Bachelor's thesis - proposal talk:

Organizing a Library of Higher Order

by Julian Backes on December 12, 2008

Problems

Advisor: Chad Brown

Supervisor: Gert Smolka
1

Contents

e Recap from the first talk
e QOur problem

e Signature/Presentation/Provability

e A closer look at morphisms
e Signature morphisms

e Theory morphisms

e Status of the implementation

® Imports

Recap

The story so far...

Our problem

e The context: Proofs in Jitpro
e Goal: Reusing existing "theories" and proven claims

* Problem: Combining different small theories to bigger, more powerful theories

e Example:

sort I; // set elements

var x: 1I;

var S, : 0

term union . // definition of union

sort V; // veytices

var vl, vZ2, : V3

const E: v(V B} // edges

axiom !vl v2. (E vl v2) -> (E v2 vl); // undirected graph

claim !'vl, v2, v3. (E vl v3) ->
(union (E vl1) (E v2)) v3

Signatures

4 4
C T

(constants) (types of the
constants)

> WIf(2)

(well-formed formulas)

Presentations /

Problems / Provabllity

s

_

2

(signature)

J

-

0

(definitions) (terms of

) 9 knowns) y

;
JITPRO I

provable?

Problem

Closure / Theory

(

all claims provable in
JITPRO using P

closure of P/
theory presented by P

Morphisms (idea)

(Set theory) (Graph theory)

i ?
s morphism ¢

2 TP '

morphism ¢?

A closer look at
morphisms

"Truth is invariant under change
of notation”

Signature morphisms

T

(types of the
constants)

T2
(types of the
constants)

wWif(Z4)

(well-formed
formulas)

wif(Z2)

(well-formed
formulas)

Signature morphisms ctd

e let>1, 22 and ¢ = (M, V) be given
e Recursively define py°® on types using U

e Recursively define v* on terms using py*and v

wWif(Z4)

(well-formed
formulas)

e ¢ is a signature morphism from 21 and 2>

wif(Z2)

(well-formed
formulas)

Theory morphisms

e Let P1 = (21, 01, K1, K1), P2 = (22, 02, Ko, k2) and ¢: 21—=32 be given

e ¢ is a theory morphism iff ¢ (P1°) € P2* (preservation of provability)

Theory morphisms ctd

e Let P1 = (21, 01, K1, K1), P2 = (22, 02, K2, k2) and ¢: 2132 be given

e Problem: If we want to show that ¢ is a theory morphism, i.e. that we can

reuse existing proofs, we first have to reprove everything which can be quite a
lot of work.

e Fortunately: Presentation Lemma: If ¢(k1(k)) € P2* for all k € Ky and ($p(d) =
$(01(d))) € P2* for all d € Dom(d) then ¢ is a theory morphism.

e Proof: In my Bachelor's thesis ;-)

e => |t is enough to check all knowns and definitions (which can be trivial as we
will later see)

the

=
=

10N

Status o

lementat

imp

Morphisms in Jitpro

e Unfortunately, using only some implementation of pure morphisms is not very
useful in practice:

4) 4)

Presentatioy/ CI) \ Presentation 2

sort I Asort T
_ J _

e Assume, we want to reuse sort | in Presentation 2. Using morphisms, this
would work as follows:

e Define a sort | in Presentation 2

e Map sort | of Presentation 1 to sort | of Presentation 2

e Quite useless, similar with constants, definitions...

Morphisms in Jitpro ctd

e \We need a possibility to define a presentation and morph another
presentation at the same time, so called imports

e Imports are more powerful practical counterparts to the theory of morphisms

e Implicitly defines sort | and definition union and applies identity morphism

More complex import

(

Presentation 1

sort 1
term union = \C,

Presentation 2

sort V; // vertices

var v1, v2, v3: V;

const E: V V B; // edges

axiom !vl v2. (E vl v2) -> (E v2 vl); // undirected graph

import "Presentation 1"
morph sort I = V // morphs sort I to sort V
rename term union union vertices // redefines union, renames it to union vertices
// and applies morphism (union->union vertices)
end

claim !vl, v2, v3. (E vl v3) ->
(union vertices (E vl) (E v2)) v3

How imports work

~
rename >

N
/\\
b\

2

Preservation of provabllity

e \What about the obligations for a theory morphisms?
e Morphed knowns must be provable

e Morphed constant = morphed definition must be provable

e When using rename for knowns or definitions, these proofs become trivial

e Otherwise: The corresponding obligation becomes a claim in the new
presentation and has to be proven by the user

e Default import mode is rename

Questions?

Thank you for your attention
and enjoy your weekend!

