
Constructive Formalization of Regular Languages

Jan-Oliver Kaiser
Advisors: Christian Doczkal, Gert Smolka

Supervisor: Gert Smolka

UdS

November 7, 2012

Jan-Oliver Kaiser (UdS) Constr. Formalization of Reg. Languages November 7, 2012 1 / 21

Table of Contents

1 Motivation

2 Recap
Regular Expressions
Finite Automata
Finite Automata
Regular Expression to Finite Automaton

3 Previous Talk
Finite Automaton to Regular Expression

4 Myhill-Nerode Theorem
Formalization of Equivalence Classes
Myhill Relations and Nerode Relations
Minimizing Equivalence Classes

5 Summary

Jan-Oliver Kaiser (UdS) Constr. Formalization of Reg. Languages November 7, 2012 2 / 21

Motivation

• Goal: Build an extensive, elegant, constructive formalization of
regular languages that includes

1 regular expressions,
2 the decidability of equivalence of regular expressions,
3 finite automata,
4 and the Myhill-Nerode theorem.

• How: Coq with SSReflect. No sacrifices for performance.

Jan-Oliver Kaiser (UdS) Constr. Formalization of Reg. Languages November 7, 2012 3 / 21

Regular Expressions
Definition

• We use extended Regular Expressions (RE) over an alphabet Σ:

r ; s ::= ∅ | ε | a | rs | r + s | r & s | r∗ | ¬r

L(∅) = ∅ L(r∗) = L(r)∗

L(ε) = {ε} L(r + s) = L(r) ∪ L(s)

L(.) = Σ L(r&s) = L(r) ∩ L(s)

L(a) = {a} L(rs) = L(r) · L(s)

L(¬r) = Σ∗\L(r)

• Implementation taken from Coquand and Siles1. This saved us quite
a bit of work.

• ≈ 200 lines of code including an implementation of regular languages
and lots of useful lemmas.

1Thierry Coquand and Vincent Siles. “A Decision Procedure for Regular Expression Equivalence in Type
Theory”. In: CPP. 2011, pp. 119–134.

Jan-Oliver Kaiser (UdS) Constr. Formalization of Reg. Languages November 7, 2012 4 / 21

Finite Automata
Definition

• Our Finite Automata (FA) over an alphabet Σ consist of

1 a set of states Q,
2 a starting state s ∈ Q,
3 a set of final states F ⊆ Q,
4 a transition relation δ ∈ Q × Σ× Q.

• Two types: one for non-deterministic FA (δ may be non-functional),
one for deterministic FA (δ is functional).

• For our deterministic FA, δ is also total and, thus, a function. This
helped, but maybe not a lot.

Jan-Oliver Kaiser (UdS) Constr. Formalization of Reg. Languages November 7, 2012 5 / 21

Finite Automata
Formalization

• Our definition is very close to the textbook definition.

• ≈ 120 lines of code including some general lemmas for later proofs.

Record nfa : Type :=
{ nfa state :> finType;

nfa s : nfa state ;
nfa fin : pred nfa state ;
nfa step : nfa state −> char

−> pred nfa state }.

Record dfa : Type :=
{ dfa state :> finType;

dfa s : dfa state ;
dfa fin : pred dfa state ;
dfa step : dfa state −> char

−> dfa state }.

Jan-Oliver Kaiser (UdS) Constr. Formalization of Reg. Languages November 7, 2012 6 / 21

RE =⇒ FA

• Structure of proof given by inductive definition of RE.

• Plan: Construct FA for every RE constructor.

• Sounds simple enough ..

• .. ≈ 800 lines of code.

• ≈ 100 lines of that needed for equivalence of DFA and NFA.

• Another ≈ 100 lines of code for extended regular expressions.

• This is a candidate for improvement.

Jan-Oliver Kaiser (UdS) Constr. Formalization of Reg. Languages November 7, 2012 7 / 21

FA =⇒ RE

• We use the “Transitive Closure method”, Kleene’s original proof2.

• This method recursively builds a regular expression RX
x ,y that

recognizes words whose runs starting in x only pass through states in
X and end in y .

• The previous version constructed Rk
x ,y which translates to R

{z|#(z)<k}
x ,y

where # is an ordering on Q.

• Instead of nat, we now recurse on the size of a finite subset of Q.3

• This also avoids cumbersome conversions from nat to SSReflect’s
ordinals and, finally, to states.

2S. C. Kleene. “Representation of Events in Nerve Nets and Finite Automata”. In: Automata Studies (1965).
3Dexter Kozen. Automata and computability. Undergraduate texts in computer science. Springer, 1997,

pp. I–XIII, 1–400. isbn: 978-0-387-94907-9.

Jan-Oliver Kaiser (UdS) Constr. Formalization of Reg. Languages November 7, 2012 8 / 21

FA =⇒ RE
Proof Outline

• We introduce a decidable language LXx ,y that directly encodes the idea

behind RX
x ,y as a boolean predicate.

• The proof of FA =⇒ RE consists of three steps:

1 We show that LXx,y respects the defining recursive equation of RX
x,y .

2 We show that for all w ∈ Σ∗, w ∈ LXx,y ⇐⇒ w ∈ RX
x,y .

3 We show that
⋃

f∈F LQs,f = L(A) and thus
∑

f∈F RQ
s,f = L(A).

Jan-Oliver Kaiser (UdS) Constr. Formalization of Reg. Languages November 7, 2012 9 / 21

FA =⇒ RE

• After some restructuring: ≈ 550 lines of code, ≈ 150 of which are
general infrastructure.

• Previous version: ≈ 800 lines of code, much harder to read.

Lemma L split k’ i j a w:
let k := k ord k’ in
(a :: w) \in Lˆk’.+1 i j −>
(a :: w) \in Lˆk’ i j \/
exists w1, exists w2,
a :: w = w1 ++ w2 /\
w1 != [::] /\
w1 \in Lˆk’ i (enum val k) /\
w2 \in Lˆk’.+1 (enum val k) j .

Lemma L split X x y z w:
w \in Lˆ(z |: X) x y −>
w \in LˆX x y \/
exists w1, exists w2,

w = w1 ++ w2 /\
size w2 < size w /\
w1 \in LˆX x z /\
w2 \in Lˆ(z |: X) z y

Figure: Previous and current version of the same lemma

Jan-Oliver Kaiser (UdS) Constr. Formalization of Reg. Languages November 7, 2012 10 / 21

Myhill-Nerode Theorem

• It turns out that there are two different concepts: Myhill relations and
the Nerode relation.

• We also consider a related characterization: weak Nerode relations.

• All these are equivalence relations which we require to be of finite
index, i.e. to have a finite number of equivalence classes.

• However, Coq has no notion of quotient types.

Jan-Oliver Kaiser (UdS) Constr. Formalization of Reg. Languages November 7, 2012 11 / 21

Myhill-Nerode Theorem
Equivalence Relations of Finite Index

• We use functions of finite domain to represent equivalence relations
of finite index.

• Think of the domain as the set of equivalence classes.

• We also need to have a representative of every equivalence class.
Thus, we require surjectivity.

Record Fin Eq Cls :=
{ fin type : finType;

fin func :> word −> fin type;
fin surjective : surjective fin func }.

• With constructive choice, we can then give a canonical representative
of every every equivalence class.

Definition cr (f : Fin Eq Cls) x := xchoose (fin surjective f x).

Jan-Oliver Kaiser (UdS) Constr. Formalization of Reg. Languages November 7, 2012 12 / 21

Myhill-Nerode Theorem
Myhill relations, weak Nerode relations, Nerode relation

• An equivalence relation ≡ of finite index is a Myhill relation4 for L
iff

1 ≡ is right-congruent, i.e. ∀u, v ∈ Σ∗. ∀a ∈ Σ. u ≡ v =⇒ ua ≡ va,
2 and ≡ refines L, i.e. ∀u, v ∈ Σ∗. u ≡ v =⇒ (u ∈ L ⇐⇒ v ∈ L).

• An equivalence relation ≡ of finite index is a weak Nerode relation
for L iff

∀u, v ∈ Σ∗. u ≡ v =⇒ ∀w ∈ Σ∗. (uw ∈ L ⇐⇒ vw ∈ L).

• The Nerode relation5 .
=L for L is defined such that

∀u, v ∈ Σ∗. u
.

=L v ⇐⇒ ∀w ∈ Σ∗. (uw ∈ L ⇐⇒ vw ∈ L).

4John R. Myhill. Finite Automata and the Representation of Events. Tech. rep. WADC TR-57-624.
Wright-Paterson Air Force Base, 1957.

5Anil Nerode. “Linear Automaton Transformations”. In: Proceedings of the American Mathematical Society 9.4
(1958), pp. 541–544.

Jan-Oliver Kaiser (UdS) Constr. Formalization of Reg. Languages November 7, 2012 13 / 21

Myhill-Nerode Theorem
Formalization of Myhill, weak Nerode and Nerode relation

• For all three relations, we build a record that consists of an
equivalence relation of finite index and proofs of the properties of the
respective relation.

• Example:

Record Myhill Rel :=
{ myhill func :> Fin Eq Cls ;

myhill congruent : right congruent myhill func ;
myhill refines : refines myhill func }.

Jan-Oliver Kaiser (UdS) Constr. Formalization of Reg. Languages November 7, 2012 14 / 21

Myhill-Nerode Theorem

• Our version of the Myhill-Nerode theorem states that the following
are equivalent

1 language L is accepted by a DFA,
2 we can construct a Myhill relation for L,
3 we can construct a weak Nerode relation for L,
4 the Nerode relation for L is of finite index.

• (1) =⇒ (2) is easy. (Map word w to the last state of its run on the
automaton.)

• (2) =⇒ (3) is a trivial inductive proof.

• (4) =⇒ (1) is also straight-forward. (Use equivalence classes as
states.)

Jan-Oliver Kaiser (UdS) Constr. Formalization of Reg. Languages November 7, 2012 15 / 21

Myhill-Nerode Theorem
(3) =⇒ (4)

• A weak Nerode relation (given as a function f) has at least as many
equivalence classes as the Nerode relation.

• Some of them are redundant w.r.t. to L, i.e. we may have
equivalence classes s.t.

∀uv ∈ Σ∗. fu 6= fu ∧ ∀w ∈ Σ∗. (uw ∈ L ⇐⇒ vw ∈ L).

• Our goal is to merge these equivalence classes.

• In fact, we construct an equivalence relation on these equivalence
classes.

• Equivalence classes are contained in that relation iff they are
equivalent w.r.t. to L.

Jan-Oliver Kaiser (UdS) Constr. Formalization of Reg. Languages November 7, 2012 16 / 21

Myhill-Nerode Theorem
Finding equivalent equivalence classes

• We use the table-filling algorithm6 for minimizing DFA.

• Our fixed-point algorithm finds all equivalence classes whose
representatives are distinguishable w.r.t. to L.

• The remaining equivalence classes are then equivalent w.r.t. to L.

• Start: {(x , y) | cr(x) /∈ L ⇐⇒ cr(y) ∈ L}.
• Step: if the previous result is d , the new result is
d ∪ {(x , y) | ∃a. (f (cr(x)a), f (cr(y)a)) ∈ d}.

• Due to finiteness of the domain and monotonicity of the algorithm, it
has a fixed point which we can compute.

6D.A. Huffman. “The synthesis of sequential switching circuits”. In: Journal of the Franklin Institute 257.3
(1954), pp. 161 –190.

Jan-Oliver Kaiser (UdS) Constr. Formalization of Reg. Languages November 7, 2012 17 / 21

Myhill-Nerode Theorem
Proof Outline

• We construct a function fmin that maps every equivalence class to the
set of equivalence classes equivalent to it w.r.t. L.

• We then show that fmin is surjective and encodes an equivalence
relation of finite index.

• Finally, we show that fmin is equivalent to the Nerode relation.

Jan-Oliver Kaiser (UdS) Constr. Formalization of Reg. Languages November 7, 2012 18 / 21

Myhill-Nerode Theorem

• The lemmas of this chapter are rather abstract, which makes for nice
and short statements.

• The proofs also received more refinement than the other chapters.
They are very concise.

• The entire chapter consists of ≈ 430 lines of code.

Jan-Oliver Kaiser (UdS) Constr. Formalization of Reg. Languages November 7, 2012 19 / 21

Summary

• All in all we have ≈ 2100 lines of code.

• Mostly very close to the mathematical definitions.

• Code produced in the beginning of the project might be improved
quite a bit.

Jan-Oliver Kaiser (UdS) Constr. Formalization of Reg. Languages November 7, 2012 20 / 21

Thank you for your attention!

Jan-Oliver Kaiser (UdS) Constr. Formalization of Reg. Languages November 7, 2012 21 / 21

	Motivation
	Recap
	Regular Expressions
	Finite Automata
	Finite Automata
	Regular Expression to Finite Automaton

	Previous Talk
	Finite Automaton to Regular Expression

	Myhill-Nerode Theorem
	Formalization of Equivalence Classes
	Myhill Relations and Nerode Relations
	Minimizing Equivalence Classes

	Summary

