
Formal Construction of Set-Theoretic Models for
an Extended Calculus of Constructions

joint work with Chad E. Brown

Jonas Kaiser

UdS, Graduate School of Computer Science

May 11, 2012

1 / 56

Outline

Overview

ECC

Tarski-Grothendieck Set Theory

Model Construction

Soundness

Goals

2 / 56

FORMALISED IN COQ

SET-THEORETIC MODEL

CONSISTENCY
TG Proof Irrelevant

Classical

CHC
Coq,
et al.

CIC / ECC

LOGIC

TYPE THEORY
(classical)

3 / 56

FORMALISED IN COQ

SET-THEORETIC MODEL

CONSISTENCY
TG Proof Irrelevant

Classical

LOGIC

TYPE THEORY
(classical)

CHC
Coq,
et al.

CIC / ECC

4 / 56

FORMALISED IN COQ

SET-THEORETIC MODEL

TG Proof Irrelevant
Classical

LOGIC

TYPE THEORY
(classical)

CHC
Coq,
et al.

CIC / ECC

CONSISTENCY

5 / 56

FORMALISED IN COQ

TG Proof Irrelevant
Classical

LOGIC

TYPE THEORY
(classical)

CHC
Coq,
et al.

CIC / ECC

CONSISTENCY

SET-THEORETIC MODEL

6 / 56

FORMALISED IN COQ

Proof Irrelevant
Classical

LOGIC

TYPE THEORY
(classical)

CHC
Coq,
et al.

CIC / ECC

CONSISTENCY

SET-THEORETIC MODEL

TG

7 / 56

FORMALISED IN COQ

LOGIC

TYPE THEORY
(classical)

CHC
Coq,
et al.

CIC / ECC

CONSISTENCY

SET-THEORETIC MODEL

TG Proof Irrelevant
Classical

8 / 56

FORMALISED IN COQ

LOGIC

TYPE THEORY
(classical)

CHC
Coq,
et al.

CIC / ECC

CONSISTENCY

SET-THEORETIC MODEL

TG Proof Irrelevant
Classical

9 / 56

Luo’s Extended Calculus of Constructions [4]
Term structure
I The kinds Prop and Type0, Type1, Type2, . . . are terms
I Variables (x, y, . . .) are terms
I Let M, N, A and B be terms, then

Πx : A, B | λx : A. N |M N |
Σx : A, B |pairΣx:A, B(M,N) | π1(M) | π2(M)

are terms

Properties
I Strongly normalising
I No strong sums in Prop (would lead to inconsistency)
I Kinds are (fully) cumulative:

Prop � Type0

Typen � Typen+1

10 / 56

Luo’s Extended Calculus of Constructions [4]
Term structure
I The kinds Prop and Type0, Type1, Type2, . . . are terms
I Variables (x, y, . . .) are terms
I Let M, N, A and B be terms, then

Πx : A, B | λx : A. N |M N |
Σx : A, B |pairΣx:A, B(M,N) | π1(M) | π2(M)

are terms
Properties
I Strongly normalising
I No strong sums in Prop (would lead to inconsistency)
I Kinds are (fully) cumulative:

Prop � Type0

Typen � Typen+1

11 / 56

Tarski-Grothendieck set theory: ZFC & GU

∀x, x < ∅
x ∈ {a, b} ⇐⇒ x = a ∨ x = b

x ∈
∪

A ⇐⇒ ∃X ∈ A, x ∈ X

y ∈ {F x | x ∈ X} ⇐⇒ ∃z, z ∈ X ∧ y = F z

X ∈P(A) ⇐⇒ X ⊆ A

X = Y ⇐⇒ X ⊆ Y ∧ Y ⊆ X

(∀X, (∀x ∈ X, P x)→ P X)→ ∀X, P X

Choice: should follow from ε in meta theory

Grothendieck Universes
I Transitive set (X ∈ U, x ∈ X =⇒ x ∈ U)
I Closed under above operators (e.g. X ∈ U =⇒P(X) ∈ U)
I For every X there is a least universe U B GX such that X ∈ GX
I Implies infinity (G∅ is inf.)

12 / 56

Tarski-Grothendieck set theory: ZFC & GU

∀x, x < ∅
x ∈ {a, b} ⇐⇒ x = a ∨ x = b

x ∈
∪

A ⇐⇒ ∃X ∈ A, x ∈ X

y ∈ {F x | x ∈ X} ⇐⇒ ∃z, z ∈ X ∧ y = F z

X ∈P(A) ⇐⇒ X ⊆ A

X = Y ⇐⇒ X ⊆ Y ∧ Y ⊆ X

(∀X, (∀x ∈ X, P x)→ P X)→ ∀X, P X

Choice: should follow from ε in meta theory

Grothendieck Universes
I Transitive set (X ∈ U, x ∈ X =⇒ x ∈ U)
I Closed under above operators (e.g. X ∈ U =⇒P(X) ∈ U)
I For every X there is a least universe U B GX such that X ∈ GX
I Implies infinity (G∅ is inf.)

13 / 56

Model Construction

Abstract Model
I Some generic set constructions:

singletons, indexed unions, separation, ordered pairs

I Specific set constructions to reflect parts of ECC:

[[Prop]] B 2

[[Type0]] B G∅

I Inhabitance results to reflect validity of typing rules

Concrete Model

I Formalise syntax, environments, typing rules
I PTS-style or JE conversion formulation
I State soundness . . .
I . . . and prove it?

14 / 56

Model Construction

Abstract Model
I Some generic set constructions:

singletons, indexed unions, separation, ordered pairs
I Specific set constructions to reflect parts of ECC:

[[Prop]] B 2

[[Type0]] B G∅

I Inhabitance results to reflect validity of typing rules

Concrete Model

I Formalise syntax, environments, typing rules
I PTS-style or JE conversion formulation
I State soundness . . .
I . . . and prove it?

15 / 56

Model Construction

Abstract Model
I Some generic set constructions:

singletons, indexed unions, separation, ordered pairs
I Specific set constructions to reflect parts of ECC:

[[Prop]] B 2

[[Type0]] B G∅

I Inhabitance results to reflect validity of typing rules

Concrete Model

I Formalise syntax, environments, typing rules
I PTS-style or JE conversion formulation
I State soundness . . .
I . . . and prove it?

16 / 56

Model Construction

Abstract Model
I Some generic set constructions:

singletons, indexed unions, separation, ordered pairs
I Specific set constructions to reflect parts of ECC:

[[Prop]] B 2

[[Type0]] B G∅

I Inhabitance results to reflect validity of typing rules

Concrete Model
I Formalise syntax, environments, typing rules

I PTS-style or JE conversion formulation
I State soundness . . .
I . . . and prove it?

17 / 56

Model Construction

Abstract Model
I Some generic set constructions:

singletons, indexed unions, separation, ordered pairs
I Specific set constructions to reflect parts of ECC:

[[Prop]] B 2

[[Type0]] B G∅

I Inhabitance results to reflect validity of typing rules

Concrete Model
I Formalise syntax, environments, typing rules
I PTS-style or JE conversion formulation

I State soundness . . .
I . . . and prove it?

18 / 56

Model Construction

Abstract Model
I Some generic set constructions:

singletons, indexed unions, separation, ordered pairs
I Specific set constructions to reflect parts of ECC:

[[Prop]] B 2

[[Type0]] B G∅

I Inhabitance results to reflect validity of typing rules

Concrete Model
I Formalise syntax, environments, typing rules
I PTS-style or JE conversion formulation
I State soundness . . .

I . . . and prove it?

19 / 56

Model Construction

Abstract Model
I Some generic set constructions:

singletons, indexed unions, separation, ordered pairs
I Specific set constructions to reflect parts of ECC:

[[Prop]] B 2

[[Type0]] B G∅

I Inhabitance results to reflect validity of typing rules

Concrete Model
I Formalise syntax, environments, typing rules
I PTS-style or JE conversion formulation
I State soundness . . .
I . . . and prove it?

20 / 56

Soundness

I If Γ ` M : A is derivable, then it is valid in the model:

∀γ ∈ [[Γ]], [[M]]γ ∈ [[A]]γ

I Soundness follows, if all typing rules preserve validity.
I Consider the Application rule:

Γ ` M : Πx : A, B Γ ` N : A

Γ ` M N : B [x B N]

I We assume γ ∈ [[Γ]], [[M]]γ ∈ [[Πx : A, B]]γ and [[N]]γ ∈ [[A]]γ
I We have to show [[M N]]γ ∈ [[B [x B N]]]γ

21 / 56

Soundness

I If Γ ` M : A is derivable, then it is valid in the model:

∀γ ∈ [[Γ]], [[M]]γ ∈ [[A]]γ

I Soundness follows, if all typing rules preserve validity.

I Consider the Application rule:

Γ ` M : Πx : A, B Γ ` N : A

Γ ` M N : B [x B N]

I We assume γ ∈ [[Γ]], [[M]]γ ∈ [[Πx : A, B]]γ and [[N]]γ ∈ [[A]]γ
I We have to show [[M N]]γ ∈ [[B [x B N]]]γ

22 / 56

Soundness

I If Γ ` M : A is derivable, then it is valid in the model:

∀γ ∈ [[Γ]], [[M]]γ ∈ [[A]]γ

I Soundness follows, if all typing rules preserve validity.
I Consider the Application rule:

Γ ` M : Πx : A, B Γ ` N : A

Γ ` M N : B [x B N]

I We assume γ ∈ [[Γ]], [[M]]γ ∈ [[Πx : A, B]]γ and [[N]]γ ∈ [[A]]γ
I We have to show [[M N]]γ ∈ [[B [x B N]]]γ

23 / 56

Soundness

I If Γ ` M : A is derivable, then it is valid in the model:

∀γ ∈ [[Γ]], [[M]]γ ∈ [[A]]γ

I Soundness follows, if all typing rules preserve validity.
I Consider the Application rule:

Γ ` M : Πx : A, B Γ ` N : A

Γ ` M N : B [x B N]

I We assume γ ∈ [[Γ]], [[M]]γ ∈ [[Πx : A, B]]γ and [[N]]γ ∈ [[A]]γ

I We have to show [[M N]]γ ∈ [[B [x B N]]]γ

24 / 56

Soundness

I If Γ ` M : A is derivable, then it is valid in the model:

∀γ ∈ [[Γ]], [[M]]γ ∈ [[A]]γ

I Soundness follows, if all typing rules preserve validity.
I Consider the Application rule:

Γ ` M : Πx : A, B Γ ` N : A

Γ ` M N : B [x B N]

I We assume γ ∈ [[Γ]], [[M]]γ ∈ [[Πx : A, B]]γ and [[N]]γ ∈ [[A]]γ
I We have to show [[M N]]γ ∈ [[B [x B N]]]γ

25 / 56

Soundness, JE vs. PTS

(conv)

Γ J̀E M : A
Γ J̀E A = B : Typei

Γ J̀E M : B
(conv)

Γ P̀TS M : A
Γ P̀TS B : Typei

Γ P̀TS M : B
A ≈ B

The JE case?

Solved (e.g. Barras [2], Lee & Werner [3]).

The PTS case?

Unsolved, circularity problem (Miquel & Werner [5])

Are they equivalent?

Unknown in the general case, approximations exist.

26 / 56

Soundness, JE vs. PTS

(conv)

Γ J̀E M : A
Γ J̀E A = B : Typei

Γ J̀E M : B
(conv)

Γ P̀TS M : A
Γ P̀TS B : Typei

Γ P̀TS M : B
A ≈ B

The JE case?
Solved (e.g. Barras [2], Lee & Werner [3]).

The PTS case?

Unsolved, circularity problem (Miquel & Werner [5])

Are they equivalent?

Unknown in the general case, approximations exist.

27 / 56

Soundness, JE vs. PTS

(conv)

Γ J̀E M : A
Γ J̀E A = B : Typei

Γ J̀E M : B
(conv)

Γ P̀TS M : A
Γ P̀TS B : Typei

Γ P̀TS M : B
A ≈ B

The JE case?
Solved (e.g. Barras [2], Lee & Werner [3]).

The PTS case?
Unsolved, circularity problem (Miquel & Werner [5])

Are they equivalent?

Unknown in the general case, approximations exist.

28 / 56

Soundness, JE vs. PTS

(conv)

Γ J̀E M : A
Γ J̀E A = B : Typei

Γ J̀E M : B
(conv)

Γ P̀TS M : A
Γ P̀TS B : Typei

Γ P̀TS M : B
A ≈ B

The JE case?
Solved (e.g. Barras [2], Lee & Werner [3]).

The PTS case?
Unsolved, circularity problem (Miquel & Werner [5])

Are they equivalent?
Unknown in the general case, approximations exist.

29 / 56

Results so Far . . .

I Adams [1]: equivalent, given uniqueness of types

I Miquel & Werner [5]: circumvent problems in PTS case with
syntactic annotations to ensure well-sortedness

I Pagano, Coquand et al. (02/2012): equivalent, when dropping
impredicativity (norm. by eval.)

30 / 56

Results so Far . . .

I Adams [1]: equivalent, given uniqueness of types
I Miquel & Werner [5]: circumvent problems in PTS case with

syntactic annotations to ensure well-sortedness

I Pagano, Coquand et al. (02/2012): equivalent, when dropping
impredicativity (norm. by eval.)

31 / 56

Results so Far . . .

I Adams [1]: equivalent, given uniqueness of types
I Miquel & Werner [5]: circumvent problems in PTS case with

syntactic annotations to ensure well-sortedness
I Pagano, Coquand et al. (02/2012): equivalent, when dropping

impredicativity (norm. by eval.)

32 / 56

Model Properties of Interest

Consistency
I A statement is consistent when we can exhibit a satisfying model
I We construct a proof-irrelevant, classical model
I PI, DN, PE, FE, XM, . . . should be satisfied in the model

Independence
I A statement is independent when it is consistent but not provable
I To refute provability, exhibit a non-satisfying model
I E.g. existence of an infinite type in Type0, formally

∃X : Type0, ∃f : X → X, (∃x : X, ∀y : X, fy , x)∧
(∀y z : X, fy = fz→ y = z)

33 / 56

Model Properties of Interest

Consistency
I A statement is consistent when we can exhibit a satisfying model
I We construct a proof-irrelevant, classical model
I PI, DN, PE, FE, XM, . . . should be satisfied in the model

Independence
I A statement is independent when it is consistent but not provable
I To refute provability, exhibit a non-satisfying model
I E.g. existence of an infinite type in Type0, formally

∃X : Type0, ∃f : X → X, (∃x : X, ∀y : X, fy , x)∧
(∀y z : X, fy = fz→ y = z)

34 / 56

Mutual Consistency of Standard Library

Mutual Consistency
I (Γ, A consistent) ∧ (Γ, B consistent); (Γ, A, B consistent)
I XM and ¬PI are both separately consistent with CiC . . .
I . . . but {XM, ¬PI} is inconsistent with CiC

ECC representation of CiC axioms
I Consider P : PropCiC, find suitable Q : PropECC

I such that `CiC Q↔ P (write Q
ECC
� P)

Example: Proof Irrelevance
I In Coq / CiC: forall (P:Prop) (p1 p2:P), p1 = p2.
I In ECC: ΠP : Prop, Πu : P, Πv : P, u =P v
I Where u =P v B ΠR : P→ Prop, R u→ R v
I The abstract version of u =P v an Coq’s = provably coincide.

35 / 56

Mutual Consistency of Standard Library

Mutual Consistency
I (Γ, A consistent) ∧ (Γ, B consistent); (Γ, A, B consistent)
I XM and ¬PI are both separately consistent with CiC . . .
I . . . but {XM, ¬PI} is inconsistent with CiC

ECC representation of CiC axioms
I Consider P : PropCiC, find suitable Q : PropECC

I such that `CiC Q↔ P (write Q
ECC
� P)

Example: Proof Irrelevance
I In Coq / CiC: forall (P:Prop) (p1 p2:P), p1 = p2.
I In ECC: ΠP : Prop, Πu : P, Πv : P, u =P v
I Where u =P v B ΠR : P→ Prop, R u→ R v
I The abstract version of u =P v an Coq’s = provably coincide.

36 / 56

Mutual Consistency of Standard Library

Mutual Consistency
I (Γ, A consistent) ∧ (Γ, B consistent); (Γ, A, B consistent)
I XM and ¬PI are both separately consistent with CiC . . .
I . . . but {XM, ¬PI} is inconsistent with CiC

ECC representation of CiC axioms
I Consider P : PropCiC, find suitable Q : PropECC

I such that `CiC Q↔ P (write Q
ECC
� P)

Example: Proof Irrelevance
I In Coq / CiC: forall (P:Prop) (p1 p2:P), p1 = p2.
I In ECC: ΠP : Prop, Πu : P, Πv : P, u =P v
I Where u =P v B ΠR : P→ Prop, R u→ R v
I The abstract version of u =P v an Coq’s = provably coincide.

37 / 56

Mutual Consistency of Standard Library

Axioms in the Library

Classical classical, functional extensionality,
Extensionality Ensembles

Choice epsilon statement, constructive (in)definite description,
dependent unique choice, relational choice

PI proof irrelevance, eq rect eq, JMeq eq

Reals archimed, completeness, Rplus assoc, . . .

38 / 56

Mutual Consistency of Standard Library

Axioms in the Library

Classical classical, functional extensionality,
Extensionality Ensembles

Choice epsilon statement, constructive (in)definite description,
dependent unique choice, relational choice

PI proof irrelevance, eq rect eq, JMeq eq

Reals archimed, completeness, Rplus assoc, . . .

39 / 56

Mutual Consistency of Standard Library

Axioms in the Library

Classical classical, functional extensionality,
Extensionality Ensembles

Choice epsilon statement, constructive (in)definite description,
dependent unique choice, relational choice

PI proof irrelevance, eq rect eq, JMeq eq

Reals archimed, completeness, Rplus assoc, . . .

40 / 56

Mutual Consistency of Standard Library

Axioms in the Library

Classical classical, functional extensionality,
Extensionality Ensembles

Choice epsilon statement, constructive (in)definite description,
dependent unique choice, relational choice

PI proof irrelevance, eq rect eq, JMeq eq

Reals archimed, completeness, Rplus assoc, . . .

41 / 56

Mutual Consistency of Standard Library

Axioms in the Library

Classical classical, functional extensionality,
Extensionality Ensembles

Choice epsilon statement, constructive (in)definite description,
dependent unique choice, relational choice

PI proof irrelevance, eq rect eq, JMeq eq

Reals archimed, completeness, Rplus assoc, . . .

42 / 56

Thesis Aims

For my thesis I want to . . .
I complete two abstract models
I formalise ECC concretely with JE conversion
I proof soundness for this scenario
I and show mutual consistency of the standard library

Given spare time . . .
I I’d like to investigate the PTS vs. JE problem

43 / 56

References
Robin Adams.
Pure type systems with judgemental equality.
J. of Functional Programming, 16(2):219–246, March 2006.

Bruno Barras.
Sets in Coq, Coq in Sets.
Formalized Reasoning, 3(1), 2010.

Gyesik Lee and Benjamin Werner.
Proof-Irrelevant Model of CC with Predicative Induction and
Judgmental Equality.
Logical Methods in Computer Science, 7(4), 2011.

Zhaohui Luo.
ECC, an Extended Calculus of Constructions.
In Logic in Computer Science (LICS), pages 386–395, 1989.

Alexandre Miquel and Benjamin Werner.
The Not So Simple Proof-Irrelevant Model of CC.
In TYPES, pages 240–258, 2002. 44 / 56

Appendix

45 / 56

Consistency

I Certain types are not inhabited
I A provableF ∃D , ` D : A
I Γ consistentF ¬∃D , Γ ` D : ⊥
I We take ⊥ : Prop B ∀P : Prop, P
I ECC is consistent (Proof via Strong Normalisation)
I XM, PE, FE, PI are consistent additions to ECC & CiC
I Set-theoretic Models: [[A]] , ∅

46 / 56

Mutual Consistency & Independence

Independence
I A consistent [0 ¬A], not (A provable) [0 A]
I To refute provability: provide a model where [[A]] = ∅
I XM is independent from ECC
I (Type0 contains inf. types, like N) is independent from ECC

Mutual Consistency
I (Γ, A consistent) ∧ (Γ, B consistent); (Γ, A, B consistent)
I XM and ¬PI are both separately consistent with CiC . . .
I . . . but {XM, ¬PI} is inconsistent with CiC

47 / 56

Constructions in TG & Meta Theory

I Singleton Sets: {x}
I 1: {∅} =P(∅)
I 2: {∅, 1} =P(1)
I Indexed Union:

∪
i∈I Xi

I Separation: {x ∈ X |Px}
I Ordered Pairs (Kuratowski): (a, b)k

I Cartesian Product: A × B

Related Lemmas
Introduction and elimination rules, correctness statements and useful
equalities with respect to the special sets 0, 1 and 2.

Meta Theory
We use classical CiC with extensionality principles and Hilbert’s ε.

48 / 56

The ECC Model

Kinds:

[[Prop]] B 2

[[Type0]] B G∅

Functions (using Aczel’s encoding):

ap f x B {y | (x, y) ∈ f }
lam d F B {(x, y) | x ∈ d ∧ y ∈ F x}
Pi d Y B {lam d F | ∀x ∈ d, F x ∈ Y x}

Strong Sums & Pairs:
I Sig d Y B lam d Y
I Pairs: (a, b) B {{a}, {a, b}}

49 / 56

Preliminary Results

True and False
I Both are in [[Prop]]
I [[FALSE]] = 0
I [[TRUE]] = 1

Leibniz Equality
I defined in object logic, one for each type level
I coincides with Coq’s equality on our meta type set
I asserts that domains are ok

Proof Irrelevance
I We have shown [[PI]] = 1
I i.e. inhabited . . .
I . . . and in [[Prop]]

50 / 56

Barras [2]

I Defines signatures for CC and CCω models
I Works in an intuitionistic setting
I Models are proof-irrelevant
I Implements his signatures using HF and IZF
I Proves soundness of his signatures when using JE
I Obtains soundness for CC with Conversion via Adams
I Won’t work for CCω since we lack uniqueness of types
I Fully formalised in Coq
I Models for our signatures also satisfy his signatures.

51 / 56

Werner, Lee & Miquel [5, 3]

I Initially compared proof theoretic strength of CiC and ZFC
I Models are proof-irrelevant
I Later mostly focused on the soundness problem.
I ‘Solved’ by syntactically annotating variables with sorts and

dropping Prop � Type0

I Partially formalised in Coq
I They aim for CiC but exclude Inductive Propositions

52 / 56

Remarks on the Meta theory

I We work in Coq: CiC
I Add ClassicalFacts: relates XM, PD, PE, PI, . . .
I Add Classical Prop: XM, DN, Peirce, PI, . . .
I Add FunctionalExtensionality: FE, . . .
I Add Epsilon: Hilbert’s ε, Church’s ι
I CDP: ∀P : Prop, P + (¬P) follows from DN and ε.
I ∀P : Type, P + (P→ ⊥) follows from CDP and ε.

53 / 56

Barras’ Framework

TG

TG_CC_Model_Spec

TG_ECC_Model_Spec

CC_Model
(Barras)

ECC_Model (*)
(Barras)

TG_CC_Model

TG_ECC_Model

TG_CC_Model1

TG_ECC_Model1,2

54 / 56

Infinite Types in Type0

∃X : Type0, ∃f : X → X, (∃x : X, ∀y : X, fy , x)∧
(∀y z : X, fy = fz→ y = z)

f is a function on X which is injective but not surjective.
This implies that X is infinite.

I Not satisfied in the [[Type0]] B G∅ model;
(any injective f on X is also surjective – classical)

I Satisfied in the [[Type0]] B GG∅ model;
Use X B G∅ and f BP

55 / 56

Encoding Functions

What’s wrong with the standard graph encoding of functions?
I The function space > → > contains exactly one element, the

function mapping ∅ to ∅.
I with standard graph-encoding: [[> → >]] = {{(∅, ∅)}} < 2
I however, we want [[> → >]] = 1 ∈ 2
I but ∅ , {(∅, ∅)}!
I with the alternative function encoding, the two sides match up.

56 / 56

	Overview
	ECC
	Tarski-Grothendieck Set Theory
	Model Construction
	Soundness
	Goals

