Bachelor's thesis - final talk:

Organizing a Library of Higher Order Problems

by Julian Backes on April 6, 2009

Advisor: Chad Brown

Supervisor: Gert Smolka

Contents

- Recap from the first two talks
 - Our problem
 - Signature/Presentation/Provability
 - Morphisms
- The proof of the Presentation Lemma
- Imports
- Implementation
 - A datastructure for storing trees
 - Reducing memory and time consumption
- Demonstration
- Future Work

Recap

The story so far...

Our problem

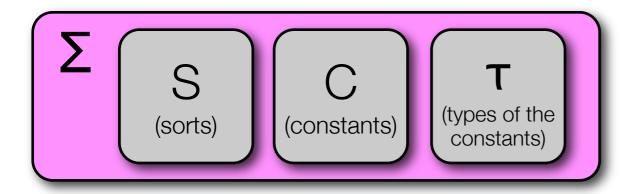
- The context: Proofs in Jitpro
- Goal: Reusing existing "theories" and proven claims
- Problem: Combining different small theories to bigger, more powerful theories

• Example:

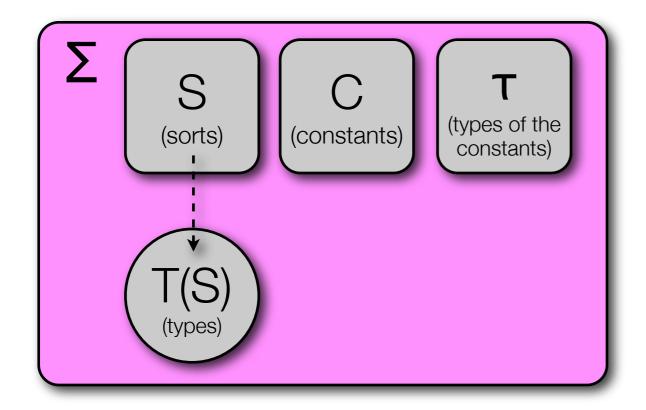
Our problem

- The context: Proofs in Jitpro
- Goal: Reusing existing "theories" and proven claims
- Problem: Combining different small theories to bigger, more powerful theories

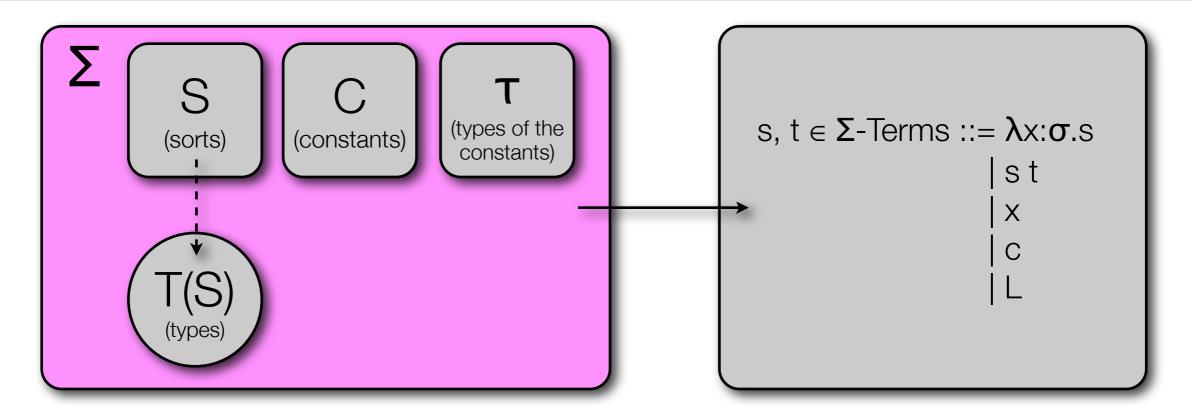
• Example:



 $\alpha \in Sorts$



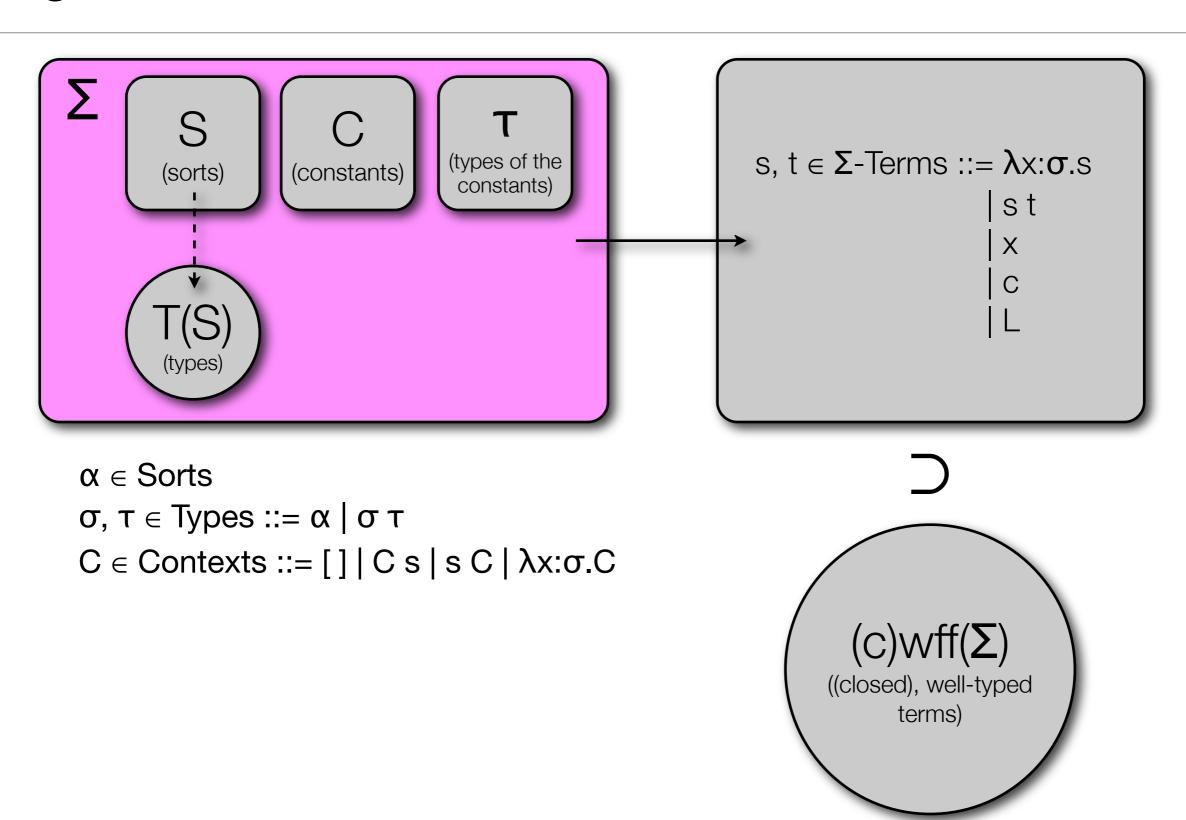
$$\alpha \in Sorts \\ \sigma, \, \tau \in Types ::= \alpha \mid \sigma \, \tau$$



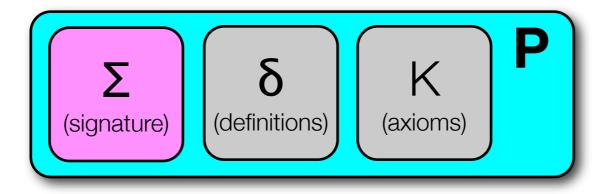
```
\alpha \in Sorts
```

 σ , $\tau \in \text{Types} ::= \alpha \mid \sigma \tau$

 $C \in Contexts ::= [] | C s | s C | \lambda x:\sigma.C$



Presentations



Extended Proof System

- The proof system of Jitpro is defined by a set of basic refutation rules
- The rules depend on a signature, for example:

CLOSED
$$\overline{A, \bot \vdash \bot}$$

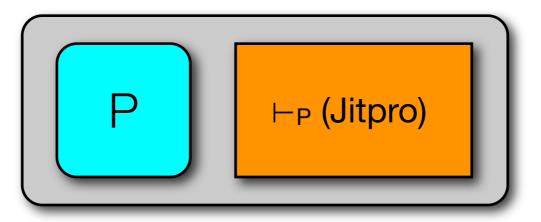
• Given a presentation $P = \{\Sigma, \delta, K\}$, we extend the proof system by two additional presentation dependent rules:

Axiom_P
$$\frac{A, k \vdash \bot}{A \vdash \bot}$$
 if $k \in \mathcal{K}$ ApplyDef_P $\frac{A, C[c], C[\delta \ c] \vdash \bot}{A, C[c] \vdash \bot}$ if $c \in Dom(\delta)$

We call this proof system ⊢P

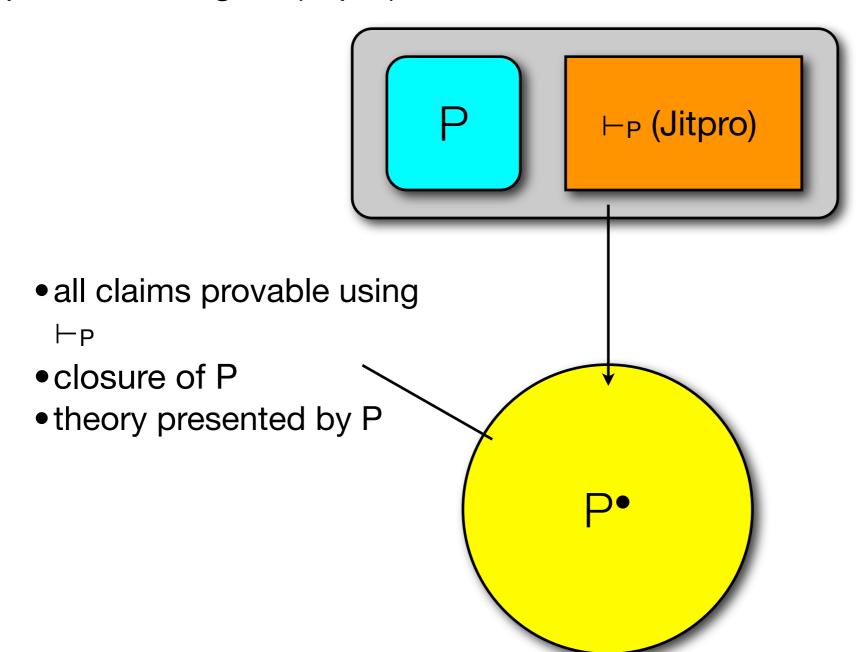
Closure / Theory

• Given a presentation $P = \{\Sigma, \delta, K\}$, a claim $c \in \text{cwff}_B(\Sigma)$ is provable iff $\neg c \vdash \bot$ is provable using \vdash_P (Jitpro)

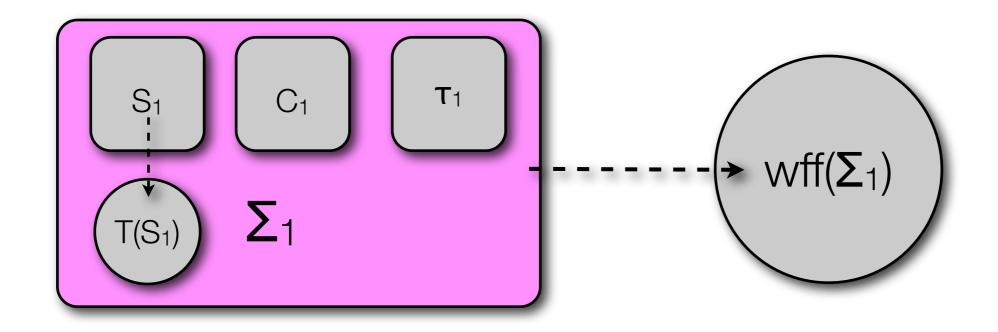


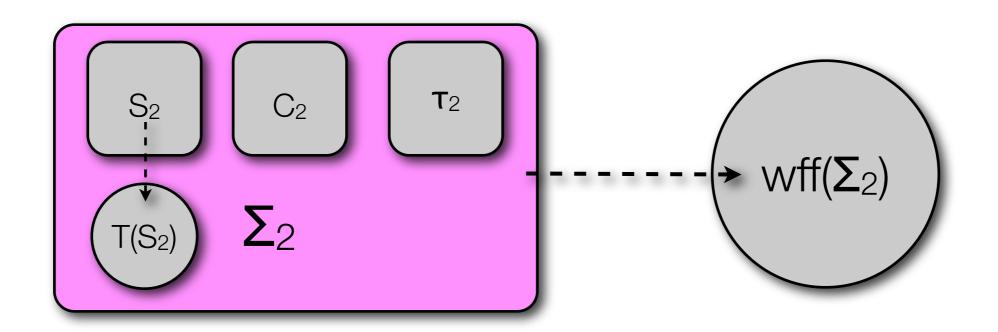
Closure / Theory

• Given a presentation $P = \{\Sigma, \delta, K\}$, a claim $c \in \text{cwff}_B(\Sigma)$ is provable iff $\neg c \vdash \bot$ is provable using \vdash_P (Jitpro)

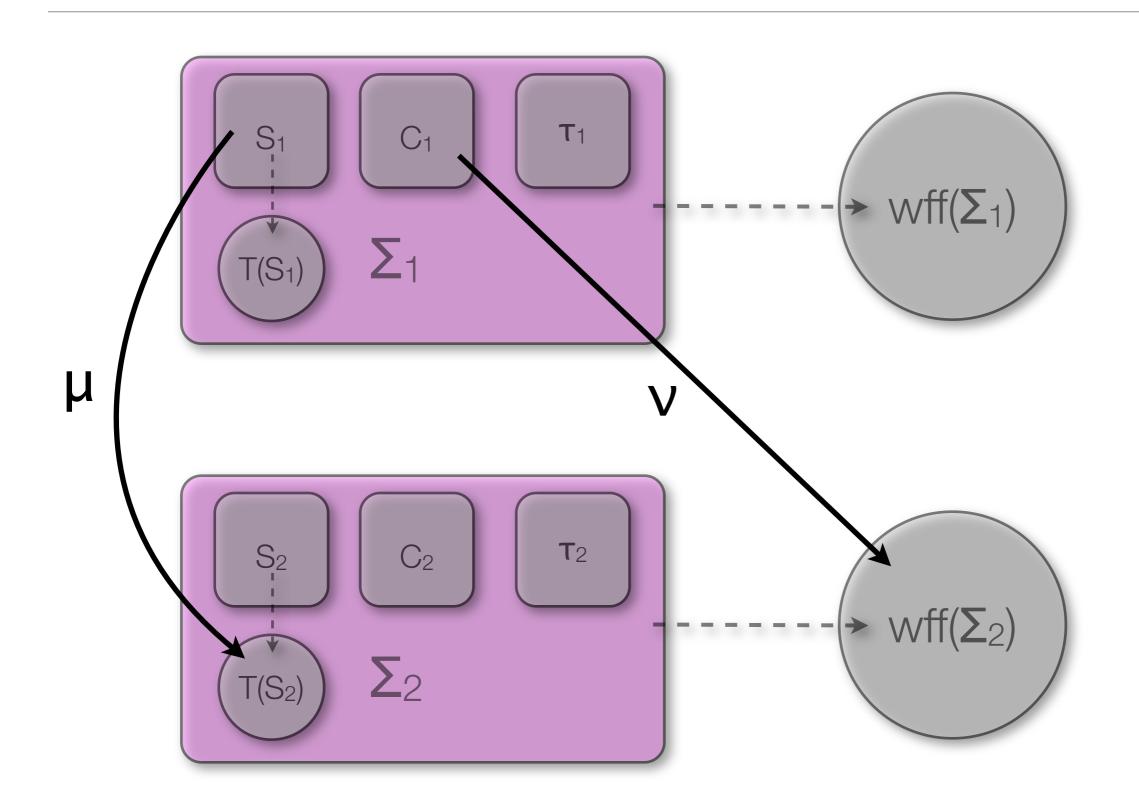


Signature morphisms (idea)





Signature morphisms (idea)



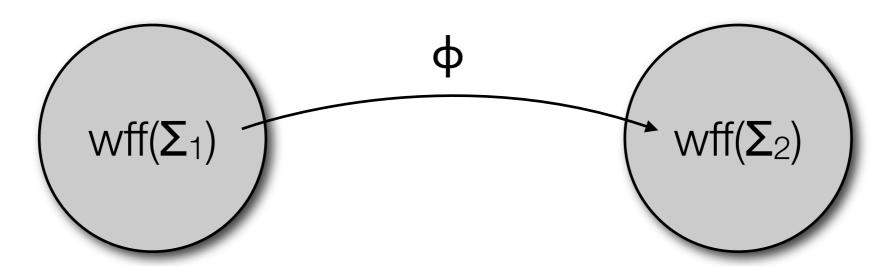
Signature morphisms ctd

- Let Σ_1 , Σ_2 and $\varphi = (\mu, \nu)$ be given
- Recursively define μ* on types using μ
- Recursively define ν* on terms using μ* and ν
- Recursively define ν^{••} on contexts using ν[•]

• φ is a **signature morphism** from Σ_1 and Σ_2

Signature morphisms ctd

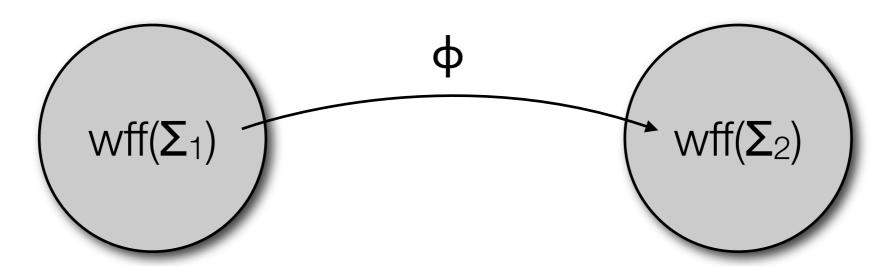
- Let Σ_1 , Σ_2 and $\varphi = (\mu, \nu)$ be given
- Recursively define μ^{*} on types using μ
- Recursively define ν* on terms using μ* and ν
- Recursively define ν** on contexts using ν*



• φ is a **signature morphism** from Σ_1 and Σ_2

Signature morphisms ctd

- Let Σ_1 , Σ_2 and $\varphi = (\mu, \nu)$ be given
- Recursively define μ^{*} on types using μ
- Recursively define ν* on terms using μ* and ν
- Recursively define ν** on contexts using ν*

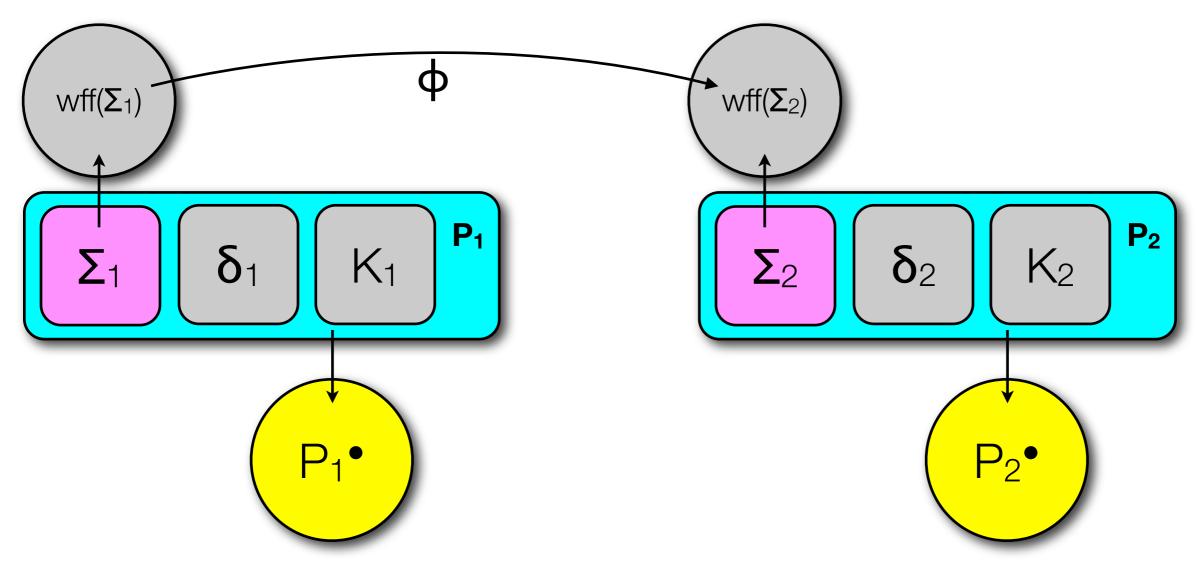


• φ is a **signature morphism** from Σ_1 and Σ_2

• Let $P_1 = (\Sigma_1, \delta_1, K_1)$, $P_2 = (\Sigma_2, \delta_2, K_2)$ and $\varphi: \Sigma_1 \rightarrow \Sigma_2$ be given

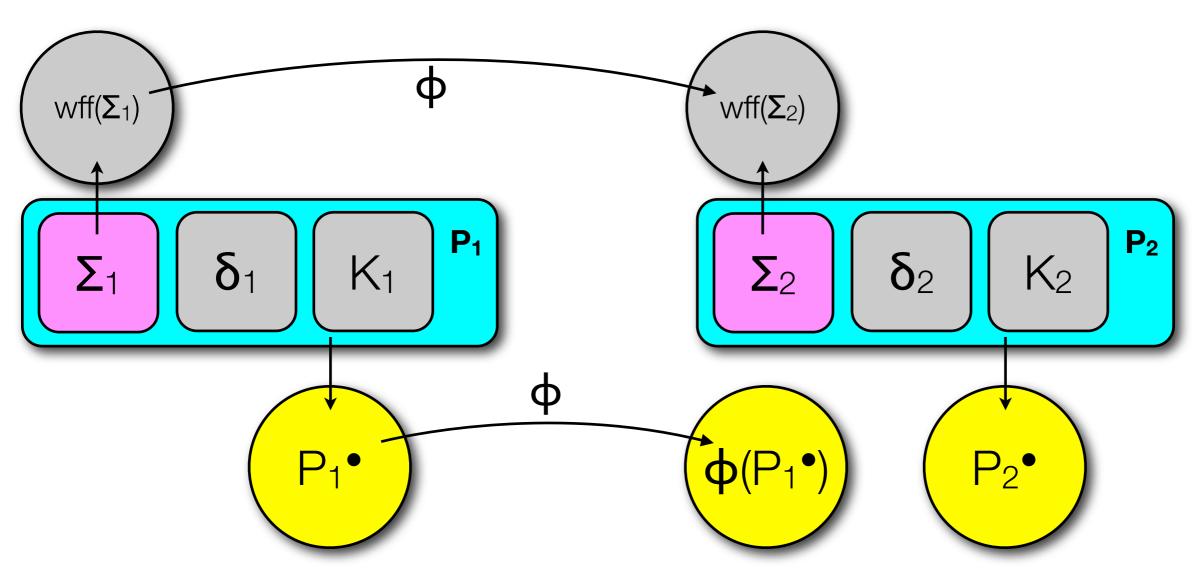
• ϕ is a **theory morphism** iff ϕ (P₁•) \subseteq P₂• (preservation of provability)

• Let $P_1 = (\Sigma_1, \delta_1, K_1)$, $P_2 = (\Sigma_2, \delta_2, K_2)$ and $\varphi: \Sigma_1 \rightarrow \Sigma_2$ be given



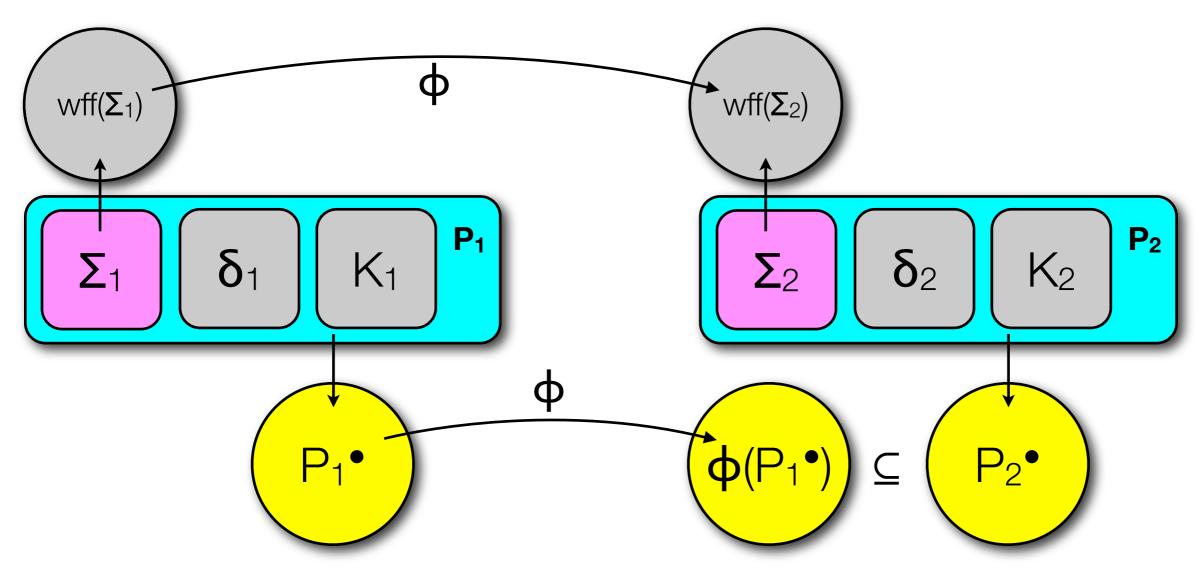
• φ is a *theory morphism* iff $\varphi(P_1^{\bullet}) \subseteq P_2^{\bullet}$ (preservation of provability)

• Let $P_1 = (\Sigma_1, \delta_1, K_1)$, $P_2 = (\Sigma_2, \delta_2, K_2)$ and $\varphi: \Sigma_1 \rightarrow \Sigma_2$ be given



• φ is a *theory morphism* iff $\varphi(P_1^{\bullet}) \subseteq P_2^{\bullet}$ (preservation of provability)

• Let $P_1 = (\Sigma_1, \delta_1, K_1)$, $P_2 = (\Sigma_2, \delta_2, K_2)$ and $\varphi: \Sigma_1 \rightarrow \Sigma_2$ be given



• φ is a *theory morphism* iff φ (P₁•) \subseteq P₂• (preservation of provability)

Theory morphisms ctd

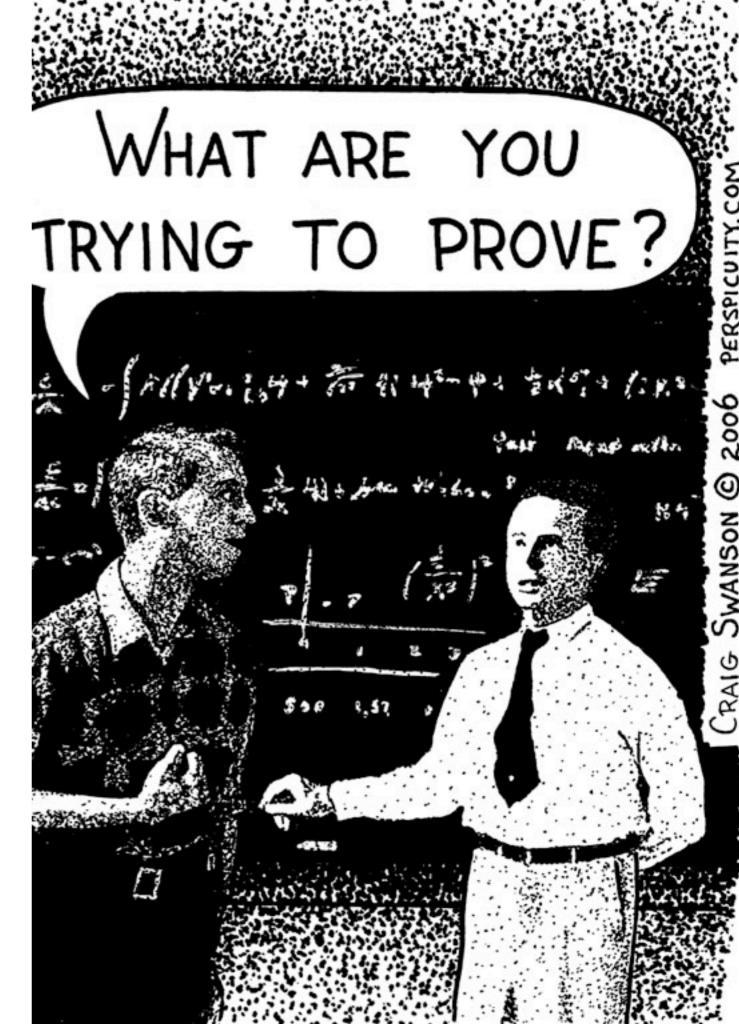
- Let $P_1 = (\Sigma_1, \delta_1, K_1)$, $P_2 = (\Sigma_2, \delta_2, K_2)$ and $\varphi: \Sigma_1 \rightarrow \Sigma_2$ be given
- Problem: If we want to show that φ is a theory morphism, i.e. that we can reuse existing proofs, we first have to reprove everything which can be quite a lot of work.

Theory morphisms ctd

- Let $P_1 = (\Sigma_1, \delta_1, K_1)$, $P_2 = (\Sigma_2, \delta_2, K_2)$ and $\phi: \Sigma_1 \rightarrow \Sigma_2$ be given
- Problem: If we want to show that φ is a theory morphism, i.e. that we can reuse existing proofs, we first have to reprove everything which can be quite a lot of work.
- Fortunately: **Presentation Lemma**: If $\varphi(k) \in P_2^{\bullet}$ for all $k \in K_1$ and $(\varphi(d) = \varphi(\delta_1(d))) \in P_2^{\bullet}$ for all $d \in Dom(\delta)$ then $\varphi(\delta)$ is a theory morphism from P_1^{\bullet} to P_2^{\bullet} .

Theory morphisms ctd

- Let $P_1 = (\Sigma_1, \delta_1, K_1)$, $P_2 = (\Sigma_2, \delta_2, K_2)$ and $\varphi: \Sigma_1 \rightarrow \Sigma_2$ be given
- Problem: If we want to show that φ is a theory morphism, i.e. that we can reuse existing proofs, we first have to reprove everything which can be quite a lot of work.
- Fortunately: **Presentation Lemma**: If $\varphi(k) \in P_2^{\bullet}$ for all $k \in K_1$ and $(\varphi(d) = \varphi(\delta_1(d))) \in P_2^{\bullet}$ for all $d \in Dom(\delta)$ then $\varphi(\delta)$ is a theory morphism from P_1^{\bullet} to P_2^{\bullet} .
- => It is enough to check all knowns and definitions (which <u>can</u> be trivial as we will later see)



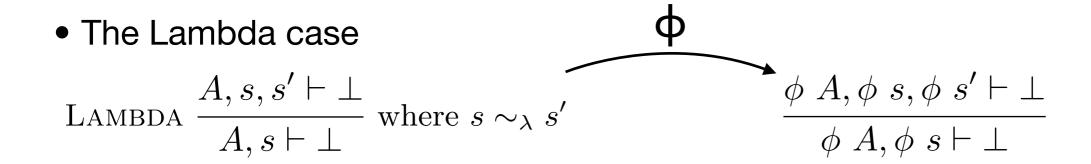
- As usual, let $P_1 = (\Sigma_1, \delta_1, K_1)$, $P_2 = (\Sigma_2, \delta_2, K_2)$ and $\phi: \Sigma_1 \rightarrow \Sigma_2$ be given
- Let c be a theorem refutable using ⊢P1, i.e. assume we are given the proof tree
- We show by structural induction that there is a corresponding (morphed) proof tree for (φ c) in ⊢_{P2}
- I will present only the most interesing cases

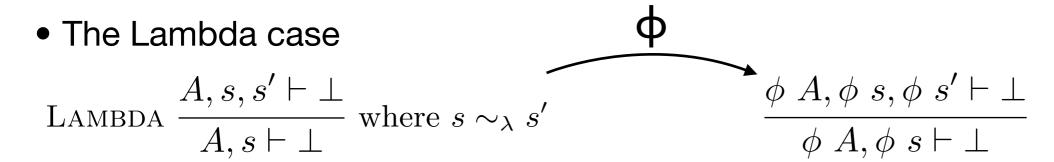
• Two basic examples:

CLOSED
$$\frac{\Phi}{A, \bot \vdash \bot}$$
 $\overline{\phi A, \phi \bot \vdash \bot} = \overline{\phi A, \bot \vdash \bot}$

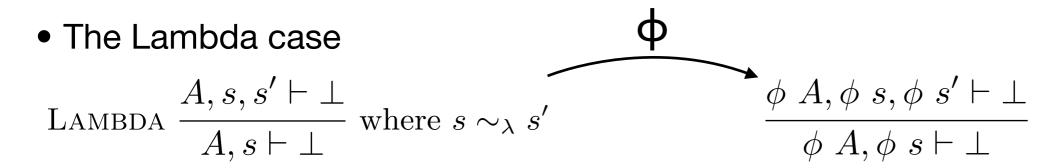
$$A_{\text{ND}} \xrightarrow{A, s \land t, s, t \vdash \bot} \qquad \qquad \frac{\phi A, \phi (s \land t), \phi s, \phi t \vdash \bot}{\phi A, \phi (s \land t) \vdash \bot}$$

$$= \frac{\phi A, (\phi s) \land (\phi t), \phi s, \phi t \vdash \bot}{\phi A, (\phi s) \land (\phi t) \vdash \bot}$$





• Claim: $\phi \ s \sim_{\lambda} \phi \ s'$ (i.e. we still have an instance of Lambda)



- Claim: $\phi \ s \sim_{\lambda} \phi \ s'$ (i.e. we still have an instance of Lambda)
 - α-equivalence: morphisms do not affect variables

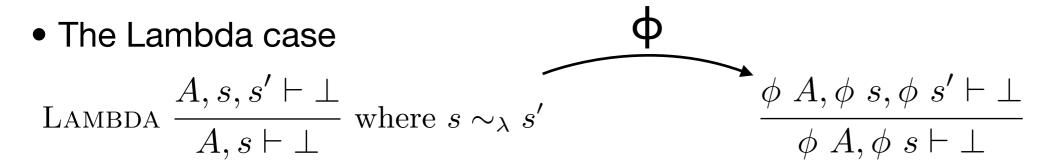
- Claim: $\phi \ s \sim_{\lambda} \phi \ s'$ (i.e. we still have an instance of Lambda)
 - α-equivalence: morphisms do not affect variables
 - β -reduction: $(\lambda x.t) \ t' \longrightarrow t_{t'}^x$

- Claim: $\phi \ s \sim_{\lambda} \phi \ s'$ (i.e. we still have an instance of Lambda)
 - α-equivalence: morphisms do not affect variables
 - β-reduction: $(\lambda x.t) \ t' \longrightarrow b$ $(\lambda x.\phi \ t) \ (\phi \ t')$

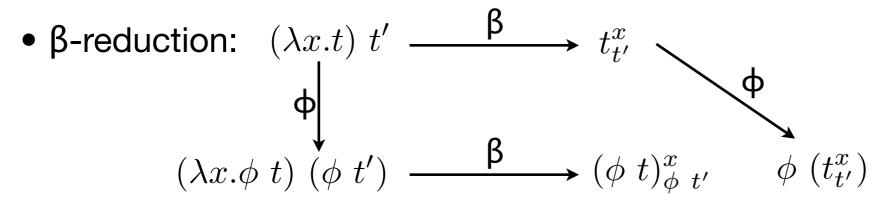
- Claim: $\phi \ s \sim_{\lambda} \phi \ s'$ (i.e. we still have an instance of Lambda)
 - α-equivalence: morphisms do not affect variables

•
$$\beta$$
-reduction: $(\lambda x.t) \ t' \longrightarrow \beta \longrightarrow t^x_{t'}$

$$(\lambda x.\phi \ t) \ (\phi \ t') \longrightarrow (\phi \ t)^x_{\phi \ t'}$$



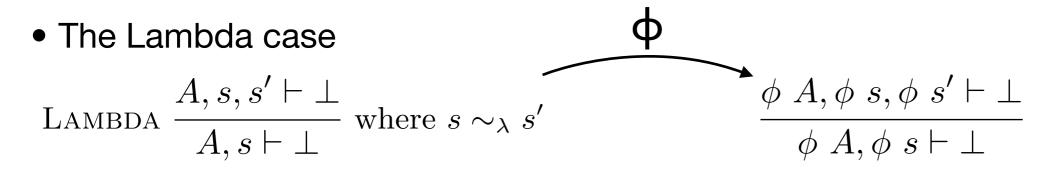
- Claim: $\phi \ s \sim_{\lambda} \phi \ s'$ (i.e. we still have an instance of Lambda)
 - α-equivalence: morphisms do not affect variables



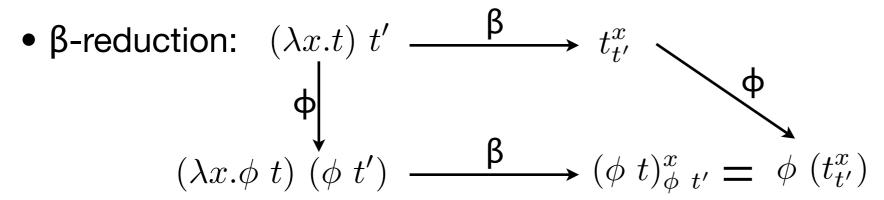
Lemma: Let $\mathcal{P} = (\Sigma, \mathcal{K}, \delta)$ be a presentation as usual, s a well-typed Σ -Term and θ a substitution on terms. Let ϕ be a signature morphism from Σ to some other signature. Then:

ther signature. Then:
$$\phi = \beta - \text{reduction:} \quad (\lambda x.t) \quad t' \qquad \phi = \overline{\theta'} \quad (\phi \quad t)$$
where $\theta' = \phi \circ \theta$.
$$(\lambda x.\phi \quad t) \quad (\phi \quad t') \qquad (\phi \quad t)_{\phi \quad t'}^{x} \qquad \phi \quad (t_{t'}^{x})$$

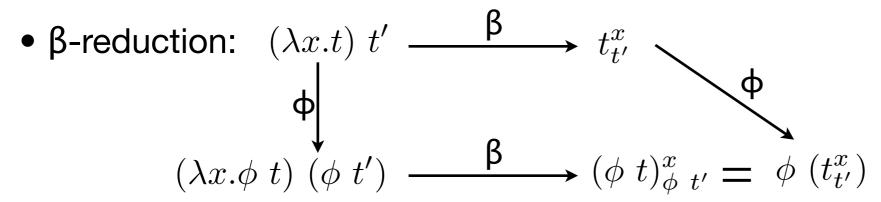
where $\theta' = \phi \circ \theta$.



- Claim: $\phi \ s \sim_{\lambda} \phi \ s'$ (i.e. we still have an instance of Lambda)
 - α-equivalence: morphisms do not affect variables



- The Lambda case $\frac{A,s,s'\vdash\bot}{A,s\vdash\bot} \text{ where } s\sim_{\lambda} s' \qquad \frac{\phi\ A,\phi\ s,\phi\ s'\vdash\bot}{\phi\ A,\phi\ s\vdash\bot}$
- Claim: $\phi \ s \sim_{\lambda} \phi \ s'$ (i.e. we still have an instance of Lambda)
 - α-equivalence: morphisms do not affect variables



•
$$\eta$$
-reduction: $\lambda x.t \ x$ $\xrightarrow{\eta} t$ $\downarrow t$ \downarrow

$$\text{Apply} = \frac{A, \forall \overline{x^n}.s = t, C[\overline{\theta}t], C[\overline{\theta}s] \vdash \bot}{A, \forall \overline{x^n}.s = t, C[\overline{\theta}t] \vdash \bot}$$

$$\text{Apply} = \frac{A, \forall \overline{x^n}.s = t, C[\overline{\theta}t], C[\overline{\theta}s] \vdash \bot}{A, \forall \overline{x^n}.s = t, C[\overline{\theta}t] \vdash \bot} \underbrace{\frac{\phi A, \forall \overline{x^n}.(\phi s) = (\phi t), \phi C[\overline{\theta}t], \phi C[\overline{\theta}s] \vdash \bot}{\phi A, \forall \overline{x^n}.(\phi s) = (\phi t), \phi C[\overline{\theta}t] \vdash \bot}}_{\phi A, \forall \overline{x^n}.(\phi s) = (\phi t), \phi C[\overline{\theta}t] \vdash \bot}$$

 $\text{Apply} = \frac{A, \forall \overline{x^n}.s = t, C[\overline{\theta}t], C[\overline{\theta}s] \vdash \bot}{A, \forall \overline{x^n}.s = t, C[\overline{\theta}t] \vdash \bot} \qquad \frac{\phi A, \forall \overline{x^n}.(\phi s) = (\phi t), \phi C[\overline{\theta}t], \phi C[\overline{\theta}s] \vdash \bot}{\phi A, \forall \overline{x^n}.(\phi s) = (\phi t), \phi C[\overline{\theta}t] \vdash \bot}$

Lemma: Let $\mathcal{P} = (\Sigma, \mathcal{K}, \delta)$ be a presentation as usual and $C[t] \in \text{wff}(\Sigma)$ some context with a term in its hole. Let ϕ be a signature morphism from Σ to some other signature. Then:

$$\phi (C[t]) = (\phi C)[(\phi t)]$$

$$\text{Apply} = \frac{A, \forall \overline{x^n}.s = t, C[\overline{\theta}t], C[\overline{\theta}s] \vdash \bot}{A, \forall \overline{x^n}.s = t, C[\overline{\theta}t] \vdash \bot} \quad \frac{\phi A, \forall \overline{x^n}.(\phi s) = (\phi t), \phi C[\overline{\theta}t], \phi C[\overline{\theta}s] \vdash \bot}{\phi A, \forall \overline{x^n}.(\phi s) = (\phi t), \phi C[\overline{\theta}t] \vdash \bot}$$

$$\frac{\phi\ A, \forall \overline{x^n}.\phi\ s = \phi\ t, (\phi\ C)[\phi\ (\overline{\theta}t)], (\phi\ C)[\phi\ (\overline{\theta}s)] \vdash \bot}{\phi\ A, \forall \overline{x^n}.\phi\ s = \phi\ t, (\phi\ C)[\phi\ (\overline{\theta}t)] \vdash \bot}$$

Lemma: Let $\mathcal{P} = (\Sigma, \mathcal{K}, \delta)$ be a presentation as usual, s a well-typed Σ -Term and $\overline{\theta}$ a substitution on terms. Let ϕ be a signature morphism from Σ to some other signature. Then:

$$\phi \ (\overline{\theta} \ t) = \overline{\theta'} \ (\phi \ t)$$

where $\theta' = \phi \circ \theta$.

$$\text{Apply} = \frac{A, \forall \overline{x^n}.s = t, C[\overline{\theta}t], C[\overline{\theta}s] \vdash \bot}{A, \forall \overline{x^n}.s = t, C[\overline{\theta}t] \vdash \bot} \quad \frac{\phi A, \forall \overline{x^n}.(\phi s) = (\phi t), \phi C[\overline{\theta}t], \phi C[\overline{\theta}s] \vdash \bot}{\phi A, \forall \overline{x^n}.(\phi s) = (\phi t), \phi C[\overline{\theta}t] \vdash \bot}$$

$$\frac{\phi\ A, \forall \overline{x^n}.\phi\ s = \phi\ t, (\phi\ C)[\phi\ (\overline{\theta}t)], (\phi\ C)[\phi\ (\overline{\theta}s)] \vdash \bot}{\phi\ A, \forall \overline{x^n}.\phi\ s = \phi\ t, (\phi\ C)[\phi\ (\overline{\theta}t)] \vdash \bot}$$

$$\frac{\phi\ A, \forall \overline{x^n}.\phi\ s = \phi\ t, (\phi\ C)[\overline{\theta'}\ (\phi t)], (\phi\ C)[\overline{\theta'}\ (\phi s)] \vdash \bot}{\phi\ A, \forall \overline{x^n}.\phi\ s = \phi\ t, (\phi\ C)[\overline{\theta'}\ (\phi t)] \vdash \bot}$$

Axiom_P
$$\frac{A, k \vdash \bot}{A \vdash \bot}$$
 if $k \in \mathcal{K}$

$$\phi A \vdash \bot$$

Axiom_P
$$\frac{A, k \vdash \bot}{A \vdash \bot}$$
 if $k \in \mathcal{K}$
$$\frac{\phi \ A, \phi \ k \vdash \bot}{\phi \ A \vdash \bot}$$

Axiom_P
$$\frac{A, k \vdash \bot}{A \vdash \bot}$$
 if $k \in \mathcal{K}$
$$\frac{\phi \ A, \phi \ k \vdash \bot}{\phi \ A \vdash \bot}$$

$$\phi A \vdash \bot$$

Axiom_P
$$\frac{A, k \vdash \bot}{A \vdash \bot}$$
 if $k \in \mathcal{K}$
$$\frac{\phi \ A, \phi \ k \vdash \bot}{\phi \ A \vdash \bot}$$

XM
$$\longrightarrow$$
 ϕ A, ϕ $k \lor \neg(\phi \ k) \vdash \bot$ ϕ $A \vdash \bot$

Axiom_P
$$\frac{A, k \vdash \bot}{A \vdash \bot}$$
 if $k \in \mathcal{K}$
$$\frac{\phi \ A, \phi \ k \vdash \bot}{\phi \ A \vdash \bot}$$

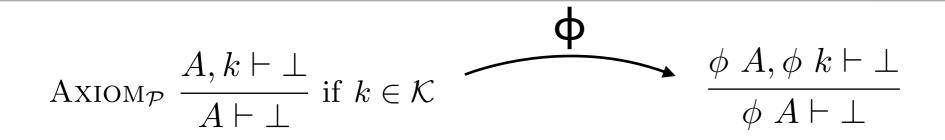
OR
$$\frac{\phi \ A, \phi \ k \lor \neg(\phi \ k), \phi \ k \vdash \bot \qquad \phi \ A, \phi \ k \lor \neg(\phi \ k), \neg(\phi \ k) \vdash \bot}{\phi \ A, \phi \ k \lor \neg(\phi \ k) \vdash \bot}$$

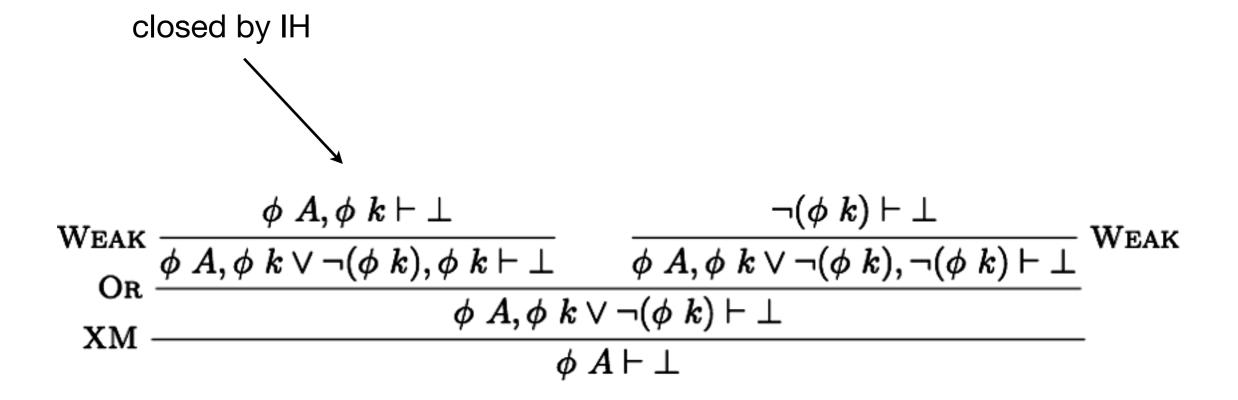
$$\frac{\phi \ A, \phi \ k \lor \neg(\phi \ k) \vdash \bot}{\phi \ A \vdash \bot}$$

Axiom_P
$$\frac{A, k \vdash \bot}{A \vdash \bot}$$
 if $k \in \mathcal{K}$
$$\frac{\phi \ A, \phi \ k \vdash \bot}{\phi \ A \vdash \bot}$$

$$\frac{\text{Weak}}{\text{Or}} \frac{\frac{\phi \ A, \phi \ k \vdash \bot}{\phi \ A, \phi \ k \lor \neg(\phi \ k), \phi \ k \vdash \bot} \quad \frac{\neg(\phi \ k) \vdash \bot}{\phi \ A, \phi \ k \lor \neg(\phi \ k), \neg(\phi \ k) \vdash \bot}}{\phi \ A, \phi \ k \lor \neg(\phi \ k) \vdash \bot} } \text{Weak}$$

$$\frac{\text{XM}}{\phi \ A, \phi \ k \lor \neg(\phi \ k) \vdash \bot}$$





Recall the Presentation Lemma: If $\phi(k) \in P_2^{\bullet}$ for all $k \in K_1$ and $(\phi(d) = \phi(\delta_1(d))) \in P_2^{\bullet}$ for all $d \in Dom(\delta)$ then ϕ is a theory morphism from P_1^{\bullet} to P_2^{\bullet} .

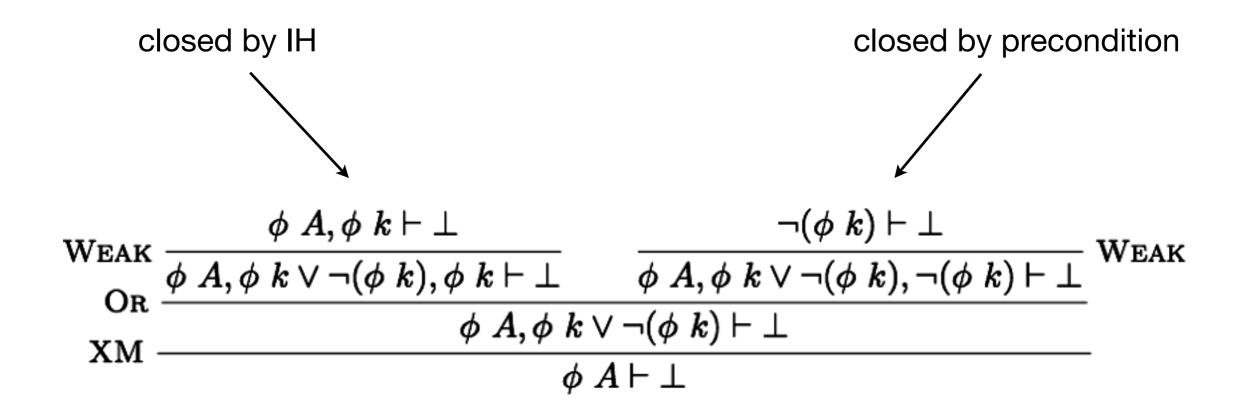
closed by IH

Recall the Presentation Lemma:

If $\phi(\mathbf{k}) \in \mathbf{P_2}^{\bullet}$ for all $\mathbf{k} \in \mathbf{K_1}$ and $(\phi(d) = \phi(\delta_1(d))) \in \mathbf{P_2}^{\bullet}$ for all $d \in \mathsf{Dom}(\delta)$ then ϕ is a theory morphism from $\mathsf{P_1}^{\bullet}$ to $\mathsf{P_2}^{\bullet}$.

- $=> \varphi(k)$ is refutable in P₂
- => There is a closed proof tree for $\neg \phi(k) \vdash \bot$

$$\begin{array}{c} & & & & & & & & & & & & & & & & & \\ Axiom_{\mathcal{P}} & \frac{A, k \vdash \bot}{A \vdash \bot} & \text{if } k \in \mathcal{K} & & & & & & & & & & & & \\ \end{array}$$



APPLYDEF_P
$$\frac{A, C[c], C[\delta \ c] \vdash \bot}{A, C[c] \vdash \bot}$$
 if $c \in Dom(\delta)$

$$\phi A, (\phi C)[\phi c] \vdash \bot$$

$$\begin{array}{c} & & & & \\ & & \\ \text{APPLYDef}_{\mathcal{P}} \end{array} \underbrace{\frac{A, C[c], C[\delta \ c] \vdash \bot}{A, C[c] \vdash \bot}}_{\text{if } c \in Dom(\delta)} \underbrace{\frac{\phi \ A, (\phi \ C)[\phi \ c], (\phi \ C)[\phi \ (\delta \ c)] \vdash \bot}{\phi \ A, (\phi \ C)[\phi \ c] \vdash \bot}}_{\text{optimized}} \end{array}$$

$$\begin{array}{c} & & & & \\ & & \\ \text{APPLYDef}_{\mathcal{P}} \end{array} \underbrace{\frac{A, C[c], C[\delta \ c] \vdash \bot}{A, C[c] \vdash \bot}}_{\text{if } c \in Dom(\delta)} \underbrace{\frac{\phi \ A, (\phi \ C)[\phi \ c], (\phi \ C)[\phi \ (\delta \ c)] \vdash \bot}{\phi \ A, (\phi \ C)[\phi \ c] \vdash \bot}}_{\text{optimized}} \end{array}$$

 $\phi A, (\phi C)[\phi c] \vdash \bot$

$$\begin{array}{c} & & & & \\ & & \\ \text{APPLYDEF}_{\mathcal{P}} \end{array} \underbrace{\frac{A, C[c], C[\delta \ c] \vdash \bot}{A, C[c] \vdash \bot}}_{\text{if } c \in Dom(\delta)} \underbrace{\frac{\phi \ A, (\phi \ C)[\phi \ c], (\phi \ C)[\phi \ (\delta \ c)] \vdash \bot}{\phi \ A, (\phi \ C)[\phi \ c] \vdash \bot}}_{\text{optimized}} \end{array}$$

$$XM = \frac{\phi \ A, (\phi \ C)[\phi \ c], \phi \ c = \phi \ (\delta \ c) \lor \neg (\phi \ c = \phi \ (\delta \ c))}{\phi \ A, (\phi \ C)[\phi \ c] \vdash \bot}$$

$$\begin{array}{c} & & & & \\ & & \\ \text{APPLYDEF}_{\mathcal{P}} \end{array} \underbrace{\frac{A, C[c], C[\delta \ c] \vdash \bot}{A, C[c] \vdash \bot}}_{\text{if } c \in Dom(\delta)} \underbrace{\frac{\phi \ A, (\phi \ C)[\phi \ c], (\phi \ C)[\phi \ (\delta \ c)] \vdash \bot}{\phi \ A, (\phi \ C)[\phi \ c] \vdash \bot}}_{\text{optimized}} \end{array}$$

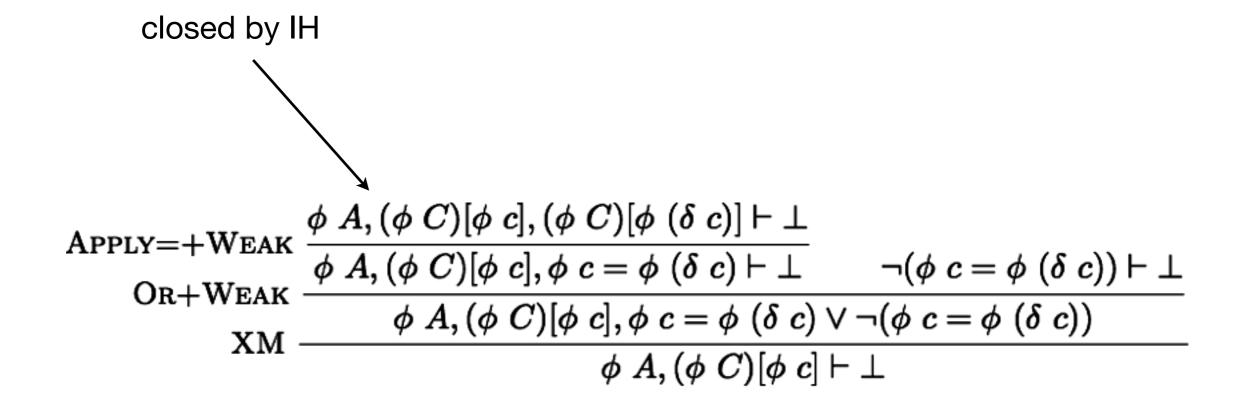
$$\operatorname{Or+Weak}_{XM} \frac{\phi \ A, (\phi \ C)[\phi \ c], \phi \ c = \phi \ (\delta \ c) \vdash \bot \qquad \neg (\phi \ c = \phi \ (\delta \ c)) \vdash \bot}{\phi \ A, (\phi \ C)[\phi \ c], \phi \ c = \phi \ (\delta \ c) \lor \neg (\phi \ c = \phi \ (\delta \ c))}$$

$$\frac{\phi \ A, (\phi \ C)[\phi \ c], \phi \ c = \phi \ (\delta \ c) \lor \neg (\phi \ c = \phi \ (\delta \ c))}{\phi \ A, (\phi \ C)[\phi \ c] \vdash \bot}$$

$$\begin{array}{c} & & & & \\ & & \\ \text{APPLYDEF}_{\mathcal{P}} \end{array} \frac{A, C[c], C[\delta \ c] \vdash \bot}{A, C[c] \vdash \bot} \text{ if } c \in Dom(\delta) \\ \hline \\ & & \\ \hline \\ A, C[c] \vdash \bot \end{array} \text{ if } c \in Dom(\delta) \\ \hline \\ \end{array} \frac{\phi \ A, (\phi \ C)[\phi \ c], (\phi \ C)[\phi \ (\delta \ c)] \vdash \bot}{\phi \ A, (\phi \ C)[\phi \ c] \vdash \bot} \\ \hline \end{array}$$

$$\begin{array}{l} \text{Apply=+Weak} \\ \text{Or+Weak} \\ \text{XM} \end{array} \frac{\phi \ A, (\phi \ C)[\phi \ c], (\phi \ C)[\phi \ (\delta \ c)] \vdash \bot}{\phi \ A, (\phi \ C)[\phi \ c], \phi \ c = \phi \ (\delta \ c) \vdash \bot} \qquad \neg (\phi \ c = \phi \ (\delta \ c)) \vdash \bot}{\phi \ A, (\phi \ C)[\phi \ c], \phi \ c = \phi \ (\delta \ c) \lor \neg (\phi \ c = \phi \ (\delta \ c))} \\ \phi \ A, (\phi \ C)[\phi \ c], \phi \ c = \phi \ (\delta \ c) \lor \neg (\phi \ c = \phi \ (\delta \ c)) \end{array}$$

$$\begin{array}{c} & & & & \\ & & \\ \text{APPLYDEF}_{\mathcal{P}} \end{array} \frac{A, C[c], C[\delta \ c] \vdash \bot}{A, C[c] \vdash \bot} \text{ if } c \in Dom(\delta) \end{array} \xrightarrow{\begin{array}{c} \phi \ A, (\phi \ C)[\phi \ c], (\phi \ C)[\phi \ (\delta \ c)] \vdash \bot} \\ \hline \phi \ A, (\phi \ C)[\phi \ c] \vdash \bot \end{array}$$



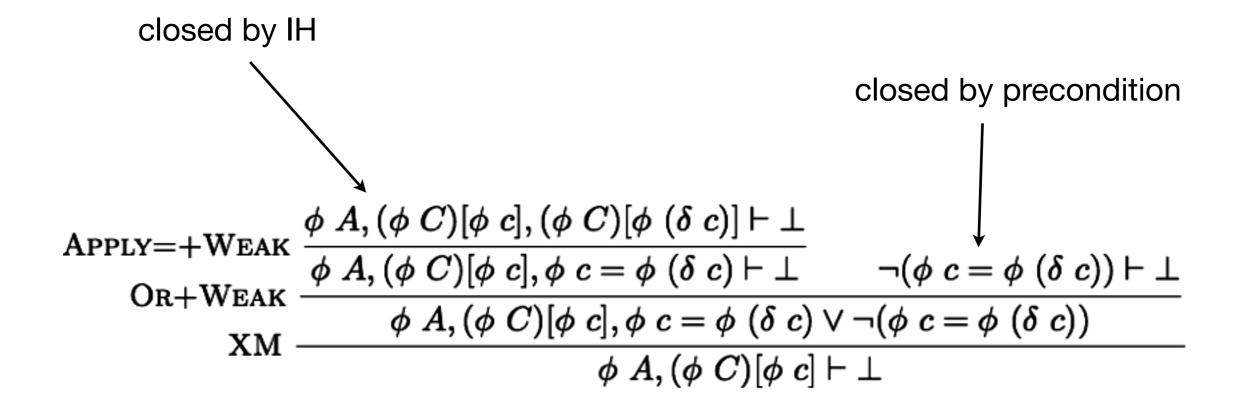
Again, recall the Presentation Lemma: If $\phi(k) \in P_2^{\bullet}$ for all $k \in K_1$ and $(\phi(d) = \phi(\delta_1(d))) \in P_2^{\bullet}$ for all $d \in Dom(\delta)$ then $\phi(d) = \phi(\delta_1(d)) \in P_2^{\bullet}$ for all $d \in Dom(\delta)$ is a theory morphism from P₁• to P₂•.

Again, recall the Presentation Lemma:

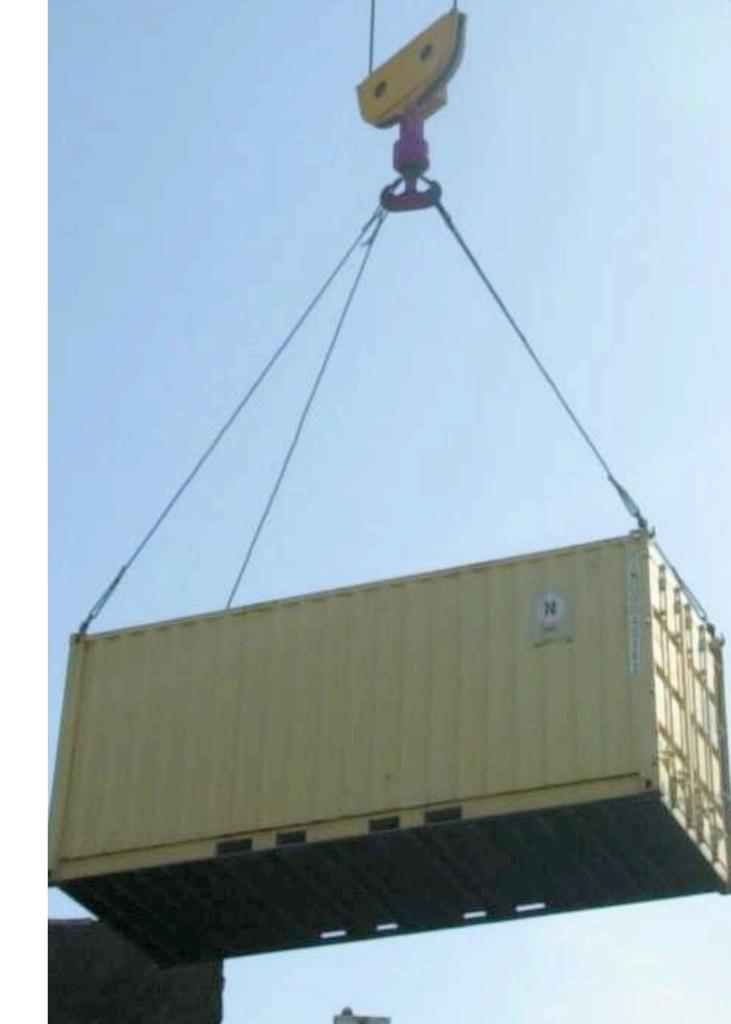
If $\phi(k) \in P_2^{\bullet}$ for all $k \in K_1$ and $(\phi(d) = \phi(\delta_1(d))) \in P_2^{\bullet}$ for all $d \in Dom(\delta)$ then ϕ is a theory morphism from P_1^{\bullet} to P_2^{\bullet} .

- => $(\phi(d) = \phi(\delta_1(d)))$ is refutable in P₂
- => There is a closed proof tree for $\neg(\varphi(d) = \varphi(\delta_1(d))) \vdash \bot$

$$\frac{\phi + \operatorname{Lemma}}{\operatorname{APPLYDEF}_{\mathcal{P}}} \frac{A, C[c], C[\delta \ c] \vdash \bot}{A, C[c] \vdash \bot} \text{ if } c \in Dom(\delta) \qquad \frac{\phi \ A, (\phi \ C)[\phi \ c], (\phi \ C)[\phi \ (\delta \ c)] \vdash \bot}{\phi \ A, (\phi \ C)[\phi \ c] \vdash \bot}$$



Imports



• Using only an implementation of pure morphisms is not very realistic:

Presentation 1 sort I

Presentation 2

 Assume, we want to reuse sort I in Presentation 2. Using morphisms, this would work as follows:

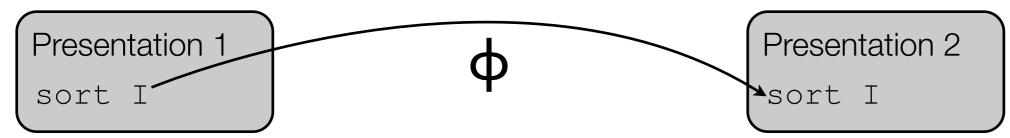
• Using only an implementation of pure morphisms is not very realistic:

Presentation 1 sort I

Presentation 2 sort I

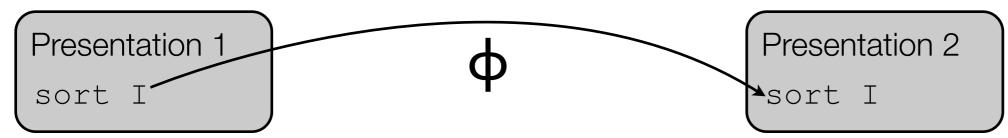
- Assume, we want to reuse sort I in Presentation 2. Using morphisms, this would work as follows:
 - Define a sort I in Presentation 2

• Using only an implementation of pure morphisms is not very realistic:



- Assume, we want to reuse sort I in Presentation 2. Using morphisms, this would work as follows:
 - Define a sort I in Presentation 2
 - Map sort I of Presentation 1 to sort I of Presentation 2

• Using only an implementation of pure morphisms is not very realistic:



- Assume, we want to reuse sort I in Presentation 2. Using morphisms, this would work as follows:
 - Define a sort I in Presentation 2
 - Map sort I of Presentation 1 to sort I of Presentation 2
- Quite useless, similar with constants, definitions...

- We need a possibility to define a presentation and morph another presentation at the same time, so called *imports*
- Imports are more powerful practical counterparts to the theory of morphisms

```
Presentation 1

sort I
term union = \C, D:I B.\x:I.(C x) | (D x)
```

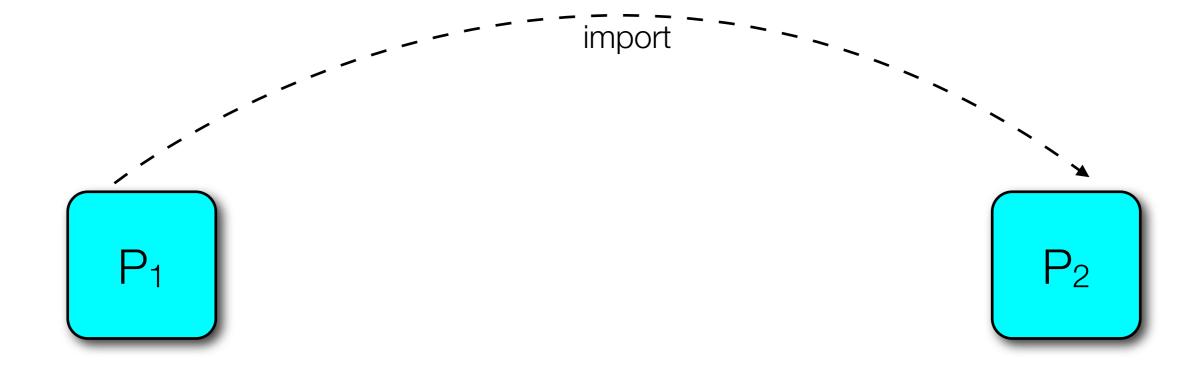
```
Presentation 2
import "Presentation 1"
end
sort M
...
```

Implicitly defines sort I and definition union and applies identity morphism

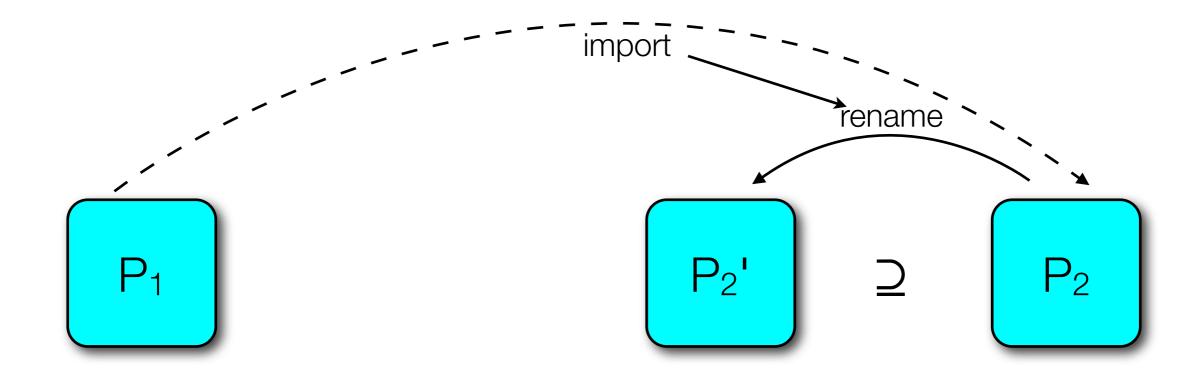
More complex import

```
Presentation 1
sort I
term union = \C, D:I B.\x:I.(C x) | (D x)
```

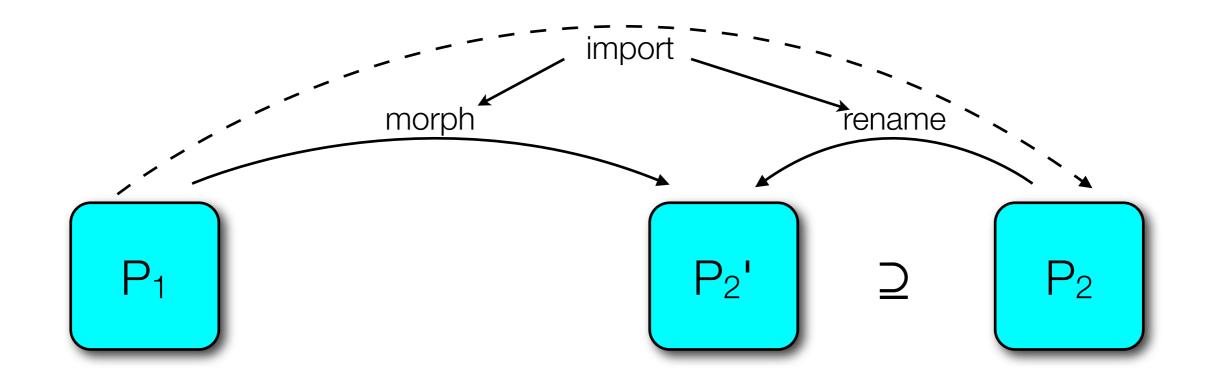
How imports work



How imports work



How imports work



Imports and the Presentation Lemma

- What about the obligations for a theory morphisms?
 - Morphed knowns must be provable
 - (Morphed constant = morphed definition) must be provable
- When using rename for knowns or definitions (i.e. if these elements are added to the target presentation), these proofs become trivial
- Otherwise: The corresponding obligation becomes a claim in the new presentation and has to be proven by the user

Default Import Mode

```
Presentation 1
sort I
term union = \C, D:I B.\x:I.(C x) | (D x)
```

```
Presentation 2
sort I
import "Presentation 1"
end
```

- Does not work, sort I already exists in presentation 2
- => if nothing is specified (e.g. by rename or morph), the system checks
 - if the corresponding element already exists => only identity morphism
 - if not => the element is added to the presentation => identity morphism
 - if the corresponding element already exists but term/type does not match
 => error

The Danger of Imports

```
Natural Numbers
sort N // natural numbers
const 0:N // zero
const S:N N // successor function
axiom !x:N, y:N. (S x = S y) -> x = y // injectivity of S
axiom !x:N. S x != 0 // successor of a number is never zero
axiom !p:N B. p 0 & (!x:N. p x -> p (S x)) -> !x:N. p x // induction axiom
```

- We morph N to N B, 0 to {0}
- We morph S to a function, which, given a subset, adds the lowest number to this set which is not contained in it, e.g. {1, 2, 3, 5, 6} -> {1, 2, 3, 4, 5, 6}

```
Subsets of Natural Numbers

sort N // natural numbers

// here begins the import

axiom !x:N B, y:N B. (S x = S y) -> x = y

axiom !x:N B. S x != {0 }

axiom !p:N B. p 0 & (!x:N B. p x -> p (S x)) -> !x:N B. p x
```

Consider the empty set...

Implementation

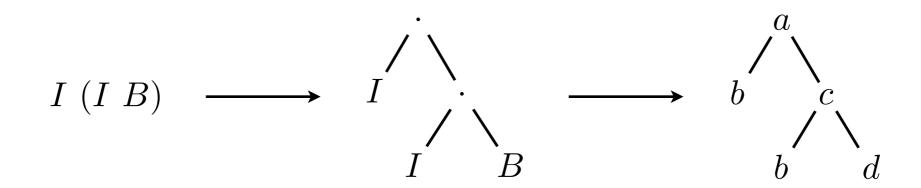
Some Statistics

- Implementation in PHP / HTML / Javascript
- PostgreSQL as database
- About 12000 lines of pure code (i.e. without comments etc)
- Following tests performed on a Fedora Linux in a XEN virtual machine running on an AMD Athlon 64 X2 5600+ Dual Core with 2 GB DDR2 RAM and a 400GB SATAII hard disk

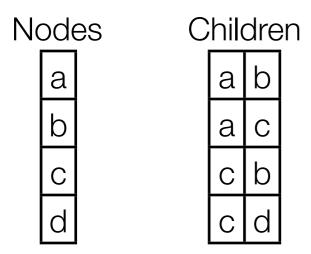
Performance Problems

- Test case: A chain of 300 presentation imports, i.e. a presentation which imports a presentation which imports a presentation...
- Each import adds only one lemma => about 300 axioms
- Loading took over one minute
 - Reason: Thousands (!) of database queries
 - Solution: see next slides
- Morphing needed over 160 MB memory
 - Reason: Everything was copied when morphed.
 - Solution: Only copy things which are really affected by a morphism =>
 Memory consumption went down to 130 MB

A Datastructure for Storing Trees

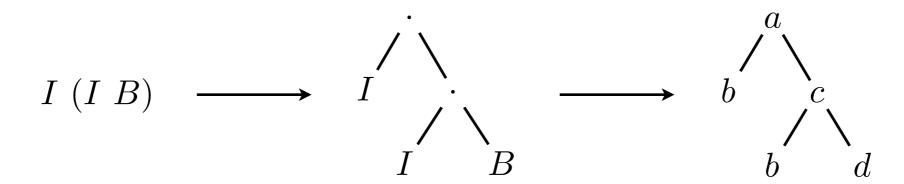


Pointer Structure:

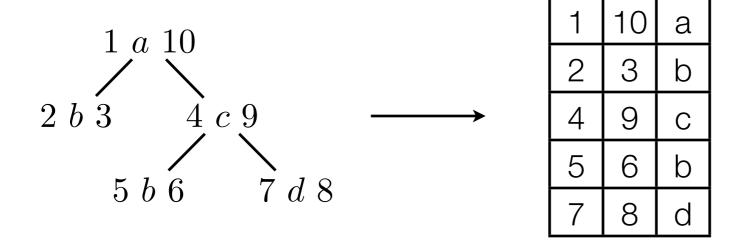


- 2n queries to load, 2n queries to store (worst case)
- Redundancies can be used to reduce storage/number of operations

A Datastructure for Storing Trees ctd



Nested Set Structure: Depth first search



- n queries to store
- 1 query to load
- Redundancies can only rarely be used

A Datastructure for Storing Trees ctd

- Test case: Random, full binary tree with 2047 nodes
- 3 different leafes => lot of redundancies (advantage for pointer structure)
- Storage needed:
 - Pointer structure, optimized for binary trees: 343 rows
 - Nested Set: 2047 rows
- Time needed for loading:
 - Pointer structure: 0.28 seconds
 - Nested Set: 0.12 seconds

Optimization Results

- Remember: Before optimization:
 - Loading of 300 imports took more than a second
- Implemented optimizations:
 - Nested Set structure for terms and types
 - Union Queries (not explained here)
- Result: Loading of 300 imports takes about 10 seconds now

Demo time!

Future Work

- Implementation of proofs as a tree of presentations
- Possibility to search for presentation elements by name, term and type
- Implementation of a syntax for imports in Jitpro
- Restricted morphisms, e.g. N is mapped to N B such that it is not the empty set

Thank you!

Enjoy your week ;-)

References

- Gert Smolka, Chad E. Brown: *Introduction to Computational Logic Lecture Notes SS 2008*. 2008.
- Chad E. Brown: Jitpro, A JavaScript Interactive Higher-Order Tableau Prover.
- R.M. Burstall, J.A. Goguen: *Putting theories together to make specifications*. In Proceedings of the 5th International Joint Conference on Artificial Intelligence, 1045–1058, 1977.
- J.A. Goguen, R.M. Burstall: *Institutions: Abstract Model Theory for Specification and Programming*. Journal of the ACM, Volume 39, 95–146, 1992.
- William M. Farmer, Joshua D. Guttman, F. Javier Thayer: Little Theories. In Proceedings of the 11th International Conference on Automated Deduction, 567– 581, 1992.
- Michael J. Kamfonas: Recursive Hierarchies: The Relational Taboo!. The Relational Journal, 1992.