Master's thesis - second talk: Tableaux for Higher-Order Logic with If-Then-Else, Description and Choice

by Julian Backes on August 28, 2009

Advisor: Dr. Chad E. Brown Supervisor: Prof. Dr. Gert Smolka

Contents

- Recap from the first talk
 - Basics
 - Three Fragments
 - Extending the fragments
- Choice
- Completeness with Choice
- Bonus: Independence results

Recap from the first talk

Simply typed higher order logic and tableaux

manufacturer.com

Basics: Syntax/Semantics

- Context: Simply typed higher order logic
- Syntax:
 - Types (σ, τ, μ): τ ::= ι | ο | τ τ
 - Terms (s, t, u, v): t ::= x | c | tt | $\lambda x.t$
 - Logical constants: \neg , \land , \lor , \forall_{τ} , \exists_{τ} , $=_{\tau}$, \longrightarrow , \top , \bot
- Typed terms as usual, we only consider well-typed terms
- Semantics:
 - o boolean sort, containing 1/true/top/ \top and 0/false/bottom/ \perp
 - ι non-empty set of individuals
 - τ set of all total functions (standard interpretation) or subset of all total total functions (Henkin/non standard interpretation)

Basics: Tableau systems

- General idea: Proof by contradiction
- Instead of proving the validity of a formula, we show that the negation of the formula is unsatisfiable / refutable / yields \perp
- Tableau rules:

$$\frac{A}{A_1 \mid \dots \mid A_n} A \subsetneq A_i \qquad \text{Closed} \frac{A}{\bot}$$

 For simplicity: We only write what is needed in A to apply a rule and what is added in the A_i

Three fragments

- Three fragments of simply typed higher order logic by Brown and Smolka:
 - "Basic": No higher-order equations, no quantifiers, no λ ; proof system is terminating and complete wrt standard models
 - "EFO": No higher-order equations, quantifiers at base types, supports λ; proof system not terminating but cut-free and complete wrt standard models
 - "Full": Higher-order equations, supports λ ; proof system not terminating but cut-free and complete wrt non-standard models
- Goal of my thesis: Extend these fragments with more powerful logical constants while maintaining the existing properties (completeness, cutfreeness, termination)

First talk

- I already presented tablau rules for If-Then-Else which can be added to all three fragments while preserving all of their properties; proof straight forward Slides: <u>http://www.ps.uni-sb.de/~julian/master</u>
- Difference between Choice/Description and other well-known logical constants: There are several possible interpretations
- I presented rules for Choice based on a paper by Mints. Let C s and C s' occur as subterms on the branch:

CHOICE $\overline{\neg(st) \mid s(Cs)}$ t term of suitable type

CHOICE_{Ext} $\overline{sa, \neg(s'a)} \mid \neg(sa), s'a \mid Cs = Cs'$ a fresh

MAT,
$$\frac{\alpha s_1 \dots s_n, \neg \alpha t_1 \dots t_n}{s_1 \neq t_1 \mid \dots \mid s_n \neq t_n} \alpha$$
 variable or some C s

Choice

Were the rules ok?

CHOICE
$$\overline{\neg(st) \mid s(Cs)}$$
 t term of suitable type
CHOICE_{Ext} $\overline{sa, \neg(s'a) \mid \neg(sa), s'a \mid Cs = Cs'}$ a fresh
MAT, $\frac{\alpha s_1 \dots s_n, \neg \alpha t_1 \dots t_n}{s_1 \neq t1 \mid \dots \mid s_n \neq t_n}$ α variable or some C s

• There were four problems with these rules:

CHOICE
$$\overline{\neg(st) \mid s(Cs)}$$
 t term of suitable type
CHOICE_{Ext} $\overline{sa, \neg(s'a) \mid \neg(sa), s'a \mid Cs = Cs'}$ a fresh
MAT' $\frac{\alpha s_1 \dots s_n, \neg \alpha t_1 \dots t_n}{s_1 \neq t1 \mid \dots \mid s_n \neq t_n}$ α variable or some C s

- There were four problems with these rules:
 - Something was missing: Not all unsatisfiable branches could be refuted

CHOICE
$$\overline{\neg(st) \mid s(Cs)}$$
 t term of suitable type
CHOICE_{Ext} $\overline{sa, \neg(s'a) \mid \neg(sa), s'a \mid Cs = Cs'}$ a fresh
MAT' $\frac{\alpha s_1 \dots s_n, \neg \alpha t_1 \dots t_n}{s_1 \neq t1 \mid \dots \mid s_n \neq t_n}$ α variable or some C s

- There were four problems with these rules:
 - Something was missing: Not all unsatisfiable branches could be refuted
 - Choice_{Ext} causes an exponential blow-up in the number of branches

CHOICE
$$\overline{\neg(st) \mid s(Cs)}$$
 t term of suitable type
CHOICE_{Ext} $\overline{sa, \neg(s'a) \mid \neg(sa), s'a \mid Cs = Cs'}$ a fresh
MAT' $\frac{\alpha s_1 \dots s_n, \neg \alpha t_1 \dots t_n}{s_1 \neq t1 \mid \dots \mid s_n \neq t_n}$ α variable or some C s

- There were four problems with these rules:
 - Something was missing: Not all unsatisfiable branches could be refuted
 - Choice_{Ext} causes an exponential blow-up in the number of branches
 - Is C s at the "head" in MAT' not too restrictive?

CHOICE
$$\overline{\neg(st) \mid s(Cs)}$$
 t term of suitable type
CHOICE_{Ext} $\overline{sa, \neg(s'a) \mid \neg(sa), s'a \mid Cs = Cs'}$ a fresh
MAT' $\frac{\alpha s_1 \dots s_n, \neg \alpha t_1 \dots t_n}{s_1 \neq t1 \mid \dots \mid s_n \neq t_n}$ α variable or some C s

- There were four problems with these rules:
 - Something was missing: Not all unsatisfiable branches could be refuted
 - Choice_{Ext} causes an exponential blow-up in the number of branches
 - Is C s at the "head" in MAT' not too restrictive?
 - C s and C s' must occur as subterms on the branch. What about the subterm $\lambda x.C x$?

- Consider the following unsatisfiable branch/set:
 - $\{s =_{\iota o} t, C s !=_{\iota} C t\}$

- Consider the following unsatisfiable branch/set:
 - {s = $_{lo}$ t, C s != $_{l}$ C t}
- \bullet Using Choice_{Ext} and Confrontation yields
 - {s =_{lo} t, C s \neq_l C t, C s =_l C t, C s \neq_l C s, C t \neq_l C t}
 - this branch cannot be refuted

- Consider the following unsatisfiable branch/set:
 - $\{s =_{\iota o} t, C s !=_{\iota} C t\}$
- Using Choice_{Ext} and Confrontation yields
 - {s = $_{\iota o}$ t, C s \neq_{ι} C t, C s = $_{\iota}$ C t, C s \neq_{ι} C s, C t \neq_{ι} C t}
 - this branch cannot be refuted
- We need "MAT' at type ι ": DEC'

DEC'
$$\frac{\alpha s_1 \dots s_n \neq_{\iota} \alpha t_1 \dots t_n}{s_1 \neq t_1 \mid \dots \mid s_n \neq t_n} \alpha \text{ variable or some C s}$$

• {s = $_{\iota o}$ t, C s \neq_{ι} C t, C s = $_{\iota}$ C t, C s \neq_{ι} C s, C t \neq_{ι} C t}

- {s = $_{\iota o}$ t, C s \neq_{ι} C t, C s = $_{\iota}$ C t, C s \neq_{ι} C s, C t \neq_{ι} C t}
- One question remaining: Is C s not too restrictive?

- {s = $_{\iota o}$ t, C s \neq_{ι} C t, C s = $_{\iota}$ C t, C s \neq_{ι} C s, C t \neq_{ι} C t}
- One question remaining: Is C s not too restrictive?
 - Answer: probably not :-) We don't know...

- {s = ι_0 t, C s \neq_ι C t, C s = ι_ι C t, C s \neq_ι C s, C t \neq_ι C t}
- One question remaining: Is C s not too restrictive?
 - Answer: probably not :-) We don't know...
- But remember: Choice_{Ext} is not a nice rule (exponential blow-up)

- {s = $_{\iota o}$ t, C s \neq_{ι} C t, C s = $_{\iota}$ C t, C s \neq_{ι} C s, C t \neq_{ι} C t}
- One question remaining: Is C s not too restrictive?
 - Answer: probably not :-) We don't know...
- But remember: Choice_{Ext} is not a nice rule (exponential blow-up)
- We showed: Relaxing the C s restriction and just require C in MAT' and DEC'

DEC, $\frac{\alpha s_1 \dots s_n \neq_{\iota} \alpha t_1 \dots t_n}{s_1 \neq t_1 \mid \dots \mid s_n \neq t_n} \alpha$ variable or C MAT, $\frac{\alpha s_1 \dots s_n, \neg \alpha t_1 \dots t_n}{s_1 \neq t_1 \mid \dots \mid s_n \neq t_n} \alpha$ variable or C

makes Choice_{Ext} unnecessary

- There were four problems with these rules:
 - Something was missing: Not all unsatisfiable branches could be refuted
 - Choice_{Ext} causes an exponential blow-up in the number of branches
 - Is C s at the "head" in MAT'/DEC' not too restrictive?
 - C s and C s' must occur as subterms on the branch. What about the subterm $\lambda x.C \ x?$
- For the last problem, we need some definitions...

- There were four problems with these rules:
 - Something was missing: Not all unsatisfiable branches could be refuted
 - Choice_{Ext} causes an exponential blow-up in the number of branches
 - Is C s at the "head" in MAT'/DEC' not too restrictive?
 - C s and C s' must occur as subterms on the branch. What about the subterm $\lambda x.C \ x?$
- For the last problem, we need some definitions...

- There were four problems with these rules:
 - Something was missing: Not all unsatisfiable branches could be refuted
 - We don't need it!
 Choice_{Ext} causes an exponential blow-up in the number of branches
 - Is C s at the "head" in MAT'/DEC' not too restrictive?
 - C s and C s' must occur as subterms on the branch. What about the subterm $\lambda x.C \ x?$
- For the last problem, we need some definitions...

- There were four problems with these rules:
 - Something was missing: Not all unsatisfiable branches could be refuted
 - We don't need it!
 Choice_{Ext} causes an exponential blow-up in the number of branches
 - Is C s at the "head" in MAT'/DEC' not too restrictive? Now, it is!
 - C s and C s' must occur as subterms on the branch. What about the subterm $\lambda x.C \ x?$
- For the last problem, we need some definitions...

- There were four problems with these rules:
 - Something was missing: Not all unsatisfiable branches could be refuted
 - We don't need it!
 Choice_{Ext} causes an exponential blow-up in the number of branches
 - Is C s at the "head" in MAT'/DEC' not too restrictive? Now, it is!
 - C s and C s' must occur as subterms on the branch. What about the subterm $\lambda x.C \ x?$
- For the last problem, we need some definitions...

Def: Let E be a branch. A term s is discriminating in E if and only if there is a term t such that (s ≠_ι t) ∈ E or (t ≠_ι s) ∈ E

- Def: Let E be a branch. A term s is discriminating in E if and only if there is a term t such that (s ≠_ι t) ∈ E or (t ≠_ι s) ∈ E
- Def: Let E be a branch. A term s is accessible in E if and only if there is a context C = [] t₁ ... t_n such that

- Def: Let E be a branch. A term s is discriminating in E if and only if there is a term t such that (s ≠_ι t) ∈ E or (t ≠_ι s) ∈ E
- Def: Let E be a branch. A term s is accessible in E if and only if there is a context C = [] t₁ ... t_n such that
 - C[s] is discriminating in E for C[s] of type ι or

- Def: Let E be a branch. A term s is discriminating in E if and only if there is a term t such that (s ≠_ι t) ∈ E or (t ≠_ι s) ∈ E
- Def: Let E be a branch. A term s is accessible in E if and only if there is a context C = [] t₁ ... t_n such that
 - C[s] is discriminating in E for C[s] of type ι or
 - $\bullet \ C[s] \in E \ or \ \neg C[s] \in E \ for \ C[s] \ of \ type \ o$

- Def: Let E be a branch. A term s is discriminating in E if and only if there is a term t such that (s ≠_ι t) ∈ E or (t ≠_ι s) ∈ E
- Def: Let E be a branch. A term s is accessible in E if and only if there is a context C = [] t₁ ... t_n such that
 - C[s] is discriminating in E for C[s] of type ι or
 - $C[s] \in E \text{ or } \neg C[s] \in E \text{ for } C[s] \text{ of type } o$
- Solution to our subterm problem: "is accessible in E" instead of "is a subterm in E" does the job

Comparison of the rules

• These were the rules we started with:

CHOICE $\frac{1}{\neg(st) \mid s(Cs)}$ t term of suitable type

CHOICE_{Ext}
$$\overline{sa, \neg(s'a)} \mid \neg(sa), s'a \mid Cs = Cs'$$
 a fresh

MAT'
$$\frac{\alpha s_1 \dots s_n, \neg \alpha t_1 \dots t_n}{s_1 \neq t_1 \mid \dots \mid s_n \neq t_n} \alpha$$
 variable or some Cs

• And these are the new rules:

CHOICE
$$\frac{}{\neg(st) \mid s(Cs)} Cs$$
 accessible

DEC'
$$\frac{\alpha s_1 \dots s_n \neq_{\iota} \alpha t_1 \dots t_n}{s_1 \neq t_1 \mid \dots \mid s_n \neq t_n} \alpha$$
 variable or C

MAT,
$$\frac{\alpha s_1 \dots s_n, \neg \alpha t_1 \dots t_n}{s_1 \neq t_1 \mid \dots \mid s_n \neq t_n} \alpha$$
 variable or C

Completeness with Choice

A proof sketch

Completeness proof

- I will not explain the whole completeness proof here
- The hard part reduces to the Model Existence Theorem:
 - Def: A set E of formulas (representing a branch) is called evident if it does not contain ⊥ and is closed under the tablau rules
 - Model Existence Theorem: If a set E is evident, then there exists an interpretation which satifies all formulas in E
- The proof of this Theorem is long, I only present the general ideas here
- But first, we need one more definition....

Model existence theorem

Model existence theorem

- Given an evident set E, define **possible values relation** by induction on types:
 - s $\triangleright_0 0 :<=> [s] \notin E$
 - s ⊳₀ 1 :<=> ¬[s] ∉ E
 - s $\triangleright_{\sigma\tau} f := st \triangleright_{\tau} fa$ whenever t $\triangleright_{\sigma} a$
 - (We skip \triangleright_{ι} here, it is defined using discriminants)
- Fact: Any term has a possible value (proof uses MAT' and DEC')
- For the proof of the model existence theorem, we need to show that for any term s, s ▷ ℑ s (where ℑ is a corresponding interpretation); proof is done by induction on s
 - Question: For the case C ▷ ℑ C, what is ℑ C? We said that the interpretation of C is not unique so we have to give one...

- Goal: Prove $C \triangleright \mathfrak{I} C$
- Problem 1: This is not enough, the proof requires accessible terms
- Now, we can prove $C \triangleright \mathfrak{I} C$ but....
- Problem 2: \Im C is not a choice function: what if the set is empty?
- This interpretation does the job!
- The proof that \Im C is a choice function requires the Choice rule
 - And we need to know that any value is a possible value for some term
 => we need non-standard models for Choice at functional types

• We define \mathfrak{T} C to be a function such that (\mathfrak{T} C) f is

- Goal: Prove C $\triangleright \mathfrak{I}$ C
- Problem 1: This is not enough, the proof requires accessible terms
- Now, we can prove $C \triangleright \mathfrak{I} C$ but....
- Problem 2: $\ensuremath{\mathfrak{I}}$ C is not a choice function: what if the set is empty?
- This interpretation does the job!
- The proof that $\ensuremath{\mathfrak{T}}$ C is a choice function requires the Choice rule
 - And we need to know that any value is a possible value for some term
 => we need non-standard models for Choice at functional types

- \bullet We define \mathfrak{I} C to be a function such that (3 C) f is
 - some a if {C s | s ▷ f} ▷ a

- Goal: Prove C $\triangleright \mathfrak{I}$ C
- Problem 1: This is not enough, the proof requires accessible terms
- Now, we can prove $C \triangleright \mathfrak{I} C$ but....
- Problem 2: $\ensuremath{\mathfrak{I}}$ C is not a choice function: what if the set is empty?
- This interpretation does the job!
- The proof that $\ensuremath{\mathfrak{T}}$ C is a choice function requires the Choice rule
 - And we need to know that any value is a possible value for some term
 => we need non-standard models for Choice at functional types

- \bullet We define \mathfrak{I} C to be a function such that (3 C) f is
 - some a if {C s | s ▷ f} ▷ a

- Goal: Prove C $\triangleright \mathfrak{I}$ C
- Problem 1: This is not enough, the proof requires accessible terms

- \bullet We define \mathfrak{I} C to be a function such that (3 C) f is
 - some a if {C s | C s is accessible and s ▷ f} ▷ a

- Goal: Prove C $\triangleright \mathfrak{I}$ C
- Problem 1: This is not enough, the proof requires accessible terms

- \bullet We define \mathfrak{T} C to be a function such that (\mathfrak{T} C) f is
 - some a if {C s | C s is accessible and s ▷ f} ▷ a

- Goal: Prove $C \triangleright \mathfrak{I} C$
- Problem 1: This is not enough, the proof requires accessible terms
- Now, we can prove $C \triangleright \mathfrak{I} C$ but....

- \bullet We define \mathfrak{T} C to be a function such that (\mathfrak{T} C) f is
 - some a if {C s | C s is accessible and s ▷ f} ▷ a

- Goal: Prove $C \triangleright \mathfrak{I} C$
- Problem 1: This is not enough, the proof requires accessible terms
- Now, we can prove C $\triangleright\ \mathfrak{I}$ C but....
- Problem 2: $\ensuremath{\mathfrak{I}}$ C is not a choice function: what if the set is empty?

- \bullet We define \mathfrak{I} C to be a function such that (\mathfrak{I} C) f is
 - some a if {C s | C s is accessible and s ▷ f} ▷ a
 - some b if f b = 1
- Goal: Prove C $\triangleright \mathfrak{I} C$
- Problem 1: This is not enough, the proof requires accessible terms
- Now, we can prove C $\triangleright\ \mathfrak{I}$ C but....
- Problem 2: $\ensuremath{\mathfrak{I}}$ C is not a choice function: what if the set is empty?

- We define \mathfrak{T} C to be a function such that (\mathfrak{T} C) f is
 - some a if {C s | C s is accessible and s ▷ f} ▷ a
 - some b if f b = 1
 - some c otherwise
- Goal: Prove $C \triangleright \mathfrak{I} C$
- Problem 1: This is not enough, the proof requires accessible terms
- Now, we can prove C $\triangleright\ \mathfrak{I}$ C but....
- Problem 2: \Im C is not a choice function: what if the set is empty?

- \bullet We define \mathfrak{I} C to be a function such that (\mathfrak{I} C) f is
 - some a if {C s | C s is accessible and s ▷ f} ▷ a
 - some b if f b = 1
 - some c otherwise
- Goal: Prove $C \triangleright \mathfrak{I} C$
- Problem 1: This is not enough, the proof requires accessible terms
- Now, we can prove C $\triangleright\ \mathfrak{I}$ C but....
- Problem 2: \Im C is not a choice function: what if the set is empty?
- This interpretation does the job!

- \bullet We define \mathfrak{I} C to be a function such that (\mathfrak{I} C) f is
 - some a if {C s | C s is accessible and s ▷ f} ▷ a
 - some b if f b = 1
 - some c otherwise
- Goal: Prove C $\triangleright \mathfrak{I}$ C
- Problem 1: This is not enough, the proof requires accessible terms
- Now, we can prove $C \triangleright \mathfrak{I} C$ but....
- Problem 2: $\ensuremath{\mathfrak{I}}$ C is not a choice function: what if the set is empty?
- This interpretation does the job!
- The proof that $\ensuremath{\mathfrak{T}}$ C is a choice function requires the Choice rule

- \bullet We define ${\mathfrak T}$ C to be a function such that (${\mathfrak T}$ C) f is
 - some a if {C s | C s is accessible and s ▷ f} ▷ a
 - some b if f b = 1
 - some c otherwise
- Goal: Prove C $\triangleright \mathfrak{I}$ C
- Problem 1: This is not enough, the proof requires accessible terms
- Now, we can prove C $\triangleright\ \mathfrak{I}$ C but....
- Problem 2: $\ensuremath{\mathfrak{I}}$ C is not a choice function: what if the set is empty?
- This interpretation does the job!
- The proof that $\ensuremath{\mathfrak{T}}$ C is a choice function requires the Choice rule
 - And we need to know that any value is a possible value for some term
 => we need non-standard models for Choice at functional types

Results/Recap

- We have proven completeness
 - for "EFO" together with Choice at base types wrt standard models
 - for "Full" together with Choice at any type wrt non-standard models

Results/Recap

- We have proven completeness
 - for "EFO" together with Choice at base types wrt standard models
 - for "Full" together with Choice at any type wrt non-standard models
- We have not proven completeness for "Basic" with Choice at type ι:
 - The problem: Preserve termination
 - Possible solution: Only instantiate discriminating terms

Results/Recap

- We have proven completeness
 - for "EFO" together with Choice at base types wrt standard models
 - for "Full" together with Choice at any type wrt non-standard models
- We have not proven completeness for "Basic" with Choice at type ι:
 - The problem: Preserve termination
 - Possible solution: Only instantiate discriminating terms
- What about description?

• Given the tableau rule for Choice, it is easy to give one for Description:

DESC $\frac{1}{\neg(st) \mid a \neq b, sa, sb \mid s(Ds)} Ds$ accessible; a, b fresh

• Given the tableau rule for Choice, it is easy to give one for Description:

DESC
$$\frac{1}{\neg(st) \mid a \neq b, sa, sb \mid s(Ds)} Ds$$
 accessible; a, b fresh

- Using this rule, the completeness proof works analogously to the completeness proof with Choice
 - This includes the non-standardness at functional types

• Given the tableau rule for Choice, it is easy to give one for Description:

DESC $\frac{1}{\neg(st) \mid a \neq b, sa, sb \mid s(Ds)} Ds$ accessible; a, b fresh

- Using this rule, the completeness proof works analogously to the completeness proof with Choice
 - This includes the non-standardness at functional types
- Chad suspects that it is possible to add Description at any type to EFO while maintaining completeness

• Given the tableau rule for Choice, it is easy to give one for Description:

DESC $\frac{1}{\neg(st) \mid a \neq b, sa, sb \mid s(Ds)} Ds$ accessible; a, b fresh

- Using this rule, the completeness proof works analogously to the completeness proof with Choice
 - This includes the non-standardness at functional types
- Chad suspects that it is possible to add Description at any type to EFO while maintaining completeness
- Actually, we don't know...

- In the first talk, at least Prof. Smolka wanted to know:
 - Is If-Then-Else really more powerful, i.e. is it not possible to express If-Then-Else using other logical constants?

- In the first talk, at least Prof. Smolka wanted to know:
 - Is If-Then-Else really more powerful, i.e. is it not possible to express If-Then-Else using other logical constants?
- Result: If-Then-Else is more powerful

- In the first talk, at least Prof. Smolka wanted to know:
 - Is If-Then-Else really more powerful, i.e. is it not possible to express If-Then-Else using other logical constants?
- Result: If-Then-Else *is* more powerful
- Proof works by constructing a (non-standard) model which contains all wellknown logical constants but not If-Then-Else
 - Construction uses a binary logical relation: Equality

- In the first talk, at least Prof. Smolka wanted to know:
 - Is If-Then-Else really more powerful, i.e. is it not possible to express If-Then-Else using other logical constants?
- Result: If-Then-Else *is* more powerful
- Proof works by constructing a (non-standard) model which contains all wellknown logical constants but not If-Then-Else
 - Construction uses a binary logical relation: Equality
- We also constructed a model which containts all well-known logical constants, including If-Then-Else, but not Description
 - Construction uses an infinitary logical relation

And stay tuned for Sigurd's talk...

References

- Chad E. Brown, G. Smolka: "Terminating Tableaux for the Basic Fragment of Simple Type Theory". TABLEAUX 2009:138-151, Springer LNCS 5607.
- Chad E. Brown, G. Smolka: "Extended First-Order Logic". TPHOLs 2009, Springer LNCS 5674.
- Chad E. Brown, G. Smolka: "Complete Cut-Free Tableaux for Equational Simple Type Theory". 2009.
- G. Mints: Cut-Elimination for Simple Type Theory with an Axiom of Choice. The Journal of Symbolic Logic, Vol. 64, No. 2., pp. 479-485. 1999.
- G. Takeuti: "Proof Theory (Studies in Logic and the Foundations of Mathematics)". Elsevier Science Ltd, 2 Rev Sub edition. 1987.