Bachelor's thesis - final talk:

Organizing a Library of Higher Order Problems

by Julian Backes on April 6, 2009

Advisor: Chad Brown

Supervisor: Gert Smolka
1

Contents

¢ Recap from the first two talks
e Our problem
e Signature/Presentation/Provability

e Morphisms
¢ The proof of the Presentation Lemma
e Imports

¢ Implementation
e A datastructure for storing trees

¢ Reducing memory and time consumption
e Demonstration

e Future Work

Recap

The story so far...

Our problem

e The context: Proofs in Jitpro
e Goal: Reusing existing "theories" and proven claims

e Problem: Combining different small theories to bigger, more powerful theories

e Example:
sort I; // set elements
var xX: 1;
var S, T: I B; // subsets
term union = \S T x.S x | T x; // definition of union

sort V; // vertices

var vl, v2, v3: V;

const E: V V B; // edges

axiom !vl v2. (E vl v2) -> (E v2 vl); // undirected graph

claim !'vl, v2, v3. (E vl v3) ->
(union (E vl1) (E v2)) v3

Our problem

e The context: Proofs in Jitpro
e Goal: Reusing existing "theories" and proven claims

e Problem: Combining different small theories to bigger, more powerful theories

e Example:

sort I; // set elements

var x: Iy

var S, T:) // subsets

term union S T)x.S x | T x; // definition of union

sort V; // ve

var v1, v2, vB: V;
const E: V(V B} // edges

axiom !vl v2. (E vl v2) -> (E v2 vl); // undirected graph

claim !'vl, v2, v3. (E vl v3) ->
(union (E vl1) (E v2)) v3

Signatures / Terms

(

2 S C T

(types of the
constants)

(sorts) (constants)

X € Sorts

Signatures / Terms

X € Sorts
O, Telypes:=x|OT

Signatures / Terms

(

-

T

(types of the
constants)

C

(constants)

s, t e 2-Terms ::= AX.0.S
St

X € Sorts
o, Telypes: =& |0T
C e Contexts ::=[]|Cs|sC|Ax0.C

Signatures / Terms

(

-

T

(types of the
constants)

C

(constants)

X € Sorts
o, Telypes: =& |0T
C e Contexts ::=[]|Cs|sC|Ax0.C

s, t e 2-Terms ::= AX.0.S
St

(C)WTf(2)

((closed), well-typed
terms)

Prasentations

-
4 N\ N) P
(signature) | | (definitions) (axioms)
_ J L /L y,

—xtended Proof System

e The proof system of Jitpro is defined by a set of basic refutation rules

* The rules depend on a signature, for example:

CLOSED
AL F1

e Given a presentation P = {Z, 9, K}, we extend the proof system by two
additional presentation dependent rules:
Ak L A,Clc],Cld ¢ F L

: APPLYDEF if ¢ € Dom/(d
AXIOMp TE L it ke IC P A,C[C]I—L (9)

e \We call this proof system -p

Closure / Theory

e Given a presentation P = {Z, 9, K}, a claim c € cwffg(2) is provable iff =cr L is
provable using +p (Jitpro)

-

Closure / Theory

e Given a presentation P = {Z, 0, K}, a claim c € cwffg(2) is provable iff -cr L is
provable using +p (Jitpro)

-

s

P —p (Jitpro)

e all claims provable using
—p

eclosure of P v
e theory presented by P

P.

Signature morphisms (idea)

Signature morphisms (idea)

Signature morphisms ctd

e Let 24,22 and ¢ = (M, V) be given
e Recursively define py*® on types using U
e Recursively define v* on terms using p*and v

* Recursively define v** on contexts using v*

e ¢ is a signature morphism from 21 and 2>

10

Signature morphisms ctd

e Let 24,22 and ¢ = (M, V) be given
e Recursively define py*® on types using U
e Recursively define v* on terms using p*and v

* Recursively define v** on contexts using v*

¢

e ¢ is a signature morphism from 21 and 2>

10

Signature morphisms ctd

e Let 24,22 and ¢ = (M, V) be given
e Recursively define py*® on types using U
e Recursively define v* on terms using p*and v

* Recursively define v** on contexts using v*

¢

e ¢ is a signature morphism from 21 and 2>

10

Theory morphisms

e et P1= (21, 01, K1), P2 = (22, 02, K2) and ¢: 21— 32 be given

e ¢ is a theory morphism iff ¢ (P1°) € P2* (preservation of provability)

11

Theory morphisms

e et P1= (21, 01, K1), P2 = (22, 02, K2) and ¢: 21— 32 be given

e ¢ is a theory morphism iff ¢ (P1°) € P2* (preservation of provability)

11

Theory morphisms

e et P1= (21, 01, K1), P2 = (22, 02, K2) and ¢: 21— 32 be given

e ¢ is a theory morphism iff ¢ (P1°) € P2* (preservation of provability)

11

Theory morphisms

e et P1= (21, 01, K1), P2 = (22, 02, K2) and ¢: 21— 32 be given

e ¢ is a theory morphism iff ¢ (P1°) € P2* (preservation of provability)

11

Theory morphisms ctd

e Let P1 = (24, 01, K1), P2 = (22, 02, K2) and ¢: 21— 22 be given

e Problem: If we want to show that ¢ is a theory morphism, i.e. that we can
reuse existing proofs, we first have to reprove everything which can be quite a
lot of work.

12

Theory morphisms ctd

e Let P1 = (24, 01, K1), P2 = (22, 02, K2) and ¢: 21— 22 be given

e Problem: If we want to show that ¢ is a theory morphism, i.e. that we can

reuse existing proofs, we first have to reprove everything which can be quite a
lot of work.

e Fortunately: Presentation Lemma: If (k) € P2* for all k € Ky and (p(d) =
$(01(d))) € P2* for all d € Dom(d) then ¢ is a theory morphism from P1°® to P2°.

12

Theory morphisms ctd

e Let P1 = (24, 01, K1), P2 = (22, 02, K2) and ¢: 21— 22 be given

e Problem: If we want to show that ¢ is a theory morphism, i.e. that we can

reuse existing proofs, we first have to reprove everything which can be quite a
lot of work.

e Fortunately: Presentation Lemma: If (k) € P2* for all k € Ky and (p(d) =
$(01(d))) € P2* for all d € Dom(d) then ¢ is a theory morphism from P1°® to P2°.

e => |t is enough to check all knowns and definitions (which can be trivial as we
will later see)

12

TRYING TO PROVE?

The Proof of the e 2 P ST g
“resentation Lemma s Yobi Pap it

‘r ~\)*, ¢.~'.“' ' .'.
3 ""\ ' 1‘
".3‘ z.". (P L1 WeYR
;\
13 B2 ‘a‘, ' ‘(:.}';‘
! DR s.‘.'.‘ o '..'%'ﬁ.".' "

Vel m Y

The Proof of the Presentation Lemma

e As usual, let P = (21, 01, K1), P2 = (22, 02, K2) and ¢: 21— 2> be given

e et c be a theorem refutable using ~p1, i.e. assume we are given the proof
tree

e \We show by structural induction that there is a corresponding (morphed)
proof tree for (¢ ¢) in +p2

e | will present only the most interesing cases

14

The Proof of the Presentation Lemma

e Two basic examples:

¢

/_\
ALF 1L GAGLF L =dA LF L

CLOSED

¢

—
A, sNt, st L ¢ A, p(sAt),¢s,0tH L

AsNtE L oA, (sANt)F L
A G AG)05 dth L

AND

¢ A (ps)N(pt)F L

15

The Proof of the Presentation Lemma

e The Lambda case Cb
/\‘
A s, s+ L
[LAMBDA where s ~ s’
A,skH L

dADs s F_L

oA sk L

16

The Proof of the Presentation Lemma

e The Lambda case Cb
/\‘
A s, s+ L dADs s F_L
[LAMBDA where s ~ s’
A sk L oA ¢pskH L

e Claim: ¢ s ~x ¢ s (i.e. we still have an instance of Lambda)

The Proof of the Presentation Lemma

e The Lambda case Cb
/\‘
A s, s+ L dADs s F_L
[LAMBDA where s ~ s’
A sk L oA ¢pskH L

e Claim: ¢ s ~x ¢ s (i.e. we still have an instance of Lambda)

e x-equivalence: morphisms do not affect variables

The Proof of the Presentation Lemma

e The Lambda case Cb
/\‘
A s, s+ L dADs s F_L
[LAMBDA where s ~ s’
A sk L oA ¢pskH L

e Claim: ¢ s ~x ¢ s (i.e. we still have an instance of Lambda)
e x-equivalence: morphisms do not affect variables

e B-reduction: (Az.t) t’ b, by

The Proof of the Presentation Lemma

e The Lambda case Cb
/\‘
A s, s+ L dADs s F_L
[LAMBDA where s ~ s’
A sk L oA ¢pskH L

e Claim: ¢ s ~x ¢ s (i.e. we still have an instance of Lambda)
e x-equivalence: morphisms do not affect variables
e B-reduction: (Ax.t) t’ P > 17,
y
(Az.¢ t) (¢ 1)

The Proof of the Presentation Lemma

e The Lambda case Cb
/\‘
A s, s+ L dADs s F_L
[LAMBDA where s ~ s’
A sk L oA ¢pskH L

e Claim: ¢ s ~x ¢ s (i.e. we still have an instance of Lambda)

e x-equivalence: morphisms do not affect variables

e B-reduction: (Az.t) t’ b, by
y
(A\z.¢ t) (¢ t) P (@ t)g o

The Proof of the Presentation Lemma

e The Lambda case Cb
/\‘
A s, s+ L dADs s F_L
[LAMBDA where s ~ s’
A sk L oA ¢pskH L

e Claim: ¢ s ~x ¢ s (i.e. we still have an instance of Lambda)

e x-equivalence: morphisms do not affect variables

e B-reduction: (Az.t) t’ b, by
¢l N

Db t) (61) —P— (007, & (&)

16

The Proof of the Presentation Lemma

Lemma: Let P = (¥,K,0) be a presentation as usual, s a well-typed ¥-Term
and 6 a substitution on terms. Let ¢ be a signature morphism from > to some
other signature. Then:

¢ (0t) =0 (¢1)
where 6’ = ¢ 0 0.

16

The Proof of the Presentation Lemma

e The Lambda case Cb
/\‘
A s, s+ L dADs s F_L
[LAMBDA where s ~ s’
A sk L oA ¢pskH L

e Claim: ¢ s ~x ¢ s (i.e. we still have an instance of Lambda)

e x-equivalence: morphisms do not affect variables

e B-reduction: (Az.t) t’ b, by
¢l N

Mr.dt) (61) —P— s (007, = & (67)

16

The Proof of the Presentation Lemma

e The Lambda case Cb
/\‘
A s, s+ L dADs s F_L
[LAMBDA where s ~ s’
A sk L oA ¢pskH L

e Claim: ¢ s ~x ¢ s (i.e. we still have an instance of Lambda)

e x-equivalence: morphisms do not affect variables

e B-reduction: (Az.t) t’ b, by
¢l N

Mr.dt) (61) —P— s (007, = & (67)

® n-reduction: X\z.t x d >

{

Ax. (P t) x

16

The

APPLY=

Proof of the Presentation Lemma

A Vx5 =1t,C[0t],Clos] - L
ANVrm.s =1t,Cl0t] F L

17

The

APPLY=

Proof of the Presentation Lemma

¢

— _ _
6 ANTT.(5) = (61), 6 C[BL], 6 C[Bs] - L

A Vx5 =1t,C[0t],Clos] - L

ANVrm.s =1t,Cl0t] F L

6 ANT.(¢5) = (61), 6 C[OE] F L

17

The Proof of the Presentation Lemma

Lemma: Let P = (X,K,d) be a presentation as usual and C|t] ewff(3) some
context with a term in its hole. Let ¢ be a signature morphism from > to some
other signature. Then:

¢ (Clt]) = (¢ C)l(91)]

17

The

APPLY=

Proof of the Presentation Lemma
¢

/\‘

ANTT.s =t,C[0t],Cl0s] - L ¢ ANVT™.(¢s) = (61), 6 C[0t], 6 C[fs] - L

ANVrm.s =1t,Cl0t] F L ¢ ANT.(ps) = (pt),p ClOt] - L

¢ AVa".g s =9t (¢ O)lg (01)], (¢ O)o (0s)] F L

¢ AVr".¢ s =¢t, (¢ C)lp (0t)] - L

17

The Proof of the Presentation Lemma

Lemma: Let P = (3,K,d) be a presentation as usual, s a well-typed 3-Term
and 6 a substitution on terms. Let ¢ be a signature morphism from > to some
other signature. Then:

¢ (0t) =0 (¢1)
where 6’ = ¢ 0 0.

17

The Proof of the Presentation Lemma

_ . /CI_)\ B B
oy AT = t,COH], COs] - L ¢ A Vam.(¢5) = (61), ¢ C[01t], 6 C[fs] - L
- ANVITs=1t,Clt - L b AT (¢5) = (1), p OOt F L

¢ AVa".g s =9t (¢ O)lg (01)], (¢ O)o (0s)] F L

¢ AVr".¢ s =¢t, (¢ C)lp (0t)] - L

¢ A Vg s=¢t, (¢ O)Y (¢t)], (¢ O)E (¢5)] - L
¢ AVam.¢ s =¢t, (¢ C)0 (¢1)] F L

17

The Proof of the Presentation Lemma

b AF L

The Proof of the Presentation Lemma

¢

o AF L

18

The Proof of the Presentation Lemma
¢

axionge BEEL e e m > 2AGKRRL
XIOM
PTARL NS oAb L

dAF L

The Proof of the

AkF L

AXIoM if kel
PTAFRL

XM

Presentation Lemma
¢

— qﬁA,gbkl—J_

o AF L

dAdkV-(pk)F L

dAF L

18

The Proof of the Presentation Lemma

", E

¢

— —— 0 A0kEL
o AF L

op 2AGEkV(Sk).,okEL ¢ASkV(Pk)n(dk)FL

XM

dAdkV-(pk)F L

dAF L

18

The Proof of the Presentation Lemma

", E

Aok L

/CI_)\.. ¢ Ak L
oA L
-(¢p k) - L

WEAK

op 2AGEkV(Sk)oktL ¢ASkV(Pk)n(dk)FL

XM

dAdkV-(pk)F L

o AF L

WEAK

18

The Proof of the Presentation Lemma

A A,kl—L.fk . —— 0 Ak L
XIOMp e if k£ € SAF L
closed by IH
AdkF L -(p k) L
WEAK 0 4,¢ (¢) WEAK

¢AdkV(dk),dktL ¢AdkV-(dk),-(dk)F L
ORr
dAdkV-(pk)F L
oA L

XM

The Proof of the Presentation Lemma

Recall the Presentation Lemma:

If (k) € P2* for all k € K1and ($p(d) = $(d1(d))) € P2* for all d € Dom(d) then ¢ is
a theory morphism from P1° to P2°.

18

The Proof of the Presentation Lemma

Recall the Presentation Lemma:

If (k) € P2* for all k € K1and ($p(d) = $(d1(d))) € P2* for all d € Dom(d) then ¢ is
a theory morphism from P1° to P2°.

=> P(K) is refutable in P>
=> There is a closed proof tree for = (k)L

18

The Proof of the Presentation Lemma

A A,kFL.fk . —— Ao kF_L
XIOMp e if k€ 6 A L
closed by IH closed by precondition
AdkF L (o k) L
WEAK ¢ 4,9 (¢) WEAK

o A PkV-(dk),pkE L A dkV-(pk),-(dk)FL
N ALV (R F L
dAF L

XM

The Proof of the Presentation Lemma

A . A,Clc],Cld] F L £ ¢ € Dom(d)
PPLYDEFp A Cldr L if c € Dom(

¢ A, (¢ C)lpct L

The Proof of the Presentation Lemma

/

A,Clc],Cld] F L

APPLYDEFp

A, CleF L

$ + Lemma

if ¢ € Dom(9)

—

¢ A (¢ Clpc,(¢C)g (0c)F L

¢ A (¢ C)lp]t L

19

The Proof of the Presentation Lemma

$ + Lemma

— \

¢ A (¢ Clpc,(¢C)g (0c)F L

A,Clc],Cld] F L

APPLYDEFp

A, CleF L

if ¢ € Dom/(9) oA (6 O)bcl L

¢ A, (¢ C)@clt L

19

The Proof of the Presentation Lemma

$ + Lemma

— \

¢ A (¢ Clpc,(¢C)g (0c)F L

A, Clc,Cl0] F L

APPLYDEFp

A, Clc - L

XM

it c & Dom(o) 54,6 O)ddF L

¢ A @Cllpc,pc=0¢(bc)Va(pc=¢(d0))

¢ A, (¢ C)pcF L

19

The Proof of the Presentation Lemma

$ + Lemma
— I
A, Clc,Clo o - L ¢ A, (¢ C)lgp], (¢ O)lgp (6 c)] - L

APPYDER = O r L e Pom) 6 A,(6 C)é] - L

¢A,(¢C)[¢C],¢C=¢(6C)|__L —'(¢C=¢(56))'—.L
¢ A, (pC)lpcl,pc=¢(6c)V(pc=¢ (6c))
¢ A (pC)lpc L

OrR+WEAK
XM

19

The Proof of the Presentation Lemma

$ + Lemma
— D
A, Clc,Clo o - L ¢ A, (¢ C)lgp], (¢ O)lgp (6 c)] - L

APPYDER = O r L e Pom) 6 A,(6 C)é] - L

¢ A (@C)pc,(¢C)l¢(6c)FL
$A(@C)ocdc=¢(bc)FL (pc=¢(c)k L
¢ A (@C)lod,pc=¢(bc)Va(pc=¢(6c))
¢ A, (¢ C)lpc kL

APPLY=+WEAK
OR+WEAK
XM

19

The Proof of the Presentation Lemma

$ + Lemma
ACKHCBdrL T AB OO Gk L
APPLYDEFp A Cldr L if c € Dom(6) oA (6O bk L
closed by IH

N\

¢ A (@C)pc,(¢C)l¢(6c)FL
$A(@C)ocdc=¢(bc)FL (pc=¢(c)k L
¢ A (@C)lod,pc=¢(bc)Va(pc=¢(6c))
¢ A, (¢ C)lpc kL

APPLY=+WEAK
OR+WEAK
XM

19

The Proof of the Presentation Lemma

Again, recall the Presentation Lemma:

If d(k) € P2* for all k e Ky and (¢(d) = $(01(d))) € P2* for all d € Dom(d) then ¢
IS a theory morphism from P1° to P2°.

19

The Proof of the Presentation Lemma

Again, recall the Presentation Lemma:

If d(k) € P2* for all k e Ky and (¢(d) = $(01(d))) € P2* for all d € Dom(d) then ¢
IS a theory morphism from P1° to P2°.

=> (p(d) = $(d1(d))) is refutable in P2
=> There is a closed proof tree for =(d(d) = $(d1(d)))— L

The Proof of the Presentation Lemma

$ + Lemma
— I
A, Clc,Clo o - L ¢ A, (¢ C)lgp], (¢ O)lgp (6 c)] - L

APPYDER = O r L e Pom) 6 A,(6 C)é] - L

closed by IH

\ closed by precondition

¢ A (@C)pc,(¢C)l¢(6c)FL '
$A(@C)ocdc=¢(bc)FL (pc=¢(c)k L
¢ A (@C)lod,pc=¢(bc)Va(pc=¢(6c))
¢ A, (¢ C)pcF L

APPLY=+WEAK
OR+WEAK
XM

19

Imports

From Morphisms to Imports

e Using only an implementation of pure morphisms is not very realistic:
4 .) 4 .)
Presentation 1 Presentation 2
sort 1
- J . J

e Assume, we want to reuse sort | in Presentation 2. Using morphisms, this
would work as follows:

From Morphisms to Imports

e Using only an implementation of pure morphisms is not very realistic:
4 .) 4 .)
Presentation 1 Presentation 2
sort 1 sort 1
- J . J

e Assume, we want to reuse sort | in Presentation 2. Using morphisms, this
would work as follows:

e Define a sort | in Presentation 2

From Morphisms to Imports

e Using only an implementation of pure morphisms is not very realistic:
4) 4)
Presentatioy/ cb \ Presentation 2
sort I Asort I
- J . J

e Assume, we want to reuse sort | in Presentation 2. Using morphisms, this
would work as follows:

e Define a sort | in Presentation 2

e Map sort | of Presentation 1 to sort | of Presentation 2

From Morphisms to Imports

e Using only an implementation of pure morphisms is not very realistic:
4) 4)
Presentatioy/ cb \ Presentation 2
sort I Asort I
- J . J

e Assume, we want to reuse sort | in Presentation 2. Using morphisms, this
would work as follows:

e Define a sort | in Presentation 2

e Map sort | of Presentation 1 to sort | of Presentation 2

e Quite useless, similar with constants, definitions...

From Morphisms to Imports ctd

e \We need a possibility to define a presentation and morph another
presentation at the same time, so called imports

e Imports are more powerful practical counterparts to the theory of morphisms

e . ™\
Presentation 1

sort 1
term union = \C, D:I B.\x:I.(C x) | (D x)

- J

e . ™
Presentation 2
import "Presentation 1"

end
sort M

. J
e Implicitly defines sort | and definition union and applies identity morphism

More complex import

-
Presentation 1

sort 1

term union = \C, D:I B.\x:I.(C x) | (D x)
_
s

Presentation 2

sort V; // vertices

var v1, v2, v3: V;

const E: V V B; // edges

axiom !vl v2. (E vl v2) -> (E v2 vl); // undirected graph

import "Presentation 1"
morph sort I = V // morphs sort I to sort V
rename term union union vertices // redefines union, renames it to union vertices

// and applies morphism (union->union vertices)
end

claim !vl, v2, v3. (E vl v3) ->
(union vertices (E vl) (E v2)) v3

23

How imports work

—_ —

How imports work

—_ —

~
rename >

N
N
R\

2

How imports work

~
rename >

S
/\\
h |

2

24

Imports and the Presentation Lemma

e \What about the obligations for a theory morphisms?
e Morphed knowns must be provable

e (Morphed constant = morphed definition) must be provable

e When using rename for knowns or definitions (i.e. if these elements are
added to the target presentation), these proofs become trivial

e Otherwise: The corresponding obligation becomes a claim in the new
presentation and has to be proven by the user

25

Default Import Mode

e . ™
Presentation 1

sort I

term union = \C, D:I B.\x:I.(C x) | (D x)
_ Y,
e , ™
Presentation 2

sort 1

import "Presentation 1"

end
_ Y,

e Does not work, sort | already exists in presentation 2

e => if nothing is specified (e.g. by rename or morph), the system checks
e if the corresponding element already exists => only identity morphism
¢ if not => the element is added to the presentation => identity morphism

e if the corresponding element already exists but term/type does not match
=> error

26

The Danger of Imports

4)
Natural Numbers
sort N // natural numbers
const 0:N // zero
const S:N N // successor function
axiom !x:N, y:N. (S x =S vy) -> x =vy // injectivity of S
axiom !x:N. S x != 0 // successor of a number is never zero
axiom !p:N B. p 0 & (!x:N. p x -—> p (S x)) -> !x:N. p x // induction axiom
_ J

e \We morph N to N B, 0 to {0}

e \We morph S to a function, which, given a subset, adds the lowest number
to this set which is not contained in it, e.g. {1, 2, 3, 5, 6} -> {1, 2, 3, 4, 5, 6}
)

p
Subsets of Natural Numbers

sort N // natural numbers

// here begins the import

axiom !x:N B, y:N B. (S x =S vy) -> x =y

axiom !x:N B. S x != {0 }

axiom !'p:N B. p 0 & (!x:N B. p x ->p (S x)) -> !'x:N B. p x

- J
e Consider the empty set...

Implementation

28

Some Statistics

¢ Implementation in PHP / HTML / Javascript
e PostgreSQL as database
e About 12000 lines of pure code (i.e. without comments etc)

* Following tests performed on a Fedora Linux in a XEN virtual machine running
on an AMD Athlon 64 X2 5600+ Dual Core with 2 GB DDR2 RAM and a
400GB SATAIl hard disk

29

Performance Problems

¢ Test case: A chain of 300 presentation imports, i.e. a presentation which
Imports a presentation which imports a presentation...

e Each import adds only one lemma => about 300 axioms

¢ | oading took over one minute
e Reason: Thousands (!) of database queries

e Solution: see next slides

* Morphing needed over 160 MB memory
e Reason: Everything was copied when morphed.

e Solution: Only copy things which are really affected by a morphism =>
Memory consumption went down to 130 MB

30

A Datastructure for Storing Trees

]/\ > b/a\c
/ \ / \
Ji B

b d

I (I B) >

¢ Pointer Structure:
Nodes Children

a alb
o ajlc
C clb
d c|d

e 2n queries to load, 2n queries to store (worst case)

e Redundancies can be used to reduce storage/number of operations

A Datastructure for Storing Trees ctd

: a
/' \ /
I (I B) > 1 : > b \c
/ \ / \
1 B b d
e Nested Set Structure: Depth first search
1 a 10 1 110| a
/ \ 213 |Db
203 /4 C< > 419 | c
5b6 7d8 > 101D
/8| ad

® N gqueries to store
e 1 query to load

¢ Redundancies can only rarely be used 32

A Datastructure for Storing Trees ctd

¢ Test case: Random, full binary tree with 2047 nodes

e 3 different leafes => lot of redundancies (advantage for pointer structure)

e Storage needed:

e Pointer structure, optimized for binary trees: 343 rows

e Nested Set: 2047 rows

e Time needed for loading:
¢ Pointer structure: 0.28 seconds

e Nested Set: 0.12 seconds

33

Optimization Results

e Remember: Before optimization:

e | oading of 300 imports took more than a second

* Implemented optimizations:
e Nested Set structure for terms and types

e Union Queries (not explained here)

e Result: Loading of 300 imports takes about 10 seconds now

34

Demo time!

Future Work

¢ Implementation of proofs as a tree of presentations
e Possibility to search for presentation elements by name, term and type
e Implementation of a syntax for imports in Jitpro

e Restricted morphisms, e.g. N is mapped to N B such that it is not the empty
set

36

Thank you!

—Njoy your week ;-)

References

e Gert Smolka, Chad E. Brown: Introduction to Computational Logic - Lecture Notes
SS 2008. 2008.

e Chad E. Brown: Jitpro, A JavaScript Interactive Higher-Order Tableau Prover.

e R.M. Burstall, J.A. Goguen: Putting theories together to make specifications. In
Proceedings of the 5th International Joint Conference on Artificial Intelligence,
1045-1058, 1977.

e J.A. Goguen, R.M. Burstall: Institutions: Abstract Model Theory for Specification and
Programming. Journal of the ACM, Volume 39, 95-146, 1992.

e William M. Farmer, Joshua D. Guttman, F. Javier Thayer: Little Theories. In
Proceedings of the 11th International Conference on Automated Deduction, 567-
581, 1992.

e Michael J. Kamfonas: Recursive Hierarchies: The Relational Taboo!. The Relational
Journal, 1992.

38

