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Goals

Step 1
Formally develop Tarski-Grothendieck set theory in Coq.

Step 2
Construct classical TG models for ECC where PI, PE, DN and related
properties hold.

Step 3
Investigate further properties, mainly Prop � Type0 and later
Inductive Propositions.
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Background
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Related work

I Set theoretic semantics since Church, 1940
I Polymorphism is not Set-Theoretic (Reynolds, 1984): PI-models
I large body of work by Werner, Lee & Miquel on issues of

impredicativity, cumulativity and the conversion rule. (various
type and set theories, mostly not formalised in Coq) [5, 3]

I Barras: Fully formalised IZF / HFDS models for CCω [2]
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Tarski-Grothendieck set theory: ZF & GU

∀x, x < ∅

x ∈ {a, b} ⇐⇒ x = a ∨ x = b

x ∈
⋃

A ⇐⇒ ∃X ∈ A, x ∈ X

y ∈ {F x | x ∈ X} ⇐⇒ ∃z, z ∈ X ∧ y = F z

X ∈P(A) ⇐⇒ X ⊆ A

X = Y ⇐⇒ X ⊆ Y ∧ Y ⊆ X

(∀X, (∀x ∈ X, P x) −→ P X) −→ ∀X, P X

Grothendieck Universes
I a transitive set (X ∈ G, x ∈ X =⇒ x ∈ G)
I closed under above operators (e.g. x ∈ G =⇒P(x) ∈ G)
I for every set X there is a least universe GX such that X ∈ GX

I implies infinity
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Luo’s Extended Calculus of Constructions [4]
Term structure
I the kinds Prop and Typej, j ∈ ω are terms
I variables (x, y, . . .) are terms
I let M, N, A and B be terms, then

Πx : A, B | λx : A. N |M N |

Σx : A, B |pairΣx:A, B(M,N) | π1(M) | π2(M)

are terms

Properties
I strongly normalizing
I kinds are cumulative:

Prop � Type0

Typen � Typen+1
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Model Construction
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We need a useful set theory

Singleton sets:

{x}F {x, x}

y ∈ {x} ⇐⇒ y = x

Ordered Pairs a lá Kuratowski

(x, y)F {{x}, {x, y}}

(a, b) = (c, d) ⇐⇒ a = c ∧ b = d

The ‘Axiom’ of Separation

y ∈ {x ∈ X |Px} ⇐⇒ y ∈ X ∧ Py
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First steps towards the model
For starters, this should give us PI, PE and DN:

[[Prop]]F 2 = {∅, {∅}}

[[Type0]]F? G2(= G∅)

Prop should be closed under function spaces:

0 : Prop, 1 : Prop

⇒?
{

0 −→ 0 : Prop, 0 −→ 1 : Prop,
1 −→ 0 : Prop, 1 −→ 1 : Prop

For this we need Aczel’s non-standard encoding of functions [1]:

[[ap f x]]F {y | (x, y) ∈ f }

[[lam X F]]F {(x, y) | x ∈ X ∧ y ∈ F x}

[[Pi X Y]]F {[[lam X F]] | ∀x ∈ X, F x ∈ Y x}
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Overall Framework (part 1)

TG

TG_CC_Model_Spec

TG_ECC_Model_Spec

CC_Model
(Barras)

ECC_Model (*)
(Barras)

TG_CC_Model

TG_ECC_Model

TG_CC_Model1

TG_ECC_Model1,2
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Relating to Barras’ work
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Overview of Barras’ work [2]

I IZF / HFDS models for CC / CCω (called ECC in his Coq devl.)
I provides model specifications for CC & CCω

I changes from ECC to CCω:
I no Σ-Types
I no Prop � Type0 (dropped to allow for flexible interpretations)

I claims some form of soundness result for models satisfying his
specifications (requires judgmental equality in place of
conversion rule)
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Overall Framework with Barras (part 2)

TG

TG_CC_Model_Spec

TG_ECC_Model_Spec

CC_Model
(Barras)

ECC_Model (*)
(Barras)

TG_CC_Model

TG_ECC_Model

TG_CC_Model1

TG_ECC_Model1,2
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Research Questions
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Research Questions

I Can we extend the model to support inductive Propositions, or,
respectively, why was this omitted from previous developments?
(Inductive True : Prop := I : True.)

I Having Prop � Type0 and conversion seems to be problematic in
some regards (e.g. PI). Why, and can we get around it?

I Does our interpretation of Type0 contain infinite types?
I Our models should satisfy a large batch of axioms. Is it possible

to simultaneously satisfy all the axioms in the Coq Standard
Library, i.e. is the Library mutually consistent?
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Q & A

Thank you
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Backup

Infinite Type in Type0, e.g. nat

∃X : Type0, ∃f : X −→ X, (∃x : X, ∀y : X, fy , x)∧

(∀y z : X, fy = fz −→ y = z)

What’s wrong with the standard function encoding?
I The function space 1 −→ 1 contains exactly one element, the

function mapping ∅ to ∅.
I in the standard graph-encoding: {(∅, ∅)}
I however, we want [[1 −→ 1]] = 1 = {∅}

I but ∅ , {(∅, ∅)}!
I with the alternative function encoding, the two sides match up.
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