Master's thesis - final talk:

Tableaux for Higher-Order
Description and Choice

by Julian Backes on April 9, 2010

ogic with [f-Then-

Advisor: Dr. Chad E.

—[se,

Brown

Supervisor: Prof. Dr. Gert Smolka



Thank you!



Contents

¢ Introduction
e A Signature Dependent Tableau System
e Generic Completeness Result

e Standard Completeness

e Extensions



INntroduction & Basics

Syntax & Semantics




Three Papers

e Three papers about fragments of simply typed higher order logic by Brown
and Smolka:

e "Extended First-Order Logic":
No higher-order equations, quantifiers at base types; proof system cut-free
and complete wrt standard models

e "Complete Cut-Free Tableaux for Equational Simple Type Theory":
Full higher-order logic, proof system cut-free and complete wrt general
models

e "Analytic Tableaux for Simple Type Theory and its First-Order Fragment":
Essentially combines the two papers from above

e Goal of my thesis: Extend these fragments with more powerful logical
constants while maintaining the existing properties (completeness, cut-
freeness)



Syntax

e Context: Simply typed higher order logic
e Types (O, T, W):L|o|OT
e Logical Constants LC ={—, v, 3+, =1, T, 1, ift, €1, 7}

e Signature S is a subset of LC

* "Fragments" can be seen as signatures
e S-terms (s, t, u, v, w): x| c (e S)|st]| .t
e Typed S-terms as usual, we only consider well-typed S-terms

o A° denotes the set of all S-terms of type o



Frames

e A frame D is a function mapping types to nonempty sets such that
e D(o) ¢ {0, 1} (true/false)
e D(oT) € D(o) — D(T1)

e A standard frame D is a frame such that
* D(o) = {0, 1}
e D(oT) = D(o) — D(T)

e What is a (standard) S-frame?



Logical Constants and Frames

e For each logical constant c, there is a property P that must hold for a function f
represented by ¢

e Examples:

P(f)=(fl=0Af0=1)
P. (f) =Vg € D(co). (da € Do. ga) — g(fg)

e A frame realizes a logical constant c iff there is some fin D such that Pc(f) is true

e An S-frame is a frame that realizes all logical constants in S

e A standard frame is trivially an S-frame for all S

e S-Interpretations (into S-frames) / satisfiability / validity as usual



A New Goal

e Given the definition of a signature, we decided to work towards an additional
goal for my thesis:

e "Give me any signature you want and | give you back a complete tableau
system. | will also tell you whether this tableau system is complete with
respect to standard models”



A Signature
Dependent Tableau
System

Give me any signature you
want...
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Signatures and Quasiformulas

e Goal: A modular, signature dependent tableau system

e Problem: Disequations will be the "internal workhorses" of the system; should
we require — and =+ to be always in the signature?

e No! =t is a very powerful logical constant and we will not be able to get
completeness wrt. standard models

e Solution: Introduce quasiformulas
e Every S-formula is a quasi-S-formula
e |f sis an S-formula then —s is an quasi-S-formula

e |[f s and t are S-terms of the same type then s # t is a quasi-S-formula
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Tableau rules

e Tableau rules:

A A
A C A, CLOSED —
Ay | . ] Ay

e For simplicity: We only write what is needed in A to apply a rule and what is
added in the A,

e All A and Ai must only contain quasi-S-formulas

e Requirement: The tableau system should depend on the signature but not
vice versa

* This means that a tableau rule must not introduce new logical constants
(where "new" is relative to the premise)
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The Basic Tableau System

e For the empty signature, we have four rules to handle quasiformulas:

S For t S Fot

FLE x fresh BE
sx| #, [tx] s, -t | —s, t

rS1...8y #, Tt1 ...ty =0

DEC n =
81#t1| lsn#tn

TSq Sp, Xty ...0Tn, -0

MAT n >
81%t1| ‘Sn#tn
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Usual Logical Constants

e The rules for the usual logical constants are not new:

1 =il sVi ﬂ(s \/ t) ——8
BoT — Top — OR ORrN DN ——
s |t —s, —t s
E'S —l(Els)
EX —— x fresh ExXN t € A° normal
[sx] [st]
BQ S =7{...Th0 t n > ()7
[suq ... Up], [tur ... up] | —[sur ... up], —ftuy ... u,] Wi € A2 normal
CoON S =rimuty WFELU n >0,

S
[swi ... wy] £, w, [twr ... wy] %, u | [swi...w,] %, v, [twr ... wy] #, v Wi € A7, normal
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Towards the New Logical Constants

e Def: Let E be a branch. A term s:L is discriminating in E if and only if there is a
termtsuchthat(s#t)eEor(t#s)ekE

e Def: Let E be a branch. A term s is accessible in E if and only if there is a
context C =[] t1 ... tn such that

e CJ[s] is discriminating in E for CJ[s] of type L or

e C[s] € E or =C|s] € E for CJs] of type o
e \We call C an accessibility context

e Examples: Is "€ s" accessible?

e Not accessible: s (€ s)

e Accessible: v # € st u; accessibility context: v =[] tu
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If-Then-Else

* The interesting fact about if-then-else is that it does not necessarily return
something of type o (if;:oLLL returns something of type ()

e Conseqguence: if does not always occur as the "head" of a formula

if  stu)vy ... v v
IFL (o stujvn . .- vn 7, n >0

s, [tvy...vn] #, 0" | s, [uvy ... v,] #, v

v' #, (if,stu)vy ... v,

IFR : -n >0
s, [tv}ﬁ..vn_jitylfl S?’u [uvy . C] #, v .
— (' accessibility context
IFB — s, Yjﬁ i LS T n>0
s, [E01 5. o] | —s) [uvi .. vy

—((ify stu)vy ... vp)

s, Dty ... v, | T8, luvy ... vy
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Choice and Description

® The rules for choice are based on a paper by Mints

ES1...8n, =ty ... Ty 581...8n#b€t1...tn
MAT. DEC,
Sl#tl"Sn#tn Sl#tll---‘sn#tn
Cles] C' accessibility context,
CHOICE

—[st] | [s(es)] t € A5 normal

® The rules for description look similar

LS1...8p, TUt1... 1, LS1...8p F, tt1 ... 1Ty
MAT, DEc,
81#t1‘|8n#tn 8175751’---\87@7&%
Cles] C' accessibility context,
DESC

“lst] [z #y, [sal, [sy] | [s(es)] t € Ao mormal, x, y fresh

17

17



t
)
'

X
o)
o)
o)
o)
Q
@
Q
n
>
S
O

2
0

e C=

oL

Completeness Result

(Generic

A proof sketch
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Completeness Proof

* | will not explain the whole completeness proof here :-)

e The hard part reduces to the Model Existence Theorem:

e Def: A set E of formulas (representing a branch) is called evident if it is not
closed and no tableau rule applies

e Model Existence Theorem: If a set E is evident, then there exists an
interpretation which satifies all formulas in E

e \\We need to construct an S-frame D and an S-interpretation into D
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Possible Values

e Given an evident set E, define possible values relation by induction on types:
s bo0ix=>[s] gE
*sbhol1i<=>-[s] ¢E
® S Dor f :<=> st Dy fa whenever t bg a

e (We skip > here, it is defined using discriminants)
e D(0) is defined as Ran(bg), i.e., D may be a nonstandard frame

e \We need to show that D is an S-frame
e For all c € S we need to find some f such that ¢ b f and Pc(f) holds

e This is straightforward for all usual logical constants including if since the f
are unique and should be clear (equality function for = etc.)

e For c € {g, L}, the fis not uniqgue so we have to define it...
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Interpretations for € and L

* The interpretation for € is also based on the work by Mints

¢ \We define a function @ € D(co) — D(0) such that
e & f=someb suchthatfb =17 if ffis empty and such a b exists

e ® f = some a such that £ > a otherwise

e ff={es|s b fand €s is accessible}

* In the second case, there is always a common possible value for f¢, i.e., for
each element in 7%, even if it is empty (proof uses Mat: and Dece)

e lemmail: s> ®

e Lemma 2: ® is a choice function (proof uses Choice)
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Interpretations for € and t ctd.

e For description, everything will look familiar

¢ \We define a function Y € D(co) — D(0) such that

e pf=somebsuchthatfb =1 Iif f'is empty and such a b exists and is
unique

* \p f = some a such that f* b a otherwise

e l={1s|s b fand s is accessible}

* |n the second case, there is always a common possible value for fi, i.e., for
each element in 1!, even if it is empty (proof uses Mat, and Dec\)

elemmal:Lb P

e Lemma 2: L is a description function (proof uses Desc)

22

22



Standard Frames

e |t is desirable to get completeness wrt. standard frames

e Problematic lemma: For all o and for all a in D(o) there is some term s such
that s Pg a

e Having D defined as Ran(D), this lemma is trivial
e Having D defined as a standard frame, this lemma does not hold anymore
for all types o

e |t still holds for type L (believe me)

e |t holds for type o if for example {T, 1L} ¢ S (of course, there are other
choices)
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Standard Frames ctd.

e This restriction affects all rules that quantify over terms:

_'<EIS) Cles] C accessibility context
ExXN t e A° ) CHoice 2 ’
) Ao ~[5t] | [s(cs)| (CEAE nomma)
Cles] C accessibility context,
DEsc S
—|[3t] ’ €T 7é Y, [3,@]7 [Sy] ‘ [S(LS)] @ c AU normal)x, y fresh
BQ S =ri...Tho t n >0,

[su1 .. un, [tur...uy| | —[sur ... upl, —[tuy ... up,] (u; € A7, normal)

S = Tht ta U 7éb v n > O,
[8?1)1 ttt wn] #L U, [twl cee wn] #L U | [Swl . o wn] #L 'U, [t'lUl . o 'I,Un] #L 'U@i € Ai, normal)

ConN

e Consequence: =11 .. mo, 3o, Lo and &g only for o, T4, ... Tnh € {0, L} allowed

e Interesting fact: if is not affected!
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—xtensions

Future Work
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—xtensions

® n-ary choice
e Choice as presented in this thesis is just for sets (type c0)
e \What about binary relations (type oT10)?
e |t turns out that choice for (arbitrary) relations is implied by choice for sets

¢ |[ntroducing additional logical constants makes them easier to use

¢ Restricting instantiations
e Paper by Chad and myself (accepted to IJCAR 2010)
e |t is enough to consider as instantiations
e T, L attypeo

e discriminating terms at type
¢ at function types terms which only contain free variables that are already free
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—xtensions ctd

e Primitive Recursion and the Natural Numbers

e New type n, new logical constants 0:n (zero), S:nn (successor function),
pr:o(noco)nao (primitive recursion)

¢ Rules bases on the peano axioms

St=25 t
St=20 0=5t “ tul t : no, y fresh
t=u 0] | —[ty], [¢(Sy)]
- t # u
Clprstul] C' accessibility

u=0, [C[s]] | w= Sz, [Cltz(prstx)]] context, x fresh

e |t looks like we need to extend quasiformulas to (dis-)equations at type n
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Thank you!
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