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Abstract

Jitpro is an interactive theorem prover for higher order logic.
One specifies a problem by giving a number of sorts, con-
stants, definitions, axioms, lemmas and some claims. Clearly,
many specifications may use common basic elements such as
the union of two sets.

In this thesis I will present a system for storing, retriev-
ing and connecting these specifications using imports which
finally allow us to construct new problems using already ex-
isting specifications, by instantiating sorts by types or con-
stants by terms. Theoretical foundations about signatures,
presentations and morphisms together with a proof of the
Presentation Lemma will ensure that all these actions will
yield consistent specifications without rendering former re-
sults (i.e. proven statements) invalid.

Using the example of Jitpro, I will show that it is very
easy to integrate this system into existing theorem provers.
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1 Introduction

1.1 Jitpro

Jitpro [4] is a JavaScript Interactive Higher-Order Tableau Prover developed by Chad
Brown. As the name suggests, it is used to prove higher-order claims by clicking some
buttons in a web browser (without the need to install anything). In constrast to the
existing automatic higher order theorem provers TPS [9] and Leo-II [10], Jitpro only
assists in proving something and the user must make the main decisions himself.

Currently, the system is mainly used for research and teaching purposes. For instance,
students were using it during the Introduction to Computational Logic course in 2008
at Saarland University [8] in order to prove more or less easy statements and to better
understand tableau proof systems.

Jitpro is based on a set of so called refutation rules described in [3] which will be
explained later in more detail. Refutation means, that, given a claim, we try to show
that the negation of this claim yields a contradiction by adding more and more facts to
a pool of facts (which we will call branch in the following) using the corresponding rules.
As it is possible that the application of specific rules results in several branches, we say
that we split into different branches and must refute each of these branches separately.

As a first example, consider the following rule which is one of the basic rules:

Closed
A, s,¬s ⊢ ⊥

This rule means: Given a branch A, some term s and the negation of the term ¬s on
A, Jitpro recognizes that this is a contradiction (which should be quite intuitive) and
closes the branch. Another example is:

And
A, s ∧ t, s, t ⊢ ⊥

A, s ∧ t ⊢ ⊥

This rule says that if the branch A together with the terms s ∧ t, s and t yields a
contradiction then so does A together with the term s ∧ t. Therefore, s and t can be
added to the branch. Jitpro does not automatically do this but it presents a button in
corresponding situations which can be clicked on in order to apply the rule.

One might wonder why Jitpro is called a tableau prover. This is due to the fact that
it does not work with proof trees (which implicitly arise from applying refutation rules)
but - as already mentioned - with branches and these can be seen as a tableau. This
results in the following tableau view of the refutations rules:
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Closed
s,¬s

And
s ∧ t

s, t

One of the main disadvantages of Jitpro which I will tackle in this thesis is the fact that
Jitpro does not have a basic library of commonly used elements such as basic definitions
of set theory or graph theory. This results in a lot of copy & paste, search & replace
etc. which is not only error-prone but can also introduce logical inconsistencies which
are hard to detect, if at all. It is even possible that earlier proven theorems do not hold
anymore in a different context because of changes in the corresponding basic axioms (we
will see an example of this in section 3.3).

1.2 Related Work

There has already been much research in the area of the organization of (equational)
logical theories. Already in 1977, Goguen and Burstall presented in [7] the syntax of
a language called CLEAR which was to define first order equational theories. They
also described operations like combine or enrich to extend existing theories or use them
as building blocks for larger theories. They even provided functions which could use
theories as arguments, similar to today’s ML functors as described in [11].

Fifteen years later1, in 1992, again Burstall and Goguen presented [12] and raised
their rather concrete ideas from 1977 to a completely abstract level: Instead of talking
about equational theories they split this concept into presentations and signatures and
first order logic was replaced by the general notion of institutions from which the paper
derived its name. This work is very important for my thesis because most of the the-
oretical concepts here will rely on it and even the original Presentation Lemma (which
we will adapt for higher order logic) comes from Goguen and Burstall.

In the same year (1992), Farmer, Guttman and Thayer argued in Little theories [15]
why it is much better to reason in several different small theories than reasoning in one big
theory. One year later, in 1993, they presented IMPS: An Interactive Mathematical Proof
System [13] which is a proof system based on simply typed theory with partial functions
and subtypes. What is so special about this system concerning this thesis is the fact that
IMPS already had an Initial Theory Library with commonly used theories such as parts
of number theory or group theory and the possiblity to reuse and interpret theories
in order to use them in a different context. The main difference to my system will
be the higher-order logic with total functions on the theoretical side and the prover
independence on the practical side.

In 2000, Hutter published Management of Change in Structured Verification [1] where
he described a truth maintenance system for existing verifications of specifications, i.e.
he tried to minimize the impact of changes in specifications on corresponding verifi-
cations. These specifications were built from smaller specifications which are linked
somehow resulting in a dependency graph. A similar structure will be induced by my

1of course, there was still a lot of important work going on in between
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database because we will have several axiomatic theories linked together by morphisms,
respectively imports.

The most recent (and not yet finished) work comes from Sutcliffe and Suttner, namely
by their TPTP (Thousands of Problems for Theorem Provers) [2] which is a library of
well chosen first-order problems for testing automated theorem provers. It differs from
my system in the fact that the latter will be more dynamic, i.e. possibly everyone can
add new and extend existing theories and problems and access single problems at any
time using an online interface, whereas the former is more a fixed library of more or less
independent problems which is extended from time to time by the authors.

A higher-order version of the TPTP is also available but it is still in alpha state.
Nevertheless, my system will support the corresponding language called THF0, proposed
by Benzmüller, Rabe and Sutcliffe in 2008 [14].

1.3 Structure of the Thesis

This thesis can roughly be split into three parts:

1. Theoretical part (chapters 2 and 3): Chapter 2 gives a short introduction to higher-
order logic and simply typed lambda calculus together with the corresponding basic
definitions. These will be used to introduce signatures and presentations which
will, together with a corresponding proof system, define a theory.

Chapter 3 covers the notion of morphisms which map between presentations. The
Presentation Lemma, which is the central point of the theoretical part, together
with its proof will tell us which preconditions have to be checked such that prov-
ability is preserved when morphing a presentation into another one.

2. Practical part (chapter 4): Chapter four will explain the most important parts
of the implementation. First, the main differences to the theory developed in the
two chapters before will be described. Then, we will show a datastructure which
allows to very efficiently retrieve tree-like structures such as types or terms out of
a relational database.

3. Outlook (chapter 5): The last chapter will give a brief outlook on how the presented
ideas as well as the implementation can be further improved.
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2 Types, Terms & Theories

Our goal in this chapter is to come up with a definition of presentations which allow us
to specify theories such as set theory or graph theory. Presentations will be based on so
called signatures. The idea is that a signature induces a set of terms which can be used
by presentation to define more complex constructs such as axioms or claims.

2.1 Basic Definitions

2.1.1 Signatures

In simply typed higher order logic, a type is either a basic type (also called sort) or a
functional type. Let Sor be the countably infinite set of all sorts. We fix B ∈ Sor as
the unique boolean sort containing only two elements 1 (true, ⊤) and 0 (false, ⊥) and
recursively define the set of all types Typ using Sor:

α ∈ Sor ∼= N

σ, τ ∈ Typ ::= α | σ τ

As we will not use all infinitely many sorts within one specification but only a certain
subset of Sor we are also restricted in the set of types we can use. In order to define
this set, we need to know which sorts are “used” by a type. This gives us the following
simple function SorTyp which then allows to define the desired set:

SorTyp : Typ → 2Sor

SorTyp α = {α}
SorTyp (σ τ) = (SorTyp σ) ∪ (SorTyp τ)

Definition 1 (induced types). Given a set of sorts S ⊆ Sor, the set of types T (S)
induced by S is defined as follows:

T (S) = {σ | SorTyp(σ) ⊆ S}

Besides sorts (and the types induced by them), we also want to have so called constants
in our specifications. But what are constants? As an example, consider the specification
of the natural numbers using some sort N and the Peano axioms. These say (among
other things) that the successor of a natural number is never zero. The successor as
well as zero are both constants because they are not concretely defined (e.g. by giving a
corresponding term) but they are described by their properties (by the Peano axioms).
Constants state that there is something without defining it.
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Name Type Meaning

True 1 (or true or ⊤) ∈ B 1 (or true or ⊤)
False 0 (or false or ⊥) ∈ B 0 (or false or ⊥)
Negation ¬ ∈ B → B ¬x = λx.1 − x

Conjunction ∧ ∈ B → B → B x ∧ y = λx, y.min{x, y}
Disjunction ∨ ∈ B → B → B x ∨ y = λx, y.max{x, y}
Implication →∈ B → B → B x → y = λx, y.¬x ∨ y

Equality =σ∈ σ → σ → B (x =σ y) = (λx, y.x = y)
Equivalence ≡∈ B → B → B (x ≡ y) = (λx, y.x =B y)
Universal quantifier ∀σ ∈ (σ → B) → B (∀σ.s) = (s = (λx.1))
Existential quantifier ∃σ ∈ (σ → B) → B (∃σ.s) = (s 6= (λx.0))

Figure 2.1: A list of all logical constants given a signature Σ = (S, C, τ) with σ ∈ T (S)

At first sight, constants are just names. Let Nam be a countably infinite set of
identifiers and let Const ( Nam be the set of all names which represent constants, i.e.
Const is the set of all constants. But as seen above, constants always have a specific type.
For example zero will have type N and the successor function will have type N N . On
the other hand, it is not convenient to have a fixed mapping from constants to types: For
instance, a successor function for natural numbers is different from a successor function
for integers but they could both be called Succ in different contexts. Hence, it is better
to assign types to constants depending on the context.

Sorts together with typed constants form the first important definition:

Definition 2 (signature). Given a set of sorts S ⊆ Sor with B ∈ S, a set of names
C ⊆ Const and a function τ : C → T (S), we call the tuple Σ = (S, C, τ) a signature.

As we will see in the next chapter, a signature is already enough to induce a set of terms
which can only be extended by extending the signature.

2.1.2 Presentations

The main elements of a specification (e.g. axioms or lemmas) are described by terms.
We want to define terms based on a signature. Let a signature Σ = (S, C, τ) be given.
This signature induces a set of logical constants which consists of well-known logical
connectives like ∧ (and) or → (implication). The reason for this set to depend on a
signature is that for example the forall quantifier ∀σ depends on a type σ and it should
hold that σ ∈ T (S). Figure 2.1.2 lists all logical constants together with their meaning.

Another (also commonly used) element of terms are lambda abstractions. They define
a function taking an argument represented by a variable. Let Var ( Nam such that
Var ∩Const = ∅1 be the set of all those variables.

We define the corresponding set of Σ-terms as follows:

1the disjointness is to avoid possible naming conflicts
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s, t ∈ Σ-Ter ::= λx : σ.t Lambda expression; σ ∈ T (S); x ∈ Var
| s t Functional application
| x Variable; x ∈ Var
| c Constant; c ∈ C
| l Logical constant

This definition already excludes invalid types or constants but it is still possible for a
term to be ill-typed or to contain unbound variables, i.e. variables which are not bound
by a corresponding lambda expresssion. In order to tackle this problem we need a
function which gives us the unbound variables of a term:

V : Ter → 2Var

V (λx : σ.t) = V t \ {x}
V x = {x}

V (s t) = (V s) ∪ (V t)
V c = ∅
V l = ∅

For a set of terms A, we define the free variables as:

V A =
⋃

s∈A V s

Free variables can be substituted by terms. Given a simultaneous substitution θ : Var →
Σ-Ter (i.e. a substitution which substitutes multiple variables), the substitution θ on
terms is defined as follows:

θ : Σ-Ter → Σ-Ter
θ (λx : σ.t) = λy : σ.(θ[x := y] t)

θ x = θ x

θ (s t) = (θ s) (θ t)

θ c = c

θ l = l

The y in the first case is chosen by a conservative choice function with respect to the
codomain of θ which avoids variable capturing. Substitutions and choice functions are
described in detail in [3]. We will use θ for substitutions on (free) variables and write sx

t

to denote the substitution of free occurences of x by t in s.

Definition 3 (closed term). A term t is called closed iff V t = ∅.

Given a typing function υ : Var → T (S) on variables, we define υ as a partial function
on terms:

υ : Σ-Ter ⇀ T (S)

16



υ (λx : σ.t) = σ (υ[x := σ] t)
υ x = υ x

υ (s t) = σ′ if υ s = σ σ′ and υ t = σ′

υ c = τ c

υ l = (type according to figure 2.1.2)

Let υ : Var → T (S) be a fixed typing function. A term s is well-typed for υ if there exists
a υ such that s ∈ Dom(υ). Otherwise, s is called ill-typed. Note that the well-typedness
of a closed term is independent of a υ. In such a case, we assume that some υ is given.
We use the following notation:

• τ s for υ s

• τ x for υ x

Given a signature Σ = (S, C, τ), we define cwffσ(Σ) as the set of all closed, well-typed
Σ-terms of type σ and cwff(Σ) as the set of all closed, well-typed Σ-terms (of arbitrary
type). Analogously, we use wff(Σ) for all well-typed but not necessarily closed terms.

Another important primitive, which we will not need for presentations but which will
be needed later, are contexts. Contexts are essentially terms with a hole and are defined
as follows:

C ::= [ ] | s C | C s | λx : σ.C

We can fill the hole of a context with a term:

[ ][t] = t

(C s)[t] = C[t] s

(s C)[t] = s C[t]
(λx : σ.C)[t] = λx : σ.C[t]

A context captures variables if its hole lies in the scope of a lambda operator. For
example λx.[] captures x. A context C is admissible for a term t if C does not capture
the free variables of t.

Consider a user writing a specification of set theory. Of course, he will often use the
union between two sets and - given the possibilities described so far - he has to write
the corresponding term each time he wants to use it. This is neither good for reuse nor
for the sake of clarity. A solution to this problem are abbreviations which we will call
definitions. These are constants in combination with terms (which of course have to
match in their types), i.e. a partial function δ : C ⇀ cwff(Σ).

The last element of presentations - and in principle the most important one - will be
axioms which are Σ-terms of type B. Axioms are propositions which are assumed to be
true and represent, as we will later see, the power of a presentation.

Definition 4 (presentation). Given a signature Σ = (S, C, τ), a set D ⊆ C, a function
δ : D →

⋃
d∈D cwffτd(Σ) such that τ d = τ (δ d) and a set K ⊆ cwffB(Σ), we call the

triple P = (Σ,K, δ) a presentation.

17



Presentations represent specifications in theory and are used to prove claims based on a
proof system induced by the respective presentation as we will see in section 2.3

But first, we will show in the next section how to write presentations in Jitpro syntax
and how this relates to the theoretical definitions given so far. This will help us to give
examples.

2.2 Presentations in Jitpro

Jitpro does not distinguish between signatures and presentations which means both
are specified at the same time. For example a sort can be defined, followed by an
axiom, followed by a sort again. Moreover, stating a definition implicitly defines the
corresponding constant, i.e the user does not have to enter them separately (and is even
not allowed to do so).

There is also a total order on the elements (which is given by the order in which the
elements are typed in) so something cannot be used before it is defined. For instance,
if the type of a constant contains a specific sort, this sort has to be defined before the
constant is defined.

The following example defines a fragment of basic set theory:

1 sort I

2 const intersect: (I B) ((I B) (I B))

3 term union = \X:I B. \Y:I B. \z:I.X z | Y z

4 axiom !X:I B. !Y:I B. intersect X Y = \z:I. X z & Y z

This code evaluates as follows:

• The first line defines a sort I. As B is defined implicitly, the set of sorts is {I, B}

• The second line defines a constant intersect of type (I B)((I B)(I B))

• The third line defines a definition, i.e. the term λX : IB. λY : IB. λz : I.Xz ∨ Y z

is assigned to the constant union of type (I B)((I B)(I B))

• The fourth line says that the intersection of two sets corresponds to a subset which
contains only those elements which are in both sets. The corresponding axiom is
∀I B (λX : I B. ∀I B (λY : I B. intersect X Y =I B λz : I.X z ∧ Y z))

Altogether, we defined the signature

Σ0 = ({I, B}, {union, intersect},

{(union, (I B)((I B)(I B))), (intersect, (I B)((I B)(I B)))}1)

18



and the presentation

P0 = (Σ0, {∀I B (λX : I B. ∀I B (λY : I B. intersect X Y =I B λz : I.X z ∧ Y z))},

{(union, λX : IB. λY : IB. λz : I.Xz ∨ Y z)})

Jitpro supports all logical constants from figure 2.1.2 but it does not treat them as logical
constants but as binary operators (& (conjunction), | (disjunction), -> (implication), =
(equality/equivalence), <-> (equivalence)), unary operators (~ (negation)) and binders
(! (universal quanitifer), ? (existential quantifier), \ (lambda expression)). Only true

and false can be used as expected.

In particular, the type of ∀σ, ∃σ and =σ cannot be specified. Jitpro determines it
from the context in which the operators are used. This makes it impossible for Jitpro to
parse the following example, even if logical operators could be used as logical constants:

axiom = = =

The type of the inner = depends on the type of the outer = which can possibly be of any
type.

Besides axioms, Jitpro also supports the specification of lemmas using the keyword
lemma instead of axiom. But as we will later see, they do not give us any additional
power and therefore only play a role for the practical part of this thesis (see section 4).

More information about the syntax and semantics of Jitpro can be found in the online
documentation at [5] and [6].

2.3 A Proof System for Valid Sequents

So far, we have a notion of signatures and presentations which can be used to describe
axiomatic theories. The goal in this section is to come up with a notion of provability
using Jitpro and presentations.

2.3.1 The Proof System B and Its Relation to Jitpro

Jitpro is based on a proof system called Bwhich is described in detail in [3]. B uses
logical interpretations and the notion of sequents to define validity: Let a presentation
P = {Σ,K, δ} be given. A sequent is a pair (A, s) (or A ⊢ s) such that A ⊆ cwffB(Σ)
(assumptions) and s ∈ cwffB(Σ) (claim). We define the following notations for sequents:

• A, s0, s1 . . . , sn ⊢ t for A ∪ {s0, s1, . . . , sn} ⊢ t

• s0, s1 . . . , sn ⊢ t for {s0, s1 . . . , sn} ⊢ t

A sequent A ⊢ s is valid iff whenever a logical interpretation satisfies A it also satisfies
s. Let |= be the set of all valid sequents.

1we use sets of pairs to describe functions
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Proposition 1 (without proof). B is sound for |=.

Proposition 1 says that if we have a closed proof tree for a sequent in B then this sequent
is valid.

Possible proof steps in B are expressed by a set of inference rules. One of these rules
is called Contra and looks as follows:

Contra
A,¬s ⊢ ⊥

A ⊢ s

It can be read as “In order to prove that A ⊢ s is valid, we can also prove that
A,¬s ⊢ ⊥ is valid” or as “If we know that A and ¬s yield false then we also know that
A yields s”. Using this rule, most of the basic refutation rules (see figures 2.2 and 2.3)
used by Jitpro can be derived.

Refutation rules are used to show that something cannot hold, i.e. that it is unsatisfi-
able. The idea of Jitpro is that instead of proving that a sequent is valid (i.e. that a claim
is true in every logical interpretation), it proves that there is no logical interpretation
where the negation of the claim holds (which implies the former). In terms of sequents,
Jitpro does not show that A ⊢ s holds but it shows that A,¬s is unsatisfiable, that is
A,¬s ⊢ ⊥, which corresponds to the Contra rule.

Proposition 2 (without proof). Jitpro is sound for B.

Proposition 2 implies that Jitpro is sound for |=: If there is a closed proof tree for a
sequent in Jitpro there is also one in B. By proposition 1 the sequent is valid.

Proofs for propositions 2 and 1 can be found in [?]

2.3.2 The Tableau View

As already mentioned in section 1, Jitpro does not consider proofs as proof trees consist-
ing of derivations using refutations rules (although they are applied in the background).
Proof trees in Jitpro are represented as pools of facts (terms of type B) which contain a
contradiction, i.e. given any branch of a completed proof, one of the Closed rules was
applied.

During a proof in Jitpro, the user tries to add facts to the current branch by applying
refutation rules which results in a tableau view of the refutations rules. It describes,
given a certain fact in a pool, which facts can be added to this pool. As an example,
consider the tableau view of the rule NegImp:

NegImp
¬(s → t)

s,¬t

It describes the following situation: If we have ¬(s → t) in our pool (which is assumed
to be satisfiable) then s must be true and t must be false. Therefore, s and ¬t can be
added to the pool. Another interesting example is Or:
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Closed
A,⊥ ⊢ ⊥

Closed
A,¬⊤ ⊢ ⊥

Closed
A, s,¬s ⊢ ⊥

Closed
A,¬(s = s) ⊢ ⊥

Closed
A, (s = t),¬(t = s) ⊢ ⊥

DNeg
A,¬¬s, s ⊢ ⊥

A,¬¬s ⊢ ⊥
DeMorgan

A,¬(s ∨ t),¬s ∧ ¬t ⊢ ⊥

A,¬(s ∨ t) ⊢ ⊥

DeMorgan
A,¬(s ∧ t),¬s ∨ ¬t ⊢ ⊥

A,¬(s ∧ t) ⊢ ⊥
And

A, s ∧ t, s, t ⊢ ⊥

A, s ∧ t ⊢ ⊥

Or
A, s ∨ t, s ⊢ ⊥ A, s ∨ t, t ⊢ ⊥

A, s ∨ t ⊢ ⊥
Imp

A, s → t, t ⊢ ⊥ A, s → t,¬s ⊢ ⊥

A, s → t ⊢ ⊥

NegImp
A,¬(s → t), s,¬t ⊢ ⊥

A,¬(s → t) ⊢ ⊥
Lambda

A, s, s′ ⊢ ⊥

A, s ⊢ ⊥
where s ∼λ s′

Boolean=
A, s ≡ t, s, t ⊢ ⊥ A, s ≡ t,¬s,¬t ⊢ ⊥

A, s ≡ t ⊢ ⊥

Boolean 6=
A,¬(s ≡ t), s,¬t ⊢ ⊥ A,¬(s ≡ t), t,¬s ⊢ ⊥

A,¬(s ≡ t) ⊢ ⊥

DeMorgan
A,¬(∀x.s),∃x.¬s ⊢ ⊥

A,¬(∀x.s) ⊢ ⊥
DeMorgan

A,¬(∃x.s),∀x.¬s ⊢ ⊥

A,¬(∃x.s) ⊢ ⊥

Forall
A,∀x.s, sx

t ⊢ ⊥

A,∀x.s ⊢ ⊥
Exists

A,∃x.s, sx
y ⊢ ⊥

A,∃x.s ⊢ ⊥
y ∈ Var \ V (A ∪ {∃x.s})

Functional=
A, s =σ τ u, st = ut ⊢ ⊥

A, s =σ τ u ⊢ ⊥
for any term t of type σ

Functional 6=
A, s 6=σ τ u, sa 6= ua ⊢ ⊥

A, s 6=σ τ u ⊢ ⊥
where a is a fresh name of type σ

XM
A, s ∨ ¬s ⊢ ⊥

A ⊢ ⊥
XM

A,¬s ∨ s ⊢ ⊥

A ⊢ ⊥
Weak

A′ ⊢ ⊥

A ⊢ ⊥
if A′ ⊆ A

Figure 2.2: Basic set of refutation rules implemented by Jitpro
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Apply=
A,∀xn.s = t, C[θt], C[θs] ⊢ ⊥

A,∀xn.s = t, C[θt] ⊢ ⊥
Apply=

A,∀xn.s = t, C[θs], C[θt] ⊢ ⊥

A,∀xn.s = t, C[θs] ⊢ ⊥

where for both versions of the rule θ y = y if y 6∈ xn

and C[ ] is admissible for ∀xn.s = t

Figure 2.3: Tableau rewriting rules implemented by Jitpro

Or
s ∨ t

s | t

In this case, if the original branch with s ∨ t is satisfiable, at least one of the extended
branches is satisfiable: One, where (at least) s is true and one where (at least) t is
true (a third branch where s and t are both true could also be added but this case is
subsumed by the other two branches). As the idea of Jitpro is to show unsatisfiability,
both branches need to be refuted.

2.4 Theories

We now have a proof system for propositions such as ∀Bx : B.(x ≡ true) ∨ (x ≡ false).
So far the proof system does not depend on a presentation. We cannot yet use axioms
or definitions during a proof. Let a presentation P = (Σ,K, δ) be given. We introduce
two additional refutation rules depending on P:

AxiomP

A, k ⊢ ⊥

A ⊢ ⊥
if k ∈ K ApplyDefP

A,C[c], C[δ c] ⊢ ⊥

A,C[c] ⊢ ⊥
if c ∈ Dom(δ)

The first rule allows to add an axiom to a branch at any time and the second rule
allows to replace a definition by the actual term. We define ⊢P as the proof system
defined by the basic refutation rules from figures 2.2 and 2.3 and the rules AxiomP and
ApplyDefP and write A ⊢P c if there is a closed tableau for the sequent A,¬c ⊢ ⊥
using ⊢P .

Definition 5 (theory). Let a presentation P = (Σ,K, δ) be given

1. The P-closure of a set K′ ⊆ cwffB(Σ) is the set K′• = {k | k ∈ cwffB(Σ) ∧ ∅ ⊢P ′ k}
where P ′ = {Σ,K ∪ K′, δ}

2. P• = {Σ,K•, δ}

3. P is called a Σ-theory (or just theory in the corresponding context) iff P• = P

4. P is said to present the theory P•
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Given a presentation P, the corresponding theory P• are essentially all claims we can
prove using ⊢P , i.e. all theorems of P. At this point, it should also be clear why lemmas
are not needed as a part of the definition of presentations (see section 2.2): Lemmas are
(by definition) propositions which can be proven using the axioms of the corresponding
presentations. This implies that lemmas are always elements of the theory of a pre-
sentation and if they are needed for a proof they can be considered as one part of the
corresponding tableau which can be done “on the fly”: Given a theorem s the application
of the XM rule adds s ∨ ¬s to the current branch. This new fact can be used to split
into two new branches: One where ¬s is added, i.e. where s can be refuted and therefore
be proven and a second branch where s is added and can then be used as an axiom.

2.5 Remarks

In this chapter, we saw how to give specifications like for instance the specification of
a basic set theory. We defined signatures consisting of sorts inducing types, and typed
constants. Signatures represent the components used to construct terms. Terms describe
axioms and definitions which together form a presentation.

B is a proof system for valid sequents based on logical interpretations. Jitpro’s refuta-
tion rules are derived from B using the Contra rule: Instead of proving that a claim
holds we prove that the negation of the claim is unsatisfiable.

Proofs in Jitpro are not represented by a proof tree consisting of applications of refu-
tation rules but by a tableau view which is a more intuitive representation.

We extended the basic set of refutation rules by two additional rules which depend
on a presentation: AxiomP adds an axiom to the branch and ApplyDefP replaces a
definition by the corresponding term. These two rules induce a presentation dependent
proof system ⊢P . Using this proof system we defined the notion of a theory representing
everything we can prove using a presentation.

Most of the definitions given here for higher order logic, including signatures, presen-
tations and theories, are based on more general notions described in Institutions [12] by
Goguen and Burstall. Note that we did not present a 1:1 translation because we used
this paper more as a guideline. In the next chapter, we will introduce morphisms and
the Presentation Lemma which originate from the same work.
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3 Morphisms

Consider the following specification from section 2.2 which defines a rudimentary set
theory:

1 sort I

2 const intersect: (I B) ((I B) (I B))

3 term union = \X:I B, Y:I B, z:I.X z | Y z

4 axiom !X:I B. !Y:I B. intersect X Y = \z:I. X z & Y z

If we want to define the same rudimentary set theory for subsets we would have to
rewrite the specification to

1 sort I

2 const intersect: ((I B) B) (((I B) B) ((I B) B))

3 term union = \X:(I B) B, Y:(I B) B, z:(I B).X z | Y z

4 axiom !X:(I B) B. !Y:(I B) B. intersect X Y = \z:I B. X z & Y z

This transformation can be seen in two ways:

• We searched the first specification for all occurences of I (except for the first
line) and replaced them by (I B). This is a rather ad hoc view and we are not
guaranteed that the changes are consistent: If we accidentally replaced I by (J B)

we would have had an invalid presentation. Or we could forget to replace an I

which yields a different presentation than the one we expected.

• We mapped the sort I of the first signature to the type (I B) of the second sig-
nature. This is a mathematical operation which is consistent because we know
that (I B) is a valid type of the second presentation. We will call this operation
morphism (see section 3.1).

While this example looks quite trivial, consider the following specification which is to
define a very basic version of graph theory:

1 sort V // vertices

2 const E: V (V B) // edges

3 axiom !v1:V, v2:V. (E v1 v2) -> (E v2 v1) // undirected graph

4 claim !v1:V, v2:V, v3:V. (E v1 v3) -> (union (E v1) (E v2)) v3

The claim is not a term of the corresponding presentation because union is not defined.
In order to make it valid we need to insert the first specification from above after line 1,
delete sort I and replace I by V. This is again ad hoc which is error-prone.
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Alternatively, we can also define a third (bigger) presentation based on the second one
and by using the first presentation. The morphism then maps from the first presentation
to the third one. This operation will be called import (see section 3.3).

Another interesting question will be: When morphing (and importing), what happens
to existing proofs? Are they still valid? Or in other words: How does a theory defined by
the corresponding presentation change? Does it get bigger? Or smaller? Of course, our
goal is to preserve existing proofs and this only works if we observe certain conditions.
These conditions will be given by the Presentation Lemma in section 3.2.

3.1 The Definition of Morphisms

3.1.1 Signature Morphisms

Consider two signatures Σ1 = (S1, C1, τ1) and Σ2 = (S2, C2, τ2). A possible mapping
between them could be two functions µ : S1 → S2 and ν : C1 → C2, i.e. a mapping
between the sorts and a mapping between the constants. The problem with that is that
it does not yield any additional power but corresponds more to some kind of renaming.
As already said in the introduction to this chapter, a mapping from sorts to types and,
analogously, from constants to terms is more useful. In addition, to be consistent, the
type of the term constants are mapped to should correspond to the image of the type of
the constant.

Definition 6 (signature morphism). Let Σ = (S, C, τ) and Σ′ = (S ′, C′, τ ′) be two
signatures. The pair φ = (µ, ν) with µ : S → T (S ′) and ν : C → cwff(Σ′) is called
a signature morphism from Σ to Σ′ iff µ B = B and ν c ∈ cwffµ (τ c)(Σ

′) where µ is
recursively defined on types as follows:

µ : T (S) → T (S ′)
µ α = µ α

µ (C D) = (µ C) (µ D)

Given a signature morphism φ = (µ, ν), we recursively define the function ν on terms:

ν : wff(Σ) → wff(Σ′)
ν (λx : C.t) = λx : (µ C).(ν t)

ν (s t) = (ν s) (ν t)
ν x = x

ν c = ν c

ν =σ = =µ σ

ν ∃σ = ∃µ σ

ν ∀σ = ∀µ σ

ν l1 = l

1
l are in this case all logical constants except for =σ, ∃σ and ∀σ
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ν recursively on contexts:

ν [ ] = [ ]
ν (s C) = (ν s) (ν C)
ν (C s) = (ν C) (ν s)

ν (λx : σ.C) = λx : µ σ.(ν C)

and use the following notation:

• φ α for µ α

• φ σ for µ σ

• φ c for ν c

• φ t for ν t

• φ C for ν C

• φ A for {φ t | t ∈ A}

3.1.2 Theory Morphisms

Having morphisms for signatures, the next logical step would be to define morphisms
on presentations. But as we will see, it makes more sense to first consider theories and
talk about the preservation of provability: When mapping one theory into another one,
all existing theorems should still be valid, i.e. there should exist a corresponding proof
in the target theory. As already mentioned, this is very useful if, for example, a certain
theorem from set theory is needed while working in a theory of natural numbers.

Definition 7 (theory morphism). Let T = (Σ,K, δ) and T ′ = (Σ′,K′, δ′) be theories. A
signature morphism φ from Σ to Σ′ is a theory morphism from T to T ′ iff φ K ⊆ K′.

This definition says that a signature morphism is also a theory morphism if and only
if the morphed versions of the theorems of the source theory are also theorems of the
target theory. This corresponds to the requirement from above.

On the other hand, the definition can hardly be verified for a concrete morphism:
All (infinitely many) theorems of the theory would have to be checked which includes
reproving the theorems to be reused. The notion of a theory morphism would not reward.

But as we will see in the next section, it is possible to reduce the number of ele-
ments which need to be checked to a finite domain by transferring the concept of theory
morphisms to finite presentations.

3.2 The Presentation Lemma

Given a presentation P = (Σ,K, δ), consider a proof of an arbitrary theorem in the
corresponding theory. The only proof steps in this proof which depend on the defini-
tions and axioms of the presentation are proof steps which consist of the application of
AxiomP or ApplyDefP so there are two questions:

26



• Are theorems elements of any theory (given some morphism) if the corresponding
proof neither contains AxiomP nor ApplyDefP?

• Does the same hold for theorems with presentation dependent proofs? And if not,
are there at least certain conditions for a theorem such that it can be used within
another presentation if these conditions are fulfilled?

Both questions are answered by the following lemma:

Lemma 8 (Presentation Lemma). Let P = (Σ,K, δ) and P ′ = (Σ′,K′, δ′) be presenta-
tions and φ be a signature morphism from Σ to Σ′. φ is a theory morphism from P • to
P ′• iff φK ⊆ K′• and (φ c =φ (τ c) φ (δ c)) ∈ K• ∀c ∈ Dom(δ)

The conditions in this lemma are only related to the definitions and axioms of a pre-
sentation. This means that, given a morphism, the morphed version of a theorem is
also a theorem in the target presentation if the corresponding proof neither uses axioms
(AxiomP) nor definitions (ApplyDefP) of the original presentation.

In order to prove the Presentation Lemma, two additional lemmas are needed:

Lemma 9. Let P = (Σ,K, δ) be a presentation as usual and C[t] ∈ wff(Σ) some context
with a term in its hole. Let φ be a signature morphism from Σ to some other signature.
Then:

φ (C[t]) = (φ C)[(φt)]

Proof. We prove this lemma by induction on the structure of C. There are four cases:

• C = [ ]: φ ([ ][t]) = φ t = [ ] (φ t) = (φ [ ]) (φ t)

• C = (C ′ s′): φ (C ′ s)[t] = φ (C ′[t] s) = (φ C ′[t]) (φ s)
IH
= ((φ C ′)[φ t]) (φ s)

= ((φ C ′) (φ s))[φ t] = (φ (C ′ s))[φ t]

• C = (s C ′): Analogously to the previous step

• C = (λx : σ.C ′): φ (λx : σ.C ′)[t] = φ (λx : σ.C ′[t]) = λx : (φ σ).φ C ′[t]
IH
= λx : (φ σ).(φ C ′)[φ t] = (λx : (φ σ).(φ C ′))[φ t] = (φ (λx : σ.C ′))[φ t]

Lemma 10. Let P = (Σ,K, δ) be a presentation as usual, s a well-typed Σ-Term and θ

a substitution on terms. Let φ be a signature morphism from Σ to some other signature.
Then:

φ (θ t) = θ′ (φ t)

where θ′ = φ ◦ θ.

Proof. Proven by induction on the structure of t:

• t = l: φ (θ l) = φ l = l′ = θ′ l′ = θ′ (φ l)
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• t = c: φ (θ c) = φ c = θ′ (φ c)
The last equality holds because, as above, φ cannot introduce free variables

• t = x: φ (θ x) = φ (θ x) = θ′ x = θ′ x = θ′ (φ x)

• t = (λx : σ.s): φ (θ (λx : σ.s)) = φ (λy : σ.(θ[x := y] s))

= λy : (φ σ).φ (θ[x := y] s)
IH
= λy : (φ σ).θ′[x := y] (φ s)

= θ′ (λx : (φ σ).φ s) = θ′ (φ (λx : σ.s))
The second to last step holds because φ does not affect variables, in particular not
the y.

• t = (s t′): φ (θ (s t′)) = φ ((θ s) (θ t)) = (φ (θ s)) (φ (θ t))
IH
= (θ′ (φ s)) (θ′ (φ t)) = θ′ ((φ s) (φ t)) = θ′ (φ (s t))

These two lemmas finally allow to prove the Presentation Lemma:

Proof of Lemma 8. Assume we are given some signature morphism φ, a theory P• =
(Σ,K•, δ) and a closed tableau for some k ∈ K•. We will show by structural induction,
that there is a morphed version of this tableau which is still closed and therefore a proof
for the morphed version of the problem:

• Induction base: We have to check all five Closed rules:

– Given

A,⊥ ⊢ ⊥

consider the morphed version:

φ A, φ ⊥ ⊢ φ ⊥
=

φ A,⊥ ⊢ ⊥

which is again an instance of the original Closed rule. The equality holds
because φ leaves ⊥ unchanged.

–

A, s,¬s ⊢ ⊥

This rule is morphed to

φ A, φ s, φ(¬s) ⊢ φ ⊥
=

φ A, φ s,¬ (φ s) ⊢ ⊥

which is, as above, again an instance of the original rule.

– The other three cases work analogously.
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• Induction step: We have to check all refutation steps (which have at least one
premise) whether the morphed version can still be proven. By induction hypothe-
sis, we assume that we already have closed proof trees for all morphed premises of
the step.

–

And
A, s ∧ t, s, t ⊢ ⊥

A, s ∧ t ⊢ ⊥

which is morphed to

φ A, φ (s ∧ t), φ s, φ t ⊢ ⊥

φ A, φ (s ∧ t) ⊢ ⊥
=

φ A, (φ s) ∧ (φ t), φ s, φ t ⊢ ⊥

φ A, (φ s) ∧ (φ t) ⊢ ⊥

This is again an instance of the And rule

–

Imp
A, s → t, t ⊢ ⊥ A, s → t,¬s ⊢ ⊥

A, s → t ⊢ ⊥
:

φ A, φ (s → t), φ t ⊢ ⊥ φ A, φ (s → t), φ (¬s) ⊢ ⊥

φ A, φ (s → t) ⊢ ⊥
=

φ A, (φ s) → (φ t), φ t ⊢ ⊥ φ A, (φ s) → (φ t),¬(φ s) ⊢ ⊥

φ A, (φ s) → (φ t) ⊢ ⊥

which is again an instance of Imp

Most other roles work analogously, except:

–

Lambda
A, s, s′ ⊢ ⊥

A, s ⊢ ⊥
where s ∼λ s′

This rule is morphed to
φ A, φ s, φ s′ ⊢ ⊥

φ A, φ s ⊢ ⊥

This is again an instance of the Lambda rule because the lambda equivalence
condition φ s ∼λ φ s′ still holds:

∗ α-equivalence is still given because morphisms do not affect variable
names and cannot introduce unbound variables.

∗ β-reduction: Let (λx.t) t′ be a β-redex in s which is reduced to txt′ . Ap-
plying φ to s yields (λx.φ t) (φ t′) which is still a β-redex and can be
reduced to (φ t)xφ t′ = φ (txt′) according to Lemma 10.

∗ η-reduction: Let λx.t x be an η-redex in s which can be reduced to t.
After applying φ to s we get λx.(φ t) x which is again an η-redex and
can be reduced to φ t.
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–

Apply=
A,∀xn.s = t, C[θt], C[θs] ⊢ ⊥

A,∀xn.s = t, C[θt] ⊢ ⊥

Applying the morphism and Lemma 9 yields

φ A,∀xn.φ s = φ t, (φ C)[φ (θt)], (φ C)[φ (θs)] ⊢ ⊥

φ A,∀xn.φ s = φ t, (φ C)[φ (θt)] ⊢ ⊥

According to Lemma 10, there is a θ′ such that

φ A,∀xn.φ s = φ t, (φ C)[θ′ (φt)], (φ C)[θ′ (φs)] ⊢ ⊥

φ A,∀xn.φ s = φ t, (φ C)[θ′ (φt)] ⊢ ⊥

which is again an instance of Apply=. The second Apply= rule can analo-
gously be proven.

–

AxiomP

A, k ⊢ ⊥

A ⊢ ⊥
where k ∈ K

which is morphed to
φ A, φ k ⊢ ⊥

φ A ⊢ ⊥

By induction hypothesis, we have a closed tableau for φ A, φ k ⊢ ⊥. We give
a proof tree for φ A ⊢ ⊥:

XM

Or

Weak
φ A, φ k ⊢ ⊥

φ A, φ k ∨ ¬(φ k), φ k ⊢ ⊥

¬(φ k) ⊢ ⊥

φ A, φ k ∨ ¬(φ k),¬(φ k) ⊢ ⊥
Weak

φ A, φ k ∨ ¬(φ k) ⊢ ⊥

φ A ⊢ ⊥

The left branch can be closed by applying the induction hypothesis. The right
branch can be closed because we required that φ k is provable, i.e. that there
exists a closed tableau for ¬(φ k) ⊢ ⊥.

–

ApplyDefP
A,C[c], C[δ c] ⊢ ⊥

A,C[c] ⊢ ⊥
where d ∈ Dom(δ)

Applying the morphism and Lemma 9 yields

φ A, (φ C)[φ c], (φ C)[φ (δ c)] ⊢ ⊥

φ A, (φ C)[φ c] ⊢ ⊥

By induction hypothesis, we have a closed tableau for φ A, (φ C)[φ c], (φ C)[φ (δ c)] ⊢
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⊥ and want to prove φ A, (φ C)[φ c] ⊢ ⊥. This proof is given by the following
derivation:

XM

Or+Weak

Apply=+Weak
φ A, (φ C)[φ c], (φ C)[φ (δ c)] ⊢ ⊥

φ A, (φ C)[φ c], φ c = φ (δ c) ⊢ ⊥ ¬(φ c = φ (δ c)) ⊢ ⊥

φ A, (φ C)[φ c], φ c = φ (δ c) ∨ ¬(φ c = φ (δ c))

φ A, (φ C)[φ c] ⊢ ⊥

As above, the left branch can be closed by applying the induction hypothesis
and the right branch can be closed because we required φ c = φ (δ c) to be
provable.

3.3 Imports

We now have the notion of morphisms and we know under which conditions a morphism
can be used to transform a presentation into another one without losing any power. The
next goal is to work towards a corresponding implementation. But an implementation
of a pure morphism is not realistic.

Consider the following two examples:

1. A user is working in number theory and wants to use a theorem of set theory in
some proof

2. A user is working in number theory and wants to specify sets of numbers

In the first example, the user needs to state a morphism and apply the morphism to
the corresponding theorem. But before he can use this theorem, he has to prove the
conditions stated in the Presentation Lemma for all axioms and definitions of set theory
(or at least for those used in the original proof of the theorem).

In the second example, the user has to copy the set theory parts he wants to use, specify
a morphism and apply this morphism to terms of the copied parts (e.g. terms which are
used in definitions). Especially the copy part can not be handled by morphisms. To
illustrate this case, recall the two code fragments from the introduction to this chapter:

1 sort I // set elements

2 const intersect: (I B) ((I B) (I B))

3 term union = \X:I B, Y:I B, z:I.X z | Y z

4 axiom !X:I B. !Y:I B. intersect X Y = \z:I. X z & Y z // set intersection

and

1 sort V // vertices

2 const E: V (V B) // edges

3 axiom !v1:V, v2:V. (E v1 v2) -> (E v2 v1) // undirected graph

4 claim !v1:V, v2:V, v3:V. (E v1 v3) -> (union (E v1) (E v2)) v3
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In order to make the union available for graph theory, the sort I needs to be morphed
to V and the definition of union must be copied to the second presentation while the
morphism is applied to the corresponding term. If the axiom is also needed, it must also
be copied and morphed. This results in the following presentation:

1 sort V

2 const E: V (V B)

3 const intersect: (V B) ((V B) (V B))

4 term union = \X:V B, Y:V B, z:V.X z | Y z

5 axiom !X:V B. !Y:V B. intersect X Y = \z:V. X z & Y z

6 axiom !v1:V, v2:V. (E v1 v2) -> (E v2 v1)

7 claim !v1:V, v2:V, v3:V. (E v1 v3) -> (union (E v1) (E v2)) v3

Copying and morphing together, or specifying a presentation and a corresponding mor-
phism at the same time, is called importing :

Definition 11 (import, single presentation). Given two signatures Σ1 = (S1, C1, τ1)
and Σ2 = (S2, C2, τ2) and two presentations P1 = (Σ1,K1, δ1) and P2 = (Σ2,K2, δ2),
an import of P1 into P2 is an operation Ψ on P1 and P2 such that Ψ (P1,P2) yields a
presentation P3 = (Σ3,K3, δ3) with Σ3 = (S3, C3, τ3) such that

• S2 ⊆ S3, (S3 \ S2) ⊆ S1

• C2 ⊆ C3, (C3 \ C2) ⊆ C1

• τ3 c = τ2 c ∀c ∈ C3 \ C1, τ3 c = φ (τ1 c) ∀c ∈ C3 \ C2

• K2 ⊆ K3, (K3 \ K2) ⊆ φK1

• dom(δ2) ⊆ dom(δ3), (dom(δ3) \ dom(δ2)) ⊆ dom(δ1)

• δ3 c = δ2 c ∀c ∈ dom(δ3) \ dom(δ1), δ3 c = φ (δ1 c) ∀c ∈ dom(δ3) \ dom(δ2)

where φ is a signature morphism from Σ1 to Σ3.

As it is possible to import multiple presentations, for example if a user wants to combine a
theory of sets and a theory of natural numbers, we generalize the definition to the import
of multiple presentations:

Definition 12 (import, multiple presentations). Let n > 0, let i range over {1, . . . , n+1}
and let j range over {1, . . . , n}. Given n + 1 signatures Σi = (Si, Ci, τi) and n + 1
presentations Pi = (Σi,Ki, δi), an import of P1 . . .Pn into Pn+1 is an operation Ψ on
Pi such that Ψ (P1, . . . ,Pn+1) yields a presentation Pn+2 = (Sn+2, Cn+2, τn+2) with
Σn+2 = (Sn+2, Cn+2, τn+2) such that

• Sn+1 ⊆ Sn+2, (Sn+2 \ Sn+1) ⊆
⋃

j Sj

• Cn+1 ⊆ Cn+2, (Cn+2 \ Cn+1) ⊆
⋃

j Cj
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• τn+2 c = τn+1 c ∀c ∈ Cn+2 \
⋃

j Cj, τn+2 c = φj (τj c) ∀c ∈ Cn+2 ∩ Cj

• Kn+1 ⊆ Kn+2, (Kn+2 \ Kn+1) ⊆ (
⋃

j φj Kj)

• dom(δn+1) ⊆ dom(δn+2), (dom(δn+2) \ dom(δn+1)) ⊆
⋃

j dom(δj)

• δn+2 c = δn+1 c ∀c ∈ dom(δn+2) \
⋃

j dom(δj),
δn+2 c = φj (δj c) ∀c ∈ dom(δn+2) ∩ dom(δj)

where φj is a signature morphism from Σj to Σn+2.

The example from above shows another interesting property of imports: An existing
theorem from set theory can be used for a proof in the third presentation without any
of the checks imposed by the Presentation Lemma. As the morphed versions of the
definition and of the axiom were copied, the corresponding checks become trivial (they
consist of the application of AxiomP and Closed for axioms and Apply= and Closed

for definitions). This makes it very easy to apply the Presentation Lemma and reuse
theorems proven before.

Unfortunately, imports also inherent dangers as the following example will show. We
give a specification of the natural numbers using the Peano axioms:

1 sort N // natural numbers

2 const 0:N // zero

3 const S:N N // successor function

4 axiom !x:N, y:N. (S x = S y) -> x = y // injectivity of S

5 axiom !x:N. S x != 0 // successor of a number is never zero

6 axiom !p:N B. p 0 & (!x:N. p x -> p (S x)) -> !x:N. p x // induction axiom

Assume N is mapped to N B, 0 to a set only consisting of 0, i.e. {0}1 and S is mapped
to a function which, given a set of numbers, returns the same set including the smallest
number which is not in this set, i.e. given {1, 2, 4}, it returns {0, 1, 2, 4} (if the set already
contains all natural numbers, it is only returned). This morphism is applied to the three
axioms which are imported (we use S as an abbreviation for the function just described):

1 sort N

2 axiom !x:N B, y:N B. (S x = S y) -> x = y

3 axiom !x:N B. S x != {0}

4 axiom !p:(N B) B. p {0} & (!x:N B. p x -> p (S x)) -> !x:N B. p x

Consider the property ∀X : N B.∃z : N.X z which says that all sets of natural numbers
contain at least one number. This property is false because it does not hold for the
empty set (which does not contain anything). But using the morphed induction axiom,
we can prove that this property is true because it holds for the set only consisting of 0
and if it holds for a set consisting of something it still holds for a bigger set.

Being able to give an example which shows that an imported axiom is false illustrates
that it is important for a user to be very careful with importing axioms.

1note that this is not valid Jitpro syntax but we will use it for the sake of simplicity
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3.4 Remarks

In this chapter, we have seen how morphisms can be used to translate between two
signatures, i.e. how to transform a term of one signature into a term of another signature.

The signature morphism can be extended to the notion of theory morphisms, if the
morphism preserves the provability of theorems of the source theory. The problem of this
definition is that its condition can hardly be verified for a concrete morphism: Infinitely
many proofs must be checked.

The Presentation Lemma weakens these conditions and states that a signature mor-
phism between two finite presentations is also a theory morphism between the corre-
sponding theories if a finite number of conditions regarding the axioms and definitions
of the source presentations can be checked. The proof of the Presentation Lemma is also
an algorithm which translates a proof in the source presentation to a proof in the target
presentation.

As pure morphisms are not powerful enough in practice, we introduced imports which
are extended morphisms. They specify a target theory together with a corresponding
morphism. Moreover, they can trivialize the checks of some conditions of the Presen-
tation Lemma. On the other hand, when using these features, it is possible to specify
inconsistent presentations which the user has to take responsibility of.
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4 Implementation

The system is implemented using todays standard web techniques: The program code
is written in object oriented PHP [16], the database holding data such as presentations
is a PostgreSQL server [17]. The interface uses Javascript [24], XHTML [25] and XML
[26]. This made it very easy to integrate the database into Jitpro because it uses the
same techniques.

On the other hand, several problems occured during the development: Scripting lan-
guages like PHP are comparably slow and need much memory (see [20] for benchmarks).
First tests showed that, without any optimization, PHP needed more than a minute
to load a chain of about 300 presentation imports (i.e. a presentation which imports
a presentation which imports a presentation...). To morph such a presentation, PHP’s
default memory limit1 of 16 megabytes did not suffice. We needed to increase it to 160
megabytes to avoid any problems.

The first section of this chapter describes the main differences between the implemen-
tation and the theory developed in the past two chapters. In the second and in the third
section, we describe how we tried to bring the two numbers from above numbers down
to something reasonable and how well this worked.

4.1 From Theory to Practice

Presentations and Signatures

As already described in section 2.2, Jitpro does not distinguish between signatures and
presentations. They are simultaniously specified. Jitpro also has an order on the ele-
ments of a presentation, i.e. something cannot be used before it is defined. Both proper-
ties, the combination of presentations and signatures as well as the order on the elements,
are inherited by our database. For example if the system checks the existence of a sort,
it only considers the part which it already checked.

The same property holds for morphisms: If a morphism is applied to a sort or to a
constant, the resulting type or term must be valid at this point. If a morphism is applied
to a valid presentation without any errors, the resulting presentation can also be checked
without any errors.

Lemmas, axioms and claims, which we will jointly refer to as knowns from now on,
can be labeled in Jitpro. Our system even requires a unique name for each known
(otherwise, the corresponding presentation will be rejected). Definitions, which do not
have a corresponding constant in Jitpro, are again split into the definition part and into
constant part by the system.

1the maximum memory which can be used by PHP to handle one call of one script
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Logical Constants

According to the definition in section 2.1.2, logical constants are a subset of all terms, i.e.
≡ is already a term. In practice, and as already described in section 2.2, logical constants
(except for ⊤ and ⊥) can also be seen as operators which require certain arguments. As
an example, the corresponding term for ≡ would not look like

(definition of terms as before)
| ≡ equivalence

but like

(definition of terms as before)
| s ≡ t equivalence; s and t are of type B

The corresponding trees (section 4.2 will discuss that in more detail) look as follows:

·

·

≡ s

t

instead of ≡

s t

The database is implemented using the second version because the tree representation
is smaller and therefore needs less memory and administrative effort.

Imports

Problems are caused by imports: They are handled as presentation elements, i.e. it is
possible to define a sort, a constant and then an import. This makes it more complicated
to do ad-hoc checks. Consider the following example:

1 // specification of presentation 1

2 import "presentation 2" // includes presentation 2

3 constant in:I B

This presentation is only valid if presentation 2 contains a sort I but does not contain
a constant in. This means that, in order to check the validity of a presentation, the
system needs to recursively consider imports during these checks.

Another problem is the import of big presentations. Consider the following example:

1 // specification of presentation 3

2 sort A, C, D, E, F, G, H, I

3 sort J, K, L, M, N, O, P, Q

4 sort R, S, T, U, V, W, X, Y

5 sort Z
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If a user wants to import this presentation he has to tell the system what he wants to
do with every single sort:

• Include the sort and apply identity morphism?

• Include the sort but with a different name and map the old sort to the new sort?

• Map the old sort to a valid type in the new presentation?

Presentations with constants, definitions and axioms make it even more complicated. To
avoid such problems, we decided to implement a default import mode for presentation
elements which is defined as follows:

• Sorts

– If the target presentation already contains the sort, the old sort is mapped to
the existing sort

– Otherwise, the sort is imported and mapped to itself

• Constants

– If there is already a constant with the same name in the target presentation
and if the types match (i.e. the morphed type of the source constant and
the type of the target constant), the old constant is mapped to the existing
constant

– If the types do not match in the first case, we exit with an error

– Otherwise, the constant is imported and mapped to itself

• Definitions

– If a definition with the same name already exists in the target presentation
and if the terms match, we do nothing

– If the terms do not match, we exit with an error

– Otherwise, the definition is imported

• Knowns are handled the same way definitions are handled.

This makes it possible to write the following presentation:

1 // specification of presentation 4

2 sort A, C

3 import "Presentation 3"

The import in this presentation imports sorts D to Z and morphs A and C from presen-
tation 3 to their counterparts in presentation 4.

Because of the implicit order of imports, the following presentation is invalid:
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1 // specification of presentation 5

2 import "Presentation 3"

3 sort A

Sort A is imported in line 2 because it does not exist at this point. Therefore, the
declaration of the same sort in line 3 is not allowed.

For knowns, the user can specify if it is imported as a claim, as a lemma, as an axiom
or as it was before. There are no checks to ensure that the import is consistent. If a
claim, which was never proven, is imported as a lemma, the user must be sure that it is
provable using the axioms.

4.2 Storing Types and Terms in a Relational Database

To find out where a program spends most of its execution time, it is common to use
profilers. Profilers analyze a run of a program by measuring the time spent in functions
and by counting the number of function calls. For PHP, the only good working profiler
is Xdebug [21]. This PHP plugin has the disadvantage that it does not consider PHP’s
internal functions but only user defined functions which lead to disappointing results:
Our functions just needed a few seconds (less than 10), i.e. they were not the reason for
the long execution times.

Different tests were more promising: After disabling all database queries, the execution
time reached reasonable numbers and was nearly equal to what Xdebug measured for our
functions. More tests showed, that the problem did not come from single slow queries
but from the total number of queries: While the time needed for a single query was very
low, it turned out that we needed a few thousands queries for 300 presentations which
were far too many.

Terms and types are the mostly used elements in a presentation and are therefore the
first candidates to be looked at more closely. But before talking about SQL queries for
loading and storing them, it makes more sense to first think about a reasonable data
structure. As an example, consider the following term:

λX : I (I B).λy : I.X y

As described in [3], it is convenient to represent recursive structures as trees. The
example from above can be transformed into one tree for the term and two trees for the
types:

λX

λy

·

X y

·

I ·

I B

I
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We use size to refer to the number of nodes in a tree. For instance the first tree has a
size of 5, the last one a size of 1.

To store trees in a relational database, there are two common techniques. For their
description, we abstract away from terms or types and consider arbitrary trees. If every
different node in the trees from above is assigned a unique number, they look as follows:

1

2

3

4 5

6

7 8

7 9

7

Note, that all I nodes got the same ID because they are the same node.

4.2.1 Pointer Representation

The first technique can be compared to an implementation of trees in a programming
language using pointers or references from nodes to their children: For each node, the
ID of the left child and the ID of the right child is stored. If the right child is NULL
(which is used for “nothing” in SQL, comparable to a NULL pointer), the node only has
one child. If both children are NULL, the node is a leaf.

Using this representation, the trees from above look as follows:

ID leftChild rightChild

1 2 NULL
2 3 NULL
3 4 5
4 NULL NULL
5 NULL NULL
6 7 8
7 NULL NULL
8 7 9
9 NULL NULL

This can be improved by using an extra table for child references which allows to have
arbitrary many children:
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ID

1
2
3
4
5
6
7
8
9

ID order childID

1 1 2
2 1 3
3 1 4
3 2 5
6 1 7
6 2 8
8 1 7
8 2 9

The order on the children is important because there is an order on the children in terms
and types. The pointer representation has the following properties:

• O(size) queries are needed for storing a tree (at least, each node must be stored)

• O(size) queries are needed for loading a tree (the nodes must recursively be
queried)

• It is cheap and easy to edit a tree: Only the leftChild and rightChild columns
respectively the corresponding rows in the second table must be changed.

• Some queries can be saved by caching already loaded nodes. For instance the node
7 in the second tree only needs to be loaded once

• Similarly, some space can be saved because each unique node only needs to be
stored once

As presentations are loaded much more often than stored (and never edited), it is im-
portant to have a low number of queries for loading a presentation. Using the pointer
structure, loading the term from above already takes at least 9 queries using the simple
version and 17 queries using the more complex (but also more flexible) version. For
bigger terms using bigger types, 80 queries would not be unusual. Although this does
not sound very practical, the pointer representation has been the preferred structure in
the past, for example in [22] and [23].

Nevertheless, the optimal case would be to have the flexibility of the second version
while having less queries than we would have when using the simple version. This can
be realized by the nested set representation.

4.2.2 Nested Set Representation

The theory behind relational databases is set theory, i.e. relational databases should
have the ability to execute set-related operations very fast. Based on this assumption,
Kamfonas described in [19] a tree representation working with sets. Given two of these
sets, they are either disjoint or one is a subset of the other. The subset relation lead to
the name nested sets, given by Celko in [18].
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The connection to trees comes from the fact that a tree is either a subtree of another
tree (subset) or completely different from it, e.g. siblings or independent trees (disjoint
sets). Recall the example from above, using letters instead of numbers:

a

b

c

d e

f

g h

g i

g

Running a depth first search on these trees while recording the discover and the finish
times, yields the following trees:

1 a 10

2 b 9

3 c 8

4 d 5 6 e 7

11 f 20

12 g 13 14 h 19

15 g 16 17 i 18

21 g 22

These numbers have a few nice properties considering an arbitrary node, for example
(we use l ro refer to the left number and r to refer to the right number):

• l is smaller and r is bigger than any number in any subtree of the node.

• ⌊ r−l
2 ⌋ corresponds to the number of children of a node. If this number is 0, the

node is a leaf.

• The path from the root to the node are all nodes with a smaller l and a bigger r.

We are especially interested in the first property: To get a whole tree corresponding to
some root, we just need to select all nodes which have a bigger l and a smaller r than
the corresponding values of the root. This can be done in one single query.

On the other hand, it is not possible to save space by using redundancies. This is
illustrated by the corresponding database table:
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ID letter left right

1 a 1 10
2 b 2 9
3 c 3 8
4 d 4 5
5 e 6 7
6 f 11 20
7 g 12 13
8 h 14 19
9 g 15 16
10 i 17 18
11 g 21 22

As the structure of a tree is determined by the left and right values, there is no possibility
to reuse existing trees as parts of new trees (a new tree will have completely different
left and right values). Only if a new tree exactly matches an existing (sub-)tree, the new
tree does not need to be stored at all. In our example, the last row would not need to
be stored because it can be represented by row 7 or by row 9.

To sum up, the nested set representation has the following properties:

• O(size) queries needed for storing a tree

• O(1) queries needed for loading a tree

• Editing a tree requires complex operations, but it can be done in O(1) queries

• Space and queries can only be saved in certain special cases

4.2.3 Comparing both structures in practice

For testing the performance of both structures under PHP, we created a full binary tree
with 2047 nodes but only with three different leafes, i.e. we expected a lot of redun-
dancies. Indeed, the recursive structure only needed 343 rows whereas the table of the
nested set structure had (as expected) 2047 rows.

The test system was a Fedora Linux in a XEN virtual machine running on an AMD
Athlon 64 X2 5600+ Dual Core with 2 GB DDR2 RAM and a 400GB SATAII hard disk.

Figure 4.2.3 shows the results of the benchmark: The nested set structure is more
than twice as fast as the recursive structure (0.12 seconds compared to 0.28 seconds). If
there were less redundancies, the difference would be even bigger because the recursive
structure would need even more queries.

4.2.4 Finding Existing Terms and Types

As mentioned in the last section, the nested set structure only allows to save space if a
new tree matches an existing (sub-)tree. But how can we find out if two trees match?
SQL does not allow to match multiple rows against each other.
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Figure 4.1: Seconds needed for loading a full binary tree with 2047 nodes

To solve this problem, we store for each row a text representation of the tree repre-
sented by this row. This text representation is a mix between Jitpro syntax and the
XML code used for communication between Jitpro and the database (see Appendix A).
As an example, consider the text representation from the example from the last section:

\X:ar(s(I),ar(s(I),b()).\y:s(I).(v(X) v(y))

To avoid invalid representations, the system must ensure that user defined names do not
contain brackets or other characters like spaces or commas.

With this additional information, it is easy to check whether a specific type or term
already exists: The database only needs to compute the text representation and search
the database for it. This is very fast due to smart indices and algorithms provided by
today’s database systems.

4.3 Union Queries

Another place which needed many queries was the loading of a whole presentation. The
corresponding function worked as follows:

1. Load presentation data (name, description...)

2. Load sorts of the presentation

3. Load constants of the presentation
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4. Load definitions of the presentation

5. Load knowns of the presentation

6. Load imports of the presentation

Each of these steps took one database query, i.e. 300 presentations needed 1800 queries
just for this one function. The separated queries even caused an additional problem
concerning the order on the presentation elements. Consider the following two tables for
sorts and constants (orderID states the order within the corresponding presentation):

sortID presentationID orderID sortName

1 1 1 I

2 1 3 N

constantID presentationID orderID constantName typeID

1 1 2 element 1
2 1 4 one 2

which could correspond to the presentation (depending on the type of the constants):

1 sort I

2 const element:I

3 sort N

4 const one:N

As we load the data in the two tables separately, the SQL database can order them only
separately. To restore the whole presentation, we need to merge the two results which is
again relatively slow due to PHP. A better solution would be to combine all the results
already at the database level and order them as one big table.

SQL provides so-called union queries which combine the result sets of multiple select
statements and even allow to order this bigger set according to a specific column. At
first sight, this exactly corresponds to the requirements from above. However, result
sets can only be combined if they have the same table structure. For example the two
tables from above have clearly different structures (the number of columns does not even
match). But even with the same table structure, it would be hard to distinguish the
results from one table from the results of another table: Imagine two separate tables for
axioms and lemmas. They would both have exactly the same structure so how can they
be distinguished?

In SQL, it is possible to add new colums on the fly. For example the query

1 SELECT

2 ’bla’ AS "column1",

3 ’blub’ AS "column2";
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implicitly returns a table consisting of two columns named column1 and column2 contain-
ing bla respectively blub. This technique cannot only be used to add a distinguishing
column but can also be used to make tables structurally equal. For the example tables
from above, this would look as follows:

1 (

2 SELECT

3 ’sort’ AS "rowType",

4 "sortID" AS "id",

5 "presentationID",

6 "sortName" AS "name",

7 "orderID",

8 0 AS "typeID"

9 FROM

10 sorts

11 ) UNION (

12 SELECT

13 ’constant’ AS "rowType",

14 "constantID" AS "id",

15 "presentationID",

16 "constantName" AS "name",

17 "orderID",

18 "typeID"

19 FROM

20 constants

21 ) ORDER BY "orderID"

This query merges as many columns as possible. For instance sortName and constantName

are merged to name. As typeID is is the only column which cannot be merged, it must
be added to the result of sorts. In this case, we use 0 as the corresponding default
value such that the database can match the types.

The column rowType can be used to distinguish rows of the two tables: If it contains
sort it belongs to the sorts table, if it contains constant, it belongs to constants.

For presentations, the use of union queries reduces the minimal number of queries
from 6 to 2 which results in 600 queries instead of 1800 queries for 300 presentations.
Using the same technique for imports (which have a similar structure like presentations)
reduces the number of queries even further.

4.4 Reducing Memory Consumption

After the implementation of the nested set structure and of the union queries, the time
needed to load a chain of 300 presentation imports decreased (as expected) by more
than a half to about 10 seconds. But the memory consumption as described in the
introduction to this chapter was still a problem.

45



It is clear that, in order to load a presentation, each distinct presentation element
(sorts, constants, types, terms...) needs to be loaded (and therefore stored in memory)
at least once. Caching and referencing those elements avoids loading the same thing
multiple times.

But what happens when morphing a presentation? Changing referenced elements is
a bad idea because this does not only change the one occurence which we wanted to
morph but changes all referenced occurences. At first sight, copying the presentation
(and therefore of all corresponding cached elements) seems to be a practical solution.
On the other hand, this (at least) doubles the memory consumption and causes the
problems already described.

Our solution is a mix between copying and caching: In practice, a user does normally
not morph presentations but only includes them, i.e. implicitly applies the identity mor-
phism. In these cases, most terms and types do not change at all and can be reused
without copying them. To check whether a term or a type changes, an algorithm only
needs to check if they contain constants or sorts which are not morphed to themselves.
If they contain such elements, the term or type is copied and morphed and otherwise
just reused.

Using this technique, we were able to reduce the memory consumption for morphing
300 presentations from 160 MB to 128 MB.

4.5 Remarks

Our system is implemented using PHP and PostgreSQL. In contrast to the definitions
in chapters 2 and 3, we combine signatures and presentations and speek only about
presentations.

Logical constants are handled as logical operators because the corresponding tree rep-
resentations are smaller. Imports have a default import mode for presentation elements
to save users from stating for each single presentation element what to do with it.

As PHP is comparably slow and has a high memory consumption, a chain of 300
presentation imports already needs over one minute to load and allocates about 160 MB
memory when morphed.

Using a profiler, we found out that most time is spent in thousands of database queries.
To reduce this number, we implemented terms and types using the nested set structure
which supports the loading of trees in one query.

Union queries reduce the number of queries even further: Instead of loading presen-
tation elements like sorts and constants separately, they are retrieved in only one big
query which combines multiple queries by using the UNION statement. In addition, this
makes it possible to sort the presentation elements on the database level which is much
faster than using PHP.

The high memory consumption when morphing is reduced by copying only those
elements which are really affected by the morphism. If a term or type does not change
it is simply reused.
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5 Conclusions

In this thesis, we have shown that the ideas of Goguen and Burstall are applicable to
simply typed higher order logic using Jitpro as the corresponding proof system: Signa-
tures and presentations together with Jitpro define the notion of a theory. Morphisms
translate between different theories. To ensure that such a translation does not render
any former proof invalid, the conditions stated by the Presenation Lemma need to be
observed. We showed that this lemma indeed holds for simply typed higher order logic.

The implementation of a problem and theory database in PHP is tricky: PHP is
comparably slow and has a high memory consumption. One main goal was to reduce
the number of database queries: We presented two structures, the nested set structure
and the pointer structure, which can be used to store trees in a relational database.
Trees are important because recursive structures such as terms or types can easily be
represented by them.

The nested set structure turned out to be very efficient when loading trees: Only
a constant number of queries is needed whereas the pointer structure needs a linear
number of queries depending on the size of the tree. As presentations are loaded much
more often than stored, we decided to use the nested set structure.

To reduce the high memory consumption when morphing a presentation into another,
we only copy presentation elements which are really affected by the morphism. This
technique resulted in a nearly 20% lower memory usage.

5.1 Future Work

There are several ways to improve or extend our system:

• In order to avoid the problems described in section 3.3, morphisms could be ex-
tended to carry predicates with them specifying subsets of types. In the corre-
sponding example, we tried to morph the sort of the natural numbers N to subsets
of natural numbers N B. This resulted in an inconsistent presentation because one
of the axioms did not hold anymore. The counterexample used the fact that the
type N B also includes the empty subset.

To avoid that, we could also define a predicate which says that nothing of type
N B equals the empty set and apply the morphism with repect to that predicate.

• Currently, non-default imports and morphisms can only be specified using XML
code. It would be more convenient if there was corresponding Jitpro syntax like
we used it in section 4.1, for example
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1 import "Presentation xyz"

2 rename sort I = J // imports sort I as sort J

3 morph sort C = C B // morphs sort C to type C B

4 end import

As a user does possibly not know which elements are contained in a specific pre-
sentation, another possibility would be to present one text field for each element
in the presentation to be imported. On the other hand, depending on the size of
this presentation, there can be too many text fields.

• It is possible that the database will get very big depending on its usage, i.e. that
there are many specifications and problems from many different theories. Cur-
rently, a user has no possibility to search the database for existing presentation
elements, such as specific definitions or axioms.

While it is easy to search for their names, it is much more difficult to search
for partial terms or partial types because higher order unification is undecidable.
Nevertheless, it is possible to retrieve certain candidates by using special indices
as described for example in [22] or [23].
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A XML DTD for the communication

between Jitpro and the database

<!ENTITY % PRESENTATIONITEM "sort | def | const | axiom

| lemma | claim | import">

<!ENTITY % TYPE "B | s | ar">

<!ENTITY % TERM "v | c | d | true | false | not

| and | or | imp | equiv | ap | l | all | ex | exu | eq">

<!ENTITY % IMPORTITEM "sortsubst | sortimport | constsubst

| constimport | defimport | knownimport">

<!ELEMENT presentations (presentation*)>

<!ELEMENT presentation (%PRESENTATIONITEM;)*>

<!ATTLIST presentation

name CDATA #REQUIRED

>

<!-- PRESENTATIONITEM -->

<!ELEMENT sort EMPTY>

<!ATTLIST sort

name CDATA #REQUIRED

>

<!ELEMENT def ((%TYPE;), (%TERM;))>

<!ATTLIST def

name CDATA #REQUIRED

>

<!ELEMENT const (%TYPE;)>

<!ATTLIST const

name CDATA #REQUIRED

>

<!ELEMENT axiom (%TERM;)>

<!ATTLIST axiom

name CDATA #IMPLIED

>

<!ELEMENT lemma (%TERM;)>

<!ATTLIST lemma

name CDATA #IMPLIED
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>

<!ELEMENT claim (%TERM;)>

<!ATTLIST claim

name CDATA #IMPLIED

>

<!ELEMENT import (%IMPORTITEM;)*>

<!ATTLIST import

dompresentationname CDATA #REQUIRED

>

<!-- IMPORTITEM -->

<!ELEMENT sortsubst (%TYPE;)>

<!ATTLIST sortsubst

name CDATA #REQUIRED

>

<!ELEMENT sortimport EMPTY>

<!ATTLIST sortimport

name CDATA #REQUIRED

newname CDATA #IMPLIED

>

<!ELEMENT constsubst (%TERM;)>

<!ATTLIST constsubst

name CDATA #IMPLIED

>

<!ELEMENT constimport EMPTY>

<!ATTLIST constimport

name CDATA #REQUIRED

newname CDATA #IMPLIED

>

<!ELEMENT defimport EMPTY>

<!ATTLIST defimport

name CDATA #REQUIRED

newname CDATA #IMPLIED

>

<!ELEMENT knownimport EMPTY>

<!ATTLIST knownimport

name CDATA #REQUIRED

newname CDATA #IMPLIED
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importas (lemma|axiom|claim|untouched) "untouched"

>

<!-- TYPE -->

<!ELEMENT B EMPTY>

<!ELEMENT s EMPTY>

<!ATTLIST s

name CDATA #REQUIRED

>

<!ELEMENT ar ((%TYPE;), (%TYPE;))>

<!-- TERM -->

<!ELEMENT v EMPTY>

<!ATTLIST v

name CDATA #REQUIRED

>

<!ELEMENT c EMPTY>

<!ATTLIST c

name CDATA #REQUIRED

>

<!ELEMENT d EMPTY>

<!ATTLIST d

name CDATA #REQUIRED

>

<!ELEMENT true EMPTY>

<!ELEMENT false EMPTY>

<!ELEMENT not (%TERM;)>

<!ELEMENT and ((%TERM;),(%TERM;))>

<!ELEMENT or ((%TERM;),(%TERM;))>

<!ELEMENT imp ((%TERM;),(%TERM;))>

<!ELEMENT equiv ((%TERM;),(%TERM;))>

<!ELEMENT ap ((%TERM;),(%TERM;))>

<!ELEMENT l ((%TYPE;),(%TERM;))>

<!ATTLIST l

varname CDATA #REQUIRED

>

<!ELEMENT all ((%TYPE;),(%TERM;))>

<!ATTLIST all

varname CDATA #REQUIRED

>

<!ELEMENT ex ((%TYPE;),(%TERM;))>

<!ATTLIST ex

varname CDATA #REQUIRED

>
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<!ELEMENT exu ((%TYPE;),(%TERM;))>

<!ATTLIST exu

varname CDATA #REQUIRED

>

<!ELEMENT eq ((%TYPE;),(%TERM;),(%TERM;))>
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