
Bachelor's thesis - proposal talk:

Organizing a Library of Higher Order Problems

by Julian Backes on December 12, 2008

Advisor: Chad Brown
Supervisor: Gert Smolka

1

Contents

• Recap from the first talk

• Our problem

• Signature/Presentation/Provability

• A closer look at morphisms

• Signature morphisms

• Theory morphisms

• Status of the implementation

• Imports

2

Recap

The story so far...

3

Our problem

• The context: Proofs in Jitpro

• Goal: Reusing existing "theories" and proven claims

• Problem: Combining different small theories to bigger, more powerful theories

• Example:
sort I; // set elements
var x: I;
var S, T: I B; // subsets
term union = \S T x.S x | T x; // definition of union

sort V; // vertices
var v1, v2, v3: V;
const E: V V B; // edges
axiom !v1 v2. (E v1 v2) -> (E v2 v1); // undirected graph

claim !v1, v2, v3. (E v1 v3) ->
 (union (E v1) (E v2)) v3

4

Signatures

S
(sorts)

C
(constants)

τ
(types of the
constants)

Σ

T(S)
(types)

wff(Σ)
(well-formed formulas)

5

Presentations / Problems / Provability

Problem

JITPRO

provable?

PΣ
(signature)

δ
(definitions)

K
("knowns")

κ
(terms of
knowns)

c
(claim)

6

Closure / Theory

P JITPRO

P●

all claims provable in
JITPRO using P

closure of P /
theory presented by P

7

Morphisms (idea)

P1●

P1

(Set theory)

P2●

P2

(Graph theory)
morphism ϕ?

morphism ϕ?

8

A closer look at
morphisms

"Truth is invariant under change
of notation"

?

9

Signature morphisms

S1
(sorts)

C1
(constants)

τ1
(types of the
constants)

Σ1

wff(Σ1)
(well-formed

formulas)T(S1)
(types)

S2
(sorts)

C2
(constants)

τ2
(types of the
constants)

Σ2

wff(Σ2)
(well-formed

formulas)T(S2)
(types)

μ ν

10

Signature morphisms ctd

• Let Σ1, Σ2 and ϕ = (μ, ν) be given

• Recursively define μ• on types using μ

• Recursively define ν• on terms using μ• and ν

• ϕ is a signature morphism from Σ1 and Σ2

wff(Σ2)
(well-formed

formulas)

wff(Σ1)
(well-formed

formulas)

ϕ

11

Theory morphisms

• Let P1 = (Σ1, δ1, K1, κ1), P2 = (Σ2, δ2, K2, κ2) and ϕ: Σ1→Σ2 be given

• ϕ is a theory morphism iff ϕ (P1●) ⊆ P2● (preservation of provability)

P1

Σ1 δ1 K1 κ1
P2

Σ2 δ2 K2 κ2

wff(Σ2)wff(Σ1)
ϕ

P1● P2●ϕ(P1●)

ϕ

⊆

12

Theory morphisms ctd

• Let P1 = (Σ1, δ1, K1, κ1), P2 = (Σ2, δ2, K2, κ2) and ϕ: Σ1→Σ2 be given

• Problem: If we want to show that ϕ is a theory morphism, i.e. that we can
reuse existing proofs, we first have to reprove everything which can be quite a
lot of work.

• Fortunately: Presentation Lemma: If ϕ(κ1(k)) ∈ P2● for all k ∈ K1 and (ϕ(d) =
ϕ(δ1(d))) ∈ P2● for all d ∈ Dom(δ) then ϕ is a theory morphism.

• Proof: In my Bachelor's thesis ;-)

• => It is enough to check all knowns and definitions (which can be trivial as we
will later see)

13

Status of the
implementation

14

Morphisms in Jitpro

• Unfortunately, using only some implementation of pure morphisms is not very
useful in practice:

• Assume, we want to reuse sort I in Presentation 2. Using morphisms, this
would work as follows:

• Define a sort I in Presentation 2

• Map sort I of Presentation 1 to sort I of Presentation 2

• Quite useless, similar with constants, definitions...

Presentation 1

sort I

Presentation 2

sort I
ϕ

15

Morphisms in Jitpro ctd

• We need a possibility to define a presentation and morph another
presentation at the same time, so called imports

• Imports are more powerful practical counterparts to the theory of morphisms

• Implicitly defines sort I and definition union and applies identity morphism

Presentation 1

sort I
term union = \C, D:I B.\x:I.(C x) | (D x)

Presentation 2

import "Presentation 1"
end
sort M
...

16

More complex import

Presentation 1
sort I
term union = \C, D:I B.\x:I.(C x) | (D x)

Presentation 2
sort V; // vertices
var v1, v2, v3: V;
const E: V V B; // edges
axiom !v1 v2. (E v1 v2) -> (E v2 v1); // undirected graph

import "Presentation 1"
 morph sort I = V // morphs sort I to sort V
 rename term union union_vertices // redefines union, renames it to union_vertices
 // and applies morphism (union->union_vertices)
end

claim !v1, v2, v3. (E v1 v3) ->
 (union_vertices (E v1) (E v2)) v3

17

How imports work

P1 P2

import

morph

P2'

rename

⊇

18

Preservation of provability

• What about the obligations for a theory morphisms?

• Morphed knowns must be provable

• Morphed constant = morphed definition must be provable

• When using rename for knowns or definitions, these proofs become trivial

• Otherwise: The corresponding obligation becomes a claim in the new
presentation and has to be proven by the user

• Default import mode is rename

19

Questions?
Thank you for your attention

and enjoy your weekend!

