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ABSTRACT

Typed lambda calculi can be used as computational logical systems. Logical
consistency of some type theories can be reduced to the properties of termination
and confluence. We formally verify a proof of those properties for CCΣ in Coq,
building on the formalization done by Barras [4].
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1. INTRODUCTION

Typed lambda calculi are formal systems based on computation and typing:
equality in these systems is defined by reduction rules, and the correspondence
between propositions and their proofs is defined by typing rules. These typing
rules justify typing judgements, which are statements of the form Γ ` t : T ,
where T is a type and t a term of that type in the context Γ. Following the
Curry-Howard-de Bruijn isomorphism [8, p. 211, 19], it is possible to think of
types as propositions and terms as their proofs. A proposition is thus provable
in a context Γ if and only if it is inhabited, i.e., there is a term with that type,
in Γ. Which types are admissible is defined by so called universes, which can
be intuitively seen as the types of types.

Lambda calculus was first introduced in an untyped version by Alonzo
Church in 1932 [10], but this version was proven to be unfit as a foundation
for logic by Kleene and Rosser [20]. To deal with this, Church introduced a
notion of typing and invented what is now called the Simple Thoery of Types
in 1940 [9]. In this logical framework, types are used solely to restrict the terms
a function can be applied to; a function with the type N → N could only be
applied to natural numbers, instead of any term as in the untyped lambda cal-
culus. While the Simple Theory of Types as presented by Church does not
make use of the Curry-Howard-de Bruijn isomorphism, it can be seen as the
grandfather of modern type theory.

According to Barendregt[6, p. 126], the Simple Theory of Types corresponds
to the Simply Typed Lambda Calculus, a modern type theory that could in
theory be expressed using a single universe. Adding a second universe allows
for three orthogonal extensions: polymorphism, type operators and dependent
types can be added independently to the Simply Typed Lambda Calculus, yield-
ing a total of eight different type theories of which many have been studied thor-
oughly in the late eighties and early nineties[27, 11, 15, 18, 22, 21]. The richest
of these type theories, where all of these extensions are added, is known as the
Calculus of Constructions (short CC)[11], but can still be extended further. Two
directions for extensions are conceivable: vertically, i.e., by adding further uni-
verses, or horizontally, i.e., by adding further categories of types. Examples are
the Extended Calculus of Constructions, which is an extension of CC with an
arbitrary number of universes and has been developed and studied extensively
by Luo [23], or CC with small sigma types (short CCΣ), which is a horizontal
extension of CC. These sigma types correspond to existential quantification and
dependent pairs in other formal systems.

Not all type theories that have been studied are logically consistent. As an
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example, consider Martin-Lfs Theory of Types, which had only a single universe
[24]. It was proven to be inconsistent by Girard in 1972 [14]. This leads to
the question which ingredients or properties are required for a consistent type
theory. For ECC (and thus any subsystem), Luo has given an answer to this
question in his PhD thesis [23, Theorem 5.4, p. 105]: he shows that confluence
and termination yield logical consistency of the system.

In this project we formalized proofs of these properties for CCΣ. For this
we built upon a formalization of these proofs for CC which was done by Barras
[4]. To formalize in this sense means to bring the definitions and proofs into a
form in which they can be algorithmically checked for correctness by so called
theorem provers or proof assistants, which are programs that implement formal
systems. This requires us to scrutinize the proof. It makes many details explicit
which are hidden in the informal proof, if only behind phrases like “trivial”
or “left as an exercise for the reader”. Often these details are in fact trivial,
but tedious. Many proof assistants come with automatization techniques that
allow us to deal with these tedious parts automatically. In other cases, it turns
out that things are not as trivial as they seemed, and the proof needs to be
reconsidered. How hard it is to formalize a proof and whether these details go
through depends often on how the definitions and propositions in the proof were
formalized and which formal system is used. In the next sections we discuss our
decisions on the more foundational issues and how the alternatives might have
affected our project.

In addition to this, we give a mathematical description of the proofs, which
serve to ease the digestion of the rather technical formal proof, and to explain
many puzzling details. The mathematical proof of termination is strongly influ-
enced by Geuvers’ proof of termination[13], but has been adapted to be closer to
the formalization. The mathematical proof of confluence has been taken from
Barendregt[5] and is not original in any way.

1.1 The Proof Assistant Coq

The first decision we had to make was the logical system we would use to
formalize the proofs. We chose to use the proof assistant Coq, mostly due
to our previous experience with the system. Coq implements the Calculus of
Inductive Constructions (CiC), which is a horizontal extension of ECC that adds
inductive types. These inductive types serve well to formalize CCΣ and many
of the operations and properties thereof. However, CiC - without assuming
further axioms - is an intuitionistic and intensional logic, which complicates the
formalization of classical proofs. This thesis can hence also be seen as a proof
that termination and confluence of CCΣ can be proven in an intuitionistic and
intensional setting.

For a short introduction to the Coq syntax, see Chapter A in the appendix.
For a more complete description of Coq and the CiC, see the Coq reference man-
ual http://coq.inria.fr/distrib/V8.4/refman/ and “Coq’Art: the Calcu-
lus of Inductive Constructions” [7]. For a comparison of various proof assistants

http://coq.inria.fr/distrib/V8.4/refman/
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on the task of proving that
√

2 is not a rational number, see “The Seventeen
Provers of the World” [31].

1.2 De Bruijn Indices

An even more interesting decision is how we formalize the names of variables.
There are generally three ways to formalize the names of variables. The first
approach is to use strings to denote variables, like in mathematics. This is often
called a named approach and has been used, among others, by Norrish [25].
While being very close to mathematics and hence more human readable than
the other approaches, it comes with two disadvantages. The first disadvantage is
that many properties and operations that depend on the name of the variables
of a term are very hard to formalize with a named approach. The second
disadvantage is that it requires alpha-equivalence as equality instead of Coq’s
Leibniz equality [25, Equation (3) on p. 172]. While possible, this appears
to be clumsy and impractical to use. There are other options to deal with
alpha-equivalence, like giving canonical forms by using nominal unification [30].
Approaches like this, however, seem out of reach for the scope of this project.

The second option, which we decided to take, is to abstract away from the
name of bound variables. There are generally two ways to do this: using de
Bruijn indices[12] for all variables, or using a hybrid approach which uses de
Bruijn indices for bound variables and names for free variables [12, p. 392, 17,
2].

While we chose to use de Bruijn indices, this appears to have been some sort
of a mistake. Many definitions (and hence, proofs) in the current formalization
are complicated by the inability to distinguish between bound and free variables.
Following the approach outlined in [2] would solve many of these complications
while also bringing the formalization closer to the mathematical proof.

The third approach, which appears not to be formalizable in Coq for tech-
nical reasons, is using what is called the Higher Order Abstract Syntax (short
HOAS)[1, 26]. This option abstracts away from variables altogether by embed-
ding functions from the metalogic into the terms of the type theory. This has
the advantage that the alpha-equivalence and function application of the met-
alogic carry over into the formalization, thus replacing reduction with function
application and eliminating the difficulties of alpha-equivalence.

1.3 Barras’ Coq in Coq

The next question we faced was whether to start anew or use an existing project
and extend it. We began by formalizing the Simply Typed Lambda Calculus
as well as formalizing termination and confluence for this system, following the
proofs outlined in Barendregt [5] and Takahashi [29].

We then decided to build upon Barras’ formal development of termination
and confluence of CC. This project seems to be based on Geuver’s proof tech-
nique [13], which (among other things) uses different syntactic representations
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for term variables and type variables. Since Barras’ goal was to work towards a
type checker for Coq, which does not have such a distinction, there is only one
type of variable in his development, and the “class” of the variable depends on
the context Γ. In this thesis, we give a variant of Geuver’s proof which does
not depend on the syntactic distinction, but this comes at the cost of a greater
complexity. As an example, some of the functions were previously defined only
on some syntactic classes of terms. Now that the syntactic classification have
been eliminated, the functions are partially defined on all terms, and we need
to prove that they are defined in the situations where we use them.

While Barras’ formalization took care of many of the pitfalls that arise when
a mathematical proof that deals with partial functions and extensional set equal-
ity is to be formalized in Coq, these complications still affect the mathematical
presentation of the proof.

1.4 Structure of the Document

In this thesis, we first present a mathematical formulation of the problem and
proof steps. This mathematical formulation takes away many of the intricacies
of the formal version, many of which deal with the intuitionistic and intensional
nature of Coq. In Chapter 2 we define the underlying type theory and its se-
mantics, and prove a few fundamental properties, including confluence. Chapter
3 extends these definitions by the definitions required to prove termination, and
ends with the statement of termination. The mathematical formulation is then
used in Chapter 4 to explain the formal version and some of the technicalities
present therein.

1.5 Acknowledgements

I would like to thank Chad E. Brown for supervising this thesis. His tough
questions and valuable criticism gave me an incentive to dive deeply into the
research topic and understand it fully. His deep knowledge in the field and his
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thanks to Prof. Dr. Gert Smolka, who invited me to a great opportunity of
research and who allowed me to write this thesis when I had the time to do it.

My gratitude goes as well to Bruno Barras, Ute Hornung, Naomi Nir-
Bleimling, Susanne Oberhauser and Tobias Tebbi, and all of my friends and
family.



2. PRELIMINARIES

Following Luo [23] and Barendregt [5], we define Λ, i.e. the set of terms, induc-
tively. Usually when we write t, u, v, T , U , V , D, C, or K, we mean terms. We
will also use t1, u2, T ′ etc. if we have multiple terms that need naming.

s : Every universe s is a term. The universes of CCΣ are {Prop,Type0}

x : Every variable x is a term. Other generic variables we will use are y and z.
Note that there are infinitely many variables.

t u : If t and u are terms, so is the application t u, where t is applied to u.

λx : T.t : If t and T are terms and x is a variable, the lambda term λx : T.t is
a term.

∀x : T.U : If T and U are terms and x is a variable, the product ∀x : T.U with
domain T and codomain U is a term.

Σx : T.U : If T and U are terms and x is a variable, the sigma Σx : T.U is a
term.

(t, u)Σx:T.U : If t, u, T , and U are terms and x is a variable, the pair (t, u)Σx:T.U

is a term.

πi(t) : If i ∈ {1, 2} and t is a term, the projection πi(t) is a term.

We will sometimes useD to denote the domain and C to denote the codomain
of products and lambdas. We also distinguish between three levels of term
names: the lower case names (t, u, etc.), the capital case names (T , U , D, etc.)
and K. These levels will represent the place of the term in the type hierarchy,
which will be introduced later.

We can also write T → U for ∀x : T.U whenever x 6∈ F (U), where F (U)
denotes the set of free variables of a term U :
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Definition 1.

F (s) := ∅
F (x) := {x}

F (λx : T.t) := F (T ) ∪ (F (t) \ {x})
F (u v) := F (u) ∪ F (v)

F (∀x : T.U) := F (T ) ∪ (F (U) \ {x})
F (Σx : T.U) := F (T ) ∪ (F (U) \ {x})
F ((t, u)Σx:T.U ) := F (t) ∪ F (u) ∪ F (T ) ∪ (F (U) \ {x})

F (πi(t)) := F (t)

Note the cases where a variable is removed from the set of free variables. We
call all occurrences of this variable in the right subterm bound. As an example,
there is a single bound occurrence of x in ∀x : T.x, but none in ∀x : x.y or x.
In any case, we call the ∀, λ, or Σ the binder of that variable.

The set of terms, by itself, does not possess any meaning. We will first define
reduction, then we will restrict Λ to CCΣ by adding environments and typing
rules. Typing and reduction together form the semantics of terms. Before we
can start this, we need to define what it means to substitute a term t for a
variable x in some term u.

2.1 Equality

Usually, equality means syntactic equality. In our case, we will consider terms
to be equal if they are syntactically equal up to the name of bound variables.
As an example, x 6= y but (∀x : X.x) = (∀y : X.y). This is acceptable because
in the formalization, we use a technique called “de Bruijn indices”[12] which
abstracts away the names of bound (and free) variables in a meaning-preserving
way.

As a consequence, we can rename bound variables. This technique is known
as alpha-renaming. As an example, (∀x : X.∀x : Y.x) = (∀x : X.∀y : Y.y).

2.2 Valuations

We will first talk about functions that map variables to elements of some set X.
We call these X-valuations. We can update the value that some X-valuation f
assigns to some variable x with the update operation, fxt . A similar definition
can be found in Stoughton[28, p. 2].

Definition 2.
fxv := (y 7→ if x = y then v else f(y) )

Consecutive updates are written as follows: fx1,...,xk
t1,...,tk

It is a trivial fact that non-conflicting updates can be reordered and that
conflicting updates are overridden:
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Lemma 1. For every x, y, vx, vy and f ,

fx,yvx,vy =

{
fy,xvy,vx x 6= y

fyvy otherwise

2.3 Assignments

An assignment is a term-valuation. In other words, it is a function that maps
variables to terms. Since variables are terms, we can also assign a variable
to itself. One of the simplest assignments is the identity assignment where
every variable is assigned to itself. We call this assignment ρI . We can lift
application of an assignment ρ to a term t by going through the term and
applying the assignment to all variables in that term. However, whenever a
binding is introduced, we must make sure not to override that binding. For this
we define the predicates of capturing and freshness. We say z is captured by ρ
in (x, U) if:

∃y ∈ F (U) .y 6= x ∧ z ∈ F (ρ(y))

Note that x will correspond to the binder, U to the term to which the binder
applies, ρ will be the substitution that needs to avoid capturing, and z will be
any variable. We say z is ρ-fresh in (x, U) if it is not captured by ρ in (x, U).
This is equivalent to:

∀y ∈ F (U) , z ∈ F (ρ(y)) =⇒ y = x

We call the resulting substitution the parallel substitution of ρ in t and denote
it as ρ(t). The assignment ρI applied to a term t yields t.

Definition 3.

ρ(s) := s

ρ(x) := ρ(x)

ρ(λx : T.t) := λz : ρ(T ).ρxz (t) where z is ρ-fresh in (x, t)

ρ(u v) := ρ(u) ρ(v)

ρ(∀x : T.U) := ∀z : ρ(T ).ρxz (U) where z is ρ-fresh in (x, U)

ρ(Σx : T.U) := Σz : ρ(T ).ρxz (U) where z is ρ-fresh in (x, U)

ρ ((t, u)Σx:T.U ) := (ρ(t), ρ(u))Σz:ρ(T ).ρxz (U) where z is ρ-fresh in (x, U)

ρ(π1(t)) := π1(ρ(t))

ρ(π2(t)) := π2(ρ(t))

We prove that such a ρ-fresh z always exists. There are infinitely many
variables, but in every term there are only finitely many. Thus for some term
t, F (t) and F (ρ(y)) for y ∈ F (t) are finite. Since the union of finitely many
finite sets is still finite,

⋃
y∈F(t) (F (ρ(y))) is finite. Hence even when we take

those variables away, infinitely many remain. Since for us, terms are equal up to
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the names of bound variables, we can actually choose such a z. Depending on
the context, we will sometimes make use of this (when we care for the z being
chosen) and sometimes pick any z (when the z does not matter for us).

Now we prove that the identity assignment applied to a term T yields T .

Lemma 2. For all T , ρI(T ) = T .

Proof. Via straightforward induction over T . The base cases are trivial, and we
will only show the case where T is a product.

ρI(∀x : U.V ) = ∀z : ρI(U).ρI
x
z (V )

where z is ρI -fresh in (x, V ). Trivially, x is ρI -fresh in (x, V ), so we chose z to
be x. Then we have to prove the following:

∀x : ρI(U).ρI
x
x(V ) = ∀x : U.V

By the induction hypothesis for U and V and the definition of ρI , this is true.

Now the substitution of a single term, uxt , is actually the application of ρI
x
t

to u.

Definition 4.

uxt := ρI
x
t (u)

The concatenation of two assignments ρ1 and ρ2, denoted by ρ1 ◦ ρ2, is an
assignment itself.

Definition 5.

ρ1 ◦ ρ2 := (y 7→ ρ1(ρ2(y)))

We now want to prove a couple of important properties of assignments.
Many of the proofs use a property which is often called coincidence: whenever
ρ1 and ρ2 agree on all the free variables of U , then ρ1(U) = ρ2(U).

Lemma 3. For any ρ1 and ρ2,

(∀x ∈ F (U) .ρ1(x) = ρ2(x)) =⇒ ρ1(U) = ρ2(U)

Proof. By straightforward induction on U . Since the individual cases are trivial
we will not go into more detail.

We can now prove that for any ρ1 and ρ2, ρ1(ρ2(u)) = (ρ1 ◦ ρ2) (u).

Lemma 4. For any ρ1 and ρ2,

ρ1(ρ2(u)) = (ρ1 ◦ ρ2) (u)
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Proof. By induction on u. In the variable case, this follows directly from defini-
tion; In the other cases, we use the induction hypothesis. However for binders,
there is some small trick involved. In one case, two assignments will be modified
whenever a binder is introduced, while in the other case only a single assignment
is changed. We will consider the product case.

For the sake of brevity, we write ρ′ for ρ1 ◦ ρ2.
We have to prove the following:

ρ1(ρ2(∀x : T.U)) = ρ′(∀x : T.U)

By definition, this is equivalent to proving

∀y : ρ1(ρ2(T )).ρ1
z
y(ρ2

x
z (U)) = ∀y : ρ′(T ).ρ′

x
y(U)

where z is ρ2-fresh in (x, U) and y is both ρ1-fresh in (z, ρ2
x
z (U)) and ρ′-fresh

in (x, U). This is equivalent to proving that the domains and the codomains
are respectively equal. For the domains, the equality follows directly from the
induction hypothesis. For the codomains, we need to prove that ρ1

z
y(ρ2

x
z (U)) =

ρ′
x
y(U). The induction hypothesis gives us that ρ1

z
y(ρ2

x
z (U)) =

(
ρ1
z
y ◦ ρ2

x
z

)
(U).

Thus and by Lemma 3, we only have to prove that
(
ρ1
z
y ◦ ρ2

x
z

)
and ρ′

x
y agree on

all free variables x′ of U . We perform a case distinction on whether x′ = x or
not.

x′ = x : We have
(
ρ1
z
y ◦ ρ2

x
z

)
(x) = ρ1

z
y(z) = y. Similarly, ρ′

x
y(x) = y. Therefore(

ρ1
z
y ◦ ρ2

x
z

)
(x) = ρ′

x
y(x)

x′ 6= x : In this case,
(
ρ1
z
y ◦ ρ2

x
z

)
(x′) = ρ1

z
y(ρ2(x′)). As z is ρ2-fresh in (x, U)

and x′ 6= x, z 6∈ F (ρ2(x′)). Thus ρ1
z
y(ρ2(x′)) = ρ1(ρ2(x′)) by Lemma 3.

This, by definition, equals (ρ1 ◦ ρ2)(x′) and hence ρ′(x′). Since x′ 6= x,
this equals ρ′

x
y(x′).

From this, we can immediately conclude ρ(uxt ) = ρ(ρI
x
t (u)) = (ρ ◦ ρIxt )(u).

We want to prove that this equals ρxρ(t)(u). Coincidence does the trick.

Lemma 5. For all ρ, x, t and all u,

ρ(uxt ) = ρxρ(t)(u)

Proof. We prove the intermediate equality

(ρ ◦ ρIxt )(u) = ρxρ(t)(u)

By Lemma 3, we only need to prove

(ρ ◦ ρIxt )(y) = ρxρ(t)(y)

where y is free in u. We perform a case distinction on whether y = x or not.
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y = x : We have (ρ ◦ ρIxt )(x) = ρ(t) = ρxρ(t)(x) by definition.

y 6= x : In this case, (ρ ◦ ρIxt )(y) = ρ(y) = ρxρ(t)(y) by definition.

Another fact is that if some variable z does not appear free in U , and we
rename a free variable x to z in U , and then substitute all of the free occurrences
of z in that U ′ by some term t, we could have just as well replaced all the free
occurrences of x in U by t.

Lemma 6. For any z which is ρ-fresh in (x, U) and not free in U ,

ρxt (U) = ρxz (U)zt

Proof. We want to use Lemma 3, but we currently have to argue the equality
of two sequential assignments and a single assignment. We use Lemma 4 to
transform the two assignments on the right hand side into a single one:

ρxz (U)zt = ρI
z
t (ρ

x
z (U))

= (ρI
z
t ◦ ρxz )(U)

By Lemma 3, we consider what happens with a free variable y in U . As y is
free in U and z is not, y 6= z. We make a case distinction on y = x ∨ y 6= x.

y = x : Then we can easily argue:

ρxt (x) = t

= zzt

= (ρxz (x))zt

= (ρI
z
t ◦ ρxz )(x)

This is exactly what we had to prove.

y 6= x : Then we can argue:

ρxt (y) = ρ(y)

= ρI(ρ(y))

= ρI
z
t (ρ(y))

The last two steps follow from Lemma 2 and from Lemma 3 as z is ρ-
fresh in (x, U) and hence not free in ρ(y). By definition, ρI

z
t (ρ(y)) equals

(ρI
z
t ◦ ρxz )(y).
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2.4 One-Step Reduction

The reduction rules are the key element of the semantics of CCΣ. The important
rules are the beta rule, where a lambda term is applied to its arguments, and
the projection rules, where the specified element of the pair is returned.

beta
(λx : T.t)u→β t

x
u

proj1
π1((t, u)Σx:T.U )→β t

proj2
π2((t, u)Σx:T.U )→β u

All the other rules just allow for one of these rules to be applied anywhere
in the term. We call these the congruence rules.

t→β t
′

t u→β t
′ u

u→β u
′

t u→β t u
′

T →β T
′

λx : T.t→β λx : T ′.t

t→β t
′

λx : T.t→β λx : T.t′

T →β T
′

∀x : T.U →β ∀x : T ′.U

U →β U
′

∀x : T.U →β ∀x : T.U ′
T →β T

′

Σx : T.U →β Σx : T ′.U

U →β U
′

Σx : T.U →β Σx : T.U ′
t→β t

′

(t, u)Σx:T.U →β (t′, u)Σx:T.U

u→β u
′

(t, u)Σx:T.U →β (t, u′)Σx:T.U

T →β T
′

(t, u)Σx:T.U →β (t, u)Σx:T ′.U

U →β U
′

(t, u)Σx:T.U →β (t, u)Σx:T.U ′

t→β t
′

πi(t)→β πi(t
′)

For example, we want to reduce ((λx : Prop.λy : Prop.x → y) True) False.
We can apply the beta rule to reduce the subterm (λx : Prop.λy : Prop.x →
y) True to λy : Prop.True → y. Then we use the congruence rule to lift this
reduction to the whole term:

((λx : Prop.λy : Prop.x→ y) True) False→β (λy : Prop.True→ y) False

When we have a term t, we define βt to be the set of all terms that t can
one-step reduce to:

Definition 6.

βt = {t′ ∈ Λ | t→β t
′}

We call a term where no reduction rule applies normal:

Definition 7. A term t is normal if βt = ∅.
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We have another important definition:

Definition 8. A term t is neutral if it is a universe, a variable, an application,
a product, a sigma, or a projection.

In other words, it is neutral if it is not a pair or a lambda term. Note that
the beta and projection rules consider only pairs and lambda terms. Hence if t
is neutral, only the congruence rules apply.

The reflexive, transitive closure of one-step reduction is called reduction.
We denote it with t →∗β t′ and say t reduces to t′. The reflexive, transitive,
symmetric closure of one-step reduction is called conversion and is denoted by
t ≈β u. We say t and u are convertible.

2.5 Confluence and the Diamond Property

An interesting and important property of these reduction rules is confluence:
Whenever t reduces to two alternatives, u1 and u2, both of them reduce to a
common term t′. Another way to read this is to say that whenever u1 and u2

have a common ancestor, they also have a common descendant.
Confluence can be formalized as a well understood predicate called the dia-

mond property, or ♦ [5]:

Definition 9.

♦R := ∀x, y1, y2.xR y1 ∧ xR y2 → ∃z.y1Rz ∧ y2Rz

We know about ♦ that it is propagated to the reflexive transitive closure:
♦R =⇒ ♦R∗. Also we know that for any R and Q such that R ⊆ Q and
Q ⊆ R∗, R∗ = Q∗. If we put these two theorems together, we have for any Q
and R such that R ⊆ Q and Q ⊆ R∗, ♦Q =⇒ ♦R∗. Hence, when we want
to prove ♦ →∗β , we only have to find a reduction relation Q which lies between
→β and →∗β and satisfies the diamond property.

Lemma 7. For any binary relation R,

♦R =⇒ ♦R∗

Proof. The basic idea is to fill the big diamond from R∗ with small diamonds
from R. We will do this row by row. We will first prove that we can fill the
individual row:

♦R =⇒ ∀x, y1, y2.xR
∗ y1 ∧ xR y2 → ∃z.y1Rz ∧ y2R

∗ z

By induction on the number of R-steps in xR∗ y1.

x = y1 : We choose y2. y1Ry2 as y1 = x and xR y2 is an assumption. y2R
∗ y2

is trivial.
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xR∗ x′ and x′Ry1 : By the induction hypothesis, we have z′ such that x′Rz′

and y2R
∗ z′. Therefore by ♦R, we get a z such that y1Rz and z′Rz. By

transitivity, we get y2R
∗ z.

Now we can fill the whole diamond row by row. We prove the original
statement via induction on the number of R-steps in xR∗ y2.

x = y2 : We choose y1. y1R
∗ y1 is trivial. y2R

∗ y1 as x = y2 and xR∗ y1 is an
assumption.

xR∗ x′ and x′Ry2 : By the induction hypothesis, we have z′ such that y1R
∗ z′

and x′R∗ z′. Therefore by ♦R and the sublemma, we get a z such that
y2R

∗ z and z′Rz. By transitivity, we get y1R
∗ z.

Lemma 8. For binary relations Q and R such that R ⊆ Q and Q ⊆ R∗,
Q∗ = R∗

Proof. By R ⊆ Q, we know that R∗ ⊆ Q∗. It remains to show that Q∗ ⊆ R∗,
i.e. for all x and y, xQ∗ y =⇒ xR∗ y. We prove this by induction on the
number of Q-steps in xQ∗ y:

x = y : Trivial since R∗ is reflexive.

xQ∗ x′ and x′Qy : By the induction hypothesis, xR∗ x′, and since Q ⊆ R∗,
x′R∗ y. By transitivity, xR∗ y.

2.6 Parallel Beta

Now we need to find such a reduction relation. The first reduction relation
we could try is →β , but we can easily find out that →β does not satisfy the
diamond property: we assume we have some u of the form λx : T.t where x
appears in many places in t, i.e. t = x . . . x . . . x, and we also have a v of which
we know that it one-step-reduces to v′. Thus we have (at least) two ways to
one-step reduce u v: we can either apply u to v and get t1 of the which is
txv = v . . . v . . . v, or we can reduce v to v′ and get t2 which is u v′. We now want
to get a common successor t′, and the basic idea is to mirror the reduction step
u v →β t1 in t2 →β t

′ and the reduction step u v →β t2 in t1 →β t
′. The first

one is easy: we simply apply u to v′ and get txv′ = v′ . . . v′ . . . v′. However, if we
used the beta rule first, we would now have to reduce all the occurrences of v
in txv to v′ at once, and one-step-reduction does not allow this.

This motivates parallel reduction [5], where we can one-step-reduce any num-
ber of subterms in one single step. We slightly change the beta and projection
rules, add reflexive variable and universe rules to allow for cases where we one-
step-reduce none of the subterms, and then extend the other rules to allow all of
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the subterms to reduce in parallel. Note that again, we have some special rules
where reduction happens or which are reflexive, as well as many congruence
rules which allow to lift the reduction of subterms to the whole term.

beta
t⇒β t

′ u⇒β u
′

(λx : T.t)u⇒β t
′x
u′

proj1
t⇒β t

′

π1((t, u)Σx:T.U )⇒β t
′

proj2
u⇒β u

′

π2((t, u)Σx:T.U )⇒β u
′ variable

x⇒β x
universe

s⇒β s

t⇒β t
′ u⇒β u

′

t u⇒β t
′ u′

T ⇒β T
′ t⇒β t

′

λx : T.t⇒β λx : T ′.t′
T ⇒β T

′ U ⇒β U
′

∀x : T.U ⇒β ∀x : T ′.U ′

T ⇒β T
′ U ⇒β U

′

Σx : T.U ⇒β Σx : T ′.U ′
t⇒β t

′ u⇒β u
′ T ⇒β T

′ U ⇒β U
′

(t, u)Σx:T.U ⇒β (t′, u′)Σx′:T ′.U ′

t⇒β t
′

πi(t)⇒β πi(t
′)

We first acknowledge the fact that the two reflexive rules are enough for the
whole reduction relation to be reflexive:

Lemma 9. For all t, t⇒β t.

Proof. This is a trivial induction on t. The base cases, s and x, are handled by
the reflexive rules; the other cases follow directly from the congruence rules and
the induction hypotheses.

Recall that we need to show that ⇒β lies between →β and →∗β . However
before we can do this, we need to show that it does not matter if we substitute
first and reduce then, or reduce first and then substitute. This requires the fact
that parallel reduction does not introduce new free variables.

Lemma 10. For any terms t and t′ such that t⇒β t
′, F (t′) ⊆ F (t).

Proof. By induction over the derivation of t⇒β t
′. As all other cases are trivial

or analogous, we only consider the beta rule.
We have (λx : T.t)u ⇒β t

′x
u′ . By the induction hypothesis, F (t′) ⊆ F (t)

and F (u′) ⊆ F (u). Clearly (F (t) \ {x}) ∪ F (u) ⊆ F ((λx : T.t)u). Similarly,
since all free occurrences of x have been replaced by u′, F

(
t′
x
u′

)
⊆ (F (t′)\{x})∪

F (u′). The induction hypothesis allows us to infer (F (t′) \ {x}) ∪ F (u′) ⊆
(F (t) \ {x}) ∪ F (u). By the transitivity of the subset relation, we conclude
F
(
t′
x
u′

)
⊆ F ((λx : T.t)u).

Lemma 11. For all t, t′, x, u and u′ such that t⇒β t
′ and u⇒β u

′, txu ⇒β t
′x
u′ .
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Proof. We prove the stronger statement that for all t, t′, such that t⇒β t
′ and

all ρ, ρ′ such that for all x, ρ(x) ⇒β ρ
′(x), ρ(t) ⇒β ρ

′(t′). The original lemma
follows from the fact that ⇒β is reflexive on variables and u⇒β u

′.
By induction over the rules of t⇒β t

′. We will only treat the variable, beta
and product cases, as all the other cases are either trivial or analogous.

y ⇒β y : We have ρ(y)⇒β ρ
′(y) by assumption.

(λx : T.t)u⇒β t
′x
u′ : We have to prove that ρ((λx : T.t)u) ⇒β ρ′(t′

x
u′). We

know ρ((λx : T.t)u) = (λz : ρ(T ).ρxz (t))ρ(u), where z is ρ-fresh in (x, t),
and ρ′(t′

x
u′) = ρ′

x
ρ′(u′)(t

′). By the beta rule and the induction hypotheses,
we also know:

(λz : ρ(T ).ρxz (t))ρ(u)⇒β ρ
′x
z (t′)

z

ρ′(u′)

By Lemma 10, z is also ρ′-fresh in (x, t′) and thus by Lemmata 6 and 5,
ρ′
x
z (t′)

z
ρ′(u′) = ρ′

x
ρ′(u′)(t

′) = ρ′(t′
x
u′). Therefore, we have what we needed.

∀x : T.U ⇒β ∀x : T ′.U ′ : We have to prove that ρ(∀x : T.U)⇒β ρ
′(∀x : T ′.U ′).

By definition this means that for some z which is ρ-fresh in (x, U) and ρ′-
fresh in (x, U ′)1, ∀z : ρ(T ).ρxz (U)⇒β ∀z : ρ′(T ′).ρ′

x
z (U ′). By the induction

hypothesis, ρ(T )⇒β ρ(T ′) and ρxz (U)⇒β ρ
′x
z (U ′) as z ⇒β z.

Lemma 12. →β⊆⇒β

Proof. The proof is very simple. We do an induction on t →β t
′ and use the

corresponding rule from⇒β . However we will often experience a situation where
exactly one of the subterms one-step-reduces, and we need to show that we can
emulate this by not touching the other subterms at all. As an example, we
consider one of the lambda rules: λx : T.t→β λx : T ′.t when T →β T

′. By the
induction hypothesis, we have T ⇒β T

′. We need to prove that λx : T.t ⇒β

λx : T ′.t, but the only applicable rule requires t⇒β t. This is proven in Lemma
9.

Lemma 13. ⇒β⊆→∗β
Proof. This proof is simple as well, this time by induction on t ⇒β t′. We
emulate parallel reduction in →∗β by reducing the subterms one after another.
By the transitivity of→∗β , this is enough. We consider the example from before:
λx : T.t⇒β λx : T ′.t′ where T ⇒β T

′ and t⇒β t
′. By the induction hypothesis,

we know that T →∗β T ′ and t →∗β t′. Therefore it is easy to show that λx :
T.t→∗β λx : T ′.t→∗β λx : T ′.t′.

This covers all except the five special rules. The first three are treated sim-
ilarly, except that we use →β in an intermediary step and argue that →β⊆→∗β ,
and hence by transitivity we get the result we need to show. As an example, we
treat the beta and the proj1 cases.

1 Recall that we can choose the z. Here we choose the same z for (x, U) and for (x, U ′).
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(λx : T.t)u⇒β t
′x
u′ where t⇒β t

′ and u⇒β u
′ : By the induction hypotheses,

we have t →∗β t′ and u →∗β u′. But then can easily prove (λx : T.t)u →∗β
(λx : T.t′)u →∗β (λx : T.t′)u′ →β t

′x
u′ . As →β⊆→∗β and →∗β is transitive,

this implies (λx : T.t)u→∗β t′
x
u′ .

π1((t, u)Σc:T.U )⇒β t
′ where t⇒β t

′ : By the induction hypothesis, we have
t →∗β t′. We argue that π1((t, u)Σc:T.U ) →β t →∗β t′. As →β⊆→∗β and
→∗β is transitive, this implies π1((t, u)Σc:T.U )→∗β t′.

The only rules that remain are the reflexive variable and universe rules. As
→∗β is also reflexive, this is trivial.

The only thing that remains to show is ♦ ⇒β . Again, the idea is to mirror
all the reductions that occurred in t⇒β t1 in t2 ⇒β t

′ and vice versa.

Lemma 14. For all t, t1 and t2,

t⇒β t1 ∧ t⇒β t2 =⇒ ∃t′.t1 ⇒β t
′ ∧ t2 ⇒β t

′

Proof. By induction on t⇒β t1 and subsequent inversion of t⇒β t2. This yields
many tedious cases, most of which are dealt with by the induction hypothesis.
The only interesting cases are the ones where in one case, we applied either the
beta or one of the projection rules, and in the other one we did not. We treat
the cases where t⇒β t1 was inferred from such a rule and t⇒β t2 was not.

(λx : T.t)u⇒β t1
x
u1

and (λx : T.t)u⇒β (λx : T2.t2)u2 : By the induction hy-
pothesis, we have t′ and u′ such that t1 ⇒β t

′, t2 ⇒β t
′, u1 ⇒β u

′ and
u2 ⇒β u

′. By the rules and our assumptions, we know (λx : T2.t2)u2 ⇒β

t′
x
u′ . By Lemma 11, we also have t1

x
u1
⇒β t

′x
u′ .

π1((t, u)Σx:T.U )⇒β t1 and π1((t, u)Σx:T.U )⇒β π1((t2, u2)Σx:T2.U2
) : By the in-

duction hypothesis, we have t′ such that t1 ⇒β t
′, t2 ⇒β t

′. By the rules
and our assumptions, we know t1 ⇒β t

′ and π1((t2, u2)Σx:T2.U2
)⇒β t

′.

π2((t, u)Σx:T.U )⇒β u1 and π2((t, u)Σx:T.U )⇒β π2((t2, u2)Σx:T2.U2
) : By the in-

duction hypothesis, we have u′ such that u1 ⇒β u
′, u2 ⇒β u

′. We choose
u′.

It is a corollary that the diamond property holds for →∗β . We can use this
result to prove the so-called Church-Rosser property: whenever u and v are
convertible, there is a single term t that both reduce to.

Lemma 15.
∀u, v.u ≈β v =⇒ ∃t.u→∗β t ∧ v →∗β t

Proof. The proof is a straightforward induction over the number of→β-steps in
u ≈β v.
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u = v : We need to prove that there exists a t such that u reduces to t. We
choose u.

u ≈β v′ where v′ →β v : By the induction hypothesis, we have t′ such that u
and v′ reduce to t′. We need to find a t such that u reduces to t and v
reduces to t. By the transitivity of →∗β , we only have to prove that there
is a t that both t′ and v reduce to. As v′ →∗β t′ and v′ →∗β v, we get such
a t by the diamond property.

u ≈β v′ where v →β v
′ : By the induction hypothesis, we have t′ such that u

and v′ reduce to t′. We need to find a t such that u reduces to t and v
reduces to t. Since v reduces to v′ and v′ reduces to t′, v reduces to t′.

It follows easily that if two normal terms are convertible, they must be equal.
We will not go through the proof.

2.7 Termination

We say a term t terminates if all reduction paths starting from t are finite. We
denote this by t↓:

Definition 10.
t↓:= ∀t′ ∈ βt, t′ ↓

We write SN for the set of all terminating terms.
We say a set of terms terminates if all elements of that set terminate:

Definition 11.
M ↓:= ∀t ∈M, t↓

It is an interesting question to ask whether all the terms of CCΣ terminate. It
is easy to find terms which do not terminate. As the canonical example consider
(λx : Prop.xx) (λx : Prop.xx), which one-step-reduces to itself. The interesting
task is to find some way to restrict the terms to a terminating subset, where we
do not lose too many terms, and where we can easily decide whether a term is
in that set or not. The way we do this is by introducing typing judgements of
the form Γ ` t : T . Only if such a statement can be justified will we consider t
and T to be terms of CCΣ.

2.8 Typing Rules

First of all, we need to introduce environments. An environment Γ is a list of
pairs of the form x : T . We write Γ, x : T for Γ extended by the pair x : T . If
a variable x does not appear in any of the judgements y : in Γ, we say x is
Γ−fresh. By mutual induction, we define ` as well as what it means for Γ to be
well-formed. We write Γ ` t : T : K if we mean that Γ ` t : T and Γ ` T : K.
We write Γ′ ⊆ Γ if Γ′ is a prefix of Γ, and Γ′ ⊂ Γ if it is a proper prefix.
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Definition 12.

prop
Γ is well-formed

Γ ` Prop : Type0

variable
Γ is well-formed Γ′, x : T ⊆ Γ for some Γ′

Γ ` x : T

application
Γ ` t : (∀x : T.U) Γ ` u : T

Γ ` t u : Uxu

lambda
Γ ` T : s1 Γ, x : T ` u : U Γ, x : T ` U : s2

Γ ` (λx : T.u) : (∀x : T.U)

product
Γ ` T : s1 Γ, x : T ` U : s2

Γ ` (∀x : T.U) : s2

sigma
Γ ` T : Prop Γ, x : T ` U : Prop

Γ ` (Σx : T.U) : Prop

pair
Γ ` t : T Γ ` u : Uxt Γ ` T : Prop Γ, x : T ` U : Prop

Γ ` (t, u)Σx:T.U : (Σx : T.U)

proj1
Γ ` t : (Σx : T.U)

Γ ` π1t : T
proj2

Γ ` t : (Σx : T.U)

Γ ` π2t : Uxπ1(t)

conversion
Γ ` t : T Γ ` U : s T ≈β U

Γ ` t : U

wf-ax
∅ is well-formed

wf-cons
x ∈ Γ−fresh Γ ` T : s

Γ, x : T is well-formed

Now that we have typing rules and reduction we have the semantics of CCΣ.
We can denote propositions as types, a correspondence known also as the Curry-
Howard isomorphism [19].

The typing rules distinguish between four levels, where if Γ ` t : T , then t
should be of a lower level than T . The highest level is the level of Type0. We will
soon see that Type0 never appears on the left hand side of a typing judgement.
So in a way, Type0 is not really part of CCΣ: it is there only as the roof of our
building, to make sure everything below has a type. The second level is where
the kinds live. The kind of propositions, Prop, and the kinds of type operators
like Prop → Prop or Prop → (Prop → Prop), are at this level. The third
level is the level of propositions and type operators. We call them constructors.
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For example, we have propositions like truth (True := ∀x : Prop, x → x) and
falsity (False := ∀x : Prop, x), as well as type operators like negation (¬ :=
λx : Prop.x → False), conjunction (∧ := λx : Prop.λy : Prop.Σz : x.y) and
disjunction (∨ := λx : Prop.λy : Prop.∀z : Prop.(x → z) → ((y → z) → z)).
We will use infix notation where appropriate. The lowest level is the level of
proofs, or objects. We have the polymorphic identity I (λx : Prop.λy : x.y).
Even complex proofs like this, which we shall call t for now : λx1 : Prop.λx2 :
Prop.λz′ : (x1 ∧ x2).λz : Prop.λy1 : x1 → z.λy2 : x2 → z.y1 π1(z′). It is easy to
check that ∅ ` I : True and ∅ ` t : ∀x1 : Prop.∀x2 : Prop.(x1 ∧ x2)→ (x1 ∨ x2).

Let us define these levels formally:

Definition 13.

KindΓ := {t |Γ ` t : Type0}
ConstrΓ := {t | ∃K,Γ ` K : Type0 ∧ Γ ` t : K}

ObjΓ := {t | ∃K,Γ ` K : Prop ∧ Γ ` t : K}

There are two important properties of well-formedness: when Γ gives a type
to some term, then Γ is well-formed; and when Γ is well-formed, so is any prefix
of Γ.

Lemma 16. For all Γ, t and T , Γ ` t : T implies Γ is well-formed.

Proof. We will only sketch the proof. By straightforward induction on the
typing derivation. The base cases have as an assumption that Γ is well-formed,
and the inductive cases all have it as an induction hypothesis.

Lemma 17. If Γ is well-formed, then every Γ′ which is a prefix of Γ is well-
formed, too.

Proof. We prove instead the equivalent statement that for all Γ and Γ′ such
that Γ′,Γ is well-formed, Γ′ is also well-formed. We prove this by induction on
the structure of Γ.

∅ : Thus Γ′,Γ = Γ′ and Γ′ is well-formed.

Γ, x : T : We argue that Γ′,Γ is well-formed because Γ′,Γ ` T : s and Lemma
16. The claim then follows from the induction hypothesis.

Now if we have a typing judgement Γ ` t : T , we can analyze the structure of
t and by inversion retrieve information about the T . However, inversion usually
yields two cases: one where the derivation ends with the application of the usual
typing rule, and one where it ends with the application of the conversion rule.
This motivates an inversion lemma that combines those two cases:

Lemma 18. For all Γ and T ,
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1. Γ ` Prop : T implies Type0 ≈β T

2. Γ 6` Type0 : T

3. Γ ` x : T implies that there is a U and Γ′ such that Γ′, x : U ⊆ Γ and
U ≈β T

4. Γ ` u v : T implies there are U and V such that Γ ` u : (∀x : U.V ), v : U
and V xv ≈β T

5. Γ ` (λx : U.u) : T implies that there are s1, s2 and V such that Γ ` U : s1,
Γ, x : U ` u : V : s2 and (∀x : U.V ) ≈β T

6. Γ ` (∀x : U.V ) : T implies that there are s1 and s2 such that:

• Γ ` U : s1,

• Γ, x : U ` V : s2,

• and s2 ≈β T

7. Γ ` (Σx : U.V ) : T implies

• Γ ` U : Prop,

• Γ, x : U ` V : Prop,

• and Prop ≈β T

8. Γ ` ((u, v)Σx:U.V ) : T implies

• Γ ` u : U, v : V xu , U : Prop,

• Γ, x : U ` V : Prop,

• and (Σx : U.V ) ≈β T

9. Γ ` (π1(t)) : T implies that there are U and V such that Γ ` t : (Σx : U.V )
and U ≈β T

10. Γ ` (π2(t)) : T implies that there are U and V such that Γ ` t : (Σx : U.V )
and V xπ1(t) ≈β T

Proof. The proof is very elaborate, but also very simple. We will only sketch
the proof here. We first prove that for any Γ, T1 and T2 such that T1 ≈β T2, we
can infer the conclusion for T2 if we have it for T1

2. The result follows directly
from the transitivity of conversion.

Now we prove the original result by mutual induction on the typing deriva-
tion. All of the cases follow directly from the induction hypotheses except the
case where the last rule was the conversion rule. That case is proven by the
sublemma from above.

We will often require the fact that if Γ is enough to give t a type, then except
for the variables in Γ, there are no free variables in t.

2 E.g., in case 3, ∃U.x : U ∈ Γ ∧ U ≈β T1 implies ∃U.x : U ∈ Γ ∧ U ≈β T2
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Lemma 19. For any Γ, t and variable x which is Γ−fresh,

Γ ` t : T =⇒ x 6∈ F (t)

Proof. By induction on the typing derivation. We will consider only the variable
and product cases, the other cases are similar.

variable : We have Γ ` y : U where Γ′, y : U is a prefix of Γ, so y is not Γ−fresh.
F (y) = {y}. As x is Γ−fresh, x 6= y and hence x 6∈ F (y).

product : We have Γ ` (∀y : T.U) : s2 where Γ ` T : s1 and Γ, y : T ` U : s2.
By the induction hypotheses, x 6∈ F (T ) and if x 6= y then x 6∈ F (U).
Hence x 6∈ F (U) \ {y}. Therefore x 6∈ F (T ) ∪ (F (U) \ {y}).

We will sometimes use weakening: if we extend some Γ to Γ, x : T , where x
is Γ−fresh and Γ ` T : s, then any judgement u : U that could be derived in Γ
can still be derived in the larger environment Γ, x : T .

Lemma 20. For any Γ, x which is Γ−fresh and Γ ` T : s, then for all u and
U ,

Γ ` u : U =⇒ Γ, x : T ` u : U

Proof. We prove the stronger statement that we can add x : T anywhere in
the context. So for Γ,Γ′ ` u : U we prove if Γ, x : T,Γ′ is well-formed, then
Γ, x : T,Γ′ ` u : U .

We do this by induction over the typing derivation of Γ,Γ′ ` u : U . We will
only consider the variable case and the product case, the other cases are similar.

variable : We have Γ,Γ′ ` y : U , where Γ1, y : U ⊆ Γ,Γ′ for some Γ1. This is
equivalent to y : U ∈ Γ,Γ′. Thus we know y : U ∈ Γ, x : T,Γ′. Therefore
there is a prefix of Γ, x : T,Γ′ of the form Γ2, y : U for some Γ2. Thus by
the variable rule, Γ, x : T,Γ′ ` y : U .

product : We have Γ,Γ′ ` (∀y : D,C) : s2 where Γ,Γ′ ` D : s1 and Γ,Γ′, y :
D ` C : s2. By the induction hypothesis for Γ,Γ′ ` D : s1, we have Γ, x :
T,Γ′ ` D : s1. Hence Γ, x : T,Γ′, y : D is well-formed (if x 6= y, which we
can assume without loss of generality by alpha-renaming). Thus by the
induction hypothesis for Γ,Γ′, y : D ` C : s2 we also have Γ, x : T,Γ′, y :
D ` C : s2. By the product rule, we conclude Γ, x : T,Γ′ ` (∀y : D,C) : s2

We can also prove that whenever we substitute something for a variable that
has the same type as the variable, the type of the whole term does not change.
We first define what we mean by a term having the same type of a variable. We
say an assignment ρ translates Γ to Γ′ or write ρ�Γ→ Γ′ when:
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Definition 14.

ρ�Γ→ Γ′ := ∀x : T ∈ Γ,Γ′ ` ρ(x) : ρ(T )

We can prove that if ρ translates the variables from Γ to Γ′, it also translates
all other terms:

Lemma 21. For ρ, well-formed Γ and Γ′ such that ρ�Γ → Γ′, for any t and
T such that Γ ` t : T , Γ′ ` ρ(t) : ρ(T ).

Proof. Via induction on the typing derivation. We will only treat the prop,
variable, application, and product cases, as the other cases are very similar or
trivial.

prop : Suppose the typing derivation ends with

prop
Γ is well-formed

Γ ` Prop : Type0

Since ρ(Prop) = Prop and ρ(Type0) = Type0 and Γ′ is well-formed, the
prop rule applies.

variable : Suppose the typing derivation ends with

variable
Γ is well-formed Γ′′, x : T ⊆ Γ for some Γ′′

Γ ` x : T

By Γ′′, x : T ⊆ Γ, we conclude x : T ∈ Γ. Thus we can apply ρ�Γ→ Γ′.

application : Suppose the typing derivation ends with

application
Γ ` t : (∀x : T.U) Γ ` u : T

Γ ` t u : Uxu

We have Γ′ ` ρ(t) : ρ(∀x : T.U) and Γ′ ` ρ(u) : ρ(T ) by the induction
hypotheses. By the definition of ρ, this means:

Γ′ ` ρ(t) : (∀z : ρ(T ).ρxz (U))

where z is ρ-fresh in (x, U). We need to prove that Γ′ ` ρ(t u) : ρ(Uxu ).
We know ρ(Uxu ) = ρxρ(u)(U). Since z is ρ-fresh in (x, U) and using Lemma

6, this equals ρxz (U)zρ(u). Note that we have to choose our z to not be free

in U . Hence we need to prove Γ′ ` ρ(t) ρ(u) : (ρxz (U))zρ(u). This follows
directly from the application rule and our assumptions.

product : Suppose the typing derivation ends with

product
Γ ` T : s1 Γ, x : T ` U : s2

Γ ` (∀x : T.U) : s2
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By the induction hypotheses, Γ′ ` ρ(T ) : s1 and Γ′, z : ρxz (T ) ` ρxz (U) : s2

if the following holds

ρxz �(Γ, x : T )→ (Γ′, z : ρxz (T ))

(where z is ρ-fresh in (x, U)).

We need to show for all pairs x′ : T ′ in Γ, x : T ,

Γ′, z : ρxz (T ) ` ρxz (x′) : ρxz (T ′)

For the old pairs (where x′ 6= x), we can use Lemma 20. The details are
left as an exercise for the reader.

For the new pair x : T , we need to argue a little bit more. We need to
show:

Γ′, z : ρxz (T ) ` ρxz (x) : ρxz (T )

This follows from the variable rule if Γ′ ` ρxz (T ) : s1. By alpha-renaming,
we know x 6∈ F (T ) and hence ρxz (T ) = ρ(T ). However, we already have
Γ′ ` ρ(T ) : s1. We need to prove Γ′ ` ρ(∀x : T.U) : ρ(s2), i.e.:

Γ′ ` (∀z : ρ(T ).ρxz (U)) : s2

This follows directly from the product rule and our assumptions.

It is an important fact (which we will not prove) that when Γ ` t : T , ρI
x
t

translates Γ, x : T to Γ.

Lemma 22. For any Γ, t, T , such that Γ ` t : T , then for all x which are
Γ−fresh,

ρI
x
t �Γ, x : T → Γ

Another result that we will often use is that typing is capped only at Type0:

Lemma 23. For any t, T and Γ, when Γ ` t : T , then T 6= Type0 implies
∃s.Γ ` T : s.

Proof. We do an induction along the typing derivation.

prop : Suppose the typing derivation ends with

prop
Γ is well-formed

Γ ` Prop : Type0

Since Type0 6= Type0 is false, we do not have to prove anything.
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variable : Suppose the typing derivation ends with

variable
Γ is well-formed Γ′, x : T ⊆ Γ for some Γ′

Γ ` x : T

Since Γ′, x : T ⊆ Γ and Γ is well-formed, Γ′, x : T is well-formed by Lemma
17. Thus Γ′ ` T : s for some s. By repeated application of Lemma 20,
Γ ` T : s.

application : Suppose the typing derivation ends with

application
Γ ` t : (∀x : T.U) Γ ` u : T

Γ ` t u : Uxu

By the induction hypothesis for Γ ` t : (∀x : T.U), we know that there is
some s such that Γ ` (∀x : T.U) : s. By Lemma 18.6 we can infer that
Γ, x : T ` U : s. Therefore by Lemma 21 and Γ ` u : T , Γ ` Uxu : s.

lambda : Suppose the typing derivation ends with

lambda
Γ ` T : s1 Γ, x : T ` u : U Γ, x : T ` U : s2

Γ ` (λx : T.u) : (∀x : T.U)

We have Γ ` T : s1 and Γ, x : T ` U : s2. Therefore Γ ` (∀x : T.U) : s2 by
the product rule.

product : Suppose the typing derivation ends with

product
Γ ` T : s1 Γ, x : T ` U : s2

Γ ` (∀x : T.U) : s2

We have Γ, x : T ` U : s2. As s2 6= Type0, we have s2 = Prop. Since Γ is
well-formed, we have Γ ` Prop : Type0 by the prop rule.

sigma : Suppose the typing derivation ends with

sigma
Γ ` T : Prop Γ, x : T ` U : Prop

Γ ` (Σx : T.U) : Prop

As Γ is well-formed, we have Γ ` Prop : Type0 by the prop rule.

pair : Suppose the typing derivation ends with

pair
Γ ` t : T Γ ` u : Uxt Γ ` T : Prop Γ, x : T ` U : Prop

Γ ` (t, u)Σx:T.U : (Σx : T.U)

By the sigma rule and the assumptions, Γ ` (Σx : T.U) : Prop.
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proj1 : Suppose the typing derivation ends with

proj1
Γ ` t : (Σx : T.U)

Γ ` π1t : T

By the induction hypothesis for Γ ` t : (Σx : T.U), we know Γ ` (Σx :
T.U) : s. By Lemma 18.7, we have Γ ` T : Prop.

proj2 : Suppose the typing derivation ends with

proj2
Γ ` t : (Σx : T.U)

Γ ` π2t : Uxπ1(t)

By the induction hypothesis for Γ ` t : (Σx : T.U), we know Γ ` (Σx :
T.U) : s. By Lemma 18.7, we have Γ, x : T ` U : Prop. By Lemma 21, we
have Γ ` Uxπ1(t) : Prop if Γ ` π1(t) : T . This we have by the proj1 rule.

conversion : We have Γ ` U : s as an assumption.

2.9 Type Uniqueness and Subject Reduction

Two other well known properties of CCΣ are type uniqueness, i.e. that if a
term has two types, those types are convertible, and subject reduction, i.e. that
typing is preserved by reduction. We will not prove these results, you can find
these proofs in the literature [23].

Lemma 24. For any Γ, t, T1 and T2 such that Γ ` t : T1 and Γ ` t : T2,
T1 ≈β T2.

Lemma 25. For any Γ, t and T such that Γ ` t : T , and for any t′ such that
t→∗β t′, Γ ` t′ : T .

From these lemmas in conjunction with Lemma 15, we also get that whenever
convertible terms have a type in some environment Γ, then those types are
convertible.

Lemma 26. For any Γ, t1 and T1 such that Γ ` t1 : T1, t2 and T2 such that
Γ ` t2 : T2, t1 ≈β t2 implies T1 ≈β T2.

Proof. By Lemma 15, we have a t′ that both t1 and t2 reduce to. By Lemma
25, Γ ` t′ : T1 and Γ ` t′ : T2. Therefore by Lemma 24, T1 ≈β T2.

Another helpful corollary is that whenever Γ ` U : K, Γ ` T : V and
U ≈β V , then Γ ` V : K ′ for some K ′ where K ≈β K ′. Since in this case, K ′

can only be a universe, we can even prove a stricter version:
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Lemma 27. For any Γ, t, U , T , and s such that Γ ` U : s, Γ ` t : T and
T ≈β U , then also Γ ` T : s.

Proof. We will want to use Lemma 23. For this we first need to show that
T 6= Type0. If T = Type0, then U →∗β T as Type0 is normal. But then by
Lemma 25, Γ ` Type0 : s. By Lemma 18.2, this is not the case. Now we can
use Lemma 23 and conclude that Γ ` T : s′ for some s′. From Lemma 26, we
know that s ≈β s′. Since s and s′ are normal, this implies s = s′.

2.10 Possible Forms

We will now prove that kinds and constructors have a certain form in CCΣ: for
all T such that Γ ` T : Type0, T is either a universe or T is a product ∀x : D.C
where Γ, x : D ` C : Type0. We will often make use of this fact.

Lemma 28. For all Γ and T ∈ KindΓ, T = Prop or T = ∀x : D.C where
C ∈ KindΓ,x:D (for some D and C).

Proof. By induction over the structure of T . We will treat only the cases where
T is a universe, a variable, an application, a lambda or a product, as the other
cases are trivial.

Prop : This is exactly what we need to prove.

Type0 : This case cannot happen by Lemma 18.2.

x : By Lemma 18.3, we get Γ′, x : U ⊆ Γ, where U ≈β Type0. Since Γ is
well-formed and by Lemma 17, Γ′, x : U is well-formed. Thus Γ′ ` U : s
for some s. Since Type0 is normal and U ≈β Type0, U →∗β Type0. By
Lemma 25, this means Γ ` Type0 : s However by Lemma 18.2, this is not
possible.

u v : By Lemma 18.4, there is a U such that Γ ` u : ∀x : U.V , Γ ` v : U , and
V xv ≈β Type0. By a combination of Lemma 23 and Lemma 18.6, we find
out that Γ ` U : s1 and Γ, x : U ` V : s2 where s1 and s2 are universes.
By Lemma 21 we have Γ ` V xv : s2 if we can prove that ρI

x
v �Γ, x : U → Γ

and Γ, x : U is well-formed. For the translation, we only consider the hard
case where Γ ` xxv : Uxv . By alpha-renaming, we can assume without loss
of generality that x is not free in U . Hence we only have to prove that
Γ ` v : U , which we have. For Γ, x : U being well-formed, it suffices to
argue that Γ ` U : s1, which we also have.

Since Type0 is normal and V xv ≈β Type0, we have V xv →∗β Type0. Thus
by Lemma 25, Γ ` V xv : s2 also implies that Γ ` Type0 : s2. However by
Lemma 18.2, this is not possible.

λx : T.u : By Lemma 18.5, we have ∀x : T.U ≈β Type0 for some U . This,
however, is not possible.
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∀x : T.U : By Lemma 18.6, we have Γ, x : T ` U : s where s ≈β Type0. As
universes are normal, this means that s = Type0. This however is exactly
what we need to prove.

Similarly, we can prove that for all T ∈ ConstrΓ, T cannot be a universe,
pair or projection.

Lemma 29. For all Γ and T ∈ ConstrΓ implies T = x or T = ∀x : U.V or
T = λx : U.V or T = U V or T = Σx : U.V (for some x, U and V ).

Proof. By induction over the structure of T . We will treat only the cases where
T is a universe, a pair or a projection, as the other cases are trivial. Note that
since T ∈ ConstrΓ, there is a K such that Γ ` T : K : Type0.

s : By Lemma 18.2, T would have to be Prop. Thus by Lemma 18.1, K ≈β
Type0. By Lemma 15 and the fact that Type0 is normal, this means K
reduces to Type0. By Lemma 25, this implies that Γ ` Type0 : Type0,
which by Lemma 18.2 cannot be.

(u, v)Σx:U.V : By Lemma 18.8, we have K ≈β Σx : U.V , Γ ` U : Prop and
Γ, x : U ` V : Prop. We know Γ ` (Σx : U.V ) : Prop by the sigma rule.
By Lemmata 15 and 25, this implies that Prop = Type0, and that is not
the case.

π1(t) : By Lemma 18.9, Γ ` t : (Σx : U.V ) and U ≈β K. By Lemma 23,
Γ ` (Σx : U.V ) : s. By Lemma 18.7, Γ ` U : Prop. Therefore by the same
reasoning as before, Prop = Type0, which is not the case.

π2(t) : By Lemma 18.10, Γ ` t : (Σx : U.V ) and V xπ1(t) ≈β K. By Lemma

23, Γ ` (Σx : U.V ) : s. By Lemma 18.7, Γ, x : U ` V : Prop. By
Lemma 21, Γ ` V xπ1(t) : Prop. Therefore by the same reasoning as before,
Prop = Type0, which is not the case.

Note that the restrictions in both cases are much more severe than stated.
For example, the T in ∀x : T.U ∈ KindΓ can not be an element of ObjΓ, and
the t in λx : T.t can not be an element of KindΓ. We will use these stronger
conditions in the proof in order to restrict the number of necessary cases further.
These individual contradictions can be derived using Lemmata 18 and 23, the
details are left as an exercise for the reader.
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3. MATHEMATICAL PROOF OF TERMINATION

Recall that at least for some of the propositions P we would expect to be
provable, we can get a proof p such that ∅ ` p : P . Can we get such a proof for
some proposition which we expect not to be provable? One such proposition is
False (Section 2.8, p. 19). It is obvious from the definition of False that if it
has a proof, we can derive a p for any proposition P such that ∅ ` p : P . In
other words, if there exists a proof of False, CCΣ is logically inconsistent. It
seems desirable to rule out this possibility. As Luo points out [23, Theorem 5.4,
p. 105], subject reduction and termination imply this result for ECC, of which
CCΣ is a strict subset. This gives us a strong motivation to prove those three
properties. While we referred to the literature for the proof of subject reduction,
we gave a proof of confluence and will prove termination, too. We will do so by
interpreting every type under some valuation ξ with a set of terms. We choose
sets that are, among other things, terminating. We also need to make sure that
this key property holds:

Γ ` t : T → t ∈ [[T ]]ξ

We will call this property the soundness of the interpretation.

Since [[T ]]ξ has the termination property, t terminates. Similarly it follows
that T terminates: because we have that Γ ` t : T , we also know that either
∃s.T = s - in which case it terminates because all universes terminate - or
∃K.Γ ` T : K, in which case we can apply the soundness property to conclude
that T must terminate.

We will not be able to prove the soundness property directly. We will prove
a more general form, which includes parallelly substituting the variables in t.
We can then get this specific version by substituting with ρI , i.e., substituting
every variable with itself and not changing t at all.

Note that many of the following Lemmata come from [13]. However, Geuvers
does not give proofs except for Lemma 41 (where he gives a proof sketch) and
Theorem 3 (where he gives a proof only for some of the cases). We give proofs
here.

3.1 Classification

In some fixed environment Γ, we can classify terms into three levels: kinds like
Prop, Prop→ Prop, etc., constructors like True, negation, conjunction etc. and
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objects like I, the proof of ∀x : Prop, y : Prop, (x ∧ y) → (x ∨ y), etc. (Section
2.8, p. 19).

Instead of using environments Γ, we will often use class-valuations η to
determine what class a term is in. Hence we define sets Kη, Cη and Oη to be
the kinds, constructors and objects under η, respectively. The basic idea is that
instead of extending the Γ with a judgement x : T , we will extend η with the
class of T under η. Then we can reconstruct the class of variables and hence
of whole terms. First we use three distinct symbols, K, C and O to denote
membership in Kη, Cη and Oη, respectively. η is a {K, C,O}-valuation. We
define classη (t) to be the class of t under η:

Definition 15.

classη (s) := K

classη (x) :=

{
C if η(x) = K
O otherwise

classη (tu) := classη (t)

classη (λx : T.u) := classηx
classη(T )

(u)

classη (∀x : T.U) := classηx
classη(T )

(U)

classη ((t, u)Σx:T.U ) := O
classη (Σx : T.U) := C

classη (πi(t)) := O

It is important to note that when x 6∈ F (t), the value we assign to x in η is
irrelevant for classη (t).

Lemma 30. For all t, η and η′ such that η(x) = η′(x) for all x which are free
in t, classη (t) = classη′ (t).

Proof. By induction over t. We will only consider the cases where t is an appli-
cation or a product. The other cases are either trivial or analogous.

t u : By definition, classη (t u) = classη (t) and classη′ (t u) = classη′ (t), so it
suffices to prove classη (t) = classη′ (t). For this we use the inductive
hypothesis, which requires us to prove that η(x) = η(x′) for all x ∈ F (t).
We have this for all x ∈ F (t u), of which F (t) is a subset.

∀x : T.U : By definition, classη (∀x : T.U) = classηx
classη(T )

(U) and

classη′ (∀x : T.U) = classη′x
class

η′ (T )
(U)

We first prove classη (T ) = classη′ (T ), which follows from the induction
hypothesis for T and the fact that F (T ) ⊆ F (∀x : T.U). Now we prove
classηx

classη(T )
(U) = classη′x

classη(T )
(U). This follows from the induction

hypothesis for U if we can prove that for all y ∈ F (U), ηxclassη(T )(y) =
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η′
x
classη(T )(y). If x = y, this is trivial ; and F (U) \ {x} is a subset of
F (∀x : T.U), for which we have the property.

Now we define the individual classes by using the symbol we get from
classη (t):

Definition 16.

Kη := {t ∈ Λ | classη (t) = K}
Cη := {t ∈ Λ | classη (t) = C}
Oη := {t ∈ Λ | classη (t) = O}

It is obvious that these classes are disjoint and that every term has a class.
Hence the class of a term is well defined and we can make case distinctions
depending on the class of a term.

We want classes and levels to correspond. A term T ∈ KindΓ should also
be in Kη, etc. - at least if η and Γ satisfy a well-chosen property. Consider
terms T and K such that Γ ` T : K, where K 6= Type0. By Lemma 23, we
have Γ ` K : s for some s. Let CT and CK be the classes of T and K under η,
respectively. We want to enforce a relation between CT and s and between CK
and s. We call these relations n2 and n1, respectively. It is possible to think
of the index as the “distance” between the class and the universe.

For a class C and a universe s we define C n1 s in the following way:

Definition 17.

Kn1 Type0

Cn1 Prop

Similarly we define C n2 s as follows:

Definition 18.

Cn2 Type0

On2 Prop

We want to lift n1 from classes and universes to class-valuations and envi-
ronments. For this we define what it means for an η to preserve a Γ.

Definition 19. We define ηnΓ inductively:

preservation empty
ηn ∅

preservation extend
ηnΓ ∃s,Γ ` T : s ∧ C n1 s

ηxC nΓ, x : T
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Now we prove that when we have ηnΓ, we can argue for all pairs x : T ∈ Γ
and all s such that T has type s that η(x)n1 s. Note that we go from “exists
s such that . . . ” in ηnΓ to “for all s such that . . . ”. We will prove that this
is acceptable by proving that there is only one such s, which can be concluded
from Lemma 24.

Lemma 31. For well-formed Γ and η such that ηnΓ, for all prefixes Γ′, x : T
of Γ and for all s such that Γ′ ` T : s, η(x)n1 s.

Proof. We prove this by induction on the statement ηnΓ.

ηn ∅ : Since there are no prefixes Γ′, x : T of ∅, the statement is vacuously true.

ηxC nΓ, x : T : We need to prove that for all prefixes Γ′, y : U of Γ, x : T , and
all s such that Γ′ ` U : s, ηxC(y)n1 s. We distinguish between two cases:
either Γ′, y : U = Γ, x : T , or Γ′, y : U is a proper prefix of Γ, x : T . In this
case, Γ′, y : U is a prefix of Γ.

Γ′, y : U = Γ, x : T : We have Γ′ = Γ, y = x, and U = T . We have to
prove C n1 s where Γ ` T : s. We have as an assumption that for
some s′ such that Γ ` T : s′, C n1 s

′. We will prove that s = s′. Since
convertible normal terms are equal, it suffices to show that s ≈β s′.
This follows from Lemma 24.

Γ′, y : U is a prefix of Γ : Since Γ, x : T is well-formed and thus x is
Γ−fresh, we know y 6= x. We have to prove η(y)n1 s where Γ′ ` T : s.
We use the induction hypothesis for ηnΓ. We have to prove that
Γ is well-formed, which we have by Lemma 17 since Γ, x : T is well-
formed.

Note that both Geuvers’ and Barras’ proofs of termination differ slightly
from the proof presented here. In Geuvers, classification is done by syntactically
separating variables into kind and constructor variables. Hence η becomes a part
of the term, and preservation becomes trivially true. In fact, Geuvers makes no
distinction between the class of a term and its level [13, p. 17]. Barras does not
use the property of preservation. Instead, this correspondence is proven for each
level individually, first for kinds, then for constructors, and finally for objects.
The proof presented here is shorter and more direct.

If η preserves Γ, then it will also preserve the levels of terms in Γ.

Theorem 1. For well-formed Γ and all η such that ηnΓ, for all T and K such
that Γ ` T : K, we have:

K = Type0 ∧ classη (T ) = K
∨∃s,Γ ` K : s ∧ classη (T )n2 s
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Proof. We prove this by induction on the typing derivation of Γ ` T : K. We
only show the variable, lambda, and application cases; the other cases are trivial
or similar.

variable : Suppose the typing derivation ends with

variable
Γ is well-formed Γ′, x : T ⊆ Γ for some Γ′

Γ ` x : T

We will prove ∃s,Γ ` T : s ∧ classη (x)n2 s. Since Γ′, x : T is a prefix of
Γ and Γ is well-formed, we know Γ′, x : T is well-formed by Lemma 17.
Thus Γ′ ` T : s for some s.

We will prove Γ ` T : s and classη (x)n2 s. The first follows from repeated
application of Lemma 20. For classη (x)n2 s, we first argue η(x)n1 s by
ηn γ and Lemma 31. Then by definition of η(x)n1 s, we have either
η(x) = K and s = Type0 or η(x) = C and s = Prop. We only treat the
first case, the second case is analogous. In this case, classη (x) = C and
we have to prove Cn2 Type0, which is trivial.

lambda : Suppose the typing derivation ends with

lambda
Γ ` T : s1 Γ, x : T ` u : U Γ, x : T ` U : s2

Γ ` (λx : T.u) : (∀x : T.U)

We decide to prove ∃s,Γ ` (∀x : T.U) : s ∧ classη (λx : T.u)n2 s. We
choose s := s2. By our assumptions and the product rule, we conclude
Γ ` (∀x : T.U) : s2, so it only remains to prove that classη (λx : T.u)n2 s2.

We will first prove that ηxclassη(T ) nΓ, x : T . It suffices to show that there

is an s such that Γ ` T : s and classη (T )n1 s. We choose s1. Since
Γ ` T : s1 by assumption, we only need to prove classη (T )n1 s1. For this
we use the induction hypothesis for Γ ` T : s1, which leaves us in one of
two cases

s1 = Type0 ∧ classη (T ) = K : We only have to prove Kn1 Type0, which
is true by definition.

∃s′,Γ ` s1 : s′ ∧ classη (T )n2 s
′ . We can easily argue that s1 = Prop

and s′ = Type0 in this case by case analysis of s1 and Lemma 18.
Consequently classη (T )n2 Type0, which implies classη (T ) = C. We
thus have to prove Cn1 Prop, which is true by definition.

We use the inductive hypothesis for Γ, x : T ` u : U and ηxC nΓ, x : T
where C := classη (T ), which leaves us in one of two cases.

U = Type0 ∧ classηxC (u) = K : This is a contradiction by Lemma 18.2 and
Γ, x : T ` U : s2.
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∃s′′,Γ, x : T ` U : s′′ ∧ classηxC (u)n2 s
′′ : We prove that s′′ = s2, which

holds by Lemma 24 since convertible normal terms are equal. Con-
sequently we have classηxC (u)n2 s2 and need to prove:

classη (λx : T.u)n2 s2

which by definition of classη (λx : T.u) are equivalent.

application : Suppose the typing derivation ends with

application
Γ ` t : (∀x : T.U) Γ ` u : T

Γ ` t u : Uxu

We decide to prove ∃s,Γ ` Uxu : s∧ classη (t u)n2 s. We use the induction
hypothesis for Γ ` t : (∀x : T.U), which leaves us in one of two cases.

∀x : T.U = Type0 ∧ classη (t) = K : This is obviously a contradiction since
∀x : T.U 6= Type0.

∃s,Γ ` (∀x : T.U) : s ∧ classη (t)n2 s : We choose the same s for our goal.
We now prove Γ ` Uxu : s. By Lemma 21, it suffices to prove Γ, x :
T ` U : s and Γ ` u : T . The first follows from Lemma 18.6 and the
fact that convertible normal terms are equal ; the second we have as
an assumption.

It remains to be proven that classη (t u)n2 s. Since classη (t u) =
classη (t) by definition, it suffices to prove classη (t)n2 s, which we
have as an assumption.

For all Γ which are well-formed, we have an η such that ηnΓ. We define
one by induction on Γ:

Definition 20.

η∅ := (x 7→ K)

ηΓ,x:T := ηΓ
x
classηΓ

(T )

When in the future we write KΓ, CΓ or OΓ, we mean KηΓ , CηΓ or OηΓ ,
respectively. We also write classΓ (t) for classηΓ (t).

We prove that ηΓ nΓ:

Lemma 32. For well-formed Γ, ηΓ nΓ.

Proof. By induction on the structure of Γ.

∅ : This is true by definition.

Γ, x : T : We need to prove that there is an s such that Γ ` T : s and
classηΓ

(T )n1 s. We choose the s we get from Γ, x : T being well-formed,
and it suffices to prove classηΓ

(T )n1 s. We use Theorem 1, which leaves
us in one of two cases.
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s = Type0 ∧ classηΓ (T ) = K : We only have to prove Kn1 Type0, which
is true by definition.

∃s′,Γ ` s : s′ ∧ classηΓ
(T )n2 s

′ . We can easily argue that s = Prop and
s′ = Type0 in this case by case analysis of s and Lemma 18. Con-
sequently classηΓ (T )n2 Type0, which implies classηΓ (T ) = C. We
thus have to prove Cn1 Prop, which is true by definition.

Note that for terms T which have a type in Γ, Theorem 1 allows us to go
back and forth between the level and the class of a term. Since classes are
disjoint, this also implies the disjointness of levels.

There are two simple corollaries of Theorem 1: terms with the same type
have the same class, and convertible terms do, too.

Lemma 33. Whenever Γ ` t : T and Γ ` t′ : T , we have classΓ (t) = classΓ (t′).

Proof. Since t and t′ have the same type in Γ, they have the same level, too.
Terms that have the same level also have the same class by Theorem 1 and
Lemma 32.

Lemma 34. Whenever Γ ` t : T and Γ ` t′ : T ′, t ≈β t′ implies classΓ (t) =
classΓ (t′).

Proof. By Lemma 23, we have T = Type0 or Γ ` T : s for some s.

T = Type0 : We can easily argue that T ′ = Type0 in this case. Thus Lemma
33 applies.

Γ ` T : s for some s : By Lemma 26, we have T ≈β T ′. We prove Γ ` t′ : T by
the conversion rule. Thus Lemma 33 applies.

3.2 Candidates of Reducibility

Candidates of reducibility have been introduced by Tait in 1967 and many
technical improvements have been introduced by Girard in 1972 [16, p. 41].

Definition 21. We say a set X is a candidate of reducibility, if it has the
following three properties:

X ⊆ SN (termination)

∀t ∈ X.βt ⊆ X (closure under reduction)

neutral t → βt ⊆ X → t ∈ X (closure under expansion)

SN is such a candidate of reducibility, and because of termination it is the
largest one. Since candidates of reducibility are closed under expansion for
neutral terms, every candidate of reducibility includes all neutral normal terms,
e.g., all the variables.



36 3. Mathematical Proof of Termination

3.3 Extending Candidates of Reducibility

While this notion of candidates of reducibility serves us well to prove termination
of polymorphic lambda calculus, in order to go to CC or even CCΣ, we need to
extend candidates to work with type operators. We can think of types as sets
of terms, i.e. the set of terms that have that type in some Γ. Type operators
however map types to types, so using the same perspective we can think of them
as somehow related to functions that map sets of terms to sets of terms.

We will hence extend candidates of reducibility to function spaces. We define
CR to be the set of all sets that have the reducibility properties, and (CR)∗ to
be CR closed under function spaces. In order for this definition to work, we will
first define the inductive skeletal structure of the elements of (CR)∗, and then
map these skeletal structures back to function types.

Note that these definitions are a mix of Geuvers and Barras: Geuvers does
not use skeletons and uses saturated sets [13, p. 21], and Barras uses the set
of all sets of terms as a base (i.e., 2Λ, not CR). He then uses a predicate
that describes those elements of

(
2Λ
)∗

which are in (CR)∗. This has technical
reasons, as (CR)∗ is hard to directly formalize in Coq.

Definition 22.

CR := {X ⊆ Λ |X is a reducibility candidate}

Definition 23. We inductively define the set of skeletons, which represent the
skeletal structure of kinds:

Skel :=F | s1 →S s2

where s1 and s2 are skeletons.

Definition 24. We define parents of order s recursively along the skeleton s:

can(F) := CR

can(s1 →S s2) := {f | f : can(s1)→ can(s2)}

We call the elements of the parent of order s the candidates of order s.
Note that candidates of order F are exactly the reducibility candidates, while
candidates of higher orders are functions that map from parents into parents,
i.e., candidates to candidates.

Definition 25. We define (CR)∗ as CR, closed under function spaces:

(CR)∗ :=
⋃

s∈Skel

(can(s))
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3.4 Type Skeletons

With this definition of skeleton we can extract the structure of a term K with
relation to the type operators occurring in K.

Definition 26. For η and K we define skeletonη (K) ∈ Skel:

skeletonη (Prop) :=F

skeletonη (∀x : T.U) := skeletonη (T )→S skeletonηx
classη(T )

(U) if T ∈ Kη
skeletonη (∀x : T.U) := skeletonηx

classη(T )
(U) if T ∈ Cη

Note that this is a partial function. We will have to prove that this is defined
for all K ∈ KindΓ for some Γ such that ηnΓ, and we will use it only then.

Lemma 35. When ηnΓ and K ∈ KindΓ, skeletonη (K) is defined.

Proof. We prove this by induction on the typing derivation of Γ ` K : Type0,
using Lemma 28.

prop : Suppose the typing derivation ends with

prop
Γ is well-formed

Γ ` Prop : Type0

skeletonη (Prop) =F and is thus defined.

product where U ∈ KindΓ,x:T and s2 = Type0 : Suppose the typing derivation
ends with

product
Γ ` T : s1 Γ, x : T ` U : s2

Γ ` (∀x : T.U) : s2

We have Γ ` T : s1 as an assumption. By a case distinction on s1, we get
the following two cases:

s1 = Type0 and thus T ∈ KindΓ : Thus by Theorem 1, T ∈ Kη. By defi-
nition,

skeletonη (∀x : T.U) = skeletonη (T )→S skeletonηx
classη(T )

(U)

By the induction hypotheses for Γ ` T : Type0 and Γ, x : T ` U :
Type0, this is defined if we can prove ηxclassη(T ) nΓ, x : T . The proof

of this goes analogous to that in Lemma 32.
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s1 = Prop and thus T ∈ ConstrΓ : Thus by Theorem 1, T ∈ Cη. By defi-
nition,

skeletonη (∀x : T.U) = skeletonηx
classη(T )

(U)

By the induction hypothesis for Γ, x : T ` U : Type0, this is defined
if we can prove ηxclassη(T ) nΓ, x : T . The proof of this goes analogous

to that in Lemma 32.

conversion where U = Type0 : Suppose the typing derivation ends with

conversion
Γ ` t : T Γ ` U : s T ≈β U

Γ ` t : U

We have as an assumption that Γ ` Type0 : s, which by Lemma 18.2 is a
contradiction.

When we have a T ∈ ConstrΓ that we want to interpret, we will have [[T ]]ξ
map into can(skeletonηΓ

(K)) where K is the type of T and ξ somehow relates
to Γ, and for a T ∈ KindΓ we will have [[T ]]ξ map into CR. Recall that all of this
is to make sure that if Γ ` t : T , [[T ]]ξ ⊆ SN. For those [[T ]]ξ that map into CR,
or can(F), we get this for free. For those T where [[T ]]ξ ends up in a different
parent, we can easily assure ourselves that they are not inhabited: in order to
map into a parent that is not can(F), the type of T must be a product. We
know that Γ ` t : T implies that either T = Type0 or T lives in some universe
(Lemma 23). In the first case, T is not in ConstrΓ, and in the second case the
type of T is a universe, not a product.

Definition 27. We define the set-interpretation of a kind:

Iη (K) := can(skeletonη (K))

Similar to our previous notation for, e.g., CηΓ
, we will write IΓ (K) for

IηΓ
(K). Note that again Iη (K) is a partial function, which is defined if and

only if skeletonη (K) is defined. Thus we will only use Iη (K) if K ∈ KindΓ for
some Γ such that ηnΓ. In order for the upcoming proofs to go through, we
need to prove that IΓ,x:U (T ) = IΓ (T xu ) for every T ∈ KindΓ and Γ ` u : U .
Similarly we need that IΓ (T ) = IΓ (U) when T ≈β U . The reason why we
need stability under substitution is that some of typing derivations will include
a substitution that we will have to eliminate in order to apply the inductive
hypothesis. One such example is t u : Uxu , where t : ∀x : T.U and u : T . The
inductive hypothesis on the product will give us (after some work) the property
for U , but not for Uxu - but because IΓ (·) is stable under substitution, this will
be enough. Likewise, we need stability under beta reduction because of the
conversion rule: When we have a λ-term λx : T.t with Γ, x : T ` t : U and
Γ ` λx : T.t : V , we cannot argue that V = ∀x : T.U . We can only argue that
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V ≈β ∀x : T.U . The induction hypothesis will only give us the properties for
∀x : T.U , not for V . By using the stability result, we can go from one to the
other.

Lemma 36. For every Γ, Γ′ and T ∈ KindΓ, and for every ρ such that ρ�Γ→
Γ′, IΓ (T ) and IΓ′ (ρ(T )) are defined and

IΓ (T ) = IΓ′ (ρ(T ))

Proof. The definedness follows directly from Lemma 35. Note that Γ′ ` ρ(T ) :
Type0 by Lemma 21.

We prove the equality by induction on the typing derivation of Γ ` T : Type0,
using Lemma 28.

prop : Suppose the typing derivation ends with

prop
Γ is well-formed

Γ ` Prop : Type0

Since ρ(Prop) = Prop,

IΓ (Prop) = CR = IΓ′ (ρ(Prop))

product where U ∈ KindΓ,x:T and s2 = Type0 : Suppose the typing derivation
ends with

product
Γ ` T : s1 Γ, x : T ` U : s2

Γ ` (∀x : T.U) : s2

We have Γ ` T : s1 as an assumption. By a case distinction on s1, we get
the following two cases:

s1 = Type0 and thus T ∈ KindΓ : By Lemma 21 and ρ(Type0) = Type0,
ρ(T ) ∈ KindΓ′ . Thus by Theorem 1, T ∈ KΓ and ρ(T ) ∈ KΓ′ .

Therefore,

IΓ (∀x : T.U) = IΓ (T )→ IΓ,x:T (U)

and

IΓ′ (ρ(∀x : T.U)) = IΓ′ (ρ(T ′))→ IΓ′,z:ρ(T ) (ρxz (U))

By the induction hypotheses for Γ ` T : Type0 and Γ, x : T ` U :
Type0, these are equal if we can prove that ρxz �Γ, x : T → Γ′, z :
ρ(T ). This follows from ρ�Γ → Γ′ and Lemma 20 ; the details are
left as an exercise for the reader.

s1 = Prop and thus T ∈ ConstrΓ : The case is similar to the one above
and is left as an exercise for the reader.
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conversion where U = Type0 : Suppose the typing derivation ends with

conversion
Γ ` t : T Γ ` U : s T ≈β U

Γ ` t : U

We have as an assumption that Γ ` Type0 : s, which by Lemma 18.2 is a
contradiction.

Lemma 37. For every Γ and T,U ∈ KindΓ such that T ≈β U , IΓ (T ) and
IΓ (U) are defined and

IΓ (T ) = IΓ (U)

Proof. The definedness follows directly from Lemma 35. Because of Lemma 15
and the fact that equality is an equivalence relation, we can reduce convertibility
to one step beta-reduction.

For every Γ, T ∈ KindΓ and V such that T →β V , IΓ (T ) and IΓ (V ) are
defined and

IΓ (T ) = IΓ (V )

Note that V ∈ KindΓ by Lemma 25. Thus the well-definedness follows
directly from Lemma 35.

We prove the equality by induction over the derivation of Γ ` T : Type0.
We use Lemma 28.

prop : Suppose the typing derivation ends with

prop
Γ is well-formed

Γ ` Prop : Type0

Since universes are normal, this case can not appear.

product where s2 = Type0 : Suppose the typing derivation ends with

product
Γ ` T : s1 Γ, x : T ` U : s2

Γ ` (∀x : T.U) : s2

We have Γ ` T : s1 as an assumption. By a case distinction on s1, we get
the following two cases:

s1 = Type0 and thus T ∈ KindΓ : IΓ (∀x : T.u) = IΓ (T ) → IΓ,x:T (V )
by definition. Case analysis of ∀x : T.U →β V , leaves us in one of
two cases:
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∀x : T.U →β ∀x : T ′.U where T →β T
′: By the induction hypothesis

for Γ ` T : Type0, IΓ (T ) = IΓ (T ′). By Lemma 34, classΓ (T ) =
classΓ (T ′). So:

IΓ (T )→ IΓ,x:T (U) = IΓ (T ′)→ IΓ,x:T ′ (U)

= IΓ (∀x : T ′.U)

∀x : T.U →β ∀x : T.U ′ where U →β U
′: By the same line of reason-

ing,

Iη (T )→ IΓ,x:T (U) = Iη (T )→ IΓ,x:T (U ′)

= Iη (∀x : T.U ′)

s1 = Prop and thus T ∈ ConstrΓ : The case is similar to the one above
and is left as an exercise for the reader.

conversion where U = Type0 : Suppose the typing derivation ends with

conversion
Γ ` t : T Γ ` U : s T ≈β U

Γ ` t : U

We have as an assumption that Γ ` Type0 : s, which by Lemma 18.2 is a
contradiction.

3.5 Interpretation

We need to define our interpretation such that we map into the right element
of (CR)∗ and also that we can prove the soundness property. Before we can do
that though, we will make a couple of helpful definitions which will be the basis
for our interpretation of products and sigmas. These definitions come from [13,
Lemma 3.5 on p. 21 and Definition 5.3 on p. 29].

Definition 28.

X ⇒ Y := {m ∈ Λ | ∀t ∈ X.m t ∈ Y }

Definition 29.

X × Y := {m ∈ Λ |π1(m) ∈ X ∧ π2(m) ∈ Y }

We will need to get the class of a term with relation to a (CR)∗ ∪ {C,O}-
valuation ξ. For that we can easily translate ξ to a class-valuation by mapping
the elements of (CR)∗ to K and keeping the other symbols:
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Definition 30.

ηξ(x) :=

{
K ξ(x) ∈ (CR)∗

ξ(x)

Similar to how we often use Γ when we mean ηΓ, we will also use ξ in those
places when we mean ηξ. Now we can finally define how we interpret the terms
of CCΣ:

Definition 31.

[[s]]ξ := SN

[[x]]ξ := ξ(x)

[[t u]]ξ := [[t]]ξ([[u]]ξ) if u ∈ Cξ
[[t u]]ξ := [[t]]ξ if u ∈ Oξ

[[λx : T.u]]ξ :=
(
Φ ∈ Iξ (T ) 7→ [[U ]]ξxΦ

)
if T ∈ Kξ

[[λx : T.U ]]ξ := [[U ]]ξxC if T ∈ Cξ
[[∀x : T.U ]]ξ := [[T ]]ξ ⇒ ∩Φ∈Iξ(T )[[U ]]ξxΦ if T ∈ Kξ
[[∀x : T.U ]]ξ := [[T ]]ξ ⇒ [[U ]]ξxC if T ∈ Cξ
[[Σx : T.U ]]ξ := [[T ]]ξ × [[U ]]ξxC

[[(t, u)Σx:T.U ]]ξ := SN

[[π1(t)]]ξ := SN

[[π2(t)]]ξ := SN

Note that this is not a total definition. As an example, consider the applica-
tion case [[t u]]ξ where t ∈ Cξ: [[t]]ξ([[u]]ξ) is only a valid definition of [[t]]ξ : A→ B
and [[u]]ξ ∈ A for some sets A and B. We will later prove that if T is a kind or
constructor in some environment Γ, [[T ]]ξ is well-defined if the ξ relates to the Γ
in a way we will yet define.

We prove that the values of variables which are not free in T don not matter
for [[T ]]ξ.

Lemma 38. If for all ξ, ξ′ and T such that for all x ∈ F (T ), ξ(x) = ξ′(x),
both [[T ]]ξ and [[T ]]ξ′ are defined and [[T ]]ξ = [[T ]]ξ′ , or [[T ]]ξ and [[T ]]ξ′ are both
undefined.

Proof. The proof is via straightforward induction over T and similar to the proof
of Lemma 30. As an example, we will sketch the proof for t u. By definition,
[[t u]]ξ = [[t]]ξ([[u]]ξ). This is defined only if [[t]]ξ and [[u]]ξ are defined, [[t]]ξ is
a function, and [[u]]ξ is in the domain of that function. Similarly, [[t u]]ξ′ =
[[t]]ξ′([[u]]ξ′). Again, this is defined only if [[t]]ξ′ and [[u]]ξ′ are defined, [[t]]ξ′ is a
function, and [[u]]ξ′ is in the domain of that function. Now by the induction
hypothesis for t, [[t]]ξ equals [[t′]]ξ or both are undefined. This means that either
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both are a function or [[t u]]ξ and [[t u]]ξ′ are undefined. Similarly, either both
[[u]]ξ and [[u]]ξ′ are defined and in the domain of that function or [[t u]]ξ and [[t u]]ξ′

are undefined. Now if both [[t u]]ξ and [[t u]]ξ′ are defined, we need to prove they
are equal. This is true since [[t]]ξ = [[t]]ξ′ and [[u]]ξ = [[u]]ξ′ .

Note that we never put O into ξ. In fact, we could do with (CR)∗ ∪ {C}-
valuations, but for now we will use the more general ξ.

We have to prove that this interpretation behaves appropriately. However,
not every ξ is sensible. Similar to preservation, we need a predicate that makes
sure that the ξ fits the environment. We say ξ respects Γ or write ξΓ if ξ
sends the variables to the right element of (CR)∗:

Definition 32. We define ξΓ inductively.

(x 7→ SN) ∅
ξΓ T ∈ KindΓ Φ ∈ IΓ (T )

ξxΦΓ, x : T

ξΓ T ∈ ConstrΓ

ξxC Γ, x : T

It is easy to prove that if ξΓ, Γ is well-formed, ηΓ = ηξ and for all prefixes
Γ′, x : T of Γ, T ∈ KindΓ′ implies ξ(x) ∈ IΓ′ (T ); the details are left as an
exercise for the reader.

Similar to this, we will define a relation between assignments and (CR)∗ ∪
{C,O}-valuations.

Definition 33. We define ρΓ ξ inductively.

ρ∅ ξ

ρΓ ξ T ∈ KindΓ t ∈ [[T ]]ξ Φ ∈ Iξ (T )

ρxt Γ,x:T ξ
x
Φ

ρΓ ξ T ∈ ConstrΓ t ∈ [[T ]]ξ

ρxt Γ,x:T ξ
x
C

Note that it is not clear yet that this is a valid definition, as we have not
proven yet that [[T ]]ξ is actually defined in those cases. We will do so in Theorem
2 and we will not use this definition until then. With the help of Lemma 38 it
is then easy to prove that if ρΓ ξ and Γ′, x : T is a prefix of Γ, then [[T ]]ξ is
defined and ρ(x) ∈ [[T ]]ξ.

Both definitions have been taken from Barras [4, Definition 67, p. 22], but
have been modified to fit the mathematical context of this proof.



44 3. Mathematical Proof of Termination

3.6 Candidate Interpretation

The first thing we have to prove is that the interpretation always ends up in
the right subset of (CR)∗. We will prove this by induction over the term. In
order to simplify the proof, we will first state five lemmas, two of which deal
with the two extra definitions from above, and two of which help us deal with
updated valuations. The remaining lemma deals with with the intersection that
we use when we interpret product types. The statements of the following three
lemmata come from Geuvers [13, Lemma 3.5 on p. 21 and Lemma 5.4 on p. 29],
but he gives no proof.

Lemma 39. Candidates of reducibility are closed under arbitrary intersections.

∀I 6= ∅, (∀i ∈ I.Xi ∈ CR) →
⋂
i∈I

Xi ∈ CR

Proof. We need to show that
⋂
i∈I Xi satisfies the three CR properties.

1. Termination: since all the Xi were subsets of SN, so is the intersection.

2. Closure under beta reduction: if a term t is in the intersection, it was
in all the Xi. Since all the Xi were closed under beta reduction, βt is a
subset of all the Xi, hence also of the intersection.

3. Closure under beta expansion: let t be a neutral term such that βt is a
subset of the intersection. Hence βt is a subset of all the Xi. Thus by
closure under beta expansion, t was an element of all the Xi. Therefore it
must be an element of the intersection as well.

Lemma 40. If X and Y are candidates of reducibility, so is X ⇒ Y .

Proof. We need to show that X ⇒ Y satisfies the three CR properties. Note
that all variables are in X.

Termination
Let t be an element of X ⇒ Y . Hence for the variable x in X, t x is in Y .
Y is a subset of SN therefore t x terminates. Thus t must also terminate
because it is a subterm of t x.

Closure under beta reduction
Let t be an element of X ⇒ Y and t′ ∈ βt. For all u in X, t u is in Y .
Since Y is closed under beta reduction, t′ u is also in Y for all u in X.
Thus t′ is in X ⇒ Y .

Closure under beta expansion
Let t be a neutral term such that βt is a subset of X ⇒ Y and u be some
element of X. We must show that t u is in Y . Note that because X is
a subset of SN, u terminates. By induction on the termination order of
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u, we get the hypothesis that ∀u′ ∈ βu.t u′ ∈ Y . Y is closed under beta
expansion and t u is neutral, so it suffices to show that βt u ⊆ Y . Let us
now do a case analysis on the elements of βt u.

t u→β t
′ u where t→β t

′

t′ u ∈ Y because t′ ∈ βt and βt ⊆ X ⇒ Y by assumption.

t u→β t u
′ where u→β u

′

In this case, t u′ ∈ Y follows directly from the inductive hypothesis.

(λx : T.U)u→β U
x
u where t = λx : T.U

This can be ruled out because t is neutral.

Lemma 41. If X and Y are candidates of reducibility, so is X × Y .

Proof. We need to show that X × Y satisfies the three CR properties.

Termination
Let t be an element of X×Y . Thus π1(t) in X. X is a subset of SN hence
π1(t) terminates. Therefore t must also terminate because it is a subterm
of π1(t).

Closure under beta reduction
Let t be an element of X×Y and t′ ∈ βt. We need to show that π1(t′) ∈ X
and π2(t′) ∈ Y . We will only show the first, the second one is analogous.
Since t ∈ X × Y , we know that π1(t) ∈ X. Since X is closed under beta
reduction, and π1(t′) ∈ βπ1(t), π1(t′) is also an element of X.

Closure under beta expansion
Let t be a neutral term such that βt is a subset of X×Y . We need to show
that π1(t) ∈ X and π2(t) ∈ Y . We will only show the first, the second
one is analogous. Because X is closed under beta expansion and π1(t) is
neutral, it suffices to show that βπ1(t) ⊆ X. Let us do a case analysis on
the elements of βπ1(t).

π1(t)→β π1(t′) where t→β t
′

Therefore π1(t′) ∈ X since t′ ∈ βt and βt ⊆ X × Y by assumption.

π1 ((t1, t2)Σx:T1.T2)→β t1 where t = (t1, t2)Σx:T1.T2

This case can be ruled out because t is neutral.

Now let us prove that we map to the right element of (CR)∗:

Theorem 2. If ξΓ and Γ ` T : K, then both following statements are true:

K = Type0 → [[T ]]ξ is defined ∧ [[T ]]ξ ∈ CR (IHKind)

Γ ` T : K : Type0 → [[T ]]ξ is defined ∧ [[T ]]ξ ∈ IΓ (K) (IHConstructor)
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Proof. Proof by induction on the derivation of Γ ` T : K. Note that since ηΓ

preserves Γ by Lemma 32, we get the properties of Theorem 1. We will use
them implicitly in this proof in conjunction with Lemmata 28 and 29. Since we
have ξΓ, we can conclude ηΓ = ηξ. We will thus not distinguish between KΓ

and Kξ, etc.
We will only show the prop, variable, application, product and conversion

cases; the other cases are similar or trivial.

prop : Suppose the typing derivation ends with

prop
Γ is well-formed

Γ ` Prop : Type0

Thus K = Type0. [[Prop]]ξ = SN. Thus [[Prop]]ξ is defined and since
SN ∈ CR, [[Prop]]ξ ∈ CR.

variable : Suppose the typing derivation ends with

variable
Γ is well-formed Γ′, x : T ⊆ Γ for some Γ′

Γ ` x : T

Thus K = T . We have to prove that if Γ ` T : Type0, [[x]]ξ is defined and
in IΓ (T )1. By definition, [[x]]ξ = ξ(x).

We prove that Γ′ ` T : Type0. By Lemma 17, we have Γ′ ` T : s for
some s. By Lemma 20 and Lemma 24, we can follow Γ ` T : s and thus
s ≈β Type0. As convertible normal terms are equal, s = Type0.

From ξΓ we can therefore conclude that ξ(x) ∈ IΓ′ (T ). We prove that
IΓ′ (T ) = IΓ (T ). By Lemma 2, we can prove instead I= (T ) IΓ (ρI(T )).
This follows from Lemma 21 if ρI �Γ′ → Γ, which can be proven by
Lemma 20. The details are left as an exercise to the reader.

application : Suppose the typing derivation ends with

application
Γ ` t : (∀x : T.U) Γ ` u : T

Γ ` t u : Uxu

Thus K = Uxu . We have to prove that if Γ ` Uxu : Type0, [[t u]]ξ is defined
and in IΓ (Uxu )2.

By Lemma 23 and Γ ` t : ∀x : T.U , we know Γ ` ∀x : T.U : s2 for some
s2. Thus by Lemma 18.6 and the fact that convertible normal terms are
equal, we get Γ ` T : s1 and Γ, x : T ` U : s2 for some s1. It is easy to
prove by Lemma 24 and Lemma 21 that s2 = Type0, as Γ ` Uxu : Type0.
The details are left as an exercise to the reader.

We make a case distinction on s1.

1 It is easy to show that T 6= Type0 Lemma 28.
2 It is easy to show that Uxu 6= Type0 by Lemma 28.
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s1 = Type0 : Thus u ∈ ConstrΓ and by Theorem 1, u ∈ CΓ. Thus by
definition, [[t u]]ξ = [[t]]ξ([[u]]ξ). Also by definition, IΓ (∀x : T.U) =
IΓ (T ) → IΓ,x:T (U). By (IHConstructor) for Γ ` u : T , [[u]]ξ is
defined and in IΓ (T ). By (IHKind) for Γ ` t : ∀x : T.U , [[t]]ξ is
defined and in IΓ (T )→ IΓ,x:T (U).

Thus [[t]]ξ([[u]]ξ) is defined and in IΓ,x:T (U), which by Lemma 36
equals IΓ (Uxu ).

s1 = Prop : Thus u ∈ ObjΓ and by Theorem 1, u ∈ OΓ. Thus by defi-
nition, [[t u]]ξ = [[t]]ξ. Also by definition, IΓ (∀x : T.U) = IΓ,x:T (U).
By (IHKind) for Γ ` t : ∀x : T.U , [[t]]ξ is defined and in IΓ,x:T (U).
This by Lemma 36 equals IΓ (Uxu ).

product : Suppose the typing derivation ends with

product
Γ ` T : s1 Γ, x : T ` U : s2

Γ ` (∀x : T.U) : s2

Thus K = s2. Note that IΓ (Prop) = CR. We thus need to prove [[∀x :
T.U ]]ξ is defined and in CR. We make a case distinction on s1, but will
only show the case where s1 = Type0. The other case is similar. We know
T ∈ Kη by Theorem 1. By definition,

[[∀x : T.U ]]ξ = [[T ]]ξ ⇒
⋂

Φ∈Iξ(T )

[[U ]]ξxΦ

By Lemma 40 we only need to show that both [[T ]]ξ and
⋂

Φ∈Iξ(T )[[U ]]ξxt
are defined and in CR.

[[T ]]ξ ∈ CR : Because s1 = Type0, this follows from (IHKind) for Γ ` T :
s1.⋂

Φ∈Iξ(T )[[U ]]ξxΦ ∈ CR : Note that Iξ (T ) is defined by Lemma 35 and
Γ ` T : Type0. By Lemma 39 we only have to prove that for every
Φ ∈ Iξ (T ), [[U ]]ξxΦ is defined and in CR. Let Φ be an element of
Iξ (T ). We know s2 is either Type0 or Prop. We will show the proof
when s2 is Prop, the other case is similar. By (IHConstructor) for
Γ, x : T ` U : Prop, [[U ]]ξxΦ is defined and in CR if ξxΦ Γ, x : T . This
is true because T is in KindΓ, ξΓ and Φ ∈ Iξ (T ).

conversion : Suppose the typing derivation ends with

conversion
Γ ` t : T Γ ` U : s T ≈β U

Γ ` t : U

We need to prove [[t]]ξ is defined and in CR (if U = Type0) or in IΓ (U)
(if Γ ` U : Type0). We only prove the case where Γ ` U : Type0, since
the other case is trivial.

We first prove that Γ ` T : Type0. By Lemma 23, T = Type0 or Γ ` T : s′

for some s′.
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T = Type0 : In this case we get from T ≈β U , Lemma 15 and the fact that
Type0 is normal that U →∗β T . Thus by Lemma 25, Γ ` T : Type0.

Γ ` T : s′ for some s′ : By Lemma 26, we have Type0 ≈β s′. As normal
convertible terms are equal, we have Γ ` T : Type0.

We use (IHConstructor) for Γ ` t : T and get [[t]]ξ is defined and in IΓ (T ).
We know that IΓ (T ) equals IΓ (U) by Lemma 37. Thus [[t]]ξ ∈ IΓ (U).

This was a large proof, but now we have the first important result about our
interpretation: if t : T and t ∈ [[T ]]ξ, then t terminates. Now we have to prove
that if Γ ` t : T , t actually is an element of [[T ]]ξ. In order to get there, we will
have to prove stability of that interpretation with relation to substitution and
conversion as well. The reason that we need stability under substitution is the
same as the reason that we needed it for IΓ (·), just that the same thing will
now occur with sigma-types as well. Similarly, the conversion rule will again
introduce a typing where t : U and U ≈β V . The inductive hypothesis will only
work for V , but as interpretations are stable under conversion we can easily get
it for U as well.

3.7 Stability Results

We will not prove the following two lemmata since the proofs are extremely long
and tedious. Proofs can be found in the formalization.

Lemma 42. When Γ ` u : U and ξΓ, and Γ, x : U ` T : s for some s,

[[T xu ]]ξ =

{
[[T ]]ξx

[[u]]ξ
when U ∈ KindΓ

[[T ]]ξxC when U ∈ ConstrΓ

Note that all interpretations are defined by Theorem 2.

Lemma 43. For T and T ′ such that T ≈β T ′, Γ, x : U ` T : s and Γ ` T ′ : s
for some s, and ξΓ, [[T ]]ξ and [[T ′]]ξ are defined and equal.

In addition to these lemmata we will prove a few small lemmata. The basic
idea for these lemmata is that we have a complex term (like an application or
a projection) of which all subterms terminate, and we want to prove that on
all reduction paths some invariant is satisfied. Recall the one-step reduction
rules: we grouped them into congruence rules (which handle the reduction of a
subterm) and the main rules (which handle beta reduction, etc.). Now since all
the subterms terminate, proving the invariant for the congruence rules is trivial.
The lemmata state that it suffices to prove the invariant for the main reduction
rules. We will show the proof only for the first lemma.
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Lemma 44. Let l := (λx : T.u) where u and T terminates. When m is a
terminating term and P has the CR-properties (and is thus a set of terminating
terms),

uxm ∈ P =⇒ (l m) ∈ P

Proof. By induction on the termination order of T , m, and u. The induction
hypotheses look as follows:

∀T ′ ∈ βT ,∀m ∈ SN,∀u ∈ SN,uxm ∈ P =⇒ ((λx : T ′.u)m) ∈ P
∀m′ ∈ βm,∀u ∈ SN,uxm ∈ P =⇒ ((λx : T.u)m′) ∈ P

∀u′ ∈ βu,u′
x
m ∈ P =⇒ ((λx : T.u′)m) ∈ P

As l m is neutral and P satisfies the CR-properties, we only need to prove
βlm ⊆ P by closure under expansion.

Now we make a case split over β(lm). There are four cases, three of which
correspond to a congruence rule. We will only show the case for ((λx : T.u′)m)
where u→β u

′ and for the beta rule.

(l m)→β ((λx : T.u′)m) where u′ ∈ βu : We have to show ((λx : T.u′)m) ∈ P
which is exactly the induction hypothesis for u ↓. We still need to show
that u′

x
m ∈ P . By closure under reduction, we only need to show uxm →∗β

u′
x
m

3 and uxm ∈ P . The first follows directly from Lemma 13, Lemma 11
and Lemma 9. The second we have as an assumption.

(l m)→β u
x
m : We have to show uxm ∈ P which we have by assumption.

Lemma 45. Let p := (t, u)Σx:T.U where t, u, T and U terminate. If P has the
CR-properties,

t ∈ P =⇒ βπ1(p) ⊆ P

and

u ∈ P =⇒ βπ2(p) ⊆ P

3.8 Soundness

We now prove the essential theorem: that interpretation is sound with relation
to the typing relation. In other words, ρ(t) ∈ [[T ]]ξ whenever Γ ` t : T . The
main result, namely that all typed terms in CCΣ are strongly normalizing, is
merely a corollary. In the last chapters and sections, we built a lot of heavy
machinery to make the proof of this theorem possible.

3 Note that closure under reduction actually requires a t ∈ P such that t→β u
′x
m. However

it can be proven that this is enough by induction on the number of reduction steps.
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Theorem 3. When ξΓ and ρΓ ξ, then for any t, T and Γ such that Γ ` t : T ,
we have ρ(t) ∈ [[T ]]ξ

4.

Proof. Via induction on the typing derivation.

prop : Suppose the typing derivation ends with

prop
Γ is well-formed

Γ ` Prop : Type0

We need to prove ρ(Prop) ∈ [[Type0]]ξ, which is equivalent to proving
Prop ∈ SN. This is trivial.

variable : Suppose the typing derivation ends with

variable
Γ is well-formed Γ′, x : T ⊆ Γ for some Γ′

Γ ` x : T

We need to prove ρ(x) ∈ [[T ]]ξ, where Γ′, x : T ⊆ Γ. This result follows
from ρΓ ξ.

application : Suppose the typing derivation ends with

application
Γ ` t : (∀x : T.U) Γ ` u : T

Γ ` t u : Uxu

We need to prove ρ(t u) ∈ [[Uxu ]]ξ where Γ ` t : (∀x : T.U) and Γ ` u :
T . By definition, ρ(t u) = ρ(t) ρ(u). By the induction hypothesis for
Γ ` t : ∀x : T.U , ρ(t) ∈ [[∀x : T.U ]]ξ. Now we need to do a case split,
since [[∀x : T.U ]]ξ is defined depending on the class of T under ξ. By
Lemma 23 and Lemma 18.6, we get s1 and s2 such that Γ ` T : s1 and
Γ, x : T ` U : s2. By case analysis on s1 and using Theorem 1, we have
either s1 = Type0 and T ∈ Kξ, or s1 = Prop and T ∈ Cξ. We will only
treat the case where T ∈ Kξ, the other case is much easier.

We have:

[[∀x : T.U ]]ξ = [[T ]]ξ ⇒
⋂

Φ∈Iξ(T )

[[U ]]ξxΦ

= {t′ ∈ Λ | ∀u′ ∈ [[T ]]ξ.t
′ u′ ∈

⋂
Φ∈Iξ(T )

[[U ]]ξxΦ}

So for u′ ∈ [[T ]]ξ,

ρ(t)u′ ∈
⋂

Φ∈Iξ(T )

[[U ]]ξxΦ

4 Note that [[T ]]ξ is defined by Lemma 23 and Theorem 2.
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By the induction hypothesis for Γ ` u : T , we have ρ(u) ∈ [[T ]]ξ. Hence,

ρ(t) ρ(u) ∈
⋂

Φ∈Iξ(T )

[[U ]]ξxΦ

So in order to prove ρ(t) ρ(u) ∈ [[Uxu ]]ξ, it suffices to prove:⋂
Φ∈Iξ(T )

[[U ]]ξxΦ ⊆ [[Uxu ]]ξ

We argue that [[Uxu ]]ξ = [[U ]]ξx
[[u]]ξ

by Lemma 42, Γ ` u : T and Γ ` T :

Type0. We only need to prove that [[U ]]ξx
[[u]]ξ

is an instance of [[U ]]ξxΦ with

Φ ∈ Iξ (T ): by Theorem 2, ξΓ, Γ ` u : T , and Γ ` T : Type0, we know
that [[u]]ξ ∈ Iξ (T ).

lambda : Suppose the typing derivation ends with

lambda
Γ ` T : s1 Γ, x : T ` u : U Γ, x : T ` U : s2

Γ ` (λx : T.u) : (∀x : T.U)

We have to show that ρ(λx : T.u) ∈ [[∀x : T.U ]]ξ. By definition, this is
equivalent to showing λz : ρ(T ).ρxz (u) ∈ [[∀x : T.U ]]ξ. Now we need to do
a case split since the definition of [[∀x : T.U ]]ξ depends on the class of T
under ξ. Analogous to the application case, we get two cases: one where
s1 = Type0 and T ∈ Kξ, and one where s2 = Prop and T ∈ Cξ. Again, we
only show the case where s1 = Type0 and T ∈ Kξ.
We thus need to show:

λz : ρ(T ).ρxz (u) ∈ {t′ ∈ Λ | ∀u′ ∈ [[T ]]ξ, t
′ u′ ∈

⋂
Φ∈Iξ(T )

[[U ]]ξxΦ}

So we need to show that for all u′ ∈ [[T ]]ξ and Φ ∈ Iξ (T ),

(λz : ρ(T ).ρxz (u))u′ ∈ [[U ]]ξxΦ

By Theorem 2, we know [[T ]]ξ and [[U ]]ξxΦ are in CR. By closure under
expansion, we only need to show:

β(λz:ρ(T ).ρxz (u))u′ ⊆ [[U ]]ξxΦ

By Lemma 44, it suffices to show that (ρxz (u))zu′ ∈ [[U ]]ξxΦ . By Lemma
6, this is equivalent to proving ρxu′(u) ∈ [[U ]]ξxΦ . This is the induction
hypothesis for Γ, x : T ` u : U if we can prove that ρxu′ Γ,x:T ξ

x
Φ and

ξxΦΓ, x : T . We need to prove u′ ∈ [[T ]]ξ and Φ ∈ Iξ (T ), which we both
have by assumption.
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product : Suppose the typing derivation ends with

product
Γ ` T : s1 Γ, x : T ` U : s2

Γ ` (∀x : T.U) : s2

We have to show that ρ(∀x : T.U) ∈ [[s2]]ξ. By definition, this means we
have to show ∀z : ρ(T ).ρxz (U) ∈ SN. It suffices to show that ρ(T ) and
ρxz (U) are in SN. For this we use the induction hypothesis for Γ ` T : s1

and Γ, x : T ` U : s2. We only need to show that ρxz Γ,x:T ξ
x
[[T ]]ξ

and

ξx[[T ]]ξ
Γ, x : T . We make a case distinction on s1, but only treat the

case where s1 = Type0 and thus T ∈ KindΓ. We will prove that [[T ]]ξ is
defined and in CR, which follows from Theorem 2, thus ξx[[T ]]ξ

Γ, x : T by

definition. Since every set in CR contains at least all variables, z ∈ [[T ]]ξ,
and thus ρxz Γ,x:T ξ

x
[[T ]]ξ

by definition.

sigma : Suppose the typing derivation ends with

sigma
Γ ` T : Prop Γ, x : T ` U : Prop

Γ ` (Σx : T.U) : Prop

We need to show that ρ(Σx : T.U) ∈ [[Prop]]ξ. By definition this is equiv-
alent to Σz : ρ(T ).ρxz (U) ∈ SN For this it suffices to show that ρ(T )
and ρxz (U) are in SN. Both follow from the induction hypothesis for
Γ ` T : Prop and Γ, x : T ` U : Prop, respectively. It remains to be
shown that ρxz Γ,x:T ξ

x
C and ξxC Γ, x : T . Both follow by definition and

T ∈ ConstrΓ. Note that since [[T ]]ξ ∈ CR by Theorem 2, all variables are
in [[T ]]ξ.

pair : Suppose the typing derivation ends with

pair
Γ ` t : T Γ ` u : Uxt Γ ` T : Prop Γ, x : T ` U : Prop

Γ ` (t, u)Σx:T.U : (Σx : T.U)

We need to show:
ρ((t, u)Σx:T.U ) ∈ [[Σx : T.U ]]ξ

By definition, this is equivalent to showing:

(ρ(t), ρ(u))Σz:ρ(T ).ρxzU
∈ [[T ]]ξ × [[U ]]ξxC

For the sake of brevity, let m := (ρ(t), ρ(u))Σz:ρ(T ).ρxzU
. If we unwrap the

definition of [[T ]]ξ × [[U ]]ξxC , we see we need to show that π1(m) ∈ [[T ]]ξ and
π2(m) ∈ [[U ]]ξxC . We only show the second, the first case is easier.

By Theorem 2, we know [[T ]]ξ and [[U ]]ξxC are in CR. By closure under
expansion, we only need to show βπ2(m) ⊆ [[U ]]ξxC .

By Lemma 45, it suffices to show ρ(u) ∈ [[U ]]ξxC . Our induction hypothesis
for Γ ` u : Uxt gives us ρ(u) ∈ [[Uxt ]]ξ. Furthermore, [[Uxt ]]ξ = [[U ]]ξxC by
Lemma 42 since Γ ` t : T and T ∈ CΓ.
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proj1 and proj2 : These are extremely similar. We will only show the case of
proj2, since the other case is easier.

Suppose the typing derivation ends with

proj2
Γ ` t : (Σx : T.U)

Γ ` π2t : Uxπ1(t)

We need to show ρ(π2(t)) ∈ [[Uxπ1(t)]]ξ where Γ ` t : Σx : T.U . By the

induction hypothesis, we have ρ(t) ∈ [[Σx : T.U ]]ξ. This allows us to
conclude ρ(π2(t)) ∈ [[U ]]ξxC . By Lemma 42, [[U ]]ξxC = [[Uxπ1(t)]]ξ if Γ ` π1(t) :
T and T ∈ CΓ. The first follows from the proj1 rule. The second is proven
by Lemma 18.7, which yields Γ ` T : Prop.

conversion : Suppose the typing derivation ends with

conversion
Γ ` t : T Γ ` U : s T ≈β U

Γ ` t : U

We need to prove ρ(t) ∈ Iξ (U), where Γ ` t : T , Γ ` U : s, and T ≈β U .
Our induction hypothesis for Γ ` t : T gives us that ρ(t) ∈ Iξ (U). By
Lemma 43 and T ≈β U , Iξ (T ) = Iξ (U) if we can prove that Γ ` T : s.
This, however, follows directly from Lemma 27.

We will now prove that for well-formed Γ we can actually find a ξ and ρ such
that ξΓ and ρΓ ξ.

Definition 34. We define default elements Ds ∈ can(s).

DF := SN

Ds1→Ss2 := ( ∈ can(s1) 7→ Ds2)

Definition 35. We define ξΓ by recursion on Γ.

ξ∅ := (x 7→ SN)

ξΓ,x:T :=

{
ξΓ
x
Ds when T ∈ KindΓ, and where s = skeletonΓ (T )

ξΓ
x
C otherwise

Now we prove that ξΓ Γ and ρI Γ ξΓ.

Lemma 46. For all well-formed Γ, ξΓΓ.

Proof. We prove this by induction on Γ.

∅ : This is true by definition.
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Γ, x : T : As Γ, x : T is well-formed, we have Γ ` T : s for some s. This leaves
us in one of two cases: either s = Type0 or s = Prop.

s = Type0 : In this case, ξΓ,x:T = ξΓ
x
Ds′

where s′ = skeletonΓ (T ). We
need to prove ξΓ

x
Ds′
Γ, x : T . As ξΓΓ by the induction hypothesis

and Γ ` T : Type0, it suffices to prove that Ds′ ∈ IΓ (T ). This is
true by definition.

s = Prop : In this case, ξΓ,x:T = ξΓ
x
C . We need to prove ξΓ

x
C Γ, x : T .

As ξΓ Γ by the induction hypothesis and Γ ` T : Prop, this is true
by definition.

Lemma 47. For all well-formed Γ, ρI Γ ξΓ.

Proof. We prove this by induction on Γ.

∅ : This is true by definition.

Γ, x : T : As Γ, x : T is well-formed, we have Γ ` T : s for some s. This leaves
us in one of two cases: either s = Type0 or s = Prop.

s = Type0 : In this case, ξΓ,x:T = ξΓ
x
Ds′

where s′ = skeletonΓ (T ).

We need to prove ρI Γ,x:T ξΓ
x
Ds′

. We will prove instead that ρI
x
xΓ,x:T ξΓ

x
Ds′

.
As ρI Γ ξΓ by the induction hypothesis and Γ ` T : Type0, it suf-
fices to prove that x ∈ [[T ]]ξ and Ds′ ∈ IΓ (T ). By Theorem 2, we
know [[T ]]ξ is in CR. Thus at least all variables are in [[T ]]ξ; and
Ds′ ∈ IΓ (T ) is true by definition.

s = Prop : In this case, ξΓ,x:T = ξΓ
x
C . We need to prove ρI Γ,x:T ξΓ

x
C . We

will prove instead that ρI
x
xΓ,x:T ξΓ

x
C . As ρI Γ ξΓ by the induction

hypothesis and Γ ` T : Prop, it suffices to prove that x ∈ [[T ]]ξ. The
proof goes analogous to the case where s = Type0.

3.9 Termination

Now we prove the main result, i.e., that all typed terms in CCΣ are strongly
normalizing.

Corollary 1. For any Γ, t and T such that Γ ` t : T , t↓.

Proof. We prove that ρI(t) ∈ [[T ]]ξΓ . This follows from Theorem 3 if we can
prove ξΓΓ and ρI Γ ξΓ, which follow directly from Lemma 46 and Lemma
47.

By Lemma 2, we now have t ∈ [[T ]]ξ. We want to prove [[T ]]ξ ⊆ SN. By
Lemma 23, we have two cases: T = Type0 or Γ ` T : s for some s.
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T = Type0 : In this case [[T ]]ξ = SN by definition.

Γ ` T : s for some s : By Theorem 2, we know [[T ]]ξ ∈ CR. By termination,
[[T ]]ξ ⊆ SN.

Now by t ∈ [[T ]]ξ and [[T ]]ξ ⊆ SN, we have t ∈ SN. Consequently t↓.
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4. FORMALIZATION

We started from Barras’ formalization of CC [4]. We extended the set of terms,
the reduction rules and the typing rules to CCΣ. In order to deal with these
changes, we had to prove additional cases in existing lemmas, add some cases
in existing definitions, and even add a couple of new definitions and lemmas.
In most of the following code, we will only consider the extra cases we added in
existing definitions as well as the new definitions.

4.1 Preliminaries

The file termes.v covers the most part of Chapter 2. The set of terms Λ, the
substitution of a single free variable uxt and one-step-reduction are introduced.

Inductive sort introduces the universes set (Type0) and prop (Prop).
Inductive term introduces the set of all lambda terms. We use de Bruijn
indices for variables [12]. Recall that in the mathematical proofs, we considered
terms to be equal up to the name of bound variables. In the formalization, we
get the same behavior for free, since the names of variables disappear altogether.

Inductive sort : Set :=

| prop : sort

| set : sort.

Inductive term : Set :=

.

.

.

| Sigma : term -> term -> term

| Pair : term -> term -> term -> term -> term

| Proj1 : term -> term

| Proj2 : term -> term.

Since we use de Bruijn indices, we need lift_rec n t x, which increases
all variables with index at least x in the term t by n. Instead of defining
parallel substitution first and using it to define the substitution of a single
variable, we define subst_rec t u x to be the substitution of x in u by t.
Recall that in the lambda reduction rule, a binder gets eliminated and the
variable gets substituted. Since we are dealing with de Bruijn indices, we will
have to compensate the elimination of the binder by decreasing the index of
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all the variables greater than x in u by one. We define lift and subst to be
short-hand for lifting where we start with 0 and substitution of 0, respectively.

Fixpoint lift_rec n t {struct t} : nat -> term :=

fun k =>

match t with

.

.

.

| Sigma A B => Sigma (lift_rec n A k) (lift_rec n B (S k))

| Pair A B u v =>

Pair (lift_rec n A k) (lift_rec n B (S k))

(lift_rec n u k) (lift_rec n v k)

| Proj1 u => Proj1 (lift_rec n u k)

| Proj2 u => Proj2 (lift_rec n u k)

end.

Definition lift n t := lift_rec n t 0.

Fixpoint subst_rec N M {struct M} : nat -> term :=

fun k =>

match M with

.

.

.

| Sigma A B => Sigma (subst_rec N A k) (subst_rec N B (S k))

| Pair A B u v =>

Pair (subst_rec N A k) (subst_rec N B (S k))

(subst_rec N u k) (subst_rec N v k)

| Proj1 u => Proj1 (subst_rec N u k)

| Proj2 u => Proj2 (subst_rec N u k)

end.

Definition subst N M := subst_rec N M 0.

Now the various reduction relations are defined. red1 is one-step-reduction,
while red and conv are the reflexive transitive and the reflexive transitive sym-
metric closures of red1. par_red1 is parallel reduction and par_red is its
reflexive transitive closure. Since we define red, conv and par_red manually,
we will have to prove that they are actually the relations we intend them to be
(e.g that red actually is the reflexive transitive closure of red1). Note that we
do not show the extension of the congruence rules.

Inductive red1 : term -> term -> Prop :=

.

.
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.

| proj1 : forall A B M N, red1 (Proj1 (Pair A B M N)) M

| proj2 : forall A B M N, red1 (Proj2 (Pair A B M N)) N

.

.

.

Inductive red M : term -> Prop :=

| refl_red : red M M

| trans_red : forall (P : term) N, red M P -> red1 P N -> red M N.

Inductive conv M : term -> Prop :=

| refl_conv : conv M M

| trans_conv_red : forall (P : term) N,

conv M P -> red1 P N -> conv M N

| trans_conv_exp : forall (P : term) N,

conv M P -> red1 N P -> conv M N.

Inductive par_red1 : term -> term -> Prop :=

.

.

.

| par_proj1 :

forall A B M M’ N, par_red1 M M’ ->

par_red1 (Proj1 (Pair A B M N)) M’

| par_proj2 :

forall A B M N N’,

par_red1 N N’ -> par_red1 (Proj2 (Pair A B M N)) N’

.

.

.

Definition par_red := clos_trans term par_red1.

With normal we formalize what it means for a term to be normal and sn

is the set of all terminating terms. Note that we use Acc and transp which
come from the Relations package. The reason we have to transpose the re-
duction relation lies in the definition of Acc, which for our purposes is defined
“backwards”.

Inductive Acc (A : Type) (R : A -> A -> Prop) (x : A) : Prop :=

Acc_intro : (forall y : A, R y x -> Acc R y) -> Acc R x

Definition normal t : Prop := forall u, ~ red1 t u.

Definition sn : term -> Prop := Acc (transp _ red1).

Now we prove a series of laws about lifting and substitution. Since we use de
Bruijn indices in the formalization, only one of these lemmas has a counterpart
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in the mathematical proof: distr_subst_rec corresponds to Lemma 5. Note
that the mathematical version is more general in that it allows the second sub-
stitution to substitute multiple variables at once, while here we only allow the
substitution of a single variable.

Lemma distr_subst_rec :

forall M N (P : term) n p,

subst_rec P (subst_rec N M p) (p + n) =

subst_rec (subst_rec P N n) (subst_rec P M (S (p + n))) p.

We prove that par_red1 is reflexive and that it lies between red1 and
its reflexive transitive closure in the lemmas refl_par_red1, red1_par_red1,
red_par_red and par_red_red. Recall that we did a similar thing in the math-
ematical proof in order to apply Lemma 7 and Lemma 8. Here we prove directly
that the closures are equivalent.

Lemma refl_par_red1 : forall M, par_red1 M M.

Lemma red1_par_red1 : forall M N, red1 M N -> par_red1 M N.

Lemma red_par_red : forall M N, red M N -> par_red M N.

Lemma par_red_red : forall M N, par_red M N -> red M N.

We formalize Lemma 11 in par_red1_subst.

Lemma par_red1_subst :

forall c d : term,

par_red1 c d ->

forall a b : term,

par_red1 a b -> forall k, par_red1 (subst_rec a c k) (subst_rec b d k).

4.2 Confluence

The file conv.v has the proof of confluence. As before, we first prove that
par_red1 has the diamond property; then we infer the same for red. Then we
prove a couple of properties about conversion which we also use in the mathe-
matical proof, but we do not prove separate lemmas for these.

The first definition to consider is the diamond property, str_confluent.
Note that it is specialized to work with relations between terms and is hence
called confluence, while in the mathematical proof we were using the more
general notion of ♦. The diamond property is formalized as the commutativity
of a term relation with its own inverse. It is trivial to check that this is, in fact,
the diamond property.
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Definition commut (A : Type) (R1 R2 : relation A) :=

forall x y : A,

R1 y x -> forall z : A, R2 z y -> exists2 y’ : A, R2 y’ x & R1 z y’.

Definition str_confluent (R : term -> term -> Prop) :=

commut _ R (transp _ R).

In str_confluence_par_red, we prove that ⇒β is confluent. Then we
prove ⇒∗β is confluent in two steps, analogously to the mathematical proof:
in strip_lemma we prove that we can fill a single row of the diamond, in
confluence_par_red we prove that this suffices to fill the diamond row by
row.

Lemma str_confluence_par_red1 : str_confluent par_red1.

Lemma strip_lemma : commut _ par_red (transp _ par_red1).

Lemma confluence_par_red : str_confluent par_red.

As before, it directly follows that →∗β is confluent, which we show in
confluence_red. We can also infer the Church-Rosser property, which we
formalize in the theorem church_rosser.

Lemma confluence_red : str_confluent red.

Theorem church_rosser :

forall u v, conv u v -> ex2 (fun t => red u t) (fun t => red v t).

What now follows is a series of helpful lemmas, most of which appear im-
plicitly in the mathematical proof but are made explicit in the formalization.
Examples are nf_uniqueness, which proves two convertible normal terms are
equal, and its corollary conv_sort which says convertible universes are equal.
This proves conv_set_prop, which says set and prop are not convertible.

Lemma nf_uniqueness : forall u v,

conv u v ->

normal u ->

normal v ->

u = v.

Lemma conv_sort : forall s1 s2, conv (Srt s1) (Srt s2) -> s1 = s2.

Lemma conv_set_prop : ~ conv (Srt set) (Srt prop).

4.3 Assignments

In the file int term.v we introduce parallel substitution and some of its prop-
erties. We formalize assignments as functions intt which map indices to terms.
The identity assignment is the one that maps x to Ref x.
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Definition intt := nat -> term.

The application of an assignment to a term is defined by int_term. Note
that int_term takes an additional parameter k which tells us which variables
not to change and where to look up all the other variables. Whenever a binder
is introduced, we compensate by increasing k by one.

Fixpoint int_term (t : term) : intt -> nat -> term :=

fun (I : intt) (k : nat) =>

match t with

.

.

.

| Sigma A B => Sigma (int_term A I k) (int_term B I (S k))

| Pair A B u v =>

Pair (int_term A I k) (int_term B I (S k))

(int_term u I k) (int_term v I k)

| Proj1 M => Proj1 (int_term M I k)

| Proj2 M => Proj2 (int_term M I k)

end.

With shift_intt, we can compensate for a binder by assigning the new
variable a value. Using this, we prove int_term_subst which closely corre-
sponds to Lemma 6: when we substitute a single variable after doing a parallel
substitution, we can use a single, larger substitution. Note that in the formal-
ization, the preconditions of Lemma 6 are automatically met by the magic of
de Bruijn indices.

Definition shift_intt (i : intt) (t : term) : intt :=

fun n : nat => match n with

| O => t

| S k => i k

end.

Lemma int_term_subst :

forall (t : term) (it : intt) (k : nat) (x : term),

subst_rec x (int_term t it (S k)) k = int_term t (shift_intt it x) k.

4.4 Typing Rules

The file types.v provides the typing rules and many of the properties of typing,
e.g., subject reduction and weakening.

We begin with the definition of environments env, which are lists of terms.
Recall that in the mathematical proof, we used lists of pairs (x : T ), where x is
a variable and T is a term. Since we use de Bruijn Indices in the formalization,
this would correspond to pairs (x,T), where x is the index of a variable and
T is a term. However, whenever a binding is introduced (e.g., in the lambda
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case), the indices of all free variables in gamma would need to be increased by 1
(including the free variables in the terms). The list would hence have the form
(using some properties of lift):

gamma = [(0,T_0), (1, lift 1 T_1), (2, lift 2 T_2), ...]

In general, the k-th element of gamma is (k, lift k T_k). This allows us
to derive two conclusions: first, the k in the pair is redundant information, so
we can just leave it out, and second, we can defer the lift k until we extract
the element. In other words, our gamma will be [T_0, T_1, T_2, ...], and
when we want to get the type of the variable with index x, we take T_x, which
is the x-th element of gamma, and then lift all indices of free variables in T_x by
x.

In order to formalize this, we define the predicate item_lift T gamma x,
which is true if and only if T = lift x T_x, where T_x is the x-th element of
gamma.

Definition env := list term.

Definition item_lift t e n :=

ex2 (fun u => t = lift (S n) u)

(fun u => item term u (e:list term) n).

As in the mathematical version, we define wf gamma and typ gamma t T by
mutual induction. Note the variable rule, which uses item_lift T gamma x,
for the reasons that we discussed above.

Inductive wf : env -> Prop :=

| wf_nil : wf nil

| wf_var : forall e T s, typ e T (Srt s) -> wf (T :: e)

with typ : env -> term -> term -> Prop :=

.

.

.

| type_var :

forall e,

wf e -> forall (v : nat) t, item_lift t e v -> typ e (Ref v) t

.

.

.

| type_sigma :

forall e A B,

typ e A (Srt prop) ->

typ (A::e) B (Srt prop) ->

typ e (Sigma A B) (Srt prop)

| type_pair :

forall e A B M N,

typ e A (Srt prop) ->

typ (A::e) B (Srt prop) ->

typ e M A ->
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typ e N (subst M B) ->

typ e (Pair A B M N) (Sigma A B)

| type_proj1 :

forall e M A B,

typ e M (Sigma A B) -> typ e (Proj1 M) A

| type_proj2 :

forall e M A B,

typ e M (Sigma A B) -> typ e (Proj2 M) (subst (Proj1 M) B).

The following two lemmata correspond directly to Lemma 19 and Lemma
16, respectively.

Lemma typ_free_db : forall e t T, typ e t T -> free_db (length e) t.

Lemma typ_wf : forall e t T, typ e t T -> wf e.

The next theorem formalizes that if Γ′, x : T ⊆ Γ and Γ is well-formed,
Γ′ ` T : s for some s. Note that the usage of trunc _ (S x) gamma gamma’

and item _ T gamma x in conjunction, which is used to formalize Γ′, x : T ⊆ Γ.

Lemma wf_sort :

forall n e f,

trunc _ (S n) e f ->

wf e -> forall t, item _ t e n -> exists s : sort, typ f t (Srt s).

Now we prove the inversion lemma, Lemma 18.
We first formalize the inversion property, inv_type P gamma t T. Note that

the property is defined negatively ; the best way to understand how it works is
to look at typ_inversion P gamma t T, which formalizes the inversion lemma.
It says that in order to prove P, it suffices to prove inv_type P gamma t T.

The lemma inv_type_conv corresponds to the proof step in the proof sketch
of Lemma 18.

Definition inv_type (P : Prop) e t T : Prop :=

match t with

.

.

.

| Sigma A B =>

typ e A (Srt prop) ->

typ (A::e) B (Srt prop) ->

conv T (Srt prop)

-> P

| Pair A B M N =>

typ e A (Srt prop) ->

typ (A::e) B (Srt prop) ->

typ e M A ->

typ e N (subst M B) ->

conv T (Sigma A B)

-> P
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| Proj1 M =>

forall A B,

typ e M (Sigma A B) -> conv T A -> P

| Proj2 M =>

forall A B,

typ e M (Sigma A B) -> conv T (subst (Proj1 M) B) -> P

end.

Lemma inv_type_conv :

forall (P : Prop) e t (U V : term),

conv U V -> inv_type P e t U -> inv_type P e t V.

Theorem typ_inversion :

forall (P : Prop) e t T, typ e t T -> inv_type P e t T -> P.

The formalization of weakening (Lemma 20) is called thinning. Note that
since the environment was extended, we need to increase the indices of all free
variables in t and T.

Theorem thinning :

forall e t T,

typ e t T -> forall A, wf (A :: e) ->

typ (A :: e) (lift 1 t) (lift 1 T).

Next we have the formalizations of Lemma 21, Lemma 24, Lemma 23,
Lemma 25 and Lemma 26. Note that substitution uses single variable sub-
stitution instead of parallel substitution, and that type_case is formulated
differently. Instead of T 6= Type0 =⇒ ∃s,Γ ` T : s, it is formulated as
T = Type0 ∨ ∃s,Γ ` T : s. Since term equality with (Srt set) is decidable,
both versions are equivalent even in the formalization.

Theorem substitution :

forall e t u (U : term),

typ (t :: e) u U ->

forall d : term, typ e d t -> typ e (subst d u) (subst d U).

Theorem typ_unique :

forall e t T, typ e t T -> forall U : term, typ e t U -> conv T U.

Theorem type_case :

forall e t T,

typ e t T -> (exists s : sort, typ e T (Srt s)) \/ T = Srt set.

Theorem subject_reduction :

forall e t u, red t u -> forall T, typ e t T -> typ e u T.

Lemma typ_conv_conv :

forall e u (U : term) v (V : term),

typ e u U -> typ e v V -> conv u v -> conv U V.
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4.5 Classification

Skeletons, classes, class valuations, the class and skeleton of a term, and several
stability results are defined and proven in class.v. The class-level correspon-
dence is also proven. Note however that the proof uses two steps: at first,
only the class-level correspondence and loose stability results are proven. Those
results are then used to prove the strict results. According to Barras, the de-
pendencies go as follows (Barras, personal communication, November 11, 2012):
the correspondence between KindΓ and Kη is easy to prove. This can be used
to prove the correctness of skeletons (Lemma 37, etc.). Those results can be
used to prove the correspondence between ConstrΓ and Cη. Which finally yields
the correctness of skeletons on the constructor level. Note that this last step
is not included in the mathematical proof since we defined skeletons only for
kinds, not for constructors. Thanks to the introduction of preservation, those
dependencies disappear; the class-level correspondence can be proven in a single
step, omitting skeletons altogether.

The first definitions in the file are skel, which corresponds directly to our
skeletons, and class, which corresponds to a pair of a skeleton and a class: Trm
corresponds to O, Typ corresponds to C and a skeleton, and Knd corresponds to
K and a skeleton.

Inductive skel : Type :=

| PROP : skel

| PROD : skel -> skel -> skel.

Inductive class : Type :=

| Trm : class

| Typ : skel -> class

| Knd : skel -> class.

The definition of cls corresponds to our class-valuation η, but with a few
important differences. Note that in the formalization, cls is not a function, but
a list. Since we only need these valuations over finite ranges of variables, i.e.
the free variables of a term, it makes sense to use lists. Note also that η only
remembered the classes of variables, while cls also remembers the skeletons.

Definition cls := TList class.

The procedure cl_term t e combines skeletonη (t) and classη (t) into an
element of class. Note that in the mathematical proof, skeletonη (t) was only
defined when t was in Kη. In the formalization, we will also receive a skeleton
for t in Cη; the definition has been chosen to select the same skeleton for t
and T where t ∈ Cη, T ∈ Kη and Γ ` t : T when ηnΓ. This is needed
later for technical reasons. The combination of skeletons and classification has
two advantages. First, we receive implicit typing information about the terms
at hand when we want to determine their skeletons. In those cases that we
can rule out by Lemma 28 and Lemma 29, we can choose skeletons that will
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make later proofs go through easily, without having to point at the fact that
those cases can not occur. Second, recall the dependencies listed by Barras.
By combining classification and skeletons, two steps of this dependency can be
tackled at once: both the correspondence and the correctness of skeletons can
be proven at the same time for kinds, and then again for constructors. The
downside is that sometimes, we will want to talk only about the skeleton or
only about the class of a term; and this becomes more complicated.

Barras also states that in an earlier development [3, p. 66], cl_term was
separated in two distinct procedures - just as in the mathematical proof.

Fixpoint cl_term (t : term) : cls -> class :=

fun i : cls =>

match t with

.

.

.

| Sigma T U => Typ PROP

| Pair A B u v => Trm

| Proj1 M => Trm

| Proj2 M => Trm

end.

In the same way ηΓ chooses an η for Γ, class_env g produces a cls for
some environment g.

Fixpoint class_env (e : env) : cls :=

match e with

| nil => TNl _

| t :: f => TCs _ (cl_term t (class_env f)) (class_env f)

end.

4.5.1 Loose Stability

We first define loose_eqc, or class equality: two elements of class are consid-
ered equal under loose_eqc if they have the same class, and if that class is Knd,
also the same skeleton. Then we define adj_cls, or the class hierarchy: the
lowest class is Trm, followed by Typ. The highest class in the hierarchy is Knd.

Note that for both class equality and the class hierarchy, the skeletons are
largely ignored. For example, two class-objects Typ s1 and Typ s2 are consid-
ered equal independent of s1 and s2. The reason for this is that the classification
of terms in the Typ class depends on the skeleton of their type (which is itself a
Knd term). As a consequence we can prove similar stability results for the Typ

class only when we have them for the Knd class. We will soon consider strict
equality and the strict hierarchy, where skeletons are also considered for the Typ
class.

Inductive loose_eqc : class -> class -> Prop :=

| leqc_trm : loose_eqc Trm Trm
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| leqc_typ : forall s1 s2 : skel, loose_eqc (Typ s1) (Typ s2)

| leqc_ord : forall s : skel, loose_eqc (Knd s) (Knd s).

Inductive adj_cls : class -> class -> Prop :=

| adj_t : forall s : skel, adj_cls Trm (Typ s)

| adj_T : forall s1 s2 : skel, adj_cls (Typ s1) (Knd s2).

A slightly stricter version of the class-level correspondence, or Theorem 1, is
formalized in cl_term_sound. In fact, the three subcases are proven individu-
ally in class_knd, class_typ and class_trm. The version in the formalization
is stricter since it requires η = ηΓ, instead of just ηnΓ. Note that only the di-
rection from the level to the class is proven. We call cv_skel (cl_term t eta)

the kind-skeleton of t and typ_skel (cl_term t eta) the constructor-skeleton
of t. Note that the constructor-skeleton of a t is PROP if t is a Knd in eta, and we
will later prove that it is the kind-skeleton of T if t is a Typ in class_env gamma

and typ gamma t T. Note that the kind-skeleton of t in class_env gamma cor-
responds to skeletonΓ (t) if typ gamma t (Srt set).

Definition cv_skel (c : class) : skel :=

match c with

| Knd s => s

| _ => PROP

end.

Definition typ_skel (c : class) : skel :=

match c with

| Typ s => s

| _ => PROP

end.

Lemma class_knd :

forall (e : env) (t T : term),

typ e t T ->

T = Srt set ->

cl_term t (class_env e)

= Knd (cv_skel (cl_term t (class_env e))).

Lemma class_typ :

forall (e : env) (t T : term),

typ e t T ->

typ e T (Srt set) ->

cl_term t (class_env e)

= Typ (typ_skel (cl_term t (class_env e))).

Lemma class_trm :

forall (e : env) (t T : term) (s : sort),

s = prop -> typ e t T -> typ e T (Srt s) ->

cl_term t (class_env e) = Trm.
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Lemma cl_term_sound :

forall (e : env) (t T : term),

typ e t T ->

forall K : term,

typ e T K ->

adj_cls (cl_term t (class_env e)) (cl_term T (class_env e)).

As mentioned before, cl_term assigns the same skeleton to constructors and
their kinds. This is proven in skel_sound.

Lemma skel_sound :

forall (e : env) (t T : term),

typ e t T ->

cv_skel (cl_term T (class_env e)) = typ_skel (cl_term t (class_env e)).

4.5.2 Strict Stability Results

From the loose stability results and skel_sound in particular, the strict re-
sults follow. We replace loose_eqc by conventional equality and adj_cls by
typ_cls. In both cases, we now consider the skeletons.

The definition of typ_cls hence formalizes the subclassing relation, which
is a stronger version of the class hierarchy. Trm is a subclass of Typ PROP only,
and Typ s is a subclass of Knd s.

Inductive typ_cls : class -> class -> Prop :=

| tc_t : typ_cls Trm (Typ PROP)

| tc_T : forall s : skel, typ_cls (Typ s) (Knd s).

The proof that this cl_term respects this hierarchy is formalized in
class_sound. To be exact, the class of t under Γ is a subclass of the class
of T under Γ if Γ ` t : T and T has a type in Γ. The latter condition is to make
sure, generally speaking, that we are not trying to relate the classes of Prop and
Type0 which are both KΓ.

Lemma class_sound :

forall (e : env) (t T : term),

typ e t T ->

forall K : term,

typ e T K -> typ_cls (cl_term t (class_env e)) (cl_term T (class_env e)).

The last lemma in this file is class_red, which combines Lemma 34 and
Lemma 37. Note that Lemma 37 reasons about Iη (t), while this lemma reasons
about skeletonη (t); it is easy to check that those two are equivalent, though.

Lemma class_red :

forall (e : env) (T U K : term),

typ e T K -> red T U -> cl_term T (class_env e) = cl_term U (class_env e).
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4.6 Candidates of Reducibility

In the next file, can.v, we formalize candidates of reducibility and the inter-
pretations for products and sigmas. Note that our mathematical proof assumes
set extensionality, an axiom which does not hold in our formalization. We will
often be in a situation where we can only prove extensional equality, not Leibniz
equality, of two candidates. Hence we formalize extensional equality of candi-
dates of reducibility. Also the default candidates are defined in this file.

The fixpoint Can corresponds loosely to our function can. Note that Can s

is weaker than can(s). While Can PROP is the type of sets of terms, can(F)
is the set of sets of terms with the reducibility properties. We will later have
to prove that the result of the interpretation, which will be an element of one
of the Can s, does in fact satisfy the reducibility properties. For this reason,
Barras calls Can s a scheme of order s, not a candidate. We also formalize ex-
tensional equality of schemes of order s with eq_can. The base case is common
set extensionality, which is formalized in eq_cand. It is notable that the formal-
ization does not prove that this is an equivalence relation. In fact, reflexivity is
not proven. Instead, we only consider those schemes which behave reflexive, i.e.
schemes X of order s where eq_can s X X. Barras calls these schemes invariant.
In many definitions that will follow, there will statements that limit the domain
to invariant schemes. The first such example is eq_can (below), which in the
recursive definition requires eq_can s1 X1 X1 and eq_can s1 X2 X2.

Fixpoint Can (K : skel) : Type :=

match K with

| PROP => term -> Prop

| PROD s1 s2 => Can s1 -> Can s2

end.

Definition eq_cand (X Y : term -> Prop) : Prop :=

forall t : term, X t <-> Y t.

Fixpoint eq_can (s : skel) : Can s -> Can s -> Prop :=

match s as s0 return (Can s0 -> Can s0 -> Prop) with

| PROP => eq_cand

| PROD s1 s2 =>

fun C1 C2 : Can (PROD s1 s2) =>

forall X1 X2 : Can s1,

eq_can s1 X1 X2 ->

eq_can s1 X1 X1 -> eq_can s1 X2 X2 -> eq_can s2 (C1 X1) (C2 X2)

end.

The next definition that we recognize is neutral, which formalizes neutrality.
Recall that a term is neutral if it is not a lambda or a pair.

Inductive neutral : term -> Prop :=

.

.
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.

| neutral_sigma T U : neutral (Sigma T U)

| neutral_proj1 M : neutral (Proj1 M)

| neutral_proj2 M : neutral (Proj2 M).

Recall that Can PROP was less specific than can(Prop). We will now define
what it means for a reducibility scheme to be a reducibility candidate. For
schemes of order PROP, this corresponds directly to the three reducibility prop-
erties. For schemes of order PROD s1 s2, the extension is similar to what we did
in the mathematical proof; but for reasons that were mentioned before, we only
consider invariant candidates. We also prove that every reducibility candidate
includes at least all variables.

Record is_cand (X : term -> Prop) : Prop :=

{incl_sn : forall t : term, X t -> sn t;

clos_red : forall t : term, X t -> forall u : term, red1 t u -> X u;

clos_exp :

forall t : term, neutral t ->

(forall u : term, red1 t u -> X u) -> X t}.

Lemma var_in_cand :

forall (n : nat) (X : term -> Prop), is_cand X -> X (Ref n).

Fixpoint is_can (s : skel) : Can s -> Prop :=

match s as s0 return (Can s0 -> Prop) with

| PROP => fun X : term -> Prop => is_cand X

| PROD s1 s2 =>

fun C : Can s1 -> Can s2 =>

forall X : Can s1, is_can s1 X -> eq_can s1 X X -> is_can s2 (C X)

end.

Now we formalize the default candidates, Ds. The default candidate of order
PROP is the set of strongly normalizing terms, sn. We prove that the default
candidates are actually invariant candidates of the respective order.

Note that default candidates are used much earlier in the formalization than
in the mathematical proof. One of the reasons is that in the mathematical proof,
definitions over terms in KΓ or CΓ use Lemma 28 or Lemma 29, respectively.
In the formalizations, this is not easily possible. Hence we need values for the
cases that are exempt by aforementioned lemmas. For some definitions, Ds will
do.

Fixpoint default_can (s : skel) : Can s :=

match s as ss return (Can ss) with

| PROP => sn

| PROD s1 s2 => fun _ : Can s1 => default_can s2

end.

Lemma def_can_cr : forall s : skel, is_can s (default_can s).
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Lemma def_inv : forall s : skel, eq_can s (default_can s) (default_can s).

The next definitions, Pi and Cartesian, correspond to our definitions of
X ⇒ Y and X × Y . Note the quantification C : Can s. The first thing that
we have to consider here is that again, C : Can s is too large, so we restrict
it to the invariant candidates in this scheme. The second thing is that this
intersection does not appear in the definition of X ⇒ Y . It corresponds closely,
however, to our definition of [[∀x : U.V ]]ξ where U ∈ Kξ. Note that we could
define [[∀x : U.V ]]ξ where U ∈ Cξ in a similar fashion: [[V ]]ξxC =

⋂
u∈[[U ]]ξ

[[V ]]ξxC is

a trivial equality when [[U ]]ξ is non-empty. In fact, this is exactly what we will
later do when we formalize [[T ]]ξ.

Definition Pi (s : skel) (X : term -> Prop) (F : Can (PROD s PROP))

(t : term) : Prop :=

forall u : term,

X u -> forall C : Can s, is_can s C -> eq_can s C C -> F C (App t u).

Definition Cartesian (X Y : Can PROP)

(t : term) : Prop :=

X (Proj1 t) /\ Y (Proj2 t).

Lemmas 40 and 41 are formalized in is_can_Pi and cartesian_is_cand, re-
spectively. In addition to this, we have to prove that Pi and Cartesian preserve
invariance. Those proofs are formalized in eq_can_Pi and cartesian_eq_can.

Lemma eq_can_Pi :

forall (s : skel) (X Y : term -> Prop) (F1 F2 : Can (PROD s PROP)),

eq_can PROP X Y ->

eq_can (PROD s PROP) F1 F2 ->

eq_can PROP (Pi s X F1) (Pi s Y F2).

Lemma is_can_Pi :

forall (s : skel) (X : term -> Prop),

is_cand X ->

forall F : Can (PROD s PROP),

is_can (PROD s PROP) F -> is_cand (Pi s X F).

Lemma cartesian_eq_can X1 Y1 X2 Y2 :

eq_can PROP X1 X2 ->

eq_can PROP Y1 Y2 ->

eq_can PROP (Cartesian X1 Y1) (Cartesian X2 Y2).

Lemma cartesian_is_cand X Y :

is_can PROP X ->

is_can PROP Y ->

is_can PROP (Cartesian X Y).
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4.7 Interpretation

In the file int typ.v, we formalize (CR)∗ ∪ {C,O}-valuations ξ. We define a
method to get a class-valuation ηξ for some ξ. We lift our definition of exten-
sional equality and invariance on schemes to ξ. And finally, we formalize the
interpretation [[t]]ξ.

The first two definitions correspond to (CR)∗∪{C,O}-valuations. Note that
again, we use a list to formalize the valuation. Recall that in the mathematical
proof, we said that it was possible to use (CR)∗∪{C}-valuations instead. In the
formalization, we do exactly that. Int_K formalizes the set (CR)∗ ∪ {C}, and
intP formalizes a valuation of this set.

Inductive Int_K : Type :=

| iK : forall s : skel, Can s -> Int_K

| iT : Int_K.

Definition intP := TList Int_K.

The next two definitions correspond to ηξ. The idea is to extract the class
out of the object of Int_K. As in the formalization classes and skeletons are
combined, we need to put in a skeleton in the iT case as well. Since we are
actually only interested in the class here, we choose PROP. We will later prove
that this is acceptable, and that the class extracted of [[T ]]ξ is the class of T
under ξ.

Definition class_of_ik (ik : Int_K) :=

match ik with

| iK s _ => Knd s

| iT => Typ PROP

end.

Definition cls_of_int : intP -> cls := Tmap _ _ class_of_ik.

We define extensional equality of the objects of Int_K. This is formalized in
ik_eq. Then we lift this definition to intP in int_eq_can, and define invariance
of intP to mean that all the elements in that list are extensionally equal to
themselves.

Inductive ik_eq : Int_K -> Int_K -> Prop :=

| eqi_K :

forall (s : skel) (X Y : Can s),

eq_can s X X ->

eq_can s Y Y -> eq_can s X Y -> ik_eq (iK s X) (iK s Y)

| eqi_T : ik_eq iT iT.

Definition int_eq_can : intP -> intP -> Prop := Tfor_all2 _ _ ik_eq.

Definition int_inv (i : intP) := int_eq_can i i.

In int_eq_can_cls, we prove that extensionally equal intP produce the
same cls. Note again that none of this is necessary when extensional equality
is assumed, as is the case in the mathematical proof.
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Lemma int_eq_can_cls :

forall i i’ : intP, int_eq_can i i’ -> cls_of_int i = cls_of_int i’.

Recall that in the recursive definition of [[T ]]ξ, we deal with binders x : U
by updating ξ with either C or [[U ]]ξ, depending on the class of U . In the
formalization, we have a procedure which does this case distinction and returns
the correct element of (CR)∗∪{C}, and another one which performs the update.
Those procedures are ext_ik and int_cons, respectively. Note that when Φ =
[[U ]]ξ, ext_ik U xi s Phi is equal to [[U ]]ξ when U ∈ Kξ and equal to C when
U ∈ Cξ.

Definition ext_ik (T : term) (ip : intP) (s : skel)

(C : Can s) :=

match cl_term T (cls_of_int ip) with

| Knd _ => iK s C

| _ => iT

end.

Definition int_cons (T : term) (ip : intP) (s : skel)

(C : Can s) := TCs _ (ext_ik T ip s C) ip.

The definition of coerce_CR looks very complicated, but it does a very simple
thing: it checks whether i : Int_K behaves appropriately. If i was constructed
with iK and has the skeleton we want (s), it extracts the candidate stored in i.
Otherwise, it returns the default candidate of order s. The innermost match-
expression is there for technical reasons only.

Definition coerce_CR (s : skel) (i : Int_K) : Can s :=

match i with

| iK si Ci =>

match EQ_skel si s with

| left y =>

match y in (_ = x) return (Can x) with

| refl_equal => Ci

end

| _ => default_can s

end

| _ => default_can s

end.

We now formalize [[T ]]ξ, int_typ T xi s. Note the additional argument s,
which allows us to choose the parent into which we will map. This is required
for technical reasons, and it is inherently different from the way we defined
[[·]]ξ. [[T ]]ξ maps to some subset of (CR)∗. One of the key theorems of the
mathematical proof was to prove that when T ∈ KindΓ or T ∈ ConstrΓ, [[T ]]ξ
is defined and maps to the correct subset of (CR)∗ - namely IΓ (K), where
Γ ` T : K.

In the formalization, we need int_typ T xi s to be a total function. In
some cases, this requires that we know that the recursive calls have the correct



4.7. Interpretation 75

type. Consider the case of [[t u]]ξ where t ∈ Kξ : [[t]]ξ([[u]]ξ) is defined only if
[[t]]ξ : A → B and [[u]]ξ ∈ A for some sets A and B. In the formalization, we
will be able to choose s1 and s2 such that int_typ t xi s1 : Can s1 and
int_typ t xi s2 : Can s2. We will hence choose PROD s2 s for s1, which
will ensure that (int_typ t xi (PROD s2 s)) : Can s2 -> Can s, and jus-
tifies the application.

We will also choose s2 to be the constructor-skeleton of u in xi. Recall that
this equals to the kind-skeleton of T when cls_of_int xi = class_env gamma,
typ gamma u T and typ gamma T (Srt set). If you compare this with our
proof of Theorem 2, you will notice that this is exactly the situation we find
ourselves in in the application case.

Thus for T ∈ KindΓ, we will choose s to be PROP, and for T ∈ ConstrΓ where
Γ ` T : K, we will choose s to be cv_skel (cl_term K (class_env gamma)),
that we get Theorem 2 for free. Note that by cl_term_sound, both equal to the
constructor-skeleton of T in class_env gamma. This is why Barras states “this
definition is relevant only when T is a well-formed [constructor or kind] in [an
environment] Γ and [s is the constructor-skeleton of T in class_env gamma]” [4,
p. 20]. It might not be obvious that if T ∈ ConstrΓ, this invariant will actually
be enforced by the way we apply int_typ recursively. It is not hard to prove,
though.

Fixpoint int_typ (T : term) : intP -> forall s : skel, Can s :=

fun (ip : intP) (s : skel) =>

match T with

.

.

.

| App u v =>

match cl_term v (cls_of_int ip) with

| Trm => int_typ u ip s

| Typ sv => int_typ u ip (PROD sv s) (int_typ v ip sv)

| _ => default_can s

end

.

.

.

| Sigma A B =>

match s as x return (Can x) with

| PROP =>

let intA := (int_typ A ip PROP) in

Cartesian intA (int_typ B (int_cons A ip PROP intA) PROP)

| PROD s1 s2 => default_can (PROD s1 s2)

end

| _ => default_can s

end.
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4.8 Stability Results

The file int stab.v proves the stability results for interpretations. It begins
with a few lemmata which are trivial in the mathematical setting, e.g., the
fact that if ξ1 and ξ2 contain extensionally equal candidates, then classξ1 (T ) =
classξ2 (T ).

Recall the definition of ext_ik on p. 74, which returned the correct element
Φ of (CR)∗ ∪{C} to interpret the type introduced in a binder x : U under some
ξ. Now we will look at the formalization of the phrase “correct interpretation”
for terms of that type. An example for this is Lemma 42, where u is a term of
type U . We extend ξ either by [[u]]ξ when U ∈ KindΓ or by C when U ∈ ConstrΓ.
By Theorem 1 and the fact that the class of u is a subclass of the class of U in
this case, it would be possible to perform the case distinction on the class of u
instead. The declaration of int_var_sound u xi Phi thus formalizes what it
means for Φ to be the correct interpretation of u under ξ: when u is in Cξ, Φ
must be [[u]]ξ, and when u is in Oξ, Φ must be C. Note however that the class
extracted from Φ1 is then K when u ∈ Cξ and C when u ∈ Oξ. Thus the class
of u is a subclass of the class extracted from Φ; a proof of this is formalized in
int_var_sound_lift.

Inductive int_var_sound (t : term) (ip : intP) : Int_K -> Prop :=

| ivs_K :

forall s : skel,

cl_term t (cls_of_int ip) = Typ s ->

int_var_sound t ip (iK _ (int_typ t ip s))

| ivs_T : cl_term t (cls_of_int ip) = Trm -> int_var_sound t ip iT.

Lemma int_var_sound_lift :

forall (t : term) (ip : intP) (i : Int_K),

int_var_sound t ip i ->

typ_cls (cl_term t (cls_of_int ip)) (class_of_ik i).

The next lemma we recognize, since it corresponds closely to Lemma 42.
Note the lack of a case split due to int_var_sound.

Note also the predicates TIns and TTrunc, as well as the three valuations ipe,
ipf, and ipg. These are required due to the fact that we represent (CR)∗ ∪{C}
valuations using lists. In the mathematical proof we would simply write ξ(x :=
C) for ipe and ξ for ipf and ipg, but in the formalization this is much harder
to write down. TIns _ i k ipf ipe states that ipf is ipe where the value of
the variable with index k has been updated to i. TTrunc _ k ipf ipg states
that ipg is the prefix of length k of ipf.

There is another important difference to the mathematical version, in which
the mathematical proof uses ξΓ while the formalization only requires ηξ = ηΓ.
In fact, there is no statement corresponding to the other consequence of ξΓ2

1 See class_of_ik on p. 73
2 I.e., that for all prefixes Γ′, x : T of Γ, T ∈ KindΓ implies ξ(x) ∈ IT (Γ′)
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in the formalization. The reason for this lies in the additional parameter s

that int_typ takes when compared to its mathematical counterpart, [[·]]ξ. By
definition, we could restate the missing consequence as follows:

∀(x : T ) ∈ Γ, T ∈ KΓ =⇒ [[x]]ξ ∈ can(skeletonΓ (T ))

In the formalization, this would require us to prove that
int_typ T xi s : Can s, where s would be the constructor-skeleton of
T - which is true by definition. Hence, in the formalization, ηξ = ηΓ is
equivalent to ξΓ. We will thus not distinguish between them while describing
the formalization.

Lemma subst_int_typ :

forall (v : term) (ipg : intP) (i : Int_K),

int_var_sound v ipg i ->

forall (e : env) (T K : term),

typ e T K ->

forall (k : nat) (ipe ipf : intP),

TIns _ i k ipf ipe ->

TTrunc _ k ipf ipg ->

cls_of_int ipe = class_env e ->

int_inv ipe ->

cl_term T (cls_of_int ipe) <> Trm ->

eq_can (skel_int T ipe) (int_typ T ipe _)

(int_typ (subst_rec v T k) ipf _).

Now we consider the lemma int_cons_equal. This lemma proves that if
ηnΓ and we extend ξ and Γ consistently, that ηξxC  ηΓ,x:T . Recall that in the
mathematical proof, we simply defined ηξxC  ηΓ,x:T this way, and needed two
rules, one where T ∈ KindΓ and one where T ∈ ConstrΓ. We only require a
single lemma in the formalization since this case split is hidden in int_cons,
which uses ext_ik.

Lemma int_cons_equal :

forall (ip : intP) (e : env),

cls_of_int ip = class_env e ->

forall (N : term) (s1 : sort),

typ e N (Srt s1) ->

forall C : Can (cv_skel (cl_term N (class_env e))),

cls_of_int (int_cons N ip _ C) = class_env (N :: e).

The last important lemma in this file is conv_int_typ, which straightfor-
wardly formalizes Lemma 43.

Lemma conv_int_typ :

forall (e : env) (U V K : term),

conv U V ->

typ e U K ->

typ e V K ->
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forall ip : intP,

cls_of_int ip = class_env e ->

int_inv ip ->

cl_term U (class_env e) <> Trm ->

eq_can (skel_int U ip) (int_typ U ip _) (int_typ V ip _).

4.9 Termination

The proof of Lemma 1 is contained in strong norm.v. A few of the lemmata
and properties which have been defined earlier in the mathematical proof are
defined in this file, too.

The first definition formalizes ρΓ ξ. On first glance, it is strange that
the value with which we extend ξ does not matter for the correctness of this
definition. This is due to the fact that if Γ ` t : T and x is Γ−fresh, x can
not be free in T . Hence the value of x in ξ does not matter for [[T ]]ξ. Finally,
int_adapt gamma xi rho couples ξΓ and ρΓ ξ.

Inductive trm_in_int : env -> intP -> intt -> Prop :=

| int_nil : forall itt : intt, trm_in_int nil (TNl _) itt

| int_cs :

forall e (ip : intP) (itt : intt),

trm_in_int e ip itt ->

forall (y : Int_K) t T,

int_typ T ip PROP t ->

trm_in_int (T :: e) (TCs _ y ip) (shift_intt itt t).

Record int_adapt e (ip : intP) (itt : intt) : Prop :=

{adapt_trm_in_int : trm_in_int e ip itt;

int_can_adapt : can_adapt ip;

adapt_class_equal : cls_of_int ip = class_env e}.

The lemma extend_int proves that if we extend Γ with x : T , and ξ and
ρ using some default values (which depend on the class and skeleton of A),
int_adapt is preserved.

Lemma extend_int A e ip it :

typ e A (Srt prop) ->

int_adapt e ip it ->

int_adapt (A :: e) (def_cons A ip) (shift_intt it (Ref 0)).

Now we formalize Theorem 3, in a very straightforward way.

Lemma int_sound :

forall e t T,

typ e t T ->

forall (ip : intP) (it : intt),

int_adapt e ip it -> int_typ T ip PROP (int_term t it 0).
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The next two definitions formalize ξΓ and a default assignment,
def_intt e k. Note that def_intt appears to depend on Γ and some in-
dex k. However, the Γ is not meaningful to the computation of the result ; the
function is merely stated in this way to ease the proof of def_adapt, which is
the lemma that formalizes Lemma 47.

The lemma def_intt_id formalizes a proof that def_intt can be stated as
the function which maps the variable with index p to the variable with index
p + k. Obviously for k = 0, this function behaves like the identity assignment ;
a proof of this claim is given in id_int_term. We need the k only for technical
reasons which are due to the usage of de Bruijn indices.

Fixpoint def_intp e : intP :=

match e with

| nil => TNl _

| t :: f => def_cons t (def_intp f)

end.

Fixpoint def_intt e : nat -> intt :=

fun k =>

match e with

| nil => fun p => Ref (k + p)

| _ :: f => shift_intt (def_intt f (S k)) (Ref k)

end.

Lemma def_adapt :

forall e, wf e -> forall k, int_adapt e (def_intp e) (def_intt e k).

Lemma def_intt_id :

forall n e k, def_intt e k n = Ref (k + n).

Lemma id_int_term :

forall e t k, int_term t (def_intt e 0) k = t.

And finally we can formalize the proof of Lemma 1, as well as the corollary
that if Γ ` t : T , T ↓.

Theorem str_norm : forall e t T, typ e t T -> sn t.

Lemma type_sn : forall e t T, typ e t T -> sn T.
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5. CONCLUSION AND FUTURE WORK

We have given a mathematical description and a formalization of proofs for
confluence and termination of CCΣ. Coq lends itself to formalizing type theories
and many properties thereof. While other proof assistants might have given
us stronger automatization tools, we were very comfortable with the level of
automatization that Coq gave to us.

Luckily, Barras dealt with the only burden that the environment of Coq put
on us, and that was the formalization of candidates of a higher order. The
intensional nature of Coq called for the formalization of extensional equivalence
in eq_can and the introduction of invariance.

A perk of formalizing these proofs in Coq without supposing any further
axioms is that the formal proofs are constructive. This means that the proof of
termination could easily be turned into a program that implements a reduction
strategy, i.e., an interpreter of CCΣ.

There are a few things that we would do different if we had to redo this
project. Recall the four main differences between the formalization and the
mathematical description:

• The usage of de Bruijn indices

• Classification and skeletons are combined

• Constructors have skeletons

• There is an additional parameter s in int_typ T xi s

As we mentioned in the introduction, we believe that a locally nameless
approach would have greatly simplified the formalization and unified the math-
ematical presentation and the formalization. As a simple example, consider the
formalization of Lemma 20 on p. 65. Compare it with what the statement could
look like in the context of a locally nameless approach, where (x & T) :: gamma

corresponds to Γ, x : T :

Theorem thinning :

forall e x A,

wf ((x & A) :: e) ->

forall t T,

typ e t T ->

typ ((x & A) :: e) t T.
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We also believe that the combination of classification with skeletons creates
more confusion than it entails benefits. We thus formalized a standalone version
of classification, which is a direct translation of the mathematical proof found in
this thesis. However, due to our limited time frame, we did not adapt the rest
of the formal proof to fit this environment. In addition to this, we believe that
this separation is a necessity when wanting to formalize vertical extensions. We
will go into more detail later.

We have a more ambivalent opinion on constructor-skeletons and their role
as the additional parameter s. On one hand, we see them as a huge technical
improvement in the setting of CCΣ (and, for that matter, CC). Compare, for
example, the cumbersome mathematical statement “[[T ]]ξ ∈ IΓ (K) when Γ `
T : K and ξΓ” to its formal version, i.e., int_typ T xi s : Can s for all s.
Note that one requires an exceedingly long proof (Theorem 2), while we get the
other for free. On the other hand, we doubt that this notion can be translated
to vertical extensions of CCΣ.

Note that we did not mention horizontal extensions yet as we believe they can
be easily dealt with in the current environment by following the proof sketches
given in [13, pp. 13–22]. The interesting question is whether this proof technique
can be used for vertical extensions of CC (or CCΣ). The mathematical proof of
termination presented here can be divided into three segments: classification,
skeletons, and interpretation. It is our belief that classification is trivial to
extend to arbitrary numbers of universes, as long as there is no subtyping rule
which allows us to treat types from one universe as types from a higher universe.

For skeletons and interpretation, the situation is a little more complicated.
Recall our current definitions of Iη (·) and [[·]]ξ, of which the well-definedness
depends strongly on the possible syntactic forms of kinds and constructors.
In stronger vertical extensions of CCΣ like ECC, kinds can also have other
forms, e.g., applications. Luo deals with this by proving that all types can be
reduced to a type which has a form similar to the one presented in Lemma
28[23, p. 77, Corollary 4.14]. This result might be sufficient to define skeletons
and interpretation in these theories.

Another possibility would be to extend skeletons to work with application,
abstraction, application and pairs, and certainly a few ways for this are think-
able. Good ideas for this could come from the formalization of constructor-
skeletons from Barras, since constructors in CC already do not enjoy the privi-
lege of Lemma 28.

When it comes to extending the formalization itself, however, the situation
appears to be quite different. We have already mentioned that it is possible to
rectify many of the differences between the formalization and the mathematical
presentation. We will now give a short discussion as to why we think this is
desirable.

We said that it is possible to separate skeletons from classification. Note
that in the current formalization, there has to be one stability result for ev-
ery universe, like loose stability for kinds (corresponding to Type0) and strict
stability for constructors (corresponding to Prop). If we were to add further
universes, this would require further stability results; an extension to an arbi-
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trary number of universes (e.g., ECC) seems out of reach. While these stability
results might be needed to deal with constructor-skeletons, we believe that they
are a consequence of the combination of skeletons and classification.

We also said that we doubt that the notion of constructor-skeletons can
be translated to vertical extensions of CCΣ. Let us take the perspective that
constructor-skeleton and kind-skeleton are the polarized lenses of movie theater
glasses. When we write down a type hierarchy, e.g., ∅ ` I : True : Prop : Type0

(Section 2.8, p. 19), we can align the lenses such that through the left lense we
see a term, and through the right lense we see a type. In above example, this
would give us three possible positions for our glasses, for example, one where I
is seen through the constructor lense and True is seen through the kind lense;
or another where True is seen through the constructor lense and Prop is seen
through the kind lense.

Now we replace every term in the hierarchy by two polarized and overlapping
pictures, such that one picture is visible through the constructor lense and the
other through the kind lense. Let us call these pictures the constructor picture
and the kind picture, respectively. There are a couple of properties that this
setup should satisfy, we will mention three and then discuss why we doubt that
these properties can be satisfied in some vertical extensions. First, no matter
which position we choose, the pictures that are seen through the two lenses must
be the same. Second, when we look at a product, the kind picture must look
like s1 →S s2 for some smaller pictures s1 and s2. Third, when we look at a
universe, both pictures must look like F.

Now it appears that there are two ways to generate such a setup. The first is
to use two functions, one which generates the kind pictures and another which
generates the constructor pictures. The other option is to use a single function
that generates a picture, and then use two functions that decide whether to take
this picture or use a different one.

It seems impossible to use the first way and satisfy all properties. To be
more precise, in order to prove the first property, one would need to prove that
the kind picture of Uxu in the environment Γ equals to the kind picture of U
in the environment Γ, x : T , where Γ ` x : T . Let us give two instances that
together seem insolvable. Let U := x and u1 := Prop→ Prop and u2 := Prop
and Γ := ∅ and T := Type0. It is easy to verify that Γ ` u1 : T and Γ ` u2 : T .
If the above property would be true, the kind picture of Uxu1

would have to equal
the kind picture of Uxu2

. Thus the kind picture for Prop→ Prop needs to equal
the kind picture for Prop, which by properties two and three can not be the
case.

It seems impossible to use the second way in a vertical extension and satisfy
all properties. A consequence of the second and third property is that a product
needs to have s1 → s2 as the kind picture andF as the constructor picture. This
would mean that the single function would need to know in advance whether
the product is to be looked at through the kind lense or through the constructor
lense. In CCΣ, this is basically the case. With a little bit of simplification, we
can say that we look at products with the kind lense only if they are kinds, and
with the constructor lense only when they are constructors. In many vertical
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extensions it seems absurd to have a function that will know in advance which
lense we will use to look at any given product.



APPENDIX





A. COQ SYNTAX

Since we show definitions and statements of lemmata in this thesis, a high level
introduction into Coq Syntax is in order.

Basics
Prop is the type of propositions and Type is the type of datatypes. X -> Y

is a function type or implication, which are the same in Coq.

Since Coq uses type inference, types can be largely omitted. This affects
both binders, which are usually of the form forall (x : T), ... or
exists (x : T), ...(short forall x, ..., if T can be inferred), as well
as function application which is of the form f T t (short f _ t, if T can
be inferred).

Function application is left associative while function types are right as-
sociative, i.e., f a b = (f a) b while A -> B -> C = A -> (B -> C).

Inductive Types
Inductive types are defined via the intro rules:

Inductive name : type :=

| rule1 : ...

| rule2 : ...

...

Recursion and induction schemes are automatically derived by the Coq
system.

Recursive Functions
Recursive functions (fixpoints) are defined as follows:

Fixpoint name (x : type) : type := ...

where x is the variable we do recursion on and thus needs to have an
inductive type.

These definitions are often followed by a case distinction on x, where the
fixpoint is then applied to the structurally smaller components.

Definitions
Other simple definitions have the form:

Definition name : type := ...
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Lemmata
A lemma is introduced with the Lemma keyword:

Lemma name : type.

Record

For the purpose of this thesis, a record can be seen as a conjunction of
any number of named properties.

Record int_adapt binders : type :=

{ name1 : property1;

name2 : property2;

...

}.

The full Coq development is located at http://ps.uni-saarland.de/

~jonas/ccsigma_Oct4.tar.

http://ps.uni-saarland.de/~jonas/ccsigma_Oct4.tar
http://ps.uni-saarland.de/~jonas/ccsigma_Oct4.tar
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[7] Yves Bertot and Pierre Castéran. Interactive theorem proving and program
development: Coq’Art: the calculus of inductive constructions. springer,
2004.

[8] Nicolaas Govert de Bruijn. “Reflections on automath”. In: Nederpelt et
al.[1994] (1990), pp. 201–228.

[9] Alonzo Church. “A formulation of the simple theory of types”. In: J. Symb.
Log. 5.2 (1940), pp. 56–68.

[10] Alonzo Church. “A set of postulates for the foundation of logic”. In: Annals
of mathematics 33.2 (1932), pp. 346–366.

[11] Thierry Coquand, Gerard Huet, et al. “The calculus of constructions”. In:
(1986).

[12] Nicolaas Govert De Bruijn. “Lambda calculus notation with nameless
dummies, a tool for automatic formula manipulation, with application
to the Church-Rosser theorem”. In: Indagationes Mathematicae (Proceed-
ings). Vol. 75. 5. Elsevier. 1972, pp. 381–392.

[13] Herman Geuvers. “A short and flexible proof of Strong Normalization for
the Calculus of Constructions”. In: TYPES. 1994, pp. 14–38.

[14] Jean-Yves Girard. “Interprétation fonctionelle et élimination des coupures
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