
A formal set-theoretic model for the (extended)
Calculus of Constructions

Jonas Kaiser

UdS, Graduate School of Computer Science

Feb 3, 2012

1 / 26

Outline

Background
Related Work
Tarski-Grothendieck set theory
Luo’s Extended Calculus of Constructions

Model Construction
Developing the set theory
First steps towards the model
Framework, pt. 1

Relating to Barras’ work
Sets in Coq, Coq in Sets
Framework, pt. 2

Research Questions

2 / 26

Goals

Step 1
Formally develop Tarski-Grothendieck set theory in Coq.

Step 2
Construct classical TG models for ECC where PI, PE, DN and related
properties hold.

Step 3
Investigate further properties, mainly Prop � Type0 and later
Inductive Propositions.

3 / 26

Goals

Step 1
Formally develop Tarski-Grothendieck set theory in Coq.

Step 2
Construct classical TG models for ECC where PI, PE, DN and related
properties hold.

Step 3
Investigate further properties, mainly Prop � Type0 and later
Inductive Propositions.

4 / 26

Goals

Step 1
Formally develop Tarski-Grothendieck set theory in Coq.

Step 2
Construct classical TG models for ECC where PI, PE, DN and related
properties hold.

Step 3
Investigate further properties, mainly Prop � Type0 and later
Inductive Propositions.

5 / 26

Background

6 / 26

Related work

I Set theoretic semantics since Church, 1940
I Polymorphism is not Set-Theoretic (Reynolds, 1984): PI-models
I large body of work by Werner, Lee & Miquel on issues of

impredicativity, cumulativity and the conversion rule. (various
type and set theories, mostly not formalised in Coq) [5, 3]

I Barras: Fully formalised IZF / HFDS models for CCω [2]

7 / 26

Tarski-Grothendieck set theory: ZF & GU

∀x, x < ∅

x ∈ {a, b} ⇐⇒ x = a ∨ x = b

x ∈
⋃

A ⇐⇒ ∃X ∈ A, x ∈ X

y ∈ {F x | x ∈ X} ⇐⇒ ∃z, z ∈ X ∧ y = F z

X ∈P(A) ⇐⇒ X ⊆ A

X = Y ⇐⇒ X ⊆ Y ∧ Y ⊆ X

(∀X, (∀x ∈ X, P x) −→ P X) −→ ∀X, P X

Grothendieck Universes
I a transitive set (X ∈ G, x ∈ X =⇒ x ∈ G)
I closed under above operators (e.g. x ∈ G =⇒P(x) ∈ G)
I for every set X there is a least universe GX such that X ∈ GX

I implies infinity

8 / 26

Tarski-Grothendieck set theory: ZF & GU

∀x, x < ∅

x ∈ {a, b} ⇐⇒ x = a ∨ x = b

x ∈
⋃

A ⇐⇒ ∃X ∈ A, x ∈ X

y ∈ {F x | x ∈ X} ⇐⇒ ∃z, z ∈ X ∧ y = F z

X ∈P(A) ⇐⇒ X ⊆ A

X = Y ⇐⇒ X ⊆ Y ∧ Y ⊆ X

(∀X, (∀x ∈ X, P x) −→ P X) −→ ∀X, P X

Grothendieck Universes
I a transitive set (X ∈ G, x ∈ X =⇒ x ∈ G)
I closed under above operators (e.g. x ∈ G =⇒P(x) ∈ G)
I for every set X there is a least universe GX such that X ∈ GX

I implies infinity
9 / 26

Luo’s Extended Calculus of Constructions [4]
Term structure
I the kinds Prop and Typej, j ∈ ω are terms
I variables (x, y, . . .) are terms
I let M, N, A and B be terms, then

Πx : A, B | λx : A. N |M N |

Σx : A, B |pairΣx:A, B(M,N) | π1(M) | π2(M)

are terms

Properties
I strongly normalizing
I kinds are cumulative:

Prop � Type0

Typen � Typen+1

10 / 26

Model Construction

11 / 26

We need a useful set theory

Singleton sets:

{x}F {x, x}

y ∈ {x} ⇐⇒ y = x

Ordered Pairs a lá Kuratowski

(x, y)F {{x}, {x, y}}

(a, b) = (c, d) ⇐⇒ a = c ∧ b = d

The ‘Axiom’ of Separation

y ∈ {x ∈ X |Px} ⇐⇒ y ∈ X ∧ Py

12 / 26

We need a useful set theory

Singleton sets:

{x}F {x, x}

y ∈ {x} ⇐⇒ y = x

Ordered Pairs a lá Kuratowski

(x, y)F {{x}, {x, y}}

(a, b) = (c, d) ⇐⇒ a = c ∧ b = d

The ‘Axiom’ of Separation

y ∈ {x ∈ X |Px} ⇐⇒ y ∈ X ∧ Py

13 / 26

We need a useful set theory

Singleton sets:

{x}F {x, x}

y ∈ {x} ⇐⇒ y = x

Ordered Pairs a lá Kuratowski

(x, y)F {{x}, {x, y}}

(a, b) = (c, d) ⇐⇒ a = c ∧ b = d

The ‘Axiom’ of Separation

y ∈ {x ∈ X |Px} ⇐⇒ y ∈ X ∧ Py

14 / 26

First steps towards the model
For starters, this should give us PI, PE and DN:

[[Prop]]F 2 = {∅, {∅}}

[[Type0]]F? G2(= G∅)

Prop should be closed under function spaces:

0 : Prop, 1 : Prop

⇒?
{

0 −→ 0 : Prop, 0 −→ 1 : Prop,
1 −→ 0 : Prop, 1 −→ 1 : Prop

For this we need Aczel’s non-standard encoding of functions [1]:

[[ap f x]]F {y | (x, y) ∈ f }

[[lam X F]]F {(x, y) | x ∈ X ∧ y ∈ F x}

[[Pi X Y]]F {[[lam X F]] | ∀x ∈ X, F x ∈ Y x}

15 / 26

First steps towards the model
For starters, this should give us PI, PE and DN:

[[Prop]]F 2 = {∅, {∅}}

[[Type0]]F? G2(= G∅)

Prop should be closed under function spaces:

0 : Prop, 1 : Prop

⇒?
{

0 −→ 0 : Prop, 0 −→ 1 : Prop,
1 −→ 0 : Prop, 1 −→ 1 : Prop

For this we need Aczel’s non-standard encoding of functions [1]:

[[ap f x]]F {y | (x, y) ∈ f }

[[lam X F]]F {(x, y) | x ∈ X ∧ y ∈ F x}

[[Pi X Y]]F {[[lam X F]] | ∀x ∈ X, F x ∈ Y x}

16 / 26

First steps towards the model
For starters, this should give us PI, PE and DN:

[[Prop]]F 2 = {∅, {∅}}

[[Type0]]F? G2(= G∅)

Prop should be closed under function spaces:

0 : Prop, 1 : Prop

⇒?
{

0 −→ 0 : Prop, 0 −→ 1 : Prop,
1 −→ 0 : Prop, 1 −→ 1 : Prop

For this we need Aczel’s non-standard encoding of functions [1]:

[[ap f x]]F {y | (x, y) ∈ f }

[[lam X F]]F {(x, y) | x ∈ X ∧ y ∈ F x}

[[Pi X Y]]F {[[lam X F]] | ∀x ∈ X, F x ∈ Y x}

17 / 26

Overall Framework (part 1)

TG

TG_CC_Model_Spec

TG_ECC_Model_Spec

CC_Model
(Barras)

ECC_Model (*)
(Barras)

TG_CC_Model

TG_ECC_Model

TG_CC_Model1

TG_ECC_Model1,2

18 / 26

Relating to Barras’ work

19 / 26

Overview of Barras’ work [2]

I IZF / HFDS models for CC / CCω (called ECC in his Coq devl.)
I provides model specifications for CC & CCω

I changes from ECC to CCω:
I no Σ-Types
I no Prop � Type0 (dropped to allow for flexible interpretations)

I claims some form of soundness result for models satisfying his
specifications (requires judgmental equality in place of
conversion rule)

20 / 26

Overall Framework with Barras (part 2)

TG

TG_CC_Model_Spec

TG_ECC_Model_Spec

CC_Model
(Barras)

ECC_Model (*)
(Barras)

TG_CC_Model

TG_ECC_Model

TG_CC_Model1

TG_ECC_Model1,2

21 / 26

Research Questions

22 / 26

Research Questions

I Can we extend the model to support inductive Propositions, or,
respectively, why was this omitted from previous developments?
(Inductive True : Prop := I : True.)

I Having Prop � Type0 and conversion seems to be problematic in
some regards (e.g. PI). Why, and can we get around it?

I Does our interpretation of Type0 contain infinite types?
I Our models should satisfy a large batch of axioms. Is it possible

to simultaneously satisfy all the axioms in the Coq Standard
Library, i.e. is the Library mutually consistent?

23 / 26

Q & A

Thank you

24 / 26

References
Peter Aczel.
On Relating Type Theories and Set Theories.
In TYPES, pages 1–18, 1998.

Bruno Barras.
Sets in Coq, Coq in Sets.
Formalized Reasoning, 3(1), 2010.

Gyesik Lee and Benjamin Werner.
Proof-Irrelevant Model of CC with Predicative Induction and
Judgmental Equality.
Logical Methods in Computer Science, 7(4), 2011.

Zhaohui Luo.
ECC, an Extended Calculus of Constructions.
In Logic in Computer Science (LICS), pages 386–395, 1989.

Alexandre Miquel and Benjamin Werner.
The Not So Simple Proof-Irrelevant Model of CC.
In TYPES, pages 240–258, 2002. 25 / 26

Backup

Infinite Type in Type0, e.g. nat

∃X : Type0, ∃f : X −→ X, (∃x : X, ∀y : X, fy , x)∧

(∀y z : X, fy = fz −→ y = z)

What’s wrong with the standard function encoding?
I The function space 1 −→ 1 contains exactly one element, the

function mapping ∅ to ∅.
I in the standard graph-encoding: {(∅, ∅)}
I however, we want [[1 −→ 1]] = 1 = {∅}

I but ∅ , {(∅, ∅)}!
I with the alternative function encoding, the two sides match up.

26 / 26

	Background
	Related Work
	Tarski-Grothendieck set theory
	Luo's Extended Calculus of Constructions

	Model Construction
	Developing the set theory
	First steps towards the model
	Framework, pt. 1

	Relating to Barras' work
	Sets in Coq, Coq in Sets
	Framework, pt. 2

	Research Questions

