructive:

Lemma 2.1 For all propositions P : P, we have ¬¬(P ∨ ¬P).

TheLemmaespecially allows to logically decide every propositionwhenproving⊥.
For ¬¬∃x.px, we say that "there weakly exists x such that px" where again p : X→ P.
We represent sets with elements of a type X as a predicate over X, i.e. a function
p : X→ P such that px holds exactly for those x that are in the set.
While sum types and dependent pairs can be eliminated in arbitrary contexts, pro-
positional disjunctions and existential quantification can only be eliminated when
proving propositions. Especially for p : X→ P, ∃x.px implies not in general Σx.px.
2.2 Preliminary Definitions
We define basic notions for functions, types, and predicates.

Definition 2.2 A function f : X→ Y is called,

1. surjective, if ∀y. ∃x. fx = y.

2. injective, if ∀x1x2. fx1 = fx2 → x1 = x2.

3. bijective, if f is surjective and injective.

We define surjections and injections from predicates p : X→ P to q : Y → P :

4. f : p� q := ∀y. qy→ ∃x. px∧ fx = y.

5. f : p ↪→ q := ∀x1x2. px1 → px2 → fx1 = fx2 → q(fx1)∧ x1 = x2

We write p� q, if there exists f : p� q and write p ↪→ q if there exists f : p ↪→ q.

6. We call types X and Y isomorphic, if there exists a bijection f : X → Y. In this
case, we write X ∼= Y.

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Preliminaries_Coq.html#FalseDec_help
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Preliminaries_Coq.html#injective

2.3. Witness Operator and Inverse Functions 11

We identify types X with their constant true predicate λx : X. > and use the above
definitions 4. and 5. also for types. Accordingly, we write for instance p � X,
X ↪→ p, or X ↪→ Y.

Definition 2.3 Let X : T, p : X→ P, and q : X→ P. We define,

1. the complement of p as p := λx. ¬px.

2. the intersection of p and q as p∧ q := λx. px∧ qx.

3. the union of p and q as p∨ q := λx. px∨ qx.

4. the difference of p and q as p \q := λx. px∧ ¬qx.

5. the subset of predicates as p ⊆ q := ∀x. px→ qx.

6. a certifying decider for p to be a function of type ∀x. px+ ¬px.

7. p to be stable, if ∀x. ¬¬px→ px.

8. X to be discrete, if there exists a certifying decider for the predicate λ(x1, x2). x1 = x2.

9. X to be enumerable, if N� X.

10. X to be a datatype, if X is discrete and enumerable.

Although the above notions aswell as all following definitions regarding predicates
are defined only on unary predicates, we use them for n-ary relations via (implicit)
uncurrying. In functional definitions, we denote the computation deciding a pred-
icate p with certifying decider as ppxq.
2.3 Witness Operator and Inverse Functions
Coq’s type theory allows to prove axiom-freely a so-called witness-operator, that
given a witness proof for the satisfiability of a predicate p with certifying decider
computes an element in p.

Lemma 2.4 For predicates p : N → P with certifying decider f : ∀x. px + ¬px, there is a
witness operator ωN : (∃x.px)→ N, that computes an element satisfying p, i.e.

∀H : (∃x.px). p(ωNH).

Proof For every predicate p, we define an inductive guard predicate G : N → P by
the rule:

pn→ G(Sn)

Gn

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Preliminaries_Coq.html#compl
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Recursive_Mu_Operator_Coq.html#wo_NN_sig

12 Technical Preliminaries

The induction principle for G

∀q : N→ T. (∀n. (pn→ q(Sn))→ qn)→ ∀n. Gn→ qn

allows us to proof the key property of G:
1. ∀n. Gn→ Σx.px by induction on G for the constant predicate qn := Σx.px and

deciding pn. In the case, pn, we use the inductive hypothesis.
Furthermore, the guard predicate G is defined such that

2. (∃n.Gn)→ G0 holds by induction on n using the fact G(Sn)→ Gn, and
3. (∃x.px)→ (∃n.Gn).

Therefore, we define ωN by applying 3, 2, and 1. �

The introduced witness operator ωN for predicates over natural numbers yields
version fore more general types:

Corollary 2.5 For predicates p : X → P with certifying decider f : ∀x. px + ¬px and an
enumerator E : N� X, there is a witness operator ωX : (∃x.px)→ X such that

∀H : (∃x.px). p(ωXH).

Proof By applying ωN to the natural number predicate λn.p(En). �

Notice, that we need both the certifying decider as well as the enumerator in hand
when applying the witness operator. UsingωX, we can define inverse functions of
bijections.

Lemma 2.6 Let X be enumerable, Y a discrete type and f : X → Y a bijective function.
Then, there is an inverse function f−1 such that

∀y. f(f−1y) = y and ∀x. f−1(fx) = x.

Proof For all elements y : Y, the predicate py := λx. fx = y

1. has a certifying decider, since Y is discrete, and
2. has a witness for its satisfiability Hy : ∃x.fx = y by the surjectivity of f.

Given y : Y, we can therefore use ωX on the predicate py and define �

Notice, that we use the injectivity of f only in the last proof step. Therefore, one can
also define for a surjection f the right-inverse function f−1 such that ∀y. f(f−1y) = y.

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Recursive_Mu_Operator_Coq.html#wo_T_sig
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Recursive_Mu_Operator_Coq.html#inv

2.4. List Predicates and List Functions 13

2.4 List Predicates and List Functions
Lists play an essential throughout the whole development. We introduce basic
predicates and operations on lists. Thereby, we overload the subset notation " ⊆ "
multiple times.

Definition 2.7 We define inductive predicates ∈ : X → L(X) → P for list membership
and # : L(X)→ P for duplicate-free lists by the following inductive rules:

x ∈ (x :: L)

x ∈ L
x ∈ (a :: L) #[]

x /∈ L #L
#(x :: L)

Furthermore, we define

1. the subset of lists as L1 ⊆ L2 := ∀x ∈ L1. x ∈ L2.

2. the subset of lists in predicates as L ⊆ p := ∀x ∈ L. px.

3. the subset of predicates in lists as p ⊆ L := ∀x. px→ x ∈ L.

We denote the length of a list L as |L| and denote the append of lists L1, · · · , Ln as
L1 ++ · · · ++Ln. We define recursively the mapping of a function pointwise to all
elements of a list:

map : (X→Y)→ L(X)→ L(Y)

map f [] := []

map f (x :: L) := (fx) :: (map f L)

We introduce basic properties of the above functions and predicates. Notice espe-
cially the results for injective mappings.

Lemma 2.8 For all lists L and functions f,

1. |map f L| = |L|.

2. ∀y. y ∈ (map f L)↔ ∃x ∈ L. fx = y.

For all predicates p, lists L ⊆ p, and injections f : p ↪→ Y :

3. For all x with px : x ∈ L↔ fx ∈ (map f L).

4. #L↔ #(map f L).

Proof 1. and 2. by induction on L or L1, 3. follows with 2., and 4. with 3. �

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Preliminaries_Lists_Coq.html
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Preliminaries_Lists_Coq.html#map_setinj_elem

14 Technical Preliminaries

For lists of pairs, we define both projections and a swapping function:

π1 : L(X× Y)→ X π2 : L(X× Y)→ Y

π1L := map π1 L π2L := map π2 L

↔· : L(X× Y)→ L(Y × X)
↔
L := map (λ(x, y). (y, x)) L

Those functions come with the following basic results:

Lemma 2.9 For all lists of pairs L : L(X× Y),

1. |π1L| = |π2L| = |
↔
L | = |L|.

2. ∀x. x ∈ π1L↔ ∃y.(x, y) ∈ L and ∀y. y ∈ π2L↔ ∃x.(x, y) ∈ L;
furthermore ∀xy. (x, y) ∈ L↔ (y, x) ∈

↔
L .

If f is in addition an enumerator of Y and X× Y is discrete, then:

3. Given x ∈ π1L, one can compute y with (x, y) ∈ L.

Proof 1. and 2. Straightforward with Lemma 2.8.
3. By using the witness operator ωY for the predicate λy. (x, y) ∈ L. �

In the remaining chapter, we assume the underlying list type to be discrete. There-
fore, there is not only a certifying decider for λx1x2. x1 = x2 but also for λxL. x ∈ L.
We define recursive functions removing a given element from a list, computing the
difference of two lists and computing the maximum of lists over natural numbers:

− : L(X)→ X→ L(X)

[] − a := []

(x :: L) − a := let L1 := L− a in if px = aq then L1 else x :: L1

\ : L(X)→ L(X)→ L(X)

[] \L2 := []

(x :: L1) \L2 := let L := L1 \L2 in if px ∈ L2q then L else x :: L

max : L(N)→ N
max[] := 0

max(x :: L) := let m := max L in if px > mq then x else m

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Preliminaries_Lists_Coq.html#PairList

2.4. List Predicates and List Functions 15

The functions comewith the expected properties. Notice furthermore, that L−x and
L \L2 are duplicate-free, if L is duplicate-free. Analogously to the removing func-
tion filtering a list for a given element, one can also define a more general function
filtering lists with respect to every other predicate with certifying decider.
The removing function allows us to prove two variants of the pigeonhole principle.

Lemma 2.10 (Pigeonhole Principles) Let X be discrete, L1, L2 : L(X)with #L1. Then,
1. |L1| > |L2|→ ∃x. x ∈ L1 ∧ x /∈ L2.

2. L1 ⊆ L2 → |L1| 6 |L2|.

Proof 1. By induction on L1 for generalized L2. In the step case (a :: L1), we use
the inductive hypothesis for L2 − a.

2. Assuming L1 > |L2| contradicts L1 ⊆ L2 by 1. �

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Preliminaries_Lists_Coq.html#pigeonhole_exists

Chapter 3

Synthetic Computability Theory

Coq’s type theory forms a synthetic setting for computability theory, that we want
to use for our aspired formalization and mechanization of reducibility theory. In-
stead of following the traditional presentations of computability theory by intro-
ducing a concretemodel of computation and formalize results based on thismodel,
we work directly in a programming language that justifies the computability of oc-
curring functions: A function defined in Coq’s typed programming language is
immediately guaranteed to be indeed an effectively computable function.
Also in the sense of the prominent and widely accepted Church-Turing thesis, that
states all effectively calculable functions to be computable by the various notions
of Turing complete models, one can argue the computability of Coq functions. The
functions definable in Coq form a subclass of Turing computable functions, such
that it is sound with traditional computability theory to assume Coq functions to
be computable in the traditional sense.
The synthetic approach offers a significant benefit in the formalization of com-
putability theory. We do not have to deal with formal definitions of for instance
Turing machines, which becomes highly complex during proofs and even more
during their mechanization. We will not have to struggle through inconvenient
constructions of Turing machines or similar computational models to justify the
computability of a certain function; the function is justified to be computable as a
Coq function.
Wewill explore this advantage of the synthetic setting already in this chapter when
defining notions of computability theory and proving basic results concerning
those notions. It then pays off even stronger in the more profound results pre-
sented in the further chapters, whose clean formalization is only made possible by
this approach.
This chapter reviews formalizations from Forster, Kirst, and Smolka [14] and ex-
tends those results to truth-table reductions and the notions of computability de-

3.1. Basic Notions of Computability Theory 17

grees and introduces furthermore the for our intended results necessary synthetic
axioms based on the work from Forster [12].
3.1 Basic Notions of Computability Theory
We start by introducing basic notions and define them in our synthetic setting. Re-
call thatwe formalize sets anddecision problems inCoq’s type theory as predicates.
A predicate is traditionally understood to be decidable if there exists a computable
decider for the predicate. Besides varying formulated specifications of those de-
ciders, the traditional definitions contain always the explicit condition of this de-
cider to be computable in the sense of their underlying computability notion. We
can omit this explicit condition: every decider is immediately computable as a Coq
function. Similarly, we can simplify the definition of semidecidable and (recur-
sively) enumerable predicates.

Definition 3.1 A predicate p : X→ P is called

1. decidable, if there exists a function f : X→ B such that

∀x. px↔ fx = true.

In this case, we write Dp and call f a decider for p.

2. semidecidable, if there exists a function f : X→ N→ B such that

∀x. px↔ ∃n. fxn = true.

In this case, we write Sp and call f a semidecider for p.

3. enumerable, if there exists a function f : N→ O(X) such that

∀x. px↔ ∃n. fn = Some x.

In this case, we write Ep and call f an enumerator of p.

4. strongly enumerable, if there exists a function f : N→ X such that

∀x. px↔ ∃n. fn = x.

In this case, we call f a strong enumerator of p.

Notice the only slight difference in the definition of enumerability and strong enu-
merability in the type of the respective enumerator. The not so common notion of
strong enumerability will be of major help in the construction of a simple predicate
in chapter 6.1.

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Definitions_Coq.html#decidable

18 Synthetic Computability Theory

In order to address the aspired reducibility theory, we continue by introducing the
in our synthetic setting definable different notions of reducibility. Turing reduc-
tions seem to be not possible to define in a synthetic setting (cf. chapter 8), but we
can formalize the further notions that are due to Post [28].
The nowadays most prominent reduction is the so-called many-one reduction. It
demands a reduction function mapping exactly the instances of one predicate to
instances of another one. Again, this function is traditionally explicitly required to
be a computable function. Synthetically, we can omit this condition.
A tomany-one reducibility closely related notion is the so-called one-one reduction,
that can be understood roughly speaking as an injective many-one reduction.
Definition 3.2 (One-One Reduction)
p : X→ P is one-one reducible to q : Y → P, if there exists a function f : X→ Y such that

injective f∧ ∀x. px↔ q(fx).

In this case, we write p �1 q and call f a one-one reduction from p to q.
Definition 3.3 (Many-One Reduction)
p : X → P is many-one reducible to q : Y → P, if there exists a function f : X → Y

such that
∀x. px↔ q(fx).

In this case, we write p �m q and call f a many-one reduction from p to q.

Furthermore, Post [28] introduced the notion of truth-table reductions, again de-
fined fromone predicate p : X→ P to another predicate q : Y → P. Given an element
x : X, this reduction builds up a query list of elements in Y and states additionally
an associated condition. Intuitively, this condition is allowed to use a decider for q
on the elements in the query list to then combine the resulting truth-table to a deci-
sion of px. Both, the computation of the query list as well as its condition are again
required but synthetically immediately guaranteed to be computable functions.
We formalize this intuition of the truth-table condition as a function allowed to use
a decider on the query list by the notion of corresponding lists under a predicate.
The condition will not work directly on the query list but on a boolean list contain-
ing the decisions for q for the query list. We say that the query list corresponds
under the predicate q to such a boolean list.
Definition 3.4 (Truth-Table Reduction) Let p : X→ P and q : Y → P.
We define an inductive predicate =̂q : L(Y)→ L(B)→ P by the following rules:

[] =̂q []

qy↔ b = true LY =̂q L

(y :: LY) =̂q (b :: L)

For LY =̂q L, we say that LY corresponds under q to L.

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Definitions_Coq.html#one_one_red
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Definitions_Coq.html#many_one_red
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Definitions_Coq.html#corresponding

3.1. Basic Notions of Computability Theory 19

p is truth-table reducible to q, if there exist two functions f : X → L(Y) and
α : ∀x : X. B|fx| → B such that

∀x : X. ∀L. (fx) =̂q L→ (px↔ αxL = true).

In this case, we write p �tt q, call f query function and α truth-table condition.

Note several details about the truth-table condition in the above definition. Firstly,
we are not at all interested in the behavior of α on boolean lists that the query list fx
does not corresponds to under q.
Secondly, we use a dependent type ∀x : X. B|fx| → B for the condition: α works not
on general boolean lists but only on lists with the same length as the query list. This
will allow us to follow the traditional presentations and embed the finite function
type B|fx| → B injectively into the natural numbers in order to express truth-table
as one-one reductions in the next chapter. This would be clearly impossible for the
uncountable function space L(B)→ B.
Only because thirdly the premise (fx) =̂q L implies both lists to have the same
length and therefore L : B|fx|, the definition is well-typed. When defining a con-
crete truth-table condition, this allows us furthermore to assume the argument L
to have a particular length and match for instance in the case |fx| = 1 on singleton
lists.
We discuss the exact mechanization in Coq in more detail in chapter 7, thinking
about the truth-table condition to be defined on boolean lists with particular length
suffices for the following formalizations.
By requiring two predicates to reduce to each other in both directions, we obtain so-
called computability degrees1. Those computability degrees are defined for each of
the different reducibility notions individually again as a relation on two predicates.

Definition 3.5 (Computability Degree) Predicates p : X→ P and q : Y → P have the
same computability degree with respect to some reducibility notion �, if

p � q∧ q � p.

The degree with respect to �1 is called 1-degree and we write p ≡1 q, with respect to �m
m-degree and p ≡m q, with respect to �tt tt-degree and p ≡tt q.

Besides those computability degrees based on various notions of reductions, My-
hill [25] presents a further computability degree called recursive isomorphism.
Similar to one-one reductions as injectivemany-one reductions, one can think about

1also called degrees of computation or degrees of (un-)decidability

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Definitions_Coq.html#one_one_degree

20 Synthetic Computability Theory

isomorphisms as bijective many-one reductions. The bijectivity of the "reduction
function" implies the notion to be indeed a computability degree notion, like it will
be shown in the next section 3.2.

Definition 3.6 (Isomorphism) A predicate p : X→ P is called isomorphic2 to a pred-
icate q : Y → P, if there exists a function ϕ : X→ Y such that

bijective ϕ∧ ∀x. px↔ q(ϕx).

In this case, we write p ≡ q and call ϕ an isomorphism.

Thedefinition of isomorphisms is in our constructive setting slightly deviating from
the "usual" or algebraic understanding of isomorphisms: One would expect ϕ to
have an inverse functionϕ−1, such thatϕ andϕ−1 cancel each other out. Following
this, we could have defined two predicates p and q isomorphic as

∃ϕϕ−1.
(
∀x. px↔ q(ϕx)

)
∧
(
∀x. ϕ−1(ϕx) = x∧ ∀y. ϕ(ϕ−1y) = y

)
.

The bijectivity of ϕ would then easily follow with the "canceling out" property.
Since it is for arbitrary types not clear whether such an inverse function is com-
putable, we can in general not construct an inverse function out of our definition
of isomorphisms. However, we stay not only faithful with traditional computabil-
ity theory by following their definitions (cf. Myhill [25]), but could also show the
equivalence of these both notions for predicates on datatypes3 using the inverse
function from Lemma 2.6.
Lastly, we introduce the notion of complete predicates. Those predicates are de-
fined to be semidecidable, such that in addition every other semidecidable predi-
cate should reduces to those complete predicates. This directly implies complete
predicates to form the subclass of semidecidable predicates with maximal com-
putability degree. Similarly to computability degrees, we again obtain different
completeness notions for different reductions.

Definition 3.7 (Reduction Completeness)
A predicate p : X→ P is called complete with respect to some reducibility notion �, if

Sp∧ ∀Y. X ∼= Y → discrete Y → ∀q : (Y → P). Sq→ q � p.

Completeness with respect to �1 is called 1-completeness, with respect to �m m-complete-
ness, and with respect to �tt tt-completeness.

2The traditional term "recursively isomorphic" is redundant in our setting: every isomorphism is
as a function in our synthetic setting recursive/computable.

3and enumerable types with decidable equality are actually the types traditional computability
theory works in

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Definitions_Coq.html#rec_iso
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Definitions_Coq.html#one_complete

3.2. Basic Computability Theory Results 21

The predicates required to reduce to complete predicates are restricted towork over
isomorphic types. Otherwise, Cantor’s theorem stating the impossibility of finding
an injection from (X → B) to X itself would imply the non-existence of 1-complete
predicates. We discuss further remarks regarding the mechanization of complete
predicates in chapter 7.
3.2 Basic Computability Theory Results
We have to start by showing various basic results regarding the introduced notions
in computability theory. Besides proving numerous well-known traditional results
about for instance (semi-)decidability or reductions now synthetically, we will dis-
cuss some further properties of constructive and type theoretical nature. So is our
first result stating characterizations of decidability.
Lemma 3.8 1. A predicate p : X→ P is decidable iff it has a certifying decider.

2. Decidable predicates are stable.

Proof 1. Firstly assume a decider f for p and an element x. If fx = true, then we
can show px, else fx = false and ¬px holds. Otherwise assume a certifying
decider d : ∀x. px+ ¬px. Now, λx. if dx then true else false decides p.

2. Assume ¬¬px. With 1., we either have already px or ¬px, a contradiction. �

We prove connections between the notions of decidability, semidecidability, and
(strongly) enumerability introduced in Definition 3.1. With the definitions of those
notions simplified by our synthetic setting, also the formal proofs become signifi-
cantly simpler: We no longer need to reason about the computability of functions
occurring throughout the proofs, but are done by constructing and verifying those
functions.
Lemma 3.9 1. Decidable predicates are semidecidable.

2. Semidecidable predicates over enumerable types are enumerable.

3. Enumerable predicates over discrete types are semidecidable.

4. Enumerable predicates with ∃x0.px0 are strongly enumerable.

5. Strongly enumerable predicates are enumerable.

Proof 1. Let f : X→ B be a decider for p, then λxn.fx is a semidecider for p.
2. Let f : X → N → B be a semidecider for p and E : N � X an enumerator of X.

Then, λ〈n1, n2〉. if f(En1)n2 then Some (En1) else None enumerates p.
3. Let f : N→ O(X) be an enumerator for p and X discrete.

Then λxn. if fn is Some x1 then px = x1q else false is a semidecider for p.

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Synthetic_Computability_Theory_Coq.html#decidable_agreement
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Synthetic_Computability_Theory_Coq.html#semidec_dec

22 Synthetic Computability Theory

4. Let f : N → O(X) be an enumerator for p and assume px0 for some x0. Then
λn. if fn is Some x then x else x0 is a strong enumerator.

5. Straightforward. �

Besides the advantages of the synthetic approach, ourwork is alsomade simpler by
the possibility to work based on the type theory directly on a logical level in order
to show for example closure properties.

Lemma 3.10 (Closure Properties)

1. Decidable predicates are closed under complement, conjuction, and disjunction.

2. Semidecidable predicates are closed under conjunction and disjunction.

Proof 1. Straightforward by Lemma 3.8.1 and combining the logical operations
respectively to obtain certifying deciders.

2. Let fp and fq be semideciders for predicates p and q respectively.
The semidecidability of p∨ q is straightforward by λxn. (fpxn)∨B (fqxn).
In order to show p∧q semidecidable, we use bounded search on the index n
to define corresponding monotone semideciders f ′p and f ′q such that
(a) ∀xn. fxn = true→ f ′xn = true,
(b) ∀xn. f ′xn = true→ ∃n0.fxn0 = true, and
(c) ∀xn1. f ′xn1 = true→ ∀n2 > n1. f ′xn2 = true.
Then, λxn. (f ′pxn) ∧B (f ′qxn) is a desired semidecider for p∧ q. �

Continuing with reductions, we can show that all reducibility notions form a pre-
order (a reflexive and transitive relation) on predicates. Therefore, their by defini-
tion furthermore symmetric computability degrees form an equivalence relation,
dividing predicates into different computability classes. Again, we will not have to
argue about computability of now the constructed reduction functions.

Lemma 3.11 (Preorder & Equivalence Relation)

1. �1, �m, and �tt are reflexive and transitive.

2. ≡1, ≡m, and ≡tt form an equivalence relation on predicates.

3. Isomorphism ≡ forms an equivalence relation on predicates over datatypes.

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Synthetic_Computability_Theory_Coq.html#decidable_closure_compl
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Synthetic_Computability_Theory_Coq.html#one_one_refl

3.2. Basic Computability Theory Results 23

Proof 1. Straightforward for �1 and �m by picking the identity and composi-
tion respectively. For�tt, the query function λx.[x]with truth-table condition
λx[b].b shows the reflexivity.
The proof of transitivity is quite technical4, we informally outline the proof.
So let p �tt q via f1 and α1 and q �tt r via f2 and α2. For a given x, we let
f1x = [y1, . . . , yn] and pick the query list as

(f2y1) ++ . . .++(f2yn).

Given a corresponding list L1 ++ . . .++Ln, we pick the condition value

α1x(α2y1L1, . . . , α2ynLn).

2. Reflexivity and transitivity follow with 1., symmetry by definition.
3. Reflexivity followswith the identity and transitivity with the composition. In

order to show symmetry we have to construct an inverse function for isomor-
phisms f : X → Y, which works with Lemma 2.6 for enumerable types X and
discrete types Y. �

As mentioned and partially obvious, one can show implications between the var-
ious notions of reductions. This transfers to the notions of computability degrees
and completeness with respect to the different reductions.

Lemma 3.12 (Inclusions)

1. �1 ⊆ �m ⊆ �tt.

2. ≡1 ⊆ ≡m ⊆ ≡tt. On datatypes, we have furthermore ≡ ⊆ ≡1.

3. 1-complete predicates arem-complete,m-complete predicates are tt-complete.

Proof 1. �1⊆�m is straightforward, for �m⊆�tt we assume p �m q via f and
pick the query list λx.[fx] with condition λx[b].b.

2. The first part follows with 1., the second part with Lemma 3.11.3.
3. Follows with 1. �

The above result states, that every tt-degree consists out of one or multiple m-
degrees; everym-degree consists out of one or multiple 1-degrees.

4Mainly because of our mechanization of truth-table conditions as functions over lists with par-
ticular length.

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Synthetic_Computability_Theory_Coq.html#oneone_manyone_inclusion

24 Synthetic Computability Theory

The reason for introducing the concept of reductions was to use this method in
order to show further problems undecidable starting from an already proven un-
decidable problem. We can indeed show, that decidability transports through re-
ductions; through some reducibility notions also semidecidability transports.
Lemma 3.13 (Transport)

1. Let p �1 q, or p �m q, or p �tt q. Then, Dq→ Dp.

2. Let p �1 q or p �m q. Then, Sq→ Sp.
Proof By Lemma 3.12, it suffices to show the claims for the weakest reduction:

1. Let p �tt q via f and α and Dq via d. Then Dp via λx. αx(map d (fx)).
2. Let p �m q via f and Sq via s. Then Sp via λxn.s(fx)n. �

Notice especially the contrapositions of the statements in the above Lemma stating
the initial motivation for reductions formally: If an undecidable (not semidecid-
able) predicate p reduces to q, then also q is undecidable (not semidecidable).
We can show interesting relations between reductions and the complements of
predicates. Here again our constructive setting comes into play, since we need at
certain points in the proofs double negation elimination. We cannot show this proof
principle but have to assume stability of predicates at those points.
Lemma 3.14 1. p �1 q→ p �1 q and p �m q→ p �m q.

If q is stable, also p �tt q→ p �tt q.

2. p �tt p and for stable p also p �tt p.
Proof 1. In the cases �1 and p �m q via the reduction f, f is also a reduc-

tion justifying p � q. For p �tt q via f and α, p �tt q holds via f and
λxL. αx(map ¬B L). The stability of q is necessary to show that (fx) =̂q L im-
plies (fx) =̂q (map ¬B L).

2. p �tt p and p �tt p holds via λx.[x] and λx[b].¬Bb. In the second case, the
stability is necessary to show that px↔ b = true implies px↔ ¬Bb = true. �

Lastly, we show that many-one and truth-table reductions are not only a preorder
on predicates, but form an upper semilattice, i.e. every two predicates have a least
upper bound in the sense of the preorder formed by reductions5. Type theory al-
lows an easy definition of this least upper bound also called join by using the sum
type.

5Semilattices as well as lattices are in order theory actually only defined on partially ordered sets.
We can state the existence of a least upper bound formally also for our preorder.

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Synthetic_Computability_Theory_Coq.html#manyone_red_dec
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Synthetic_Computability_Theory_Coq.html#one_one_red_compl

3.3. Axioms of Synthetic Computability Theory 25

Lemma 3.15 For all predicates p and q, there exists a least upper bound with respect to
many-one and truth-table reductions, i.e.

∀pq. ∃j. p � j∧ q � j∧ ∀r. p � r→ q � r→ j � r

when replacing � consistently with �m or �tt.

Proof Let p : X→ P and q : Y → P. We define the join of p and q as follows

joinpq : X+ Y → P
joinpq(Lx) := px

joinpq(Ry) := qy

joinpq is indeed the least upper bound of p and q w.r.t. �m (1.) and �tt (2.):
1. p �m joinpq via L and p �m joinpq via R. Furthermore p �m r via f1 and
q �m r via f2 implies joinpq �m r via λs. match s [Lx⇒ f1x | Ry⇒ f2y].

2. p �tt joinpq and p �tt joinpq follow with 1. by Lemma 3.12. For p �tt r
via f1 and α1 and q �tt r via f2 and α2, joinpq �m r follows via:
λs. match s [Lx ⇒ f1x | Ry ⇒ f2y] and λsL. match s [Lx ⇒ α1xL | Ry ⇒ α2yL].

�

Since the reduction function λs. match s [Lx ⇒ f1x | Ry ⇒ f2y] is not necessarily
injective, joinpq does not form analogously a least upper bound for p and q also
with respect to one-one reducibility.
3.3 Axioms of Synthetic Computability Theory
We showed numerous generic facts regarding the introduced computability the-
ory notions. Furthermore, we could also show various concrete positive results in
our setting by for instance showing different predicates (semi-)decidable. How-
ever, the axiom-free synthetic setting will not allow us to show concrete negative
results. We do not have amodel of computation in hand that allows usmethods like
diagonalization to show as in traditional presentations predicates like the halting
problem undecidable.
It is even worse, since we cannot even define predicates working on instances of
a concrete computational model or its encodings. Since functions in Coq’s type
theory are also guaranteed to be total, there is also no possibility to define a variant
of the halting problem via the definedness of a given function.
In order to formalize results like Post’s problem stating the existence of a particular
undecidable predicate as well as distinctions of different reducibility notions on

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Synthetic_Computability_Theory_Coq.html#join_redm_l

26 Synthetic Computability Theory

the class of semidecidable but undecidable predicates we are forced to construct
undecidable predicates.
Since this is as mentioned not possible in an axiom-free synthetic setting, we will
need to assume carefully chosen axioms at certain points of the development. We
want to introduce the axioms used in our work and argue those axioms to be faith-
ful with traditional computability theory as well as consistent in our setting. There-
fore, the section is partly informal and uses at some points traditional notations to
show the analogy to traditional computability. The parts that are marked as def-
initions or lemmas are formalized and mechanized and can therefore be used in
the further development. Works by Richman[30] or Bauer[3] discuss the founda-
tions of axioms of synthetic computability more closely as well as Forster [12], who
furthermore mechanized various results exactly in our synthetic setting.
The fundamental axiom of synthetic computability theory assumes similar to the
essential property of concrete computational models a universal machine working
on program indices. The axiom called Church’s thesis6 now states, that for every
computable function there exists a corresponding index computing this function.
Formally one can use a step-interpreter function

T : N→ N→ N→ ON

that computes for encodings c of for instance λ-terms, inputs x and step indices
n in the case of termination after n steps the output. This computation behavior
implies T to be monotone in the step index, i.e.

Tcxn1 = Some y→ ∀n2 > n1. Tcxn2 = Some y.

Based on T, one defines a program index c : N to compute a certain total function
f : N→ N as computability relation

c ∼ f := ∀x.∃n.Tcxn = Some (fx).

Finally, the axiom of Church’s thesis for total functions is then defined as:

CT := ∀f. ∃c. c ∼ f.

Adapting the presentation to obtain CT also for partial functions is on paper
straightforward; mechanizing this in Coq requires however naturally to deal with
partial functions that are not easy possible to imitate.
One can show CT to imply weaker computability axioms, by for instance using T
to define a function ϕ : N → (N → O(N)) as ϕc〈x, n〉 := Tcxn, that enumerates all

6not to confuse with the Church-Turing thesis of traditional computability theory

3.3. Axioms of Synthetic Computability Theory 27

enumerators f : N → O(N) modulo range equivalence, i.e. for every enumerator ϕ
hits an enumerator with the same range:

∀f. ∃c. ∀x. (∃n.ϕcn = Some x)↔ (∃n.fn = Some x).

Forster [12] formalizes type theoretically that the enumerability of enumerators
modulo their ranges allows furthermore to derive Bauer’s enumerability axiom
(EA) assuming an enumerator for the class of enumerable predicates. This enu-
merator W : N → (N → P) is defined using ϕ as Wcx := ∃n.ϕcn = Some x. We
define the specification of W equivalently as the enumerability of semidecidable
predicates denoted by ES:

ES := ∀p : N→ P. Sp↔ ∃c.∀x.(Wcx↔ px).

One can think about W as a variant of the halting problem with the first argument
as the encoding of programs and the second as their inputs: "Wcx holds iff the pro-
gram with index c terminates on input x." Furthermore, we can define the special
halting problem W0 using W as W0c := Wcc.
ES allows us to prove further basic properties ofW. By assumingW, we add espe-
cially a first undecidable predicate to our constructive setting, such that assuming
all propositions to be decidable would be no longer consistent.

Lemma 3.16 Assume ES, then

1. there exists c> with ∀x.Wc>x.

2. there exists c⊥ with ∀x. ¬Wc⊥x.

3. W0 �1 W.

4. W0 is not semidecidable and W0 undecidable.

5. W is not semidecidable and W undecidable.

Proof 1. Follows by ESwith the semidecidability of λx.>.
2. Analog to 1. with λx.⊥.
3. Via the injection λc.(c, c).
4. Assume SW0. By ES, there is an index c with ∀x.Wcx ↔ W0x. For x := c a

contradiction, since Wcc↔Wcc. Therefore, W0 is not semidecidable and W0

with Lemma 3.9 undecidable.
5. Follows with 3. and 4. by Lemma 3.13. �

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Synthetic_Computability_Theory_Coq.html#W_empty

28 Synthetic Computability Theory

The above Lemma justifies our interpretation ofW as the halting problem in a sense,
that it shows some well-known properties of the halting problem for W. Unfortu-
nately, another prominent and important property of the halting problem, namely
its semidecidability, cannot be concluded from ES.
One solution would be to assume some stronger computability axiom or an addi-
tional weak choice axiom. By using ϕ, we could easily define a semidecider for W
as λ(c, x)n. ϕcn = Some x.
It will however turn out that our aspired construction of a simple predicate does not
force us to assume full CT but works out by assuming W and its semidecidability.
In order to base the development on the weakest possible set of axioms, we will
therefore simply assume SW at some point, which allows us furthermore to prove
the completeness of W:
Lemma 3.17 Assume ES and SW. Then W is 1-complete and thusm- and tt-complete.

Proof SW follows by assumption. By the definition of 1-completeness, we now
have to consider semidecidable predicates over all isomorphic and discrete types,
butwe omit the technical details of coding and encoding here7. For a semidecidable
predicate p : N→ P, ES yields an index cwith ∀x.Wcx↔ px. Therefore, p �1 W via
the injection λx.(c, x). �

We have shown our formalization of the halting problem W to be a predicate with
maximal computability degree on the class of semidecidable predicates. Thinking
about Post’s problem, this implies the existence of a semidecidable but undecid-
able predicate p with W � p to be equivalent to the existence of a semidecidable
but undecidable non-complete predicate. We prove this equivalence in its positive
formulation:
Lemma 3.18 Assume ES, SW and let X be discrete, N ∼= X and p : X→ P semidecidable.
For all introduced notions of reducibility �, we have

W � p↔ complete p.

Proof For W � p, p is complete by the transitivity of reductions and 3.17. Con-
versely, W reduces as a semidecidable predicate to p. �

Another type of axioms concerns the computability of particular program indices.
It is for instance easily possible to show with a concrete model of computation and
its concrete encoding function in hand, that one can compute the indices of pro-
grams halting exactly on a finite list of inputs. Such a computation would work by
computing the index of a program that easily hardcodes the list of accepted inputs.

7See chapter 7 for further details.

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Synthetic_Computability_Theory_Coq.html#W_one_complete
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Synthetic_Computability_Theory_Coq.html#one_complete_iff

3.3. Axioms of Synthetic Computability Theory 29

This is in our synthetic setting again not provable, but we have to assume this ab-
stract property of computational models. One way to do so is to assume a concate-
nation operator cns : N → N → N, that given an element a and an index c halting
exactly on the elements of a list L computes an index halting exactly on elements of
a :: L. Formally we specify cns by

∀cL. (∀x.Wcx↔ x ∈ L)→ ∀ax.W(cnsa c)x↔ x ∈ (a :: L).

Together with the index c⊥ from Lemma 3.16, we can show that given a list L one
can compute an index halting exactly on the elements of L using cns.

Lemma 3.19 Assume the cns-operator with its specification and an index c⊥ with
∀x. ¬Wc⊥x. Then one can compute for all lists L an index cL such that

∀x.WcLx↔ x ∈ L.

Proof We prove the claim by induction on L. In the base case we choose c[] = c⊥,
in the step case (a :: L), the inductive hypothesis yields an index cL and cnsa cL is
the correct new index. �

Lastly, the proof of Post’s problem for many-one reductions uses at a certain point
the traditionally well-known Smn -theorem. The theorem also establishes a particu-
lar computation of program indices that can be stated using traditional notation as

ΣS : N→ N→ N.∀cxy. φc〈x, y〉 = φ(Scx)y,

where φc : N 9 N is the calculating function for a program index c and is in partic-
ular allowed to be partial.
We will again not need the theorem in its full strength, but are fine by using a
strictly weaker corollary. This can be deduced from an even simpler version of the
Smn -theorem presented for example by Cutland [8], who formulates it as8

Simple Smn : ∀f : N× N 9 N. ∃k : N→ N. ∀cx. f(c, x) = φ(kc)x.

This simpler version directly implies a special case of the Smn -theorem: Given a total
function f ′ : N→ N, we use the theorem for f(c, x) := φc(f ′x) and obtain

∀f : N→ N. ∃k : N→ N. ∀cx. φc(fx) = φ(kc)x.

Requiring φc(fx) = φ(kc)x for the partial function φc implies in particular that the
programwith index chalts on input fx if and only if the programwith index kchalts

8We omit that the function f is in the traditional formulation required to be computable at this
anyway already informal point mixing the traditional and synthetic setting.

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Synthetic_Computability_Theory_Coq.html#CNS_to_LIST_ID

30 Synthetic Computability Theory

on x. This allows us to return now again to the purely synthetic formalization: the
intuition of a program with index c halting on input x is as discussed exactly our
interpretation ofWcx such that we can formally define a weak axiom related to the
Smn -theorem as follows:

SMN’ : ∀f : N→ N. ∃k : N→ N. ∀cx.Wc(fx)↔W(kc)x.

We discussed how to derive W and its semidecidability formally from the funda-
mental synthetic computability axiom CT. It should be also possible to deduce the
cns-operator as well as the Smn -theorem from CT. Thereby, it seems however nec-
essary to use the partial version of CT for showing SMN’, since the axiom bases
on the partiality of the calculating function φc9. This room for future work will be
discussed in more detail in chapter 8.
Notice, that we formulated all axioms in this chapter for predicates and programs
over the natural numbers. It is also possible to assume the axioms for arbitrary
types, e.g. ϕ : ∀X. N → (N → O(X)) or W : ∀X. N → X → P with the corresponding
specifications with x as an element of a general type X.
We will come back and use the introduced axioms in chapter 6 when it becomes
necessary to make further assumptions; the particular points at which synthetic
axioms are added to our setting are clearly marked.
Sincewewill not use classical proof principles or choice axioms in the further work,
assuming those axioms that seem to follow as discussed from CT seems to be con-
sistent in our setting (cf. Swan and Uemura [33]). We argued furthermore that
all the axioms represent abstract properties corresponding to properties of con-
crete computationalmodels, such that our synthetic setting containing axioms stays
faithful with traditional computability theory.
3.4 Recursive µ-Operator
In the computationalmodels used in traditional presentations of computability the-
ory it is possible to implement a so-called recursive µ-operator, which is for instance
directly included in the definition of µ-recursive functions. This operator proceeds
an upwards search on natural numbers: it returns the least number satisfying a
particular decidable condition or is undefined if there exists no such number.
Coq’s programming language will not allow us to implement such a strong µ-
operator in general. We only deal with total functions in Coq’s inductive system
and can therefore not define a partial µ-function.
However, we can obtain similarly to the witness operator (Lemma 2.4) a variant of
a recursive µ-operator in Coq that given an additional witness for the existence of

9For total φc, the programwith index c always terminates and SMN’ ′ becomes trivial but useless.

3.4. Recursive µ-Operator 31

an element satisfying a particular predicate returns the least number satisfying the
predicate. The witness serves as a kind of termination argument for the traditional
"unbounded" and therefore potentially diverging search algorithm.
Lemma 3.20 For predicates p : N→ P with certifying decider f : ∀x.px + ¬px, there is a
recursive operator µN : (∃n.pn)→ N, that computes the least number satisfying p, i.e.

∀H : (∃n.pn). p(µNH)∧ ∀n. pn→ µNH 6 n.

Proof The proof works by a small adaption of the proof of the witness operator in
Lemma 2.4. We only have to adapt claim 1. in the Proof 2.4 now stating that Gn
allows a computation of the least number greater or equal n satisfying p, formally:
1. Gn→ Σx > n. px∧∀y > n. py→ x 6 y, which follows again by induction onG10.
µN then follows, since we used claim 1. for n = 0. �

By the specification of the number computed by µN as the least number satisfy-
ing the predicate, this number must be unique and especially independent of the
particular witness proof.
Lemma 3.21 For all proofs H1 and H2 of ∃n.pn : µNH1 = µNH2.

Proof By p(µNH1) and p(µNH2), we derive µNH1 6 µNH2 6 µNH1. �

Wewould like to further improve this result by finding aminimization operator for
not only decidable but also enumerable predicates. Unfortunately, such a compu-
tation quickly becomes inconsistent in traditional computability theory as well as
in our synthetic setting when only adding weak additional axioms. We can show,
that assuming a recursiveµ-operator for enumerable predicateswith the exact same
specification as µN implies all semidecidable predicates to be already decidable.
Lemma 3.22 Assume for predicates p : N→ Pwith enumerator f : N→ O(N) an operator
µ̂E : (∃n.pn)→ N, such that

∀H : (∃n.pn). p(µ̂EH)∧ ∀n. pn→ µ̂EH 6 n.

Then, all semidecidable predicates are decidable.

Proof We assume µ̂E. Let p := λf : N→ N. ∃n.fn = 0, then:
1. Dp: Given a function f, the predicate λy.∃n.fn = y (i.e. the range of f) is enu-

merable via λn.Some (fn). Furthermore, there is a witness for ∃y.∃n.fn = y

by for example f0. Therefore, µ̂E computes the least number in the range of f.
If this number is 0, pf holds; if it is larger ¬pf holds.

10for the in contrast to Proof 2.4 no longer constant predicate qn := Σx > n. px∧ ∀y. py→ x 6 y

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Recursive_Mu_Operator_Coq.html#mu_NN_sig
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Recursive_Mu_Operator_Coq.html#constant_mu_enum_NN
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Synthetic_Computability_Theory_Coq.html#mu_enum_strong_inconsistent

32 Synthetic Computability Theory

2. (λf : N→ B. ∃n.fn = true) �m p via the reduction λf.(λn.if fn then 0 else 1).
3. D(λf.∃n.fn = true) with 1. and 2. by Lemma 3.13. We call the decider d.

Now let p be semidecidable via f : X→ N→ B. Then, λx. d(fx) is a decider for p. �

Clearly, the decidability of boolean satisfiability as well as for instance the decid-
ability of the semidecidable halting problem are inconsistent with traditional com-
putability theory. In our setting, assuming the above operator becomes also for-
mally contradictory when working with the by ES undecidable predicate W after
assuming its semidecidability.
However, we are able to weaken the specification of the recursive µ-operator for
enumerable predicates in a way that it becomes on the one hand provable but stays
on the other hand strong enough for our purposes. Given a predicate and awitness,
we are actually only interested in the possibility to compute a unique11 element
satisfying the predicate. Using the already introduced µN operator, we can show
this unique computation not only for enumerable predicates on natural numbers,
but for enumerable predicates over arbitrary types.

Lemma 3.23 For predicates p : X → P with an enumerator f : N → O(X), there is a
recursive operator µE : (∃x.px)→ X, that computes a unique element satisfying p, i.e.

∀H1H2 : (∃x.px). p(µEH1)∧ µEH1 = µEH2.

Proof Follows with µN used for the decidable predicate λn. ∃x.fn = Some x and
Lemma 3.21. �

By using µN in the abovementionedway, we actually minimize the argument of the
enumerator f: We compute the least n such that fn = Some x and pick this unique x
as the desired element. This computation is trivial for predicateswith even strongly
enumerators f by simply picking f0.
µE implies the existence of a witness operator ωE for predicates with enumerator
as well as similarly to Corollary 2.5 a µX-operator for predicates with certifying de-
cider over enumerable types. Notice however, that analogously to the operatorsωN
andωX alsoωE, µN, µX, and µE require us to have the deciders and/or enumerators
in hand. The possibility to compute a unique element in predicates via µ-operators
will become essential especially in chapter 6 when constructing a simple predicate.

11in the sense of Lemma 3.21

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Recursive_Mu_Operator_Coq.html#mu_enum_sig

Chapter 4

Reduction Characterizations

In the last chapter, we introduced the approach of synthetic computability theory,
defined basic notions in this setting, and showed several well-known properties of
those notions. Our goal in this chapter is now to take a closer look at the properties
of the different notions of reductions and formalize certain relations between those
reductions and their computability degree.
4.1 Myhill’s Isomorphism Theorem
We start by formalizing Myhill’s isomorphism theorem (Myhill [25]), stating that
predicates are recursive isomorphic if and only if they have the same computabil-
ity degree with respect to one-one reductions. Myhill’s isomorphism theorem re-
minds of the Cantor-Schröder-Bernstein theorem, turning injections f : A→ B and
g : B→ A into a bijection betweenA andB. While this theoremdoes not speak about
computability but relies (at least in this formulation) highly on classical notation
and choice-axioms, we can prove Myhill’s isomorphism theorem purely construc-
tive and even without assuming synthetic axioms.
Showing that two isomorphic predicates have also the same 1-degree was already
shown1 in the last chapter by the basic inclusion properties. In order to construct
an isomorphism between predicates with the same 1-degree, we loosely follow the
presentation of Myhill himself and Rogers [31] by using so-called (finite) corre-
spondence sequences2.
Correspondence sequences defined with respect to predicates p and q are lists of
pairs whose both projections are duplicate-free and that are pointwise applied to p
and q respectively equivalent.
Recall for the formalization, the functions π1, π2, and ↔· working on lists of pairs,
which were defined in chapter 2.4.

1for predicates over datatypes
2Not confuse with corresponding lists used in the context of truth-table reductions.

34 Reduction Characterizations

Definition 4.1 We call a list L : L(X × Y) a correspondence sequence for predicates
p : X→ P and q : Y → P if

#(π1L)∧ #(π2L)∧ ∀(x, y) ∈ L. px↔ qy.

We establish basic properties of those correspondence sequences.
Lemma 4.2 For all correspondence sequences L for predicates p and q,

1.
↔
L is a correspondence sequence for q and p.

2. we have the following one-one properties:

• (x, y1) ∈ L→ (x, y2) ∈ L→ y1 = y2 for all x, y1, and y2.

• (x1, y) ∈ L→ (x2, y) ∈ L→ x1 = x2 for all x1, x2, and y.

Proof Let L be a correspondence sequence for p and q.

1. π1
↔
L = π2L and π2

↔
L = π1L are duplicate-free by assumption. (y, x) ∈

↔
L

implies (x, y) ∈ L implies qy↔ px.
2. Both claims are proven by induction on L. In the step case, we distinguish the

four cases obtained in the first claim by (x, y1), (x, y2) ∈ (x0, y0) :: L (second
claim symmetric) and use #(x0 :: π1L) and #(y0 :: π2L) to close those cases. �

Notice that the proof of the one-one property of a correspondence sequence uses
only that both projections were assumed to be duplicate-free. In fact, those prop-
erties are even equivalent: A list of pairs is duplicate-free in both projections if and
only if it fulfills the above stated one-one property. Therefore, this one-one property
together with the pointwise equivalence of p and qwould have been an equivalent
way to define correspondence sequences.
We continue to work over discrete types X and Y. This allows not only to decide list
membership in both the projections and the lists of pairs itself, but given x : X also to
compute (if existent) a corresponding element y : Y (i.e. (x, y) ∈ L) and vice versa.
Thus, we can travel for a fixed list L : L(X × Y) and function f : X → Y through the
list in a certain way: Given a starting value x, we check whether fx is in the second
projection. If so, we continue the travel with a to fx corresponding new starting
value. We compute the trace of this travel recursively for a given step index:

trace x n := [] if fx /∈ π2L
trace x 0 := [x] if (x ′, fx) ∈ L for some x ′

trace x (Sn) := x :: (trace x ′ n) if (x ′, fx) ∈ L for some x ′

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Myhill_Coq.html#CorSeq
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Myhill_Coq.html#CorSeq_swap

4.1. Myhill’s Isomorphism Theorem 35

Especially for one-one reductions f and correspondence sequences L, this computed
trace has very particular properties. First of all, the one-one properties of both f
and L imply the trace to be duplicate-free, if the projection does not contain the
starting value:

Lemma 4.3 Let p �1 q via f and L be a correspondence sequence for p and q. For all
starting values x and step indices n,

1. ∀x ′ ∈ trace x n. x ′ = x∨ ∃y ′ ∈ (map f (trace x n)). (x ′, y ′) ∈ L.

2. if x /∈ (π1L) then #(trace x n).

Proof Let x : X and n : N.
1. Follows by induction on n with generalized starting value x. In the case

(x ′, fx) ∈ L, we use the inductive hypothesis for the starting value x ′.
2. We prove the stronger claim(

∀y.(x, y) ∈ L→ y /∈ (map f (trace x n))
)
→ #(trace x n).

by induction on n again with generalized starting value x.
The base case and the step case for fx /∈ π2L are trivial. In the step case with
(x ′, fx) ∈ L for some x ′, we assume H : ∀y.(x, y) ∈ L → y /∈ (map f (trace x n))
and have to show x :: (trace x ′ n) to be duplicate-free.
• x /∈ (trace x ′ n): Assuming x ∈ (trace x ′ n) implies by 1. either x = x ′ and
therefore (x, fx) ∈ L or (x, y ′) ∈ L for some y ′ ∈ (map f (trace x ′ n)). Both
contradicts H for fx or y ′ respectively.

• #(trace x ′ n): We apply the inductive hypothesis for the starting value x ′
and are left to show ∀y.(x ′, y) ∈ L → y /∈ (map f (trace x ′ n)). But since
(x ′, fx) ∈ L, assuming (x ′, y) ∈ L implies fx = y by Lemma 4.2. Therefore
by the injectivity of f,

y /∈ (map f (trace x ′ n)) iff x /∈ (trace x ′ n), (Lemma 2.8)

which was already shown in the above point. �

Notice the crucial and not obviously to found generalization of the induction state-
ment proving the trace to be duplicate-free. A naive induction has no chance to
succeed: By construction, the new starting value in the step case x ′ corresponds
to fx such that x ′ ∈ π1L. Therefore, the inductive hypothesis would not be applica-
ble since its premise requiring x ′ /∈ π1Lwould not be satisfied.

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Myhill_Coq.html#trace_NoDup_help

36 Reduction Characterizations

In the special way we navigate through the list, this travel has besides the step in-
dex another termination condition: If fx is not in the projection, we cannot find a
corresponding element x ′ to continue the travel. For reductions f and correspond-
ing sequences L we can however use this case to compute an element with certain
properties, relying on the fact that f and L respect the particular predicates. If in
the other case, the travel terminates only due to the step index, we know the exact
length of our trace:

Lemma 4.4 Let p �1 q via f and L be a correspondence sequence for p and q. Given a
starting value x and step index n,

either one can compute y /∈ π2L with px↔ qy or |trace x n| = Sn.

Proof The claim is again proven by induction on nwith generalized starting value.
For fx /∈ π2L, y := fx is the desired element since p �1 q via f.
For (x ′, fx) ∈ L, the base case is trivial by |[x]| = 1, in the step case the inductive
hypothesis yields either an element y /∈ π2Lwith

px↔ q(fx) p �1 q via f
↔ px ′ (x ′, fx) ∈ L
↔ qy. IH

In the other case of the inductive hypothesis,

|x :: (trace x ′ n)| = S(|trace x ′ n|) IH
= S(Sn). �

Wewant to use this computation to extend correspondence sequences with further
elements. However, the second case of the above lemma yields no computation at
all. This problem is solved by the already proven fact that the trace is duplicate-
free and therefore does not loop. Hence, the travel through the list will eventually
terminate always in the first case at least when using a large enough amount of fuel.

Lemma 4.5 Let p �1 q via f and L be a correspondence sequence for p and q. Given x,
one can compute a correspondence sequence L ′ for p and q with L ⊆ L ′ and x ∈ π1L ′.

Proof For x ∈ L, we are done by picking L ′ := L. So assume x /∈ π1L and use
Lemma 4.4 for x := x and n := |L|; we have two cases:

1. For the computed element y /∈ π2L with px ↔ qy, L ′ := (x, y) :: L is again a
correspondence sequence for p and q.

2. |trace x |L| | = S(|L|) is contradictory: By the definition of trace, we know
map f (trace x |L|) ⊆ (π2L) and with x /∈ π1L Lemma 4.3 implies #(trace x |L|).

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Myhill_Coq.html#trace_element
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Myhill_Coq.html#CorSeq_Extension

4.1. Myhill’s Isomorphism Theorem 37

Since f is injective, also #(map f (trace x |L|)) by Lemma 2.8. Therefore, the
pigeonhole principle 2.10 implies

|trace x |L| | = |map f (trace x |L|)| 6 |π2L| = |L|,

but we assumed |trace x |L| | = S(|L|) > |L|. �

We come back to the actual statement of Myhill’s isomorphism theorem and prove
it firstly only for predicates over natural numbers. Therefore, we fix from now on
two predicates p : N→ P and q : N→ P and their opposite one-one reductions

p �1 q via f1 and q �1 p via f2.

The results up to this point for general discrete types are therefore now used for N.
Notice furthermore, that we can now apply the important Lemma 4.5 in two ways:
Either to the reduction f1 and correspondence sequences for p and q, but also to
the reduction f2 and correspondence sequences now for q and p. The following
proof relies exactly on this observation and shows an even stronger extension of
correspondence sequences, containing a given element now in both projections.
Lemma 4.6 Let L be a correspondence sequence for p and q. Given n, one can compute a
list Ln such that

1. Ln is a correspondence sequence list for p and q,

2. L ⊆ Ln,

3. n ∈ π1Ln and n ∈ π2Ln.

Proof Given n and L, we proceed as follows:
• For p �1 q via f1 and the correspondence sequence L for p and q, Lemma 4.5
computes a correspondence sequence L ′ ⊇ L for p and q with n ∈ π2L ′.

• For q �1 p via f2 and the by Lemma 4.2 correspondence sequence
↔
L ′ for q

and p, Lemma 4.5 computes a correspondence sequence L ′′ ⊇
↔
L ′ for q and p

with n ∈ π2L ′n.

• We pick Ln :=
↔
L ′′. �

The computation from the last Lemma can be expressed as a function
extend : N→ L(N× N)→ L(N× N),

that given a correspondence sequence also returns an (extending) correspondence
sequence.

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Myhill_Coq.html#CorSeqBuild_sig

38 Reduction Characterizations

Since [] is a correspondence sequence for all predicates, it can serve as the starting
point for a recursive computation using extend:

ϕL : N→ L(N× N)
ϕL 0 := extend 0 []

ϕL (Sn) := extend (Sn) (ϕL n)

The properties of extend stated in Lemma 4.6 imply similar properties for ϕL:
Lemma 4.7 1. For all n, ϕLn is a correspondence sequence for p and q.

2. ϕL is monotonic, i.e. ∀n1 6 n2.ϕLn1 ⊆ ϕLn2.

3. For all n, n ∈ π1(ϕLn) and n ∈ π2(ϕLn).

Proof 1. Follows with Lemma 4.6.1.
2. First notice thatϕLn ⊆ ϕL(Sn) holds by Lemma 4.6.2. The claim then follows

easily by induction on n2.
3. Follows with Lemma 4.6.3. �

Due to the above results, one can think about ϕL as the listing of our intended iso-
morphism, that eventually contains all natural numbers in both projections. There-
fore, we can define the isomorphism by computing for a given n its corresponding
element in π2(ϕLn) using the witness operator3 as already shown in Lemma 2.9.3.
Lemma 4.8 There is a function ϕ : N→ N, such that (n,ϕn) ∈ ϕLn for all n.

Proof Follows with Lemma 2.9.3 and Lemma 4.7.3. �

To close Myhill’s isomorphism theorem, we have to prove the constructed function
to be indeed an isomorphism between p and q.
Lemma 4.9 The function ϕ is

1. injective,

2. surjective, and

3. pn↔ q(ϕn) for all n.

Proof 1. Assume n1 6 n2 (the case n2 6 n1 is symmetric) and let ϕn1 = ϕn2.
Then (n1, ϕn1) ∈ ϕLn1 ⊆ ϕLn2 and (n2, ϕn2) ∈ ϕLn2 by Lemma 4.7. Since
ϕLn2 is a correspondence sequence we obtain n1 = n2 by Lemma 4.2.

3for decidable predicates over natural numbers

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Myhill_Coq.html#psi_L_mono_help
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Myhill_Coq.html#psi_N
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Myhill_Coq.html#inj_psi

4.1. Myhill’s Isomorphism Theorem 39

2. For y : N, we have (n, y) ∈ ϕLy for some n by Lemma 4.7.3. Then ϕn = y:
Similar to 1., assume n 6 y (the other case is again symmetric) such that
(n,ϕn), (n, y) ∈ ϕLy and therefore ϕn = y by Lemma 4.2.

3. Follows since (n,ϕn) is in the correspondence sequence ϕLn for p and q. �

We successfully defined and verified an isomorphism between two predicates over
natural numbers with opposite one-one reductions:

Corollary 4.10 For all predicates p and q over N,

p ≡1 q→ p ≡ q.

Proof Via the constructed isomorphism ϕ and its specification in Lemma 4.9. �

With the crucial direction of Myhill’s isomorphism theorem proven, we conclude
the theorem itself. We improve the result even further, by considering not only
predicates over natural numbers but over general discrete types isomorphic to N.

Theorem 4.11 (Myhill’s Isomorphism Theorem) Let X and Y be discrete types with
N ∼= X and N ∼= Y. For all predicates p : X→ P and q : Y → P,

p ≡1 q↔ p ≡ q.

Proof LetN ∼= X via the bijection fX andN ∼= Y via fY . The forward direction follows
with Corollary 4.10 for the "isomorphic"4 natural number predicates λn.p(fXn) and
λn.q(fYn). The backwarddirection fromLemma 3.12.2, sinceX and Y are datatypes.

�

Asmentioned above, it was with regard to the Cantor-Bernstein-Schröder theorem
that was shown by Pradic and Brown [29] to be equivalent to excluded middle
not clear that we can prove Myhill’s isomorphism theorem constructively axiom-
free. Even though the two theorems remind to each other, neither of them is a spe-
cial case of the other. On the one hand, only Myhill’s isomorphism theorem talks
about computable functions, on the other hand the functions in Cantor-Bernstein-
Schröder’s theorem operate not over the full underlying type, but only on the ele-
ments satisfying the considered predicates.

4This point requires the type restriction. See also chapter 7 for further details about this topic.

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Myhill_Coq.html#MyhillH
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Myhill_Coq.html#Myhill_nat

40 Reduction Characterizations

4.2 Cylinders & Many-One Reductions as One-One Reductions
We continue with discussing also the relation between one-one and many-one re-
ducibility in more detail. It turns out, that the product predicate of predicates
p : X → P and q : Y → P defined over the product X × Y of the underlying types
plays an essential role for this analysis. Formally we define the product type as

p× q := λ(x, y). px∧ qy.

Notice at first the following basic properties of products concerning reductions:

Lemma 4.12 For all predicates p : X→ P,

1. p �1 p× X.

2. p× Y �m p for all types Y.

3. p ≡m p× X.

4. q �1 r→ p× q �1 p× r for all predicates q : Y → P, and r : Z→ P.

Proof 1. Via λx.(x, x).
2. Via λ(x, y).x.
3. By 1. and 2.
4. Let q �1 r via f, then p× q �1 p× r via λ(x, y).(x, fy). �

Product predicates allow us to define the notion of so-called cylinder predicates.
A predicate p : X → P belongs to this class of cylinder predicates, if one can find a
further predicate q, such that p and the product q× X5 have the same 1-degree.

Definition 4.13 (Cylinder) A predicate p : X → P is called cylinder, if there exists a
predicate q : X→ P with p ≡1 q× X.

The chosen definition of cylinders follows Rogers’ traditional presentations of com-
putability theory [31]. One canhowever show interesting characterizations of those
cylinders, thatwould have allowed also differing definitions. The first one says, that
a predicate p is a cylinder if and only if all many-one reductions to p can be also
expressed as an one-one reduction.

Lemma 4.14 For types X with X× X ↪→ X and predicates p : X→ P,

cylinder p↔ ∀Y.(Y ↪→ X)→ ∀r : Y → P.r �m p→ r �1 p.
5Recall that we identify Xwith λx : X.>.

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Reduction_Characterization_Coq.html#product_oneone_r
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Reduction_Characterization_Coq.html#cylinder
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Reduction_Characterization_Coq.html#cyl_iff1

4.2. Cylinders & Many-One Reductions as One-One Reductions 41

Proof Let X× X ↪→ X.
→: Let p ≡1 q×X for some q, [·] : Y ↪→ X an injective encoding, and r : Y → Pwith

r �m p. Then we have with Lemma 4.12,
r �m p �m q× X �m q via some function f.

Therefore, r �1 q×X via the injection λx.(fx, [x]) and therefore with p ≡1 q×X
finally r �1 q× X �1 p.

←: Assume ∀Y.(Y ↪→ X) → ∀r : Y → P.r �m p → r �1 p. Since X × X ↪→ X and
p×X �m p by Lemma 4.12, we obtain p×X �1 p. Therefore, p ≡1 p×Xwith
Lemma 4.12 such that p is a cylinder. �

Together with the basic properties of product predicates concerning reductions,
the above characterization allows us to conclude further equivalent properties of
cylinder predicates:
Lemma 4.15 For types X with X × X ↪→ X and predicates p : X → P, the following
statements are equivalent.

1. p is a cylinder.

2. p ≡1 p× X.

3. p �1 p× X.

Proof 2. → 1. is straightforward and 2. ↔ 3. follows with Lemma 4.12 such that it
suffices to show 1. → 3.: Assume p to be a cylinder. We apply the characterization
from Lemma 4.14 with Y := X × X and r := p × X such that p �m p × X suffices to
show p �1 p× X. This follows again with Lemma 4.12. �

The equivalence in the above lemma implies all predicates of the form p× X (with
X × X ↪→ X) to be a cylinder. Therefore, one calls p × X also the "cylindrification"
of p. By combining this fact with the proven cylinder characterizations, one can
express many-one reductions as one-one reductions on those cylinder predicates
over types with certain embedding properties.
We will however construct the aspired reductions explicitly, which shows a more
general result assuming weaker properties of the underlying types.
Theorem 4.16 (�m in terms of �1)
For types X and Y with X× X ↪→ Y6 and predicates p : X→ P and q : Y → P.:

p �m q↔ p× X �1 q× Y.
6Proving the result using cylinders requires the additional assumption Y × Y ↪→ Y.

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Reduction_Characterization_Coq.html#cyl_iff2
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Reduction_Characterization_Coq.html#manyone_oneone_iff

42 Reduction Characterizations

Proof Let 〈·, ·〉 : X× X ↪→ Y an injective encoding.
→: Assume p �m q via f. Then p× X �1 q× Y via g := λ(x1, x2). (fx1, 〈x1, x2〉):

• g is injective: g(x1, x2) = g(x ′1, x
′
2) implies 〈x1, x2〉 = 〈x ′1, x ′2〉 which im-

plies (x1, x2) = (x ′1, x
′
2) by the injectivity of 〈·, ·〉.

• By the reduction property of fwe have furthermore:
(p× X)(x1, x2)↔ px1 ↔ q(fx1)↔ (q× Y)(g(x1, x2)).

←: Assume p× X �1 q× Y via f. Then p �m q via g := λx.π1(f(x, x)):
px↔ (p× X)(x, x)↔ (q× Y)(f(x, x))↔ q(gx). �

Stating the reduction functions explicitly allows us also to observe more clearly the
reason, why we can express many-one reductions in terms of one-one reductions:
We decode (x1, x2) as an Y value by using the type assumption X × X ↪→ Y, which
ensures the injectivity of the reduction. This traditionally only implicitly used (e.g.
for X = Y = N or isomorphic types) but essential property of the underlying type
could be precisely detected by the type theoretical analysis.
The characterization of many-one reductions yields also further insights in the
structure of reduction degrees: Every m-degree, consisting out of (potentially)
multiple 1-degrees contains a maximum 1-degree, which is obtained by "cylindrifi-
cation", i.e. building the product with the underlying type. In addition the charac-
terization implies the structure of the preorder �m to be reflected in the structure
of �1 by their corresponding cylinder predicates.
Wewill come back to the notion of cylinder predicates in chapter 6, where we show
that cylinders can be used to distinguish one-one and many-one reducibility.
4.3 Truth-Table Reductions as One-One Reductions
We go one step further by looking for a characterization of truth-table reductions.
Similar to the "cylindrification" of a predicate, we can again find an adaption of
predicates that allows to express truth-table reduction as one-one reductions.
This adaption works by so-called truth-table cylinders. The truth-table cylinder of
a predicate p : X → P expects as arguments a query list LX : L(X) and a condition
α : B|LX| → B that fits to the (length of the) query list. Since the type of the con-
dition is therefore dependent on the query list, truth-table cylinders work over the
dependent type ΣLX : L(X). B|LX| → B. The truth-table cylinder denoted as ptt of p
holds now for those (LX, α), where α is a correct "truth-table condition" for LX:

ptt : (ΣLX : L(X). B|LX| → B)→ P

ptt := λ(LX, α : B|LX| → B). ∀L. LX =̂p L→ αL = true.

4.3. Truth-Table Reductions as One-One Reductions 43

The definition is again well-typed, since LX =̂p L implies |L| = |LX|. We start to
prove some basic facts of those truth-table cylinders as well as an auxiliary result
regarding corresponding list:
Lemma 4.17 For all predicates p : X→ P,

1. if p is stable, then p �1 ptt.

2. ptt �tt p.

3. ptt is stable.

4. for all LX : L(X), there weakly exists L7 with LX =̂p L.

Proof 1. Via λx. ([x], λ[b].b). The first component [x] ensures the injectivity of the
reduction, showing the backwarddirection of the reduction property requires
then the stability of p.

2. Via λ(LX, α). LX and λ(LX, α)L. αL. The truth-table property of this reduction
follows directly by the analog truth-table cylinder property of ptt

3. For ¬¬ptt(LX, α), we have to show for all L, that LX =̂p L implies αL = true.
But for αL = false, we get ¬ptt(LX, α), a contradiction.

4. By induction on L. With ⊥ to show, we can decide px in the step case (x :: L).
�

Note the influence of the constructive setting to the above aswell as to the following
results: We have to care about the stability of predicates and can in contrast to
traditional presentations only show the week existence of corresponding lists.
In order to prove, that truth-table cylinders indeed help to express truth-table in
terms of one-one reductions, we first show an auxiliary result. Under certain as-
sumptions regarding the underlying predicate types, we can show that every truth-
table reduction can be transformed into an injective reduction to the truth-table
cylinder of the targeted predicate, i.e.
Lemma 4.18 Let p : X→ P and q : Y → P with X ↪→ Y. If p is stable, then

p �tt q→ p �1 qtt.

Proof Let [·] : X ↪→ Y be an injective encoding, p be stable, and p �tt q via f and
α : ∀x. B|fx| → B, i.e. TT : ∀xL. (fx) =̂q L→ px↔ αxL. Then the function

g : X→ ΣLY : L(Y). B|LY | → B
gx := ([x] :: (fx), λ(b :: L).αxL)

is a one-one reduction establishing p �1 qtt:
7Recall that weak existence denotes the double negated existence of – in this case – L.

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Reduction_Characterization_Coq.html#stable_cyl
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Reduction_Characterization_Coq.html#injection_ex

44 Reduction Characterizations

• First of all, g is well typed: The query list component of gx has length 1+ |fx|.
Therefore, the condition component is of type B1+|fx| → B, such that we can
match on its argument b :: Lwith |L| = |(fx)|. Hence, αx can be applied to L.

• g is injective by the injectivity of [·]:

gx1 = gx2 → [x1] :: (fx1) = [x2] :: (fx2)→ [x1] = [x2]→ x1 = x2

• px → qtt(gx): Assume px and ([x] :: (fx)) =̂q (b :: L) and therefore also
(fx) =̂q L. Now (TTxL) implies αxL = true.

• qtt(gx) → px: The stability of p allows to obtain a list (b :: L) with
([x] :: (fx)) =̂q (b :: L) by Lemma 4.17 8. Therefore also again (fx) =̂q L, such
that assuming qtt(gx) implies αxL = true and with (TTxL) finally px. �

Wewant to use this result nowwith ptt in the place of p. Since we already showed,
that p �tt q implies by transitivity ptt �tt q, we can express truth-table reduction
in terms of one-one reductions. However, the above Lemma requires the important
assumption concerning the embedding of the underlying types, such that using the
Lemma as intended requires an embedding of the depended type of ptt into the
target type. We first prove the result with this particular assumption:

Lemma 4.19 Assume types X and Y with (ΣLX. B|LX| → B) ↪→ Y. For all predicates
p : X→ P and q : Y → P with stable p,

p �tt q↔ ptt �1 qtt.

Proof Let X and Y be as assumed and p be stable.
→: For p �tt q, Lemma 4.17 yields also ptt �tt p �tt q. Since we assumed

(ΣLX : L(X). B|LX| → B) ↪→ Y and know ptt to be stable by Lemma 4.17, we
can apply Lemma 4.18 to the reduction ptt �tt q and obtain ptt �1 qtt.

←: For ptt �1 qtt, we derive

p �1 ptt Lemma 4.17.1 and the stability of p
�1 qtt assumption
�tt q Lemma 4.17.2

and therefore p �tt q. �

8without stability only yielding the weak existence of such a list

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Reduction_Characterization_Coq.html#test

4.3. Truth-Table Reductions as One-One Reductions 45

It remains to show, that assuming ΣLX : L(X). B|LX| → B to be embeddable into Y
can be justified for at least some types X and Y, such that the above result is not
worthless. Especially the encoding of the second component of the dependent type,
namely a function seems to be problematic.
Here comes however into play, that the function type of the truth-table condition
was carefully chosen: In contrast to the more general but uncountable function
type L(B)→ B, the type Bn → B is not only countable but finite for every n: Given
a fixed number of boolean values, there are only finitely many possibilities to com-
bine them to one boolean result. There are especially exactly 2n possible inputs for
this function, such that the behavior of the function is uniquely determined by its
computation on those finite inputs.
This argumentation clearly uses the (classical) principle of functional extensional-
ity: If functions agree on all arguments, they are already equal and therefore es-
pecially in the sense of the counting intuition above the same element. Therefore,
we have to assume for the encoding of the dependent type the constructively not
provable functional extensionality for the condition function:

FEα9 := ∀n. ∀α1α2. (∀L : Bn. α1L = α2L)→ α1 = α2.

Under this axiom together with some basic embedding assumptions of the under-
lying types X and Y, we can show the embedding of ΣLX : L(X). B|LX| → B into Y:
Lemma 4.20 Assume FEα and types X and Y with

(X ↪→ Y) and (N ↪→ Y) and (Y × Y ↪→ Y).

Then, (ΣLX : L(X). B|LX| → B) ↪→ Y and therefore for all predicates p : X → P and
q : Y → P with stable p:

p �tt q↔ ptt �1 qtt.

Proof By Y × Y ↪→ Y it suffices to show both L(X) ↪→ Y (1.) and (Bn → B) ↪→ Y (2.).
So let [·]X : X ↪→ Y, [·]N : N ↪→ Y, and 〈·, ·〉 : Y × Y ↪→ Y be encodings.

1. We encode the list [x1, . . . , xn] injectively into Y as
〈[n]N, 〈[x1]X, 〈. . . 〈[xn−1]X, [xn]X〉 . . . 〉〉〉.

2. Given an element α : Bn ↪→ B, we notice that the type Bn has exactly 2n
elements, such that we can list all possible inputs of α in a list L. Under FEα,
the function α is therefore uniquely encoded as (map α L). This boolean list
can then be encoded into Y similarly to the encoding in 1.10 �

9The principle is derivable out of the general formulation of functional extensionality:
FE := ∀X(T : X→ T).∀(f1f2 : ∀x.Tx).(∀x.f1x = f2x)→ f1 = f2.

10Replace [·] with [·]N and interpret the boolean values as 0 and 1.

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Reduction_Characterization_Coq.html#injection_ex

46 Reduction Characterizations

Notice that the assumed embeddings into Y hold again for the types computability
theory mainly works with like N or other isomorphic types.

Corollary 4.21 For p : N→ P and q : N→ P with stable p,

p �tt q↔ ptt �1 qtt.

Therefore and similar to cylinder predicates (for�m), we showed that the structure
of now �tt is reflected in the structure of �1 and that every tt-degree contains a
maximal 1-degree, both by the truth-table cylinders of the particular predicates.
Furthermore, an easy adaption of the above proof shows that truth-table cylinders
can express truth-table reductions in the exact same way also in terms of many-
one reductions. Since many-one reductions are no longer required to be injective,
the characterization in terms of many-one reducibility works for general predicate
types without assuming the above embedding properties.
Lastly we mention, that there seems a possibility to improve the result, namely a
formalization that allows to drop the assumption FEα. Instead of defining truth-
table conditions as function of typeBn → B, one could encode the computed results
of α for each of the fixed number of 2n possible inputs into a list of this length. We
discussed that α is therewith uniquely specified. The condition would then be a
boolean list with fixed length, i.e.

α : B(2n).

Wesaw in the last Lemmahow to encode listswith fixed length, such that functional
extensionality would be no longer required. However, it would become quite in-
convenient to work with the then unavoidable decoding and encoding when work-
ing with truth-table cylinders and reductions. It seems possible that this refine-
ment of our result could build up on existent work concerning finite sets by Fru-
min et al [19] or on the currently ongoing work from Amorim and Blanco [9], who
develop a library for finite functions that supports extensional equality.

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Reduction_Characterization_Coq.html#cyl_max

Chapter 5

Infinite Predicates

Many traditional presentations of mathematics and also computability theory do
not focus on a formal description of infinite predicates. Instead, they use many dif-
ferent – often intuitive –ways to think about and for example prove a predicate to be
infinite. We want to take a closer look at and formalize some of these different no-
tions for infinite predicates and discuss their constructively provable connections.
Interestingly, the notions differ a lot in their strength and properties and are con-
structively nowhere near to be equivalent. This chapter does not commit to one
concrete definition of infinite predicates, but discusses different options to define
infinite predicates.
5.1 Functional Infinite Predicates
We start by looking at two notions for a predicate p, that either require a surjection
from p into the natural numbers, or require an injection from the natural numbers
into p. This was already defined and denoted in chapter 2 as:

p� N (surjection) N ↪→ p (injection)

Even though these notions are classically1 seen to be equivalent by using the right
or left inverse function respectively, it seems for us to be in general not possible to
construct an injection N ↪→ p out of a surjection p� N or vice versa. We have to be
satisfied with the following result:

Lemma 5.1 Let p : X→ P be enumerable. If p� N, then N ↪→ p.

Proof Similar to the construction of the inverse function (Lemma 2.6). Assume Ep
and f : p � N, i.e. ∀n.∃x.px ∧ fx = n. The witness operator for enumerable predi-
cates ωE yields an inverse function f−1 with p(f−1n) and f(f−1n) = n. Therefore,
f−1 : N ↪→ p. �

1In some cases under the use of a choice axiom.

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Infinite_Predicates_Coq.html#inf_surjection_to_injection

48 Infinite Predicates

It turns out, that these formalizations of infinite predicates are one of the strongest
one could choose. Both notions imply a weaker way to think about infinite predi-
cates, namely predicates containing elements of any number.
5.2 Predicates Containing Elements of Any Number
We formalize this property by requiring the predicate to have arbitrarily large, finite
subsets, i.e. the existence of arbitrary long, duplicate-free lists, that are subsets of
the predicate:
Definition 5.2 We say that a predicate p : X→ P contains elements of any number, if

∀n : N. ∃L : L(X). |L| = n∧ #L∧ L ⊆ p.
Lemma 5.3 For p : X→ P,

1. if p� N, then p contains elements of any number.

2. if N ↪→ p, then p contains elements of any number.
Proof 1. Assume f : p � N. We proceed by induction on n. The base case

is straightforward by picking []. In the step case, the inductive hypothe-
sis yields a list L. By f : p � N, there exists an element x with px and
fx = max(map f L) + 1. Therefore, x /∈ L and we are done by picking x :: L.

2. Assume f : N ↪→ p and n : N. The list map f [0, . . . , n − 1] has length n, is
duplicate-free by Lemma 2.8, and is a subset of p, since p(fn ′) holds for all n ′.

�

One can find many equivalent formulations for predicates containing elements of
any number. All of them can be understood as notions that require continuously
the existence of further elements satisfying the predicate. We state a few equivalent
formulations of this "infinite class" in the next lemma. Even though the implications
are not hard to prove, this "toolbox" of notions becomes precious when working
with concrete predicates. For many different predicates, it provides well matching
and therefore well applicable criteria.
Lemma 5.4 Let p : X → P be a predicate over a discrete type X. Then the following
statements are equivalent:

1. p contains elements of any number.

2. ∀n. ∃L : L(X). |L| > n∧ #L∧ L ⊆ p.2

3. ∀L : L(X). ∃x. px∧ x /∈ L.

For X = N, it is also equivalent:

4. ∀n. ∃x > n. px.

2This formulation simply replaces "∃L.|L| = n" with "∃L.|L| > n" in Definition 5.2.

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Infinite_Predicates_Coq.html#of_any_number
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Infinite_Predicates_Coq.html#inf_surjection_any_number
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Infinite_Predicates_Coq.html#of_any_number_iff1

5.3. Non-Finite Predicates 49

Proof Let X be discrete and p : X→ P.
1. → 2.: Straightforward.
2. → 3.: For L : L(X), the assumption for n = |L|+ 1 provides a duplicate-free list L0
with |L0| > |L| and L0 ⊆ p. Therefore, the pigeonhole principle 2.10 yields x ∈ L0
and hence px but with x /∈ L.
3. → 1.: Straightforward by induction on n.
3. ↔ 4.: Use the assumption for [0, . . . , n] and max L+ 1 respectively. �

Lemma 5.3 stated sufficient criteria for these equivalent properties of a predicate p.
Showing implications in the other direction, for example showing the existence of
a surjection from a predicate p containing elements of any number into N is not
possible in general. However, we can use a similar idea as in Lemma 5.1 to construct
an injection from N into an enumerable predicate p.

Lemma 5.5 Let X be discrete and p : X → P enumerable. If p contains elements of any
number, then N ↪→ p.

Proof Assume with Lemma 5.4 ∀L. ∃x. px ∧ x /∈ L.We again use ωE that yields a
function fL : L(X) → X with p(fLL) and fLL /∈ L. We can use this function now
recursively to obtain a function f : N→ L(X) defined as

f0 := []

f(Sn) := let L := fn in fLL :: L

with the following two properties:
1. ∀n1 6 n2.fn1 ⊆ fn2.
2. f(Sn) is not empty and for its first element xn := hd (f(Sn)), we have pxn and
xn /∈ fLn.

Therefore, (λn.xn) : N ↪→ p:
Let xn1 = xn2 . Then p(xn1) and n1 < n2 (n2 < n1 symmetrically) is contradictory,
since xn2 = xn1 ∈ f(Sn1) ⊆ fn2 by 1. but xn2 /∈ fn2 by 2. Hence, n1 = n2. �

5.3 Non-Finite Predicates
Related to predicates containing elements of any number are non-finite predicates.
Instead of demanding the existence of arbitrarily large, finite subsets, we do not
want the predicate to have a finite superset. While a finite superset – formalized
again as a list – is allowed to contain also elements not satisfying the predicate p, an
even stronger notion of finiteness demands the existence of a list containing exactly
the elements from p.

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Infinite_Predicates_Coq.html#inf_any_number_injection

50 Infinite Predicates

Definition 5.6 (Finite Predicates)
A predicate p : X→ P is called finite, if there exists a list L : L(X) with p ⊆ L.
If there exists a list L : L(X) with ∀x.px↔ x ∈ L, then p is called strongly finite.

Although the both notions of finiteness are classically equivalent by simply remov-
ing elements in p from L, the equivalence holds constructively only for decidable
predicates. Therefore, only non-finite predicates are also not strongly finite, the
other direction does not hold in general.
The following Lemma states that non-finiteness is one of the weakest notions for
infinite predicates and yields, combinedwith the equivalences in Lemma 5.4, many
sufficient criteria to show non-finiteness of a predicate:
Lemma 5.7 Let X be discrete and p : X → P a predicate containing elements of any
number. Then p is not finite.

Proof Towards a contradiction, assume p to be finite via the list L. By Lemma 5.4.3,
there exists x /∈ Lwith px. A contradiction, since p ⊆ L. �

The backward direction is again only provable using classical axioms, like the full
law of De Morgan for existential and universal quantifiers.
Asmentioned above, all the criteria in Lemma 5.4 can be useful to prove a predicate
to be non-finite, however it comes with an unpleasant restriction. The Lemma re-
quires us to show the existence of arbitrarily many elements in the predicate, which
is as far as we conjecture only possible by computing arbitrarily many of those el-
ements. Therefore, we would have to enumerate at least an infinite subset of the
predicate. This makes the Lemma hard to apply for some forms of predicates, like
for example not enumerable ones. By requiring not the existence but the weak ex-
istence of elements of any number, the criterion remains valid and turns out to be
a characterization of non-finite predicates. Also all equivalences in Lemma 5.4 stay
provable when double negating all existential quantifiers, e.g.

"∀n.¬¬∃L.|L| = n∧ #L∧ L ⊆ p" instead of "∀n.∃L.|L| = n∧ #L∧ L ⊆ p".
We refer to these double negated statements as the weak existence version of a
statement. This results in another class of equivalent notions:
Lemma 5.8 Let X be discrete. Non-fininiteness of a predicate p : X → P is equivalent to
the weak existence versions of the statements in Lemma 5.4.

Proof We only show
¬finite p↔ ∀L.¬¬∃x.px∧ x /∈ L,

the implications between themodified statements are proven similarly to Lemma5.4
after eliminating the double negations on both sides.

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Infinite_Predicates_Coq.html#finite
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Infinite_Predicates_Coq.html#of_any_number_notfinite
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Infinite_Predicates_Coq.html#notfinite_iff1

5.4. Properties of Infinite Predicates 51

So first assume p to be non-finite and a list L such that ¬∃x.px ∧ x /∈ L. But then, p
is finite via L. Otherwise assume ∀L.¬¬∃x.px∧ x /∈ L and p to be finite via L0. Then
the assumption is violated for L := L0. �

We saw many different ways to formalize a predicate being infinite. By assuming
the law of excluded middle and the axiom of choice, all notions would become
equivalent. While also in our axiom-free constructive setting some of the notions do
coincide and build a class of equivalent notions, there are however also implications
that cannot be proven constructively or only with further assumptions regarding
the predicate. The following diagram summarizes provable implications between
the different notions of infinite predicates p : X→ P over a discrete type X:

p� N N ↪→ p

p contains elements of any number

p is not finite

p is not strongly finite

: for all p
: for Ep
: for Dp

5.4 Properties of Infinite Predicates
We want to discuss properties of infinite predicates with respect to the different
notions. We will observe further differences between the notions, for example re-
garding their closure properties. Again, axiom-free constructive logic cannot prove
for every notion all the intuitively valid and in traditional presentations used prop-
erties of infinite predicates.
Under all notions, there exists an infinite predicate. For example the constant pred-
icate λn : N.> is infinite for all notions of infinity, since it is canonical bijective to N
via λn.n. Similarly, this holds for many other basic predicates over natural num-
bers like even or odd numbers. Furthermore, one clearly expects the existence of
elements satisfying an infinite predicate. This holds also for most of the notions,

52 Infinite Predicates

however and analogously to the characterizations of non-finiteness, we can show
only the weak existence of an element in non (strongly) finite predicates.
Lemma 5.9 (Non-Emptiness)

1. If p contains elements of any number, there exists x with px.

2. If p is not (strongly) finite, there weakly exists x with px.
Proof 1. Use the assumption for n = 1 and pick the head of the list.

2. We show the positive contraposition¬∃x.px→ (strongly) finite p. So assume p
with ¬∃x.px. Then [] contains exactly the elements satisfying p. �

Also looking closer at closure properties of infinite predicates reveals some inter-
esting as well as useful results. However, we again have to accept some limitations,
as not all closures are provable for all the notions of infinite predicates. Even clo-
sure under supersets (i.e. q ⊇ p is infinite if p is infinite) is not provable for not
strongly finite predicates in general and works only for decidable predicates p. All
other notions are actually easy to show closed under supersets. It becomes even
more difficult when considering closures under surjections and injections between
two predicates. We are again facing the problem of not being able to construct right
or left inverse functions between predicates p and q, which would be necessary to
transport some notions of infinity through p � q or p ↪→ q. We state provable
closures in the following two lemmas:
Lemma 5.10 (Closure under Surjections) Let p : X→ P, q : Y → P, and p� q.

1. If q� N, then also p� N.

2. If q is not finite, also p is not finite.
Proof Assume f : p� q.

1. Let fq : q� N, then (λx. fq(fx)) : p� N.
2. We show the contraposition finite p→ finite q. If p ⊆ L, then q ⊆ map f L:
qy implies fx = y for some xwith px and hence x ∈ L. Thus, y = fx ∈ (map f L).

�

Lemma 5.11 (Closure under Injections) Let p : X→ P, q : Y → P, and p ↪→ q.

1. If N ↪→ p, then also N ↪→ q.

2. If p contains elements of any number, also q contains elements of any number.

Let furthermore X and Y be discrete, then:

3. If p is not finite, also q is not finite.

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Infinite_Predicates_Coq.html#of_any_number_Element
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Infinite_Predicates_Coq.html#inf_closure_surj_surj
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Infinite_Predicates_Coq.html#inf_closure_inj_inj

5.4. Properties of Infinite Predicates 53

Proof Assume f : p ↪→ q.
1. Let fp : N ↪→ p, then (λn. f(fpx)) : p ↪→ N.
2. Assume for all n the existence of a duplicate-free list Ln ⊆ p with |Ln| = n.

Then |map f Ln| = |Ln| = n, (map f Ln) is duplicate-free, and x ∈ (map f Ln)
implies x ∈ L (Lemma 2.8 and the injectivity of f) implies px .

3. We use lemma 5.8 on both sides to show(
∀n.¬¬∃L.|L| = n∧ #L∧ L ⊆ p) −→ ∀n.¬¬∃L.|L| = n∧ #L∧ ∀y ∈ L.qy,

which follows similar to claim 2. �

Like in the discussion of implications between different notions of infinite predi-
cates, we also focused in our presentation of their properties on provable results
in an axiom-free constructive setting. However, it could be also very interesting to
look closer at properties of infinite predicates under various further assumptions
like choice axioms or in classical logic as well as to discuss reversely, whether some
– constructively not provable – implications between infinite notions imply for in-
stance already a weak choice axiom.
The different notions for infinite predicates, their different properties and especially
their different non-provable properties show, that there is neither a general way to
think constructively about a predicate being infinite nor one correct definition of
infinite predicates. Instead, it depends a lot on the actually used properties of in-
finite predicates and the concrete predicates that one likes to prove being infinite
predicates. In contrast to traditional presentations, we cannot throw all notions in
one bucket and think about all of them as the same mathematical description of
infinity. It is not possible to readily use different notions in the same proof, since
they are not necessarily equivalent. Instead, we have to study very carefully the
for a particular development necessary and essentially used properties. The defi-
nition of infinite predicates has to follow this careful analysis in order to be the best
working notion for the particularly aspired constructive formalization.

Chapter 6

Simple Predicates, Post’s Problem & Distinctions

In chapter 4, we characterized different reductions and their reduction degrees. Iso-
morphic predicates have byMyhill’s isomorphism theorem also the same 1-degree,
predicates with the same 1-degree have clearly also the samem-degree. We found
connections between one-one, many-one, and truth-table reductions. However, it is
not clear whether those different reducibility terms and therefore their computabil-
ity degree do coincide on undecidable predicates, or whether we can find a distinc-
tion between these notions. Another question appears when analyzing the inner
structure of the computability degrees on semidecidable predicates. By definition,
the class of m-complete (1-complete, tt-complete) predicates has the maximal m-
degree (1-degree, tt-degree) on semidecidable predicates. But can we distinguish
different classes of semidecidable but undecidable predicates by their degree or are
all those predicates already complete? Since the halting problem is 1-complete, one
could equivalently ask, whether there is an undecidable but semidecidable predi-
cate p with W � p. Emil Post raised this questions in 1944 with respect to Turing
reducibility [28], which became known as Post’s problem asking:

"Is there an semidecidable but undecidable predicate, such that the halting
problem does not Turing reduce to this predicate?"

This question could be answered positively independently by Muchnik [24] and
Friedberg [17] in the 1950’s by the so-called priority method. Post himself could
solve the problemwith respect tomany-one reducibility by inventing so-called sim-
ple predicates1. Interestingly this class of simple predicates also yields a distinction
of one-one, many-one, and truth-table reducibility on semidecidable but undecid-
able predicates.
Post used a property, that the complement of everym-complete predicate contains a
semidecidable and infinite subset. Therefore, Post defined a predicate to be simple
if it is semidecidable and its complement contains no semidecidable and infinite

1He solved the problemalso for truth-table reductions via hyper-simple predicates; see chapter 8.3.

55

subset even though the complement is itself infinite2. Furthermore, Post showed
the existence of a simple predicates by constructing such a predicate out of the
halting problem.
We want to formalize the notion of simple predicates, the construction of a sim-
ple predicate, and show the characteristic properties of those predicates in order
to conclude results regarding reducibility degrees. The traditional presentations
use essentially properties of their underlying model of computation like a univer-
sal machine. As discussed in chapter 3, we can follow this presentations by using
carefully chosen axioms of synthetic computability theory. Furthermore, we will
have to work with infinite predicates, which becomes as already indicated in the
last chapter a crucial and interesting aspect right from the start. We discussed that
some notions of infinite predicates require us to compute and therefore enumer-
ate an infinite subset of the predicate when showing it infiniteness. However, the
complement of a simple predicate should be provable to be infinite even though it
contains by definition no semidecidable – thus enumerable – and infinite subset.
This leads to the following, on the first view paradox result, stating that the exis-
tence of a simple predicate is contradictory for some notions of infinite predicates:
Lemma 6.1 There exists no predicate p over a discrete type, with the following properties:

1. Sp,

2. p contains no semidecidable subset q with N ↪→ q, and

3. N ↪→ p.

Proof Assume such a predicate p with f : N ↪→ p and consider the predicate
q := λx. ∃n.fn = x, i.e. the range of f. Therefore, q is semidecidable and since
f : N ↪→ p, we have furthermore q ⊆ p and f : N ↪→ q, which contradicts 2. �

This supposed contradiction to the existence of a simple predicate is due to our
synthetic approach: We identify the notion of a function with the notion of a com-
putable function, such that f : N ↪→ p is analogously to for instance deciders or
reductions immediately computable. Only therefore, the range of f is semidecid-
able as the range of a computable function.
This observation forces us to choose a definition of infinite predicates, that requires
no computation of elements in the predicate. We canprecludemany infinite notions
introduced in Chapter 5 to be the correct one for our purpose to formalize and show
the existence of a simple predicate. Finally by the lack of provable closures for not
strongly finite predicates, it turns out that the for our particular problemmatching
definition for an infinite predicate is non-finiteness.

2Finite complements contain no infinite subset, however those predicates are at least classically
clearly decidable.

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Simple_Predicates_Coq.html#simple_strong_contradiction

56 Simple Predicates, Post’s Problem & Distinctions

Definition 6.2 (Infinite Predicates)
We call a predicate p : X→ P from now on infinite, if it is not finite, i.e.

¬∃L.p ⊆ L.

p is called co-infinite, if p is infinite.

We use this definition to formally define simple predicates as follows:
Definition 6.3 (Simple Predicates) A predicate p : X→ P is called simple, if

Sp∧ (∀q.Sq→ infinite q→ q * p)∧ infinite p.

Besides the choice of the correct infinity definition, notice a second delicately bal-
anced decision in formalizing the notion of simple predicates. Classically, q * p

is equivalent to ∃x.qx ∧ px; constructively, this is however again not the case and
requiring q * p is the strict weaker notion. Since the hardest part of the following
work with simple predicates turns out to be the existence proof of such a predicate,
we chose the easier provable notion q * p.
The first basic result regarding simple predicates is easy to see and states that the
class of simple predicates is indeed a subclass of undecidable predicates.
Lemma 6.4 Simple predicates are undecidable.

Proof Let p be simple and decidable. Therefore, p is semidecidable and infinite by
assumption, and p ⊆ p. A contradiction to ∀q.Sq→ infinite q→ q * p. �

6.1 Construction of a Simple Predicate
We want to show the existence of a simple predicate. Therefore, we firstly start
to construct a potential simple predicate and then secondly also prove this pred-
icate to be indeed simple. Since on the one hand assuming the decidability of all
predicates is consistent in an axiom-free constructive setting but simple predicates
were on the other hand already shown to be undecidable, such a construction can-
not work without further assumptions. We discussed different axioms of synthetic
computability theory already in Chapter 3. Some of those axioms will be succes-
sively assumed throughout this chapter, which will be marked in red at the par-
ticular points. We introduced an enumerator W : N → X → P for semidecidable
predicates, that can be interpreted as the halting problem. We roughly follow the
original construction of Post and its presentation by Rogers, modifying the halt-
ing problem over natural numbers in a specific way to obtain a simple predicate.
Therefore we assume from now on
W : N→ N→ Pwith its specification ES := ∀p : N→ P.Sp↔ ∃c.∀x.(Wcx↔ px).

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Simple_Predicates_Coq.html#infinite
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Simple_Predicates_Coq.html#simple
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Simple_Predicates_Coq.html#simple_not_dec

6.1. Construction of a Simple Predicate 57

As mentioned in chapter 3, ES does not imply the semidecidability ofW. Since the
intended construction of a simple predicate (and at the latest its semidecidability)
heavily relies on this property of W, we furthermore assume from now on

SW.
Recall the several results and properties ofW like its 1-completeness thatwe can use
fromnowonwith the above assumptionsmade. We start to adaptW by considering
the auxiliary predicate C : N × N → P and introduce notions for the domain of C
and the range of an index c under C:

C(c, x) := Wcx∧ x > 2c

DomC := λc. ∃x.C(c, x)
RanC c := λx. C(c, x)

Intuitively, C(c, x) describes that the program with index c halts on input x with
x > 2c. Therefore, DomC c holds iff the program with index c has an halting input
larger than 2c. Notice the following basic properties of C and its domain.
Lemma 6.5 1. C and therefore DomC are not empty.

2. C and DomC are strongly enumerable.

Proof 1. Recall the index c>with ∀x.Wc>x. Hence, C(c>, 2c>+1) andDomC c>.
2. Semidecidability and enumerability do coincide on the datatype N × N.

Therefore, the claim follows by the assumption SW, closure properties and 1.
�

Unfortunately, RanC c can be empty for some indices, e.g. for the empty index c⊥
since Wc⊥x holds for no x. Therefore, we will not be able to construct a strong
enumerator but can at least prove the enumerability of RanC c.
Lemma 6.6 For every c, RanC c is enumerable.

Proof Follows again by closure properties with Lemma 6.5. �

We would like to define the simple predicate as the range of C. However, C is
clearly not co-infinite since for instance RanC c>x holds for every x > 2c> such
that the complement of RanC c> is bounded. We handle this problem by trying
to find a function ψ, that computes a unique element in RanC c and then define
the simple predicate as the range of ψ. Again because of the possible emptiness
of RanC c, ψ cannot be a total function. Traditionally, one would simply solve this
issue by using a partial function. In our case, we have to giveψ a second parameter,

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Simple_Predicates_Coq.html#C_nonempty
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Simple_Predicates_Coq.html#RangeC_Enum

58 Simple Predicates, Post’s Problem & Distinctions

namely a proof for DomC c = ∃x.C(c, x) and then compute a unique element in
RanC c = λx. C(c, x). We discussed exactly this kind of computation for decidable
predicates by the operator µN as well as for enumerable predicates by µE. Since
RanC c cannot be shown decidable in general3, we use given c inDomC the recursive
µE-operator from Lemma 3.23 for the enumerable predicate RanC c to define the
function ψ and our potential simple predicate as its range:
Definition 6.7 We define the function ψ : ∀c.DomC c→ N via the µE-operator as

ψcH := µEH.

Furthermore, we define the predicate S : N→ P as the range of ψ, i.e.

Sx := ∃c(H : DomC c). ψcH = x.

By the specification of µE, we know that firstly the result of ψcH does not depend
on the actual proof H and secondly that C(c,ψcH) holds for all c with DomC c. In
particular, S is subset of the range of C and ψcH > 2c for all c, which will become a
key property of S to prove its co-infinity.
In order to enumerate S, i.e. the range of ψ, we want to return the result of ψ for
every c with DomC c. By the type of ψ it is clearly necessary to find a computation
of proofs H : DomC c – the second parameter of ψ – in order to enumerate its range.
Fortunately, we can strongly enumerate DomC by some function E : N → N, which
gives us not only the possibility to enumerate the elements c in DomC, but also
allows us to compute a proof of DomC (En) for every given n.
Lemma 6.8 S is strongly enumerable and therefore semidecidable.

Proof The strong enumerator for S is defined as follows:
Given n, we compute En and a proof H : DomC (En), then return ψ(En)H.

We continue to prove the properties S should fulfill to be a simple predicate.
Lemma 6.9 S contains no semidecidable and infinite subset.

Proof Assume a semidecidable and infinite predicate q with q ⊆ S. By ES, there
is an index c with ∀x.Wcx ↔ qx. We derive a contradiction by showing q finite
via [0, . . . , 2c], i.e. showing that all elements satisfying q are not larger than 2c: As-
sume qx – therefore Wcx – and x > 2c. Hence, C(c, x) and such that there exists
H : DomC c. Then

C(c,ψcH)⇒Wc(ψcH)⇒ q(ψcH)⇒ S(ψcH),

a contradiction to the definition of S as the range of ψ. �

3Traditionally it is easy to show that RanC c is actually undecidable for some indices c using a
universal machine

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Simple_Predicates_Coq.html#psi
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Simple_Predicates_Coq.html#S_enumerator
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Simple_Predicates_Coq.html#S_No_S_Inf_Subset

6.1. Construction of a Simple Predicate 59

We already mentioned, that ψ does not depend on the exact proof H : DomC c.
Therefore we omit from now on the second parameter and simply write "ψc" and
think consequently about Sx as "∃c.ψc = y".
In order to show S simple, it remains to show its co-infinity. Therefore, we first need
some preparation:

Definition 6.10 We say that L is a listing of p up to a bound b if L is duplicate-free and

∀x.x ∈ L↔ (px∧ x 6 b).

Lemma 6.11 For all predicates p and bounds b,

1. there weakly exists a listing of p up to b, and

2. if L is a listing of p up to bound b, then [0, . . . , b] \L is a listing of p up to b.

Proof 1. We prove the claim ¬¬∃L.#L ∧ ∀x.x ∈ L ↔ (px ∧ x 6 b) by induction
on the bound b. Since we have to prove ⊥, we decide p0 in the base case
and p(b + 1) in the step case and construct the correct duplicate-free listing
respectively.

2. Follows straightforward by the properties of " \". �

With this, we are ready to again look at the predicate S and show that it is indeed
co-infinite. Now, the invested work in the last chapter to find many different char-
acterizations of non-finite predicates pays out. Intuitively, S is infinite, since the
list of numbers [0, . . . , 2n] can contain at most n elements in S and therefore at
least n + 1 in S for all natural numbers n: By ψc > 2c > 2n for c > n, at most
{ψ0,ψ1, . . . , ψ(n− 1)} are the elements less or equal than 2n satisfying S. This intu-
ition helps us to find the best fitting infinite criterion for S. Since we already know,
that S contains no semidecidable and infinite subset, wewill not be able to compute
elements of any number in S. However it turns out, that we can show the weak ex-
istence of arbitrary long, duplicate-free lists containing only elements from S. We
formalize this intuition by looking first at the lists containing elements in S up to
the particular bound 2n.

Lemma 6.12 For every duplicate-free list L with ∀x ∈ L.Sx∧ x 6 2n,

1. there exists a duplicate-free list LC with |LC| = |L| and s.t. ∀c ∈ LC.c < n∧ψc ∈ L.

2. |L| 6 n.

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Simple_Predicates_Coq.html#PredListTo
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Simple_Predicates_Coq.html#PredNoDupListTo_NNExist
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Simple_Predicates_Coq.html#DomC_pullback_list

60 Simple Predicates, Post’s Problem & Distinctions

Proof Assume #L and ∀x ∈ L.Sx∧ x 6 2n.
1. By induction on L. In the step case x :: L, the inductive hypothesis yields a

duplicate-free list L ′C with |L ′C| = |L| and ∀c ∈ L ′C.c < n∧ψc ∈ L. Since Sx and
x 6 2n hold by assumption, there is c < n with x = ψc and therefore c /∈ L ′C.
Finally, we choose LC := (c :: L ′C).

2. Consider the duplicate-free list LC from 1. Then |L| = |LX| 6 |[0, . . . , n]| = n. �

By this auxiliary result, it is straightforward to prove that listings of S up to 2n have
a maximal length of n.
Lemma 6.13 For all n, there weakly exists a listing L of S up to 2n with |L| 6 n.

Proof By Lemma 6.11, it is sufficient to show that all listings L of S up to 2n have a
length of at most n. This follows by 6.12. �

Lemma 6.14 S is co-infinite.

Proof We show the infinity of Swith Lemma 5.8 by the characterization

∀n.¬¬∃L.|L| > n∧ #L∧ L ⊆ S.

So let n be a natural number and consider the weakly existent listing LS of S
(Lemma 6.11.1) with |LS| 6 n (Lemma 6.13). Then [0, . . . , 2n] \LS is a weakly ex-
istent listing of S by Lemma 6.11.2, and therefore duplicate-free and a subset of S.
Finally |LS| 6 n implies |[0, . . . , 2n] \LS| > n. �

We successfully proved the constructed predicate S to be simple and therefore the
existence of a simple predicate.
Theorem 6.15 The predicate S is a simple predicate.

Proof Follows with Lemmas 6.8, 6.9, and 6.14. �

6.2 Properties of Simple Predicates & Post’s Problem w.r.t. �m
Now that we have shown the existence of a simple predicate, wewant to look closer
at the properties of this predicate class. As mentioned in the introduction of this
chapter, simple predicates provide a further understanding of the structure of re-
ducibility degrees.
First of all, they answer the questions negatively, whether all semidecidable but
undecidable predicates have the cylinder property introduced in chapter 4, which
will then allow us conclude a distinction of one-one and many-one reducibility on
undecidable predicates.

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Simple_Predicates_Coq.html#S_Listing
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Simple_Predicates_Coq.html#S_coInfinite
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Simple_Predicates_Coq.html#S_simple

6.2. Properties of Simple Predicates & Post’s Problem w.r.t. �m 61

For proving simple predicates to not fulfill the cylinder property, Rogers uses My-
hill’s isomorphism theorem: By the equivalence of ≡1 and ≡, he shows both the
simple property and the cylinder property to be recursively invariant, i.e. that those
notions transport through a computable bijection. This would also work out in our
setting, however Myhill’s isomorphism theorem is restricted to types X ∼= N. We
can find a for our formalization actually simpler proof, that shows the generalized
result:

Lemma 6.16 Simple predicates are no cylinders.

Proof ByLemma4.15p is a cylinder iffN×p �1 p. So letp be simple andN×p �1 p
via f. We have to show ⊥, therefore Lemma 5.9 and the co-infinity of p yield an
element x0 with px0. Then p contains the semidecidable (1.) and infinite (2.) sub-
set (3.) q := λx. ∃n.x = f(x0, n) (i.e. the range of {x0}×N under f), which contradicts
the second condition of simple p:

1. Sq: As the range of a semidecidable predicate, q is also semidecidable.
2. infinite q: By the closure of infinity under an injections, it suffices to show
λ(x, n). x = x0 to be infinite. But λ(x, n).n is a surjection from this predicate
into N.

3. q ⊆ p: Assume xwith qx and px and therefore x = f(x0, n) for some n. Hence,
px = p(f(x0, n)) implies px0 since p × N �1 p via f. But we assumed px0, a
contradiction. �

The above lemma shows the existence of undecidable predicates that do not fulfill
the cylinder property and yields a distinction of one-one andmany-one reducibility.

Theorem 6.17 (Distinction of �1 and �m)
�1 and �m and therefore ≡1 and ≡m do not coincide on undecidable predicates.

Proof The simple predicate S is by Lemma 6.16 no cylinder and therefore S×N �1 S
and S 6≡1 S× N by Lemma 4.15, but S× N �m S and S ≡m S× N by Lemma 4.12. �

We come back to the original paper of Post [28] and his motivation to invent sim-
ple predicate. Those predicates gave Post an example of semidecidable but unde-
cidable predicates that are not m-complete. As mentioned, his definition of sim-
ple predicates was reasoned by a property ofm-complete predicates as predicates,
whose complements contain a semidecidable and infinite subset. In order to for-
malize Post’s problem with respect to many-one reduction, we want to show this
property of m-complete predicates. The proof relies on so-called productive and
creative predicates. Since the definition of those notions uses the enumerator of

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Simple_Predicates_Coq.html#simple_not_cylinder
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Reducibility_Distinctions_Coq.html#one_red_m_red_distinction

62 Simple Predicates, Post’s Problem & Distinctions

semidecidable predicates W, we have to restrict the definition to predicates over
the natural numbers.

Definition 6.18 (Productive and Creative Predicates)

1. A function g : N→ N is a productive function for p : N→ P, if

∀c.Wc ⊆ p→ (p \Wc)(gc).

2. p is called productive if it has a productive function.

3. p is called creative if it is semidecidable and p is productive.

The canonical example for a creative predicate is the special halting problem
W0 : N → P, i.e. the predicate describing that the program with index n halts on
input n: It is semidecidable since we assumed the semidecidability ofW andW0 is
productive via g := λn.n since W0 was defined as W0n := Wnn.
The usage of productive and creative predicates for our purposes becomes clear by
the next result. We show thatm-complete predicates are also creative and therefore
their complements productive. Proving this implication needs a further axiom in
synthetic computability theory, namely the in chapter 3 discussed corollary out of
the (simple) Smn -theorem. We assume from now on

SMN’ := ∀f.∃k.∀cx.W(kc)x↔Wc(fx).

Lemma 6.19 For all predicates p : N→ P and q : N→ P,

1. productive p→ ¬Sp.

2. p �m q→ productive p→ productive q.

3. creative p→ ¬Dp.

4. p �m q→ creative p→ productive q.

5. m-complete p→ creative p.

Proof 1. Let p be productive via g and semidecidable. By ES, there exists c
with H : ∀x.Wcx ↔ px. Therefore, Wc ⊆ p which implies by assumption
(p \Wc)(gc). A contradiction towards H(gc).

2. Let p �m q via f and p productive via g. By SMN’, there is a function
k : N→ NwithH : ∀cx.W(kc)x↔Wc(fx). Thenq is productive via λc. f(g(kc)):
Wc ⊆ q impliesW(kc) ⊆ p by H and p �m q via f. Hence, (q \Wc)(f(g(kc))).

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Simple_Predicates_Coq.html#prod_fct
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Simple_Predicates_Coq.html#prod_not_semidec

6.2. Properties of Simple Predicates & Post’s Problem w.r.t. �m 63

3. Follows with 1.
4. Follows with 2.
5. Let p bem-complete. Then p is semidecidable and the creative predicate W0

reduces to p. Hence, p is productive by 4. �

By the last result, it will now suffice to construct a semidecidable and infinite subset
for productive predicates in order show the existence of such a subset in the com-
plement of a m-complete predicate. We will now focus on this construction for a
fixed productive predicate p. We then try to recursively build up arbitrarily long,
duplicate-free lists of elements satisfying p. This recursive construction will need
as a further axiom the computability of an index halting exactly on a given list L.
Formally we assume from now on,

LIST– ID := ∀L.ΣcL.∀x.Wcx↔ x ∈ L.

As shown in 3.19, this axiom can be derived out of the cns-operator.
So fix p : N→ P be productive via g : N→ N and therefore

P : ∀c.Wc ⊆ p→ (p \Wc)(gc).

Consider the following recursive function fL : N→ L(N)

fL0 := []

fL(Sn) := let L := fLn in (gcL) :: L

with the following properties:

Lemma 6.20 For all natural numbers n,

1. fLn ⊆ p,

2. |fLn| = n, and

3. fLn is duplicate-free.

Proof All three claims follow by induction on n:
1. The base case is contradictory, in the step case let L := fLn and assume
x ∈ (gcL) :: L. For x ∈ L, the inductive hypothesis implies px. For x = gcL, we
have to show px = p(gcL), which followswith P if we haveWcL ⊆ p. But for x0
withWcLx0 and therefore x0 ∈ L, the inductive hypothesis again implies px0.

2. Straightforward.

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Simple_Predicates_Coq.html#g_subset

64 Simple Predicates, Post’s Problem & Distinctions

3. The base case is again trivial, in the step case L := fLn is duplicate-free by the
inductive hypothesis. Therefore, it suffices to show gcL /∈ L. ButWcL ⊆ p by 1.
and therefore P implies (p \WcL)(gcL) and in particular WcL(gcL). Hence,
gcL ∈ Lwould imply WcL(gcL), a contradiction. �

This allows us to conclude, that p contains a semidecidable and infinite predicate.
We define this predicate as exactly those elements, that appear in the lists fLn for
some n. Showing, that this predicate is a predicate as desired is easy by using the
matching non-finiteness criterion from the last chapter:
Lemma 6.21 Productive predicates p contain a semidecidable and infinite predicate, i.e.

∃q.Sq∧ infinite q∧ q ⊆ p.

Proof For q := λx. ∃n.x ∈ fLn, we conclude:
1. Sq via λxn. px ∈ fLnq.
2. infinite q, since q contains elements of any number n:

|fLn| = n∧ #fLn∧ fL ⊆ q (Lemma 6.20)

3. q ⊆ p, since qx implies x ∈ fLn for some n and therefore px again by
Lemma 6.20. �

We can combine our results with the construction of the simple predicate S in the
last section to show the existence of not m-complete predicates in order to finish
the formalization of Post’s problem with respect to many-one reductions.
Corollary 6.22 Simple Predicates are notm-complete.
Proof Follows with Lemmas 6.19 and 6.21. �

Theorem 6.23 (Post’s Problem w.r.t. �m)

1. There exists a semidecidable but undecidable predicates that is notm-complete.

2. There exists a semidecidable but undecidable predicate p, such that the halting prob-
lem does not many-one reduce to p.

Proof Both claims are equivalent by Lemma 3.18 and follows. 1. follows with the
simple predicate S from Theorem 6.15 with Lemma 6.4 and Corollary 6.22. �

Post’s problemwith respect tomany-one reductions also answers the problemwith
respect to one-one reduction: Simple predicates are notm-complete and hence not
1-complete. Furthermore, W was shown to be 1-complete such that simple predi-
cates do also not one-one reduce to the halting problem.

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Simple_Predicates_Coq.html#prod_inf_sub
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Simple_Predicates_Coq.html#simple_not_complete
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Reducibility_Distinctions_Coq.html#Post's_Problem_wrt_Many_One

6.3. Distinction of Many-One and Truth-Table Reducibility 65

6.3 Distinction of Many-One and Truth-Table Reducibility
We saw in the last section, that simple predicates are useful to solve Post’s prob-
lem for many-one reductions and therefore distinguish different classes of 1- and
m-degrees over the semidecidable but undecidable predicates. Furthermore, they
yield a distinction of one-one and many-one reducibility, since simple predicate do
not fulfill the cylinder property.
It turns out that the class of simple predicates contains also predicates that let us
distinguish many-one and truth-table reductions. We know from chapter 3, that
p �m q implies p �tt q and therefore for their computability degrees, that ≡m is
a subset of ≡tt. However, this subset is a strict one: We can construct a truth-table
complete predicate, that is not many-one complete and has therefore different m-
and tt-degrees.
The construction of such a predicate works by modifying the simple predicate S,
which is again inspired by the presentations of Rogers. He united Swith particular
lists of numbers in the following way

Sx∨
(
∃n.W0n∧ x ∈ [2n − 1, . . . , 2n+1 − 2]

)
and showed this disjunction to be still simple and therefore not m-complete but
tt-complete. However, following this construction in our setting comes with two
problems: In order to show the disjunction co-infinite, one first has to show W0

co-infinite. This is for us not possible without further assumptions like the pos-
sibility to find arbitrarily large program indices with the same behavior. Further-
more, showing the modified predicate tt-complete traditionally works by a reduc-
tion from W0. However, showing W0 to be tt-complete or equivalently W �tt W0

seems to require stronger axioms if not even a universal machine.
It turns out, that both problems can be solved using W instead of W0. We there-
fore unite S with the lists [2n − 1, . . . , 2n+1 − 2] for those n that encode a pair (c, x)
fulfilling Wcx . Formally the new predicate S∗ : N→ P is defined as

S∗x := Sx∨
(
∃n.W(π1n)(π2n)∧ x ∈ [2n − 1, . . . , 2n+1 − 2]

)
.

The most difficult part of showing S∗ simple is again the co-infinity proof. We can
however come back and use some already proven results that help us to show S∗ co-
infinite: Properties of S but especially the work from the last chapter about infinite
predicates pays again off by providing thematching criterion to show S∗ co-infinite.

Lemma 6.24 1. For all x, n1, and n2,

x ∈ [2n1 − 1, . . . , 2n1+1 − 2]→ x ∈ [2n2 − 1, . . . , 2n2+1 − 2]→ n1 = n2.

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Simple_Predicates_Coq.html#S_Star_coInfinite

66 Simple Predicates, Post’s Problem & Distinctions

2. For all n, there weakly exists x ∈ [2n − 1, . . . , 2n+1 − 2]] with Sx.

3. λn.W(π1n)(π2n) is co-infinite.

4. S∗ is co-infinite.

Proof 1. Follows since [2n1 − 1, . . . , 2n1+1 − 2] and [2n2 − 1, . . . , 2n2+1 − 2] are
disjoint for n1 6= n2.

2. The following implication holds for all lists L and predicates p:

(L * p)→ ¬¬∃x ∈ L.px.

It is proven by induction on L and deciding pa in the step case a :: L. It there-
fore suffices to show [2n−1, . . . , 2n+1−2] * S. But since 2n+1−2 = 2 · (2n−1),
assuming [2n− 1, . . . , 2n+1− 2] ⊆ S implies by Lemma 6.12 (with n := 2n− 1)
|[2n−1, . . . , 2n+1−2]| 6 2n−1 . Contradictory, since |[2n−1, . . . , 2n+1−2]| = 2n.

3. N ↪→ (λn.W(π1n)(π2n)) via λn. 〈c⊥, n〉. The claim follows by infinite criteria.
4. We show S∗ co-infinite by the equivalent criterion

∀n.¬¬∃x > n∧ S∗x.

By 3., there weakly exist arbitrarily large elements n1 with W(π1n1)(π2n1).
For n : N, choose such an n1 > n. By 2., there weakly exists an element
x ∈ [2n1 − 1, . . . , 2n1+1 − 2] with Sx. Therefore, x > n1 − 1 > n and by 1.,

Sx∧ ¬∃n2.W(π1n2)(π2n2)∧ x ∈ [2n2 − 1, . . . , 2n2+1 − 2]⇔ S∗x. �

Since S∗ should be a simple predicate, we know for the same reasons as for S that
the above proof cannot be simplified using other notions as infinite criterion but
must again work by a characterization requiring the weak existence.
Showing the remaining two properties of S∗ to be a simple predicate becomes rel-
atively easy using the already proven corresponding properties of S:
Lemma 6.25 S∗ is a simple predicate.

Proof Follows with
1. SS∗: Straightforward by closure properties of semidecidable predicates and

the semidecidability of S and W.
2. S∗ contains no semidecidable and infinite subset: S ⊆ S∗ implies S∗ ⊆ S and
S contains no such predicate by Lemma 6.9.

3. Lemma 6.24. �

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Simple_Predicates_Coq.html#S_Star_simple

6.3. Distinction of Many-One and Truth-Table Reducibility 67

In order to show the truth-table completeness of S∗, we need a small auxiliary
lemma characterizing lists containing only elements in S∗x. Even though the for-
mulation of the statement is technical, it follows easily by the definition of S∗ as a
disjunction.

Lemma 6.26 For all lists L ⊆ S∗, we have

L ⊆ S∨
(
∃nx.W(π1n)(π2n)∧ x ∈ L∧ x ∈ [2n1 − 1, . . . , 2n1+1 − 2]

)
.

Proof Straightforward by induction on L. �

As already mentioned, we show S∗ m-complete by a reduction from W. Given an
instance n := 〈c, x〉 of the halting problem, we use the query list [2n−1, . . . , 2n+1−2]
and check whether all entries of the corresponding boolean list are true. Recall the
already many times used property of S, that not all elements of particular lists – in
this case the list [2n−1, . . . , 2n+1−2] – can satisfy S. This observation in combination
with the above lemma will allow us to show that the informal reduction above is
indeed a truth-table reduction form W to S∗.

Lemma 6.27 S∗ is tt-complete.

Proof Since S∗ is semidecidable, it suffices by Lemma 3.18 to show W �tt S∗. The
truth-table reduction works via

f := λ(c, x). let n := 〈c, x〉 in [2n − 1, . . . , 2n+1 − 2]

and α := λ(c, x) LB. if p∀b ∈ L.b = trueq then true else false.

For n := 〈c, x〉 and [2n − 1, . . . , 2n+1 − 2] =̂S∗ LB, we have to show

Wcx↔ α(c, x)LB = true.

→: By Wcx⇒ [2n − 1, . . . , 2n+1 − 2] ⊆ S∗ ⇒ ∀b ∈ L.b = true⇒ α(c, x)LB = true.
←: We have α(c, x)LB = true⇒ ∀b ∈ L.b = true⇒ [2n − 1, . . . , 2n+1 − 2] ⊆ S∗.

By Lemma 6.26, there are two cases:
1. [2n − 1, . . . , 2n+1 − 2] ⊆ S. Contradiction again by Lemma 6.12.
2. ∃n1x.W(π1n1)(π2n1)∧x ∈ [2n−1, . . . , 2n+1 −2]∧x ∈ [2n1−1, . . . , 2n1+1−2].

By 6.24, we conclude n1 = n and therefore Wcx. �

Remember that simple predicates gave us an answer to Post’s problemwith respect
to �m. The above results shows, that at least not every simple predicates serves

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Simple_Predicates_Coq.html#S_Star_split
https://www.ps.uni-saarland.de/~jahn/srt/SRT.Simple_Predicates_Coq.html#S_Star_split

68 Simple Predicates, Post’s Problem & Distinctions

as an example answering Post’s problem for truth-table reducibility since we saw
that W does actually truth-table reduce to a simple predicate.
However, the constructed simple predicate S∗ and its tt-completeness allows us to
distinguish many-one and truth-table reducibility and their respective complete-
ness classes. Notice that we use the result, that simple are not m-complete and
have therefore still to assume not only W and its semidecidability, but also the two
further axioms SMN’ and LIST– ID.

Theorem 6.28 (Distinction of �m and �tt)

1. m-completeness and tt-completeness do not coincide.

2. �m and�tt as well as≡m and≡tt do not coincide on semidecidable but undecidable
predicates.

Proof S∗ is simple and therefore not m-complete by Corollary 6.22, it is however
tt-complete by Lemma 6.27. 2. follows with 1. andW �tt S∗ from the Proof 6.27.�

We saw that the special class of simple predicates allows us to get a clearer view
on the structure of the different reducibility degrees. This class of semidecidable
predicates with complements containing though infinite no semidecidable and in-
finite subset is a class of undecidable but not m-complete predicates. It therefore
distinguishes the semidecidable but undecidable predicates in differentm-degrees
and answers the question of Post’s problem with respect to many-one reductions:
There are semidecidable but undecidable predicates, that are not many-one re-
ducible from the halting problem. Furthermore, simple predicates allow us to find
both predicates distinguishing �1 and �m as well as �m and �tt on the class of
semidecidable but undecidable predicates.

https://www.ps.uni-saarland.de/~jahn/srt/SRT.Reducibility_Distinctions_Coq.html#m_completeness_tt_completeness_distinction

Chapter 7

Mechanization Details
Wefinish our formalization at this point andwant to take a closer look at themecha-
nization. Besides general remarks about themechanized reducibility theory inCoq,
we also point out some important decision details throughout the development.
Coq Development We roughly divided the proof files with respect to the chapter
structure of the thesis. There is furthermore a small file containing the main def-
initions of the thesis like the different reducibility notions and synthetic axioms.
The main results of chapter 6 like Post’s problem for many-one reductions and re-
ducibility distinctions are summarized in a small separate file, where we state in
each theorem the particularly required synthetic axioms explicitly.

Content Specification Proofs

General Preliminaries 94 80
List Preliminaries 105 207
Main Definitions 72 0

Synthetic Computability Theory 266 550
Recursive µ-Operator 105 141

Corresponding Lists (for truth-table reductions) 22 96
Myhill’s Isomorphism Theorem 109 279
Reduction Characterization 152 262

Infinite Predicates 102 308
Simple Predicates 239 504

Post’s Problem & Reduction Distinctions 134 8

TOTAL 1400 2435
Table: Overview of the Coq Development, Source Code available under

https://github.com/uds-psl/synthetic-reducibility-in-coq

70 Mechanization Details

External Code Besides the use of Coq’s Standard Library – here especially re-
sults regarding lists and their properties and the Equations package – we drew
upon external code at two points in the preliminary developments. Firstly, the
code in the separate file Cantor_Pairing_Coq.v proving Cantor’s pairing function
on natural numbers is written by Andrej Dudenhefner. Secondly we extend the
witness operator proof via the guard predicate from 2019’s "Introduction of Com-
putational Logic" lecture at Saarland University written by Gert Smolka in the file
Recursive_Mu_Operator_Coq.v to a proof of the recursive µ-operator for decidable
as well as enumerable predicates. The concerning parts are marked �in the proof
scripts.
General Types As far as possible, we tried to mechanize the presented proofs
for predicates over arbitrary types. However, some results are based on proper-
ties of the traditionally underlying type of natural numbers. Therefore, we either
had to restrict the base types to be isomorphic to N like in Myhill’s isomorphism
theorem or we assumed explicit properties of the underlying types. This allowed
us to mechanize the most general version of for example reducibility characteri-
zations and stated explicitly which property of the underlying types are required.
An exception is the work in chapter 6: Even though we could define simple predi-
cates over general types, we constructed and proved the relevant properties only for
predicates over N. This allowed us again to use properties of natural numbers but
even more significantly, it was therefore sufficient to assume the necessary axioms
of synthetic computability theory only for the type N. Instead of quantifying for
instance W over arbitrary types, we assumed weaker versions of the axioms. Even
though this led to a no longer general typed development, the main results derived
from with simple predicates remained comparably strong: The distinctions of dif-
ferent computability degrees worked by constructing distinguishing counterexam-
ples that were then chosen as predicates over the natural numbers.
Reduction Completeness Generalizing the underlying predicate type was not
only desirable but at some points also necessary. However, this brought also some
difficulties: Recall for instance the quite technical Definition 3.7 of completeness
with respect to different reducibility notions of a predicate p : X→ P:

complete p := Sp∧ ∀Y. X ∼= Y → discrete Y → ∀q : (Y → P). Sq→ q � p.

We had to restrict the type of predicates that should reduce to p to isomorphic and
discrete types. Otherwise it would not have been possible to show for example the
1-completeness ofW, since applying ES is only possible for predicates over natural
numbers. To do so, we compose a given predicate with the isomorphism provided
by N ∼= Y1 to obtain an "isomorphic predicate" q ′ : N → P. Furthermore, the then

1Actually, the type ofW : N→ N→ P (by uncurryingW : (N×N)→ P) allows in the first step only
to assume an isomorphism N× N ∼= Y. But then N ∼= N× N ∼= Y.

71

constructed reduction function works the other way around, such that we have to
invert the isomorphism. This in turn is only possible for discrete types Y2. A sim-
ilar construction with "isomorphic predicates" is done in the generalized Myhill’s
isomorphism theorem 4.11, that is proven for isomporphic to N and discrete types.
Regarding the completeness, there is an easy but minimal generalization opportu-
nity by requiring only X � Y instead of X ∼= Y and then using the right inverse
function.
Truth-Table Reductions Another highly technical part in the development that
has to be discussed is the mechanization of truth-table reductions. Recall their Def-
inition 3.4

p �tt q := ∃f : X→ L(Y). ∃α : ∀x.B|fx| → B. ∀xL.(fx) =̂q L→ (px↔ αxL = true)

with the special type α : ∀x.B|fx| → B of the truth-table condition, required to find
an embedding for the later defined truth-table cylinders in chapter 4.
We mechanize the function type not by using Coq’s vector type from the standard
library – the type is quite tedious to handle – but by adding a proof for the correct
length of the boolean list as an further argument, i.e.

α : ∀x∀L : L(B). |L| = |fx|→ B.

The mechanization of truth-table cylinders in chapter 4.3 worked in the same way.
The additional argument suffices then to show by induction on n, that the type
∀L : L(B). |L| = n→ B contains exactly 2n elements and that the truth-table cylinder
can be therefore encoded into a countable type.
Proving this result is only possible by using proof irrelevance for the proof of the
length of the boolean list, i.e. ∀H1H2 : |L| = |fx|, H1 = H2, which is however provable
for equality over discrete types already in axiom-free Coq.
Lastly, notice similar to the type-theoretical characterization of decidability from
Lemma 3.8 a quite useful characterization of truth-table reducibility:

p �tt q↔ ∃f. inhabited
(
∀x(L : B|fx|).Σb.(fx) =̂q L→ (px↔ b = true)

)
.

whereby the proposition inhabited X simply states that there exists an element in X.
We mechanize L : B|fx| again by requiring a proof for the correct list length. How-
ever, we can now use this proof to define the truth-table condition within a proof

2Notice thatX ∼= Y for a discreteXdoes not imply the discreteness of Y, sincewedefined surjectivity
not as a computational existence.

72 Mechanization Details

script insteadwithin an explicit functional definition. This pays off especially when
dealing with proofs for the length of query lists, since we do not have to process or
rewrite in those elements of highly dependent types in within proof term.
Total Functions A decisive aspect of computability theory are partial functions,
traditionally for example already included in the definitions of semidecidability or
enumerability.
Coq’s type theory works solely with total function types and therefore guarantees
occurring functions not only to be computable but also to be total. Defining re-
cursive functions in Coq only works by recursion on an inductive datatype like the
natural numbers or lists or by giving an explicit termination argument like required
for size recursive functions.
Even though it is in someways possible to imitate partial functions in Coq, they are
uncomfortable to handle, such that we decided at multiple points in the develop-
ment to find solutions that stayed in the familiar total function space.
Those solution were various and differed depending on the concrete situation. Re-
call for instance themethod of step indices and option types, used to define semide-
ciders and enumerators as total functions.
Another pleasant concept was used in the construction of the simple predicate S as
the range of the traditionally partial function ψ (Definition 6.7): We added a proof
justifying the definedness of the function for the given input to the type of ψ. Since
we had to apply ψ in the following only on elements in its support, the situation
was ideally suited for this solution.
We combined this conceptwith step indices in the formalization ofMyhill’s isomor-
phism theorem when traveling through the correspondence sequence. The search
algorithm could potentially loop and therefore diverge for starting values already
appearing in the correspondence sequence. Since we applied the obtained algo-
rithm also in this case only on converging inputs, requiring an additional proof
(for the starting value to be fresh) worked out again beautifully in this situation
allowing us to work only with total functions.

Chapter 8

Further Results in Reducibility Theory & Future
Work

Wefinished our formalizationwith proving different distinctions of reducibility de-
grees in Chapter 6. This chapter gives an overview on further results in reducibility
theory, which could be interesting and informative to formalize, and discusses in
addition possible future work related to this thesis.
8.1 One-One and Many-One Completeness
By constructing the simple predicate S∗, we were able to distinguish m-complete-
ness and tt-completeness. Similarly, one could also ask whether there is a distinc-
tion of 1-completeness and m-completeness. We saw that one-one and many-one
reductions are not equivalent on the class of semidecidable but undecidable pred-
icates and so are their computability degrees not equivalent. However, searching
for an semidecidable predicate yielding a distinction of their completeness degrees,
i.e. a predicate that is m-complete but not 1-complete, fails. For example the well-
knownm-complete halting problemwas shown to be also 1-complete. Instead, one
can show the both notions of 1- andm-completeness equivalent. While the forward
direction is obvious, Rogers presents an highly involved proof for the backward di-
rection [31]. He defines so-called canonical indices that encode finite predicates in
a special way using base-2-exponentation. These indices are then used to one-one
reduce the (1-complete) halting problem to everym-complete predicate.
The classical proof presented by Rogers uses as above mentioned finite predicates
aswell as further properties of infinite predicates. Most likely, we can define canon-
ical indices not for finite predicates but for duplicate-free lists of natural numbers
and prove similar properties for those canonical indices now for lists. However, it is
not clear whether our definition of infinite predicates that we decided on in chap-
ter 6 will be the working notion for infinite predicates for this proof. Rogers uses
the classical readily to prove fact, that undecidable predicates have to be infinite,
which seems however to be constructively not provable with our definition.

74 Further Results in Reducibility Theory & Future Work

Another approach to this proof could be a characterization of 1-complete predicates
Post mentioned when explaining his motivation to define simple predicates [28].
He stated, that a semidecidable predicate is 1-complete if and only if it is infinite and
its complement contains a semidecidable and infinite subset. We already showed
by the notion of productive and creative predicates, that the complement of m-
complete predicates contains such a particular subset. Therefore, this sufficient
criterion for 1-completeness could be used to find a less technical and easier to for-
malize proof than the one in Rogers’ presentation. Also in this second possible
approach, it would be again interesting to analyze the particular role of infinite
predicates in the proof.
Furthermore, the equivalence of 1- and m-completeness could then be combined
with already formalized work to conclude an even more unexpected result: By
Myhill’s isomorphism theorem twom-complete predicates have not only the same
1-degree but are also isomorphic, such that there exists even a bijection between all
m-complete predicates.
8.2 Bounded Truth-Table Reductions
We discussed Post’s problem with respect to different notions of reductions: While
simple predicates could solve the problem for one-one andmany-one reductions in
general, we saw that at least some simple predicates are tt-complete and therefore
fail to solve Post’s problem for truth-table reductions. Post [28] introduced a further
notion of reducibility, that is quite similar to truth-table reductions: He searched
for an intermediate reduction between many-one and truth-table reductions, such
that simple predicates are still provable to be not complete with respect to this new
notion. He came up with so-called bounded truth-table reductions: For two pred-
icates p : X → P and q : Y → P, a bounded truth-table reduction consists again
out of a query function f : X → L(Y) and a truth-table condition α : ∀x.B|fx| → B.
However, there has to be now a fixed bound for the length of the query list, i.e. the
length of fx must be bounded by some natural number b for all x. Formally, the
definition of such bounded truth-table reductions could work as a straightforward
adaption of truth-table reductions:

p �btt q := ∃b : N.∃fα. ∀xLB.|fx| 6 b∧
(
fx =̂q LB → (px↔ αxLB = true)

)
.

This reduction relation is again a preorder and its computability degree, defined
analogously to the computability degrees of other reducibility notions, forms an
equivalence relation. Showing the transitivity should work by adapting the tech-
nical construction showing transitivity of truth-table reductions in Lemma 3.11.
Bounded truth-table reductions are furthermore indeed an intermediate reducibil-
ity notion, i.e.

�m(�btt(�tt .

8.3. Hyper-Simple Predicates & Post’s Problem w.r.t �tt 75

Notice, that both subsets are also strict on the semidecidable but undecidable pred-
icates and imply a distinction of bothmany-one and bounded truth-table reducibil-
ity as well as bounded truth-table and (unbounded) truth-table reducibility on this
predicate class. The first distinction is due to Fischer [11], whoused the constructed
predicate S∗ from chapter 6 to show S∗ × S∗ �m S∗ but S∗ × S∗ �btt S∗.

The second distinction follows by showing Post’s actual reason to invent the no-
tion of bounded truth-table reductions: Simple predicates serve as a solution of
Post’s problem with respect to this intermediate notion of reducibility. By looking
closely at the truth-table reduction W �tt S∗ (Proof 6.27), that showed the simple
predicate S∗ to be tt-complete, we see that this reduction is actually not bounded:
The length of the query-list [2n − 1, . . . , 2n+1 − 2] has no upper bound such that
the proof does not show S∗ to be btt-complete. Instead one can actually prove all
simple predicates to be not btt-complete.

Formalizing this new notion of bounded truth-table reductions and especially the
proof of Post’s problem with respect to this reducibility notion could be an inter-
esting further step, that could take use of our previous results regarding simple
predicates.
8.3 Hyper-Simple Predicates & Post’s Problem w.r.t �tt
Post answered the question of Post’s problem not only for many-one and bounded
truth-table reductions by simple predicates. He was also able to find a further class
of semidecidable but undecidable predicates, that yield a solution to the problem
with respect to truth-table reducibility. Asmentionedmultiple times above, general
simple predicates were not sufficient to show the existence of a not tt-complete,
semidecidable, but undecidable predicate. However, Post came up with a subclass
of simple predicates, the so-called hyper-simple predicate, and showed this class to
be again not empty and this time to be in general not tt-complete [28].

He strengthened the second condition of simple predicates (i.e. that complements
of simple predicates are not allowed to contain a semidecidable and infinite sub-
set) to define this stronger class of hyper-simple predicates. While he used so-
called mutually exclusive finite sequences, Rogers presented an easier accessible
definition of hyper-simple predicates by first defining majorizing functions for in-
finite predicates. Informally a function fmajorizes a particular infinite predicate p,
if ∀n. fn > xn, where (xn)n∈N are the elements satisfying p in strictly increasing
order. Hyper-simple predicates can then be defined to be semidecidable and co-
infinite predicates, such that no computable function majorizes the complement of
the predicate. This definition can be shown stronger as the definition of simple
predicates; hence every hyper-simple predicate is indeed also simple.

Both in this thesis constructed simple predicates S and S∗ can be majorized by a

76 Further Results in Reducibility Theory & Future Work

computable function and are therefore not hyper-simple. Therefore, a future work
could be a construction of a hyper-simple predicate and proving the necessary
properties of those hyper-simple predicates in order to formalize Post’s problem
with respect to truth-table reducibility. By the definition of hyper-simple predicates
via majorizing functions of infinite predicates, it will be again essential to analyze
the use of infinite predicates in this proof under our constructive perspective.
8.4 Turing Reductions and Post’s Problem for Turing Reductions
Initially, Post raised the question whether there is a non-complete semidecidable
but undecidable predicate with respect to the notion of Turing reducibility. As
mentioned, he introduced further and stronger notions of reductions when try-
ing to solve the problem. We saw how to formalize those different reductions in
a synthetic setting and were able to use the advantages of this synthetic approach
in order to formalize Post’s problem with respect to many-one reducibility. In this
chapter, we discussed furthermore the promising idea to follow the construction
of hyper-simple predicates for a formalization of Post’s problem for truth-table re-
ductions. It would be of course of great interest to address also the original Post’s
problem with respect to Turing reducibility by for example formalizing the proofs
of Muchnik [24] or Friedberg [17] including their independently invented priority
method.
However, it is quite unclearwhether such a formalization has a chance to succeed in
a synthetic setting. Besides potential difficulties in the concrete proofs, it is already
questionable how to define the notion of Turing reducibility synthetically. Tradi-
tional presentations define Turing reductions using so-called oracle machines. One
can think of such oracles for a particular predicate as "black boxes" deciding the
predicate and of an oracle machine as a Turing machine (or any other equivalent
computational model) using such a "black box" oracle. A Turing reduction from a
predicate p to q demands now the existence of an oracle machine deciding p, if the
machine is used with an oracle for q. Formalizing this intuition of oracle machines
deciding predicates could now result in the idea to define Turing reductions of a
predicate p to q as the existence of a decider for pwhen given a decider for q, i.e. as

Dq→ Dp.

However, this definition identifies oracle machines with deciders, which results in
a small but significant problem. The oracle machine is only required to be a decider
for qwhen used with the oracle for p and is not further specified for the usage with
arbitrary other oracles. In particular, it must only compute a total function when
used with the correct oracle but can compute in general a partial function. This
characteristic also explains the power of Turing reductions in order to show prob-
lems undecidable: We can consult the given oracle as often as we like and are for
the moment not restricted by a termination requirement. The above considered

8.5. Precise Structure of Computability Degrees 77

synthetic approach corresponds instead to the concept of total Turing reductions,
that was traditionally shown to be actually equivalent to truth-table reductions by
Nerode [26]. Intuitively, the termination – known already "a priori" – of machines
computing a total function fixes the number of elements decided by the oracle dur-
ing computation. Those elements can then be used as the sufficient query-list in a
truth-table reduction.

The inconveniences and difficultiesworkingwith seemingly necessary partial func-
tions in Coq’s type theory were already discussed. Another way to address the for-
malization of Turing reductions and in a further step Post’s problem would be to
deviate from the synthetic approach and to work with concrete models of compu-
tation. One could try to add the concept of oracles to some versions of λ-calculi and
use this as a concrete model as explored for instance by Forster and Smolka [13] to
follow again the traditional proofs in this setting. Whether and to what extent this
approach promises success, however, is unclear.
8.5 Precise Structure of Computability Degrees
We were able to find characterizations as well as multiple distinctions of different
reducibility notions. This helped us to get a clearer view on the structure of com-
putability degrees on the class of semidecidable but undecidable predicates. How-
ever, we contented ourselves with distinctions of in each case only two different
classes by for example finding a many-one degree that could be distinguished into
two classes of predicates with different one-one degrees. Similarly, we were able
to distinguish two semidecidable but undecidable classes ofm-degrees, namelym-
complete and (notm-complete) simple predicates.

However, one can analyze the structure of computability degrees even further,
which will be rewarded by a very clear picture of the structure of those differ-
ent classes. Dekker [10] showed for instance that the m-degree of every simple
predicate includes an infinite collection of 1-degrees. Furthermore, these 1-degrees
can be ordered with respect to �1 with the order type of integers. This formula-
tion means that there is neither a lower bound nor an upper bound for different
1-degrees inside them-degree of every simple predicate.

A similar result is due to Fischer [11], who showed that the degree of tt-complete
predicates includes an infinite collection of m-degrees with order type of positive
integers: For any givenm-degree consisting out of tt-complete predicates, there is
a class of tt-complete predicates with a larger m-degree. An analog proof shows
the same result for btt-complete instead of tt-complete predicates.

It seems likely, that at least some of the mentioned further results regarding the
structure of reducibility degrees can be deduced feasibly by using formalizations
contributed by this thesis.

78 Further Results in Reducibility Theory & Future Work

8.6 Necessary Axioms and Questions of Reverse Mathematics
Lastly it would be also interesting to take a closer look at the foundations of our
work. We used a synthetic approach to our formalization and assumed therefore
some selected axioms of synthetic computability theory. Even thoughwe discussed
that the proofs can not work without assuming any axioms, there could be room
for improvement. Can some of the axioms be weakened or are there even other
ways to proof our main results that allow to dispense on some of the axioms? We
formalized and mechanized mainly the existing proofs from traditional presenta-
tions of computability theory. Maybe one can find new approaches to the proven
results, working better in our constructive and synthetic setting.
Furthermore, one might want to focus on a more formal reasoning for assuming
those axioms of synthetic computability theory. As mentioned, the axioms we as-
sumed in the development should be derivable from Church’s thesis: The enu-
merator of semidecidable predicates W and its semidecidability is already proven
to follow from Church’s thesis by Forster[12]. The cns-operator and therefore the
computability of program-indices deciding list-membership for a given list should
be deducible fromChurch’s thesis by implementing this operator in λ-calculus. The
last axiom SMN’ follows as discussed easily by the Smn -theorem. However, formal-
izing the Smn -theorem requires us to work with partial functions, such that it seems
that one has to derive SMN’ from Church’s thesis for partial functions. This seems
again to be possible by implementing the Smn -operator in λ-calculus.
Related to the search of as weak as possible axioms for our proofs are further ques-
tions in reverse mathematics regarding the topics of this thesis. We saw for exam-
ple how crucial it is to choose the correct definition of infinite predicates. Some
intended and lastly proven results were shown to be even contradictory for other
conceivable notions of infinity due to our synthetic interpretation of functions, even
though one understands the notions classically to be equivalent. Therefore, it is on
the one hand of course interesting to analyze which further axioms are actually
consistent with our work and their axioms. It is already known, that assuming
both the full law of excluded middle together with choice axioms is not consistent
with Church’s thesis (cf. Troelstra and van Daalen [35]). It seems likely, that even
without assuming Church’s thesis in its full strength, classical and choice axioms
become inconsistent to our development. On the other hand, one could search for
implications between aspects of our work and for example choice axioms. Does
for instance assuming certain notions of infinite predicates to be equivalent imply
some kind of choice axiom? Or is only the existence of a simple predicate or the dis-
tinction of computability degrees enough to follow some weak axiom of synthetic
computability theory? A positive answer to such a question could again justify the
need of axioms for our work.

Chapter 9

Conclusion

The motivation for this thesis was to formalize and mechanize reducibility theory
from a constructive point of view. The aspired results were intended to especially
include also negative results like distinctions of different reducibility degrees. In
order to formalize advanced and more involved results, we chose a synthetic ap-
proach to our work which used – in order to address also negative results – syn-
thetic computability axioms. This thesis is the first to explore such a constructive
formalization and mechanization of synthetic computability theory based on the
assumption of carefully chosen synthetic axioms.
At first, however, we started in an axiom-free constructive setting and focused be-
sides basic facts of one-one, many-one, and truth-table reductions different char-
acterizations of those notions and their degrees. We constructed for the proof of
Myhill’s isomorphism theorem a bijective isomorphism out of two injections, what
was somewhat unexpected to work out without stronger choice or synthetic ax-
ioms. Furthermore we followed the traditional presentations to formalize adap-
tions of predicates to express both many-one and truth-table reductions in terms of
one-one reductions:

p �m q↔ p× X �1 q× Y
p �tt q↔ ptt �1 qtt

For p : X→ P, q : Y → P, and certain embeddings for the underlying types X and Y or X = Y = N.
The second equivalence requires p to be stable.

This analysis gave us further insights in the structure and relationship of the dif-
ferent reduction preorders and their corresponding computability degrees. The
formalization in type theory allowed us furthermore to analyze precisely, which
properties of the underlying types are essential for these results.
We then added synthetic computability axioms such as the enumerator of semide-
cidable predicates W to our context and were therefore able to define and prove

80 Conclusion

undecidable predicates. During chapter 6, the following four axioms were succes-
sively assumed:

• W : N→ N→ P and its specification ES := ∀p : N→ P.Sp↔ ∃c.∀x.(Wcx↔ px)

• SW

• SMN’ := ∀f.∃k.∀cx.W(kc)x↔Wc(fx)

• LIST– ID := ∀L.ΣcL.∀x.Wcx↔ x ∈ L

In order to follow the traditional presentations of Post’s problem for many-one
reductions, we formalized the notion of simple predicates and constructed with
S and S∗ two of those simple predicates. This allowed us not only – as stated by
Post’s problem for many-one reductions – to find an intermediate m-degree be-
tween decidable and m-complete predicates, but yielded also a distinction of one-
one and many-one as well as many-one and truth-table reducibility. All in all, we
formalized for the class of semidecidable but undecidable predicates the following
inclusion hierarchy of various reducibility notions that transports to their reducibil-
ity degree:

�1
(1)

(�m
(2)

(�tt

≡
(M)
= ≡1

(1)

(≡m
(2)

(≡tt

(M): Axiom-free proof by Myhill’s isomorphism theorem
(1): Inclusion axiom-free; strictness by assuming W, ES, and SW

(2): Inclusion axiom-free; strictness by assuming W, ES, SW, SMN’, and LIST– ID

The synthetic approach led us work out which computability properties are ac-
tually necessary for the particular proofs and revealed that we can dispense on a
strong universal machine that is ubiquitous in all traditional presentations.

Besides the formalization in a synthetic setting and the mechanization in Coq of
the above summarized computability theory, a further contribution of the thesis is
to constructivize the already existent classical proofs.

Thereby, infinite predicates were found to be particularly interesting. Construc-
tively, the different notions of infinite predicates turned out to differ significantly
in their strength and properties such that a precise study of the role of infinite
predicates for the aspired results was crucial. This analysis is indispensable for all
constructive formalization, but in combination with our synthetic approach it was
given another tricky aspect: listing infinite elements of a predicate is synthetically
only possible by computing those elements. We had therefore not only to find the

81

working definition of infinite predicates but to also come up with the right infinite
criterion by using the notion of weak existence that avoids a computation.
Also apart from infinite predicates, we could follow the classical proofs by inserting
double negations at exactly selected points. However, these adaptions were only
temporarily inside the proofs and did not affected the final results: The proven
theorems are faithful formalizations of traditional computability theory and do not
state for instance only the weak existence of a simple predicate1.
All of thiswork, the formalization, themechanization, and the constructivization of
reducibility theory was only made possible by our synthetic approach. First of all
andmost obviously, it would have been quite hard to implement all the constructed
functions like for instanceMyhill’s isomorphism or alsoψ used to define the simple
predicate S formally in a concrete computational model. Traditional presentations
simply leave out this inconvenient but the in their setting necessary construction
of e.g. Turing machines. Working synthetically in Coq’s programming language
provided not only a pleasantway to define occurring functions, but guaranteed also
immediately the computability of those functions. In contrast to traditional work,
all functions are in our synthetic setting formally justified to be indeed computable
functions.
Furthermore, synthetic computability theory revealed byminimizing technical dis-
tractions a clear view on the formal proof arguments: While the mechanization
of computations in concrete models is often a hurdle, the synthetic work in Coq
simplified the proofs dramatically. This helped us to gain deeper insights into the
"purely" mathematical aspects necessary for the formalization. This was for exam-
ple well to explore in thewhole chapter 3, in the precise termination argumentation
for the trace function in Myhill’s isomorphism theorem, or in the co-infinity proof
of the simple predicate S.
The elaboration of the constructive formalization would be disproportionately
more difficult when working in a traditional setting. Even if the finally presented
proofs became not too complex but remainedmanageable to understand, wemean-
while dealt with even synthetically already complex proofs that were only then be
simplified to achieve the final presentation. Thesemore complex intermediate steps
would have blown up an explicit computational models to a point of unusability
but could be reached working synthetically due to the explored and discussed in-
herent benefits.
However, it might now be possible to mirror the formalizations and mechaniza-
tions of reducibility theory in a well fitting computational model as near as possi-

1Except to the reduction characterization in Chapter 4.3, where we assumed a predicate to be
stable.

82 Conclusion

ble to Coq like λ-calculus. Based on the clean synthetic presentations of the formal
proofs in this thesis, one could bluntly copy the development and implement all
constructed functions as well as the assumed synthetic axioms in a mechanized
model. Partly, this should even be automatable by using frameworks for this trans-
lation. Mathematically more interesting would be however the question, whether
there is a short cut that avoids this complete translation by for instance restating
some of the theorems in someway that allows translating the formalized reducibil-
ity theory to an underlying model of computation by only local adaptions.
These and other questions about the foundations of synthetic computability the-
ory but also the analysis, formalization, and mechanization of further reducibility
theory results offer as discussed much room for future work. The synthetic ap-
proach is optimally suited for this purpose and, as explored by this thesis, can also
address traditional results that use certain properties of their underlying computa-
tional model by adding abstract synthetic computability axioms. This enables the
opportunity to follow traditional computability theory over long distances and to
study its theory from a different perspective under several new aspects.

Bibliography

[1] Andrea Asperti and Wilmer Ricciotti. Formalizing turing machines. In Luke
Ong and Ruy de Queiroz, editors, Logic, Language, Information and Computa-
tion, pages 1–25, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. ISBN
978-3-642-32621-9.

[2] Andrea Asperti and Wilmer Ricciotti. A formalization of multi-tape turing
machines. Theoretical Computer Science, 603, 07 2015.

[3] Andrej Bauer. First steps in synthetic computability theory. Electronic Notes
in Theoretical Computer Science, 155:5–31, 2006.

[4] Michael J. Beeson. Foundations of Constructive Mathematics: Metamathematical
Studies. Current Topics in Microbiology and Immmunology. Springer-Verlag,
1985. ISBN 9780387121734.

[5] Douglas S. Bridges, Fred Richman, John W.S. Cassels, London Mathematical
Society, andNigel J. Hitchin. Varieties of ConstructiveMathematics. Lecture note
series. Cambridge University Press, 1987. ISBN 9780521318020.

[6] Alonzo Church. A set of postulates for the foundation of logic. Annals of
Mathematics, 33(2):346–366, 1932. ISSN 0003486X.

[7] Alonzo Church. An unsolvable problem of elementary number theory. Amer-
ican Journal of Mathematics, 58(2):345–363, 1936. ISSN 00029327, 10806377.

[8] Nigel Cutland. Computability: An Introduction to Recursive Function Theory.
Cambridge University Press, 1980. ISBN 9780521294652.

[9] Arthur Azevedo de Amorim and Rob Blanco. URL https://github.com/
arthuraa/extructures/blob/master/theories/fmap.v. At this point in
time, there is no associated paper yet.

[10] JamesC. E.Dekker. A theoremonhypersimple sets. Proceedings of the American
Mathematical Society, 5:791–796, 2001.

[11] Patrick C. Fischer. Theory of provable recurive functions. 1962. Ph.D. Disser-
tation, Massachusetts Institute of Technology, Cambridge, Mass.

https://github.com/arthuraa/extructures/blob/master/theories/fmap.v
https://github.com/arthuraa/extructures/blob/master/theories/fmap.v

84 Bibliography

[12] Yannick Forster. Church’s thesis and related axioms in coq’s type theory. 2020.

[13] Yannick Forster and Gert Smolka. Call-by-value lambda calculus as a model
of computation in Coq. Journal of Automated Reasoning, 63(2):393–413, 2019.

[14] Yannick Forster, DominikKirst, andGert Smolka. On synthetic undecidability
inCoq,with an application to the Entscheidungsproblem. Proceedings of the 8th
ACM SIGPLAN International Conference on Certified Programs and Proofs, pages
38–51, 2019.

[15] Yannick Forster, Fabian Kunze, and Maximilian Wuttke. Verified program-
ming of turing machines in coq. In 9th ACM SIGPLAN International Confer-
ence on Certified Programs and Proofs, CPP 2020, New Orleans, LA, USA, January
20–21, 2020, New York, NY, USA, 2020. ACM.

[16] Yannick Forster, Dominique Larchey-Wendling, Andrej Dudenhefner, Edith
Heiter, Dominik Kirst, Fabian Kunze, Gert Smolka, Simon Spies, Dominik
Wehr, and Maximilian Wuttke. A Coq Library of Undecidable Problems. The
Sixth International Workshop on Coq for Programming Languages, 2020.

[17] Richard M. Friedberg. Two recursively enumerable sets of incomparable de-
grees of unsolvability. Proceedings of the National Academy of Sciences, 43(2):
236–238, 1957. ISSN 0027-8424. doi: 10.1073/pnas.43.2.236.

[18] Harvey Friedman. Some Systems of Second Order Arithmetic and their Use.
Proceedings of the International Congress of Mathematicians, 1:235–242, 1975.

[19] Dan Frumin, Herman Geuvers, Léon Gondelman, and Niels van der Weide.
Finite sets in homotopy type theory. pages 201–214, 01 2018. doi: 10.1145/
3167085.

[20] Kurt Gödel. On undecidable propositions of formal mathematical systems.
Lecture notes by Stephen C. Kleene and J. Barkely Rosser, Princeton Univer-
sity. Reprinted in (Gödel, 1986, 338–371).

[21] Martin E. Hyland. The effective topos. In Anne S. Troelstra and Dirk van
Dalen, editors, The L. E. J. Brouwer Centenary Symposium, volume 110 of Studies
in Logic and the Foundations of Mathematics, pages 165 – 216. Elsevier, 1982.

[22] Hajime Ishihara. Reverse mathematics in bishop’s constructive mathematics.
Philosophia Scientiae, 6:43–59, 09 2006. doi: 10.4000/philosophiascientiae.406.

[23] Stephen C. Kleene and John B. Rosser. The inconsistency of certain formal
logics. Annals of Mathematics, 36(3):630–636, 1935. ISSN 0003486X.

[24] Albert A. Muchnik. On the unsolvability of the problem of reducibility in the

Bibliography 85

theory of algorithms. Doklady Akademii Nauk SSSR (N.S.), 108:194–197, 1956.
In Russian.

[25] John Myhill. Creative sets. Mathematical Logic Quarterly, 1(2):97–108, 1955.
doi: 10.1002/malq.19550010205.

[26] Anil Nerode. General topology and partial recursive functions. Summaries
of talks presented at the Summer Institute for Symbolic Logic, Cornell University,
pages 247–251, 1957.

[27] Michael Norrish. Mechanising lambda-calculus using a classical first order
theory of terms with permutations. Higher-Order and Symbolic Computation,
19:169–195, 09 2006. doi: 10.1007/s10990-006-8745-7.

[28] Emil L. Post. Recursively enumerable sets of positive integers and their deci-
sion problems. Bull. Amer. Math. Soc., 50(5):284–316, 05 1944.

[29] Pierre Pradic and Chad Brown. Cantor-bernstein implies excluded middle.
ArXiv, abs/1904.09193, 2019.

[30] Fred Richman. Church’s thesis without tears. The Journal of symbolic logic, 48
(3):297–803, 1983.

[31] Hartley Rogers. Theory of Recursive Functions and Effective Computability.
Higher Mathematics Series. McGraw-Hill, 1967.

[32] Robert I. Soare. Recursively Enumerable Sets and Degrees: A Study of Computable
Functions and Computably Generated Sets. Perspectives in Mathematical Logic.
Springer Berlin Heidelberg, 1999. ISBN 9783540152996.

[33] Andrew Swan and Taichi Uemura. On church’s thesis in cubical assemblies.
ArXiv, abs/1905.03014, 2019.

[34] The Coq Development Team. The coq proof assistant, version 8.11.0. January
2020. URL https://doi.org/10.5281/zenodo.3744225.

[35] Anne S. Troelstra and Dirk van Dalen. Constructivism in Mathematics. 1988.
Amsterdam, Netherlands.

[36] AlanM. Turing. On computable numbers, with an application to the entschei-
dungsproblem. Proceedings of the London Mathematical Society, s2-42(1):230–
265, 01 1936. ISSN 0024-6115. doi: 10.1112/plms/s2-42.1.230.

[37] AlanM. Turing. Systems of logic based on ordinals†. Proceedings of the London
Mathematical Society, s2-45(1):161–228, 1939. doi: 10.1112/plms/s2-45.1.161.

[38] Jian Xu, XingyuanZhang, andChristianUrban. Mechanising turingmachines
and computability theory in isabelle/hol. pages 147–162, 2013.

https://doi.org/10.5281/zenodo.3744225

	Abstract
	Introduction
	Technical Preliminaries
	Type Theory
	Preliminary Definitions
	Witness Operator and Inverse Functions
	List Predicates and List Functions

	Synthetic Computability Theory
	Basic Notions of Computability Theory
	Basic Computability Theory Results
	Axioms of Synthetic Computability Theory
	Recursive -Operator

	Reduction Characterizations
	Myhill's Isomorphism Theorem
	Cylinders & Many-One Reductions as One-One Reductions
	Truth-Table Reductions as One-One Reductions

	Infinite Predicates
	Functional Infinite Predicates
	Predicates Containing Elements of Any Number
	Non-Finite Predicates
	Properties of Infinite Predicates

	Simple Predicates, Post's Problem & Distinctions
	Construction of a Simple Predicate
	Properties of Simple Predicates & Post's Problem w.r.t. m
	Distinction of Many-One and Truth-Table Reducibility

	Mechanization Details
	Further Results in Reducibility Theory & Future Work
	One-One and Many-One Completeness
	Bounded Truth-Table Reductions
	Hyper-Simple Predicates & Post's Problem w.r.t tt
	Turing Reductions and Post's Problem for Turing Reductions
	Precise Structure of Computability Degrees
	Necessary Axioms and Questions of Reverse Mathematics

	Conclusion
	Bibliography

