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Recap from the first 
talk

Simply typed higher order logic 
and tableaux

 manufacturer.com



Basics: Syntax/Semantics

• Context: Simply typed higher order logic

• Syntax:

• Types (σ, τ, μ): τ ::= ɩ | o | τ τ

• Terms (s, t, u, v): t ::= x | c | tt | λx.t

• Logical constants: ¬, ∧, ∨, ∀τ, ∃τ, =τ, ⟶, ⊤, ⊥

• Typed terms as usual, we only consider well-typed terms

• Semantics:

• o boolean sort, containing 1/true/top/⊤ and 0/false/bottom/⊥

• ɩ non-empty set of individuals

• τ set of all total functions (standard interpretation) or subset of all total total functions 
(Henkin/non standard interpretation)
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Basics: Tableau systems

• General idea: Proof by contradiction

• Instead of proving the validity of a formula, we show that the negation of the 
formula is unsatisfiable / refutable / yields ⊥

• Tableau rules:

• For simplicity: We only write what is needed in A to apply a rule and what is 
added in the Ai
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A1 | ... | An
A ! Ai Closed

A

⊥



Three fragments

• Three fragments of simply typed higher order logic by Brown and Smolka:

• "Basic": No higher-order equations, no quantifiers, no λ; proof system is 
terminating and complete wrt standard models

• "EFO": No higher-order equations, quantifiers at base types, supports λ; 
proof system not terminating but cut-free and complete wrt standard 
models

• "Full": Higher-order equations, supports λ; proof system not terminating 
but cut-free and complete wrt non-standard models

• Goal of my thesis: Extend these fragments with more powerful logical 
constants while maintaining the existing properties (completeness, cut-
freeness, termination)



First talk

• I already presented tablau rules for If-Then-Else which can be added to all 
three fragments while preserving all of their properties; proof straight forward
Slides: http://www.ps.uni-sb.de/~julian/master

• Difference between Choice/Description and other well-known logical 
constants: There are several possible interpretations

• I presented rules for Choice based on a paper by Mints. Let C s and C s' 
occur as subterms on the branch:

Choice
¬(st) | s(Cs)

t term of suitable type

MAT’
αs1 . . . sn,¬αt1 . . . tn

s1 != t1 | . . . | sn != tn
α variable or some C s

ChoiceExt
sa,¬(s′a) | ¬(sa), s′a | Cs = Cs′ a fresh

http://www.ps.uni-sb.de/~julian/master
http://www.ps.uni-sb.de/~julian/master


Choice

Were the rules ok?

ggregersen.eu



Problems with Mints' rules

• There were four problems with these rules:
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Unrefutable, unsatisfiable branch

• Consider the following unsatisfiable branch/set:

• {s =ɩo t, C s !=ɩ C t}

• Using ChoiceExt and Confrontation yields

• {s =ɩo t, C s ≠ɩ C t, C s =ɩ C t, C s ≠ɩ C s, C t ≠ɩ C t}

• this branch cannot be refuted

• We need "MAT' at type ɩ": DEC'

DEC’
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α variable or some C s
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Unrefutable, unsatisfiable branch ctd

• {s =ɩo t, C s ≠ɩ C t, C s =ɩ C t, C s ≠ɩ C s, C t ≠ɩ C t}

• One question remaining: Is C s not too restrictive?

• Answer: probably not :-) We don't know...

• But remember: ChoiceExt is not a nice rule (exponential blow-up)

• We showed: Relaxing the C s restriction and just require C in MAT' and DEC'

makes ChoiceExt unnecessary

DEC’
αs1 . . . sn !=ι αt1 . . . tn

s1 != t1 | . . . | sn != tn
α variable or C MAT’

αs1 . . . sn,¬αt1 . . . tn

s1 != t1 | . . . | sn != tn
α variable or C
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Accessibility and the subterm problem

• Def: Let E be a branch. A term s is discriminating in E if and only if there is a 
term t such that (s ≠ɩ t) ∈ E or (t ≠ɩ s) ∈ E

• Def: Let E be a branch. A term s is accessible in E if and only if there is a 
context C = [] t1 ... tn such that

• C[s] is discriminating in E for C[s] of type ɩ or

• C[s] ∈ E or ¬C[s] ∈ E for C[s] of type o

• Solution to our subterm problem: "is accessible in E" instead of "is a subterm 
in E" does the job



Comparison of the rules

• These were the rules we started with:

• And these are the new rules:

Choice
¬(st) | s(Cs)

t term of suitable type

ChoiceExt
sa,¬(s′a) | ¬(sa), s′a | Cs = Cs′ a fresh

DEC’
αs1 . . . sn !=ι αt1 . . . tn

s1 != t1 | . . . | sn != tn
α variable or C

Choice
¬(st) | s(Cs)

Cs accessible

MAT’
αs1 . . . sn,¬αt1 . . . tn

s1 != t1 | . . . | sn != tn
α variable or C

MAT’
αs1 . . . sn,¬αt1 . . . tn

s1 != t1 | . . . | sn != tn
α variable or some Cs



Completeness with 
Choice

A proof sketch

Photo: myspacegeek.net



Completeness proof

• I will not explain the whole completeness proof here

• The hard part reduces to the Model Existence Theorem:

• Def: A set E of formulas (representing a branch) is called evident if it does 
not contain ⊥ and is closed under the tablau rules

• Model Existence Theorem: If a set E is evident, then there exists an 
interpretation which satifies all formulas in E

• The proof of this Theorem is long, I only present the general ideas here

• But first, we need one more definition....



Model existence theorem



Model existence theorem

• Given an evident set E, define possible values relation by induction on types:

• s ▹o 0 :<=> [s] ∉ E

• s ▹o 1 :<=> ¬[s] ∉ E

• s ▹στ f :<=> st ▹τ fa whenever t ▹σ a

• (We skip ▹ɩ here, it is defined using discriminants)

• Fact: Any term has a possible value (proof uses MAT' and DEC')

• For the proof of the model existence theorem, we need to show that for any 
term s, s ▹ ℑ s (where ℑ is a corresponding interpretation); proof is done by 
induction on s

• Question: For the case C ▹ ℑ C, what is ℑ C? We said that the 
interpretation of C is not unique so we have to give one...



Interpretation of C

• Goal: Prove C ▹ ℑ C

• Problem 1: This is not enough, the proof requires accessible terms

• Now, we can prove C ▹ ℑ C but....

• Problem 2: ℑ C is not a choice function: what if the set is empty?

• This interpretation does the job!

• The proof that ℑ C is a choice function requires the Choice rule

• And we need to know that any value is a possible value for some term
=> we need non-standard models for Choice at functional types



Interpretation of C

• Goal: Prove C ▹ ℑ C

• Problem 1: This is not enough, the proof requires accessible terms

• Now, we can prove C ▹ ℑ C but....

• Problem 2: ℑ C is not a choice function: what if the set is empty?

• This interpretation does the job!

• The proof that ℑ C is a choice function requires the Choice rule

• And we need to know that any value is a possible value for some term
=> we need non-standard models for Choice at functional types

• We define ℑ C to be a function such that (ℑ C) f is



Interpretation of C

• Goal: Prove C ▹ ℑ C

• Problem 1: This is not enough, the proof requires accessible terms

• Now, we can prove C ▹ ℑ C but....

• Problem 2: ℑ C is not a choice function: what if the set is empty?

• This interpretation does the job!

• The proof that ℑ C is a choice function requires the Choice rule

• And we need to know that any value is a possible value for some term
=> we need non-standard models for Choice at functional types

• We define ℑ C to be a function such that (ℑ C) f is

• some a      if {C s | s ▹ f} ▹ a



Interpretation of C

• Goal: Prove C ▹ ℑ C

• Problem 1: This is not enough, the proof requires accessible terms

• We define ℑ C to be a function such that (ℑ C) f is

• some a      if {C s | s ▹ f} ▹ a



Interpretation of C

• We define ℑ C to be a function such that (ℑ C) f is

• some a      if {C s | C s is accessible and s ▹ f} ▹ a

• Goal: Prove C ▹ ℑ C

• Problem 1: This is not enough, the proof requires accessible terms



Interpretation of C

• We define ℑ C to be a function such that (ℑ C) f is

• some a      if {C s | C s is accessible and s ▹ f} ▹ a

• Goal: Prove C ▹ ℑ C

• Problem 1: This is not enough, the proof requires accessible terms

• Now, we can prove C ▹ ℑ C but....



Interpretation of C

• We define ℑ C to be a function such that (ℑ C) f is

• some a      if {C s | C s is accessible and s ▹ f} ▹ a

• Goal: Prove C ▹ ℑ C

• Problem 1: This is not enough, the proof requires accessible terms

• Now, we can prove C ▹ ℑ C but....

• Problem 2: ℑ C is not a choice function: what if the set is empty?



Interpretation of C

• We define ℑ C to be a function such that (ℑ C) f is

• some a      if {C s | C s is accessible and s ▹ f} ▹ a

• Goal: Prove C ▹ ℑ C

• Problem 1: This is not enough, the proof requires accessible terms

• Now, we can prove C ▹ ℑ C but....

• Problem 2: ℑ C is not a choice function: what if the set is empty?

• some b      if f b = 1



Interpretation of C

• We define ℑ C to be a function such that (ℑ C) f is

• some a      if {C s | C s is accessible and s ▹ f} ▹ a

• Goal: Prove C ▹ ℑ C

• Problem 1: This is not enough, the proof requires accessible terms

• Now, we can prove C ▹ ℑ C but....

• Problem 2: ℑ C is not a choice function: what if the set is empty?

• some b      if f b = 1

• some c      otherwise



Interpretation of C

• We define ℑ C to be a function such that (ℑ C) f is

• some a      if {C s | C s is accessible and s ▹ f} ▹ a

• Goal: Prove C ▹ ℑ C

• Problem 1: This is not enough, the proof requires accessible terms

• Now, we can prove C ▹ ℑ C but....

• Problem 2: ℑ C is not a choice function: what if the set is empty?

• This interpretation does the job!

• some b      if f b = 1

• some c      otherwise



Interpretation of C

• We define ℑ C to be a function such that (ℑ C) f is

• some a      if {C s | C s is accessible and s ▹ f} ▹ a

• Goal: Prove C ▹ ℑ C

• Problem 1: This is not enough, the proof requires accessible terms

• Now, we can prove C ▹ ℑ C but....

• Problem 2: ℑ C is not a choice function: what if the set is empty?

• This interpretation does the job!

• The proof that ℑ C is a choice function requires the Choice rule

• some b      if f b = 1

• some c      otherwise



Interpretation of C

• We define ℑ C to be a function such that (ℑ C) f is

• some a      if {C s | C s is accessible and s ▹ f} ▹ a

• Goal: Prove C ▹ ℑ C

• Problem 1: This is not enough, the proof requires accessible terms

• Now, we can prove C ▹ ℑ C but....

• Problem 2: ℑ C is not a choice function: what if the set is empty?

• This interpretation does the job!

• The proof that ℑ C is a choice function requires the Choice rule

• And we need to know that any value is a possible value for some term
=> we need non-standard models for Choice at functional types

• some b      if f b = 1

• some c      otherwise



Results/Recap

• We have proven completeness

• for "EFO" together with Choice at base types wrt standard models

• for "Full" together with Choice at any type wrt non-standard models



Results/Recap

• We have proven completeness

• for "EFO" together with Choice at base types wrt standard models

• for "Full" together with Choice at any type wrt non-standard models

• We have not proven completeness for "Basic" with Choice at type ɩ:

• The problem: Preserve termination

• Possible solution: Only instantiate discriminating terms



Results/Recap

• We have proven completeness

• for "EFO" together with Choice at base types wrt standard models

• for "Full" together with Choice at any type wrt non-standard models

• We have not proven completeness for "Basic" with Choice at type ɩ:

• The problem: Preserve termination

• Possible solution: Only instantiate discriminating terms

• What about description?
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Description

• Given the tableau rule for Choice, it is easy to give one for Description:

• Using this rule, the completeness proof works analogously to the 
completeness proof with Choice

• This includes the non-standardness at functional types

• Chad suspects that it is possible to add Description at any type to EFO while 
maintaining completeness

• Actually, we don't know...

Desc
¬(st) | a != b, sa, sb | s(Ds)

Ds accessible; a, b fresh
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Bonus: Independence results

• In the first talk, at least Prof. Smolka wanted to know:

• Is If-Then-Else really more powerful, i.e. is it not possible to express If-
Then-Else using other logical constants?

• Result: If-Then-Else is more powerful

• Proof works by constructing a (non-standard) model which contains all well-
known logical constants but not If-Then-Else

• Construction uses a binary logical relation: Equality

• We also constructed a model which containts all well-known logical 
constants, including If-Then-Else, but not Description

• Construction uses an infinitary logical relation



Thank you!
And stay tuned for Sigurd's talk...
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