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Abstract

In 2009, Brown and Smolka published four papers about differ-
ent fragments of higher-order logic and presented corresponding
complete tableau systems. These fragments support different
well-known logical constants, such as conjunction, disjunction,
implication and quantifiers.

This thesis is focused on the integration of new logical con-
stants, namely if-then-else, description and choice. To moti-
vate this goal, we give several independence results: We show
that if-then-else is independent of classical simply typed higher-
order logic and that description is independent of classical simply
typed higher-order logic including if-then-else.

We present a generic tableau system. That is, for any set of
logical constants, we show how to construct a cut-free tableau
system. We prove completeness with respect to general mod-
els. In addition, we investigate in which cases we can achieve
completeness with respect to standard models.
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1 Introduction

1.1 Tableaux

Tableau systems are proof systems based on refutation: Instead of proving the validity of a
formula they show that its negation is unsatisfiable. Tableaux were introduced independently
by Beth [5] and Hintikka [17] in 1955 and later elaborated by Prawitz [22], Smullyan [24] and
Fitting [13]. Today, many different tableau systems exist, for example for extended first-order
logic [9] or higher-order logic [18] [8]. Tableaux are described by a set of tableau rules which
look as follows:

A
A1 . . . An

A and A1, . . . , An (for n ≥ 1) are sets of formulas. A is the set of premisses and the Ai are
the alternatives. Such a rule can be read as “If A is satisfiable then Ai is satisfiable for at
least one 1 ≤ i ≤ n” or as “If A is unsatisfiable then Ai is unsatisfiable for all 1 ≤ i ≤ n”.
As an example, consider the following rule for disjunction:

s ∨ t
s t

The meaning of this rule is “If s∨ t is satisfiable then either s is satisfiable or t is satisfiable”.
Tableaux rules are applied to sets of formulas which we call branches. A rule can only be

applied if the the branch contains all premisses. The result of this application is one new
branch per alternative containing all the formulas from the original branch plus the corre-
sponding alternative. There are special rules called closed rules which have no alternative.

A

A branch A is closed (or refutable) iff either a closed rule applies to A or the application of
a rule to A yields branches A1, . . . , An which can all be closed. Given a certain formula s,
we will prove the validity of s using a tableau system by showing that {¬s} is refutable in
this tableau system, i.e., that ¬s unsatisfiable.

1.2 If-Then-Else, Description & Choice

The main topic of this thesis will be about the three logical constants if-then-else, description
and choice which we will introduce in this section. We now present them and discuss why it
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is interesting to analyze them.

1.2.1 If-Then-Else

Although if-then-else is a very common control structure in almost any programming language
there has not been much research going on in the area of automated higher-order proof
systems with support for if-then-else. In [4], Beeson presents a unification algorithm based
on if-then-else. In [1], the authors use decision trees to give a completeness result. Decision
trees can be represented using nested if-then-else expressions.

If-Then-Else is a function getting three arguments: one boolean value (true or false) and
two values of the same type corresponding to the if-branch respectively to the else-branch.
The following two axioms define the properties of if-then-else. We use if to refer to the
if-then-else operator and use >/⊥ to represent true/false:

∀x, y. if>xy = x
∀x, y. if⊥xy = y

Note that, as for other well-known logical constants like disjunction or negation, there is
exactly one function satisfying these axioms. The interesting difference between if-then-else
and other logical constants is that if-then-else does not necessarily return something boolean.
For example if>(λx.⊥)(λx.>) will evaluate to λx.⊥ which is clearly a function.

1.2.2 Choice

The Axiom of Choice was first stated in 1904 by Zermelo [26]. He used it to prove that every
set can be well-ordered. In 1908, Zermelo made this axiom part of his famous “Untersuchun-
gen über die Grundlagen der Mengenlehre” [28] where he presented the first axiomatization
of a set theory. Later, Zermelo’s axioms were extended to form Zermelo-Fraenkel set theory
with choice (ZFC) on which most of modern mathematics is based. The Axiom of Choice
states that there (for any set A of sets) there is is a function which, for any nonempty set
(in A). Formally (suppressing the A):

∃f. ∀p. (∃x. px)→ p(fp)

The Axiom of Choice has always been very controversial. Already after Zermelo’s publica-
tion in 1904 there had been objections against it by several people (in [27], Zermelo mentions
Borel and Peano). This not only led to a new proof of the well-ordering theorem which made
again use of a choice operator [27] but, in addition, he spent one section of this paper on the
discussion of choice and defended his decision to assume the existence of such a function.

Today, the existence of choice has widely been accepted. For instance, the interactive proof
system Isabelle/HOL [21] assumes the Axiom of Choice. An interesting fact about choice
is that there are several possible candidates. For example the set {0, 1} has the subsets
{0, 1}, {0}, {1} and ∅. Already for the empty set, there are two possible elements for choice
to return. The same holds for {0, 1} which results in four possible choice operators. One
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important part of this thesis will be to give a specific definition of choice in corresponding
situations.

1.2.3 Description

The theory of descriptions originated from the areas of philosophy and linguistics. It was
introduced by Russell in 1905 [23] although Frege had his own version already in 1893 [16].
The existence of a description function can be expressed using the following axiom:

∃f. ∀p. (∃!x. px)→ p(fp)

Although this looks very similar to the Axiom of Choice there is an important difference.
The behaviour of a description function is only defined on singleton sets, i.e., sets which only
contain one element.

We will later show that description functions are in a sense weaker than choice func-
tions. That’s why we want to investigate whether adding support for description affects the
properties of a tableau system in a different way than adding support for choice does.

1.3 Related Work

This thesis builds upon four papers by Brown and Smolka presenting tableau systems for
different fragments of simply typed higher-order logic:

• Terminating Tableaux for the Basic Fragment of Simple Type Theory [11] presents
a fragment which does not support lambda abstracts, has no equations at functional
types (although it has disequations at any type) and no quantifiers. The corresponding
tableau system is terminating, cut-free and complete with respect to standard models.

• Extended First-Order Logic [9] supports lambda abstracts and has quantifiers at base
types. The tableau system is not terminating but still cut-free and complete with
respect to standard models.

• Complete Cut-Free Tableaux for Equational Simple Type Theory [8] covers the full
higher-order logic, including lambda abstracts and all well-known logical constants.
The proof system is not terminating but – as the title suggests – still cut-free and
complete with respect to non-standard models.

• Analytic Tableaux for Simple Type Theory and its First-Order Fragment [7] essentially
combines the three papers from above and tries to present them in a more modular
way.

We will add new logical constants to the second and third fragment while maintaining exist-
ing properties (cut-freeness, completeness) of the corresponding proof systems. As already
mentioned in the last section, one of these logical constants will be choice. In 1999, Mints
extended a proof system based on a sequent calculus by Takeuti [25] with choice and gave a
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corresponding cut-elimination proof [20]. His new rules inspired our work, although we made
some changes and improvements.

1.4 Structure of the Thesis

Chapter 2 introduces all basic definitions which are needed to understand the subsequent
chapters. This mainly includes syntax and semantics of Church’s simply typed lambda cal-
culus [12]. We extend it by making almost all definitions depend on a signature (a set of
logical constants).

Chapter 3 will motivate why it makes sense to add support for if-then-else, description
and choice to a tableau system. We will develop the notion of a closure of a signature. This
allows to show that certain logical constants are not implied by other logical constants (for
a certain definition of “implies”).

Chapter 4 and Chapter 5 are the most important parts of this thesis. We will present
a general tableau system and give a general completeness result. That is, for any possible
signature, we show how to construct a tableau system which is complete relative to this
signature. We also show under which conditions we can achieve completeness with respect
to standard models.

Chapter 6 contains several small examples. They show how the tableau rules for the new
logical constants work in practice.

In Chapter 7, we will show how the tableau systems can further be improved, for example
by adding even more logical constants or by restricting certain tableau rules. This chapter
does not always give proofs for the claims we make. In addition, many questions are left
open. Consequently, Chapter 7 can be seen as a collection of ideas for future work.

Chaper 8 concludes this thesis. First, we will give a short recap of the main results of this
work. Together with a reference to Chapter 7, we will give an outlook on how our results
can serve as an approach to new ideas.
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2 Basic Definitions

In this chapter, we will define the basic notations and notions which we will need in the
subsequent chapters. Most definitions here are taken from [11], [9] and [8].

2.1 Types & Terms

We assume a countable set of base types (β). Types (σ, τ , µ) are defined inductively:
every base type is a type; if σ and τ are types then στ is a type. Although all results in
this thesis generalize to arbitrarily many base types, we fix this set to be {o, ι}. Purely
propositional types are types consisting only of o: o is a purely propositional type. If σ and
τ is a purely propositional type then στ is a purely propositional type. Omitted parenthesis
in types associate to the right. For example ιιι corresponds to ι(ιι).

We assume a countably infinite set N of names (ν). Every name comes with a unique
type and for every type, there are infinitely many names. We write n : σ to denote the name
n of type σ and omit the type when possible. We partition N into two countably infinite
subsets V ( N , the variables (x), and LC ( N , the logical constants (c).
LC is defined by the constants in Figure 2.1. Note that this set contains infinitely many

elements because we have, for instance, one constant ∃σ for each type σ.
Given a set S ⊆ LC (signature), typed S-terms (s, t, u, v, w) are defined inductively:

Every variable is an S-term and every logical constant in S is an S-term; if s is an S-term
of type στ and t is an S-term of type σ, st is an S-term of type τ ; if x is a variable of type
σ and s is an S-term of type τ then λx. s is an S-term of type στ . Sometimes, we write
λx : σ. s to make the type of x clear, if necessary. We write s : σ to say that s is a term
of type σ. We write ΛSσ for the set of all S-terms of type σ. An S-term of type o is called
S-formula. We use wff(S) to denote the set of all S-formulas. Applications associate to the
left: stu means (st)u. We have the exception that ¬st always means ¬(st).

We fix the special signature LChol = {>,⊥,¬,∨,∃σ,=σ}, that is the signature which
defines full simply typed higher-order logic.

To simplify matters, we will combine multiple lambdas, i.e., we will write λx, y. s instead
of λx. λy. s. For most logical constants, we will use infix notation. For example, we will
write s = t instead of = st. Moreover, we will write ∃x. s instead of ∃(λx. s). We use s 6= t
as a shorthand for ¬(s = t). Terms of this kind are called disequations.

An S-context (C) is an S-term with a hole. S-contexts are defined inductively: []σ is an
S-context of type σ; if s is an S-term of type στ and C an S-context of type σ then sC is
an S-context of type τ ; if C is an S-context of type στ and s is an S-term of type σ then
Cs is an S-context of type τ ; if x is a name of type σ and C is an S-context of type τ then
λx. C is an S-context of type σ.
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Constant c Predicate Pc
⊥ : o P⊥(v) = (v = 0)
> : o P>(v) = (v = 1)
¬ : oo P¬(f) = (f1 = 0 ∧ f0 = 1)
∨ : ooo P∨(f) = ∀a, b ∈ Do. if a = 0 and b = 0 then fab = 0 else fab = 1
∃σ : (σo)o P∃σ(f) = ∀g ∈ D(σo). if g 6= (λa ∈ Dσ. 0) then fg = 1 else fg = 0
=σ: σσo P=σ(f) = ∀a, b ∈ Dσ. if a = b then fab = 1 else fab = 0
ifσ : oσσσ Pif(f) = ∀a ∈ Do, b, c ∈ Dσ. if a = 1 then fabc = b else fabc = c
ισ : (σo)σ Pι(f) = ∀g ∈ D(σo). (∃!a ∈ Dσ. ga)→ g(fg)
εσ : (σo)σ Pε(f) = ∀g ∈ D(σo). (∃a ∈ Dσ. ga)→ g(fg)

Figure 2.1: A list of all logical constants defining LC together with their properties

Let C ′ be an S-context of type σ which has a hole of type τ . We can apply C ′ to S-terms
t of type τ to get an S-term of type σ:

[ ][t] := t
(C s)[t] := C[t] s
(s C)[t] := s C[t]

(λx. C)[t] := λx. C[t]

Let t be an S-term. The free variables of t, written Vt, are defined by induction on S-terms:

Vc := ∅
Vx := {x}

V(uv) := Vu ∪ Vv
V(λx. u) := Vu \ {x}

An S-term t is closed iff Vt = ∅.

2.2 Frames, Interpretations & Satisfiability

In the last section, we defined the syntax for types and terms. In this section, we want to
give meaning to these things: A frame D is a function mapping types to nonempty sets such
that

• Do ⊆ {0, 1}

• D(στ) is a set of total functions from Dσ to Dτ

Do represents a nonempty set of truth values containing 0 (false) or 1 (true) or both. A
frame is standard if D(στ) is the set of all total functions from Dσ to Dτ and if Do = {0, 1}.

We say that a frame realizes a logical constant c : σ iff there is an object v ∈ Dσ such
that Pc(v) is true. Given a signature S, an S-frame is a frame which realizes all logical
constants in S. Note that a standard frame is trivially an S-frame for any signature S.
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An S-assignment into an S-frame D is a function I that maps every variable x : σ to an
element of Dσ and every logical constant c : σ in S to an element v ∈ Dσ such that Pc(v)
is true. A standard assignment is an assignment into a standard frame. We write Ixa to
denote the assignment that is like I but maps x to a. Given an interpretation I, we define
the evaluation function Î inductively on S-terms:

Î(ν) := I(ν)

Î(st) := fa if Îs = f and Ît = a

Î(λx.s) := f if λx.s : στ , f ∈ D(στ) and ∀a ∈ Dσ: Îxa s = fa

An interpretation is an assignment whose evaluation function is defined on all S-terms. A
frame is combinatory iff there is an interpretation into that frame. Since it is not interesting
to consider non-combinatory frames, we will only consider combinatory frames from now on.
We omit the word combinatory and only mention it if it has a special relevance. We use
F(S) to refer to the set of all (combinatory) S-frames.

We say that an S-interpretation I satisfies an S-formula s iff Î(s) = 1. An S-formula is
S-satisfiable iff there is an S-interpretation I such that Î(s) = 1. An S-formula is S-valid
iff it is satisfied by all S-interpretations.

We are also interested in satisfiability/validity with respect to standard frames: An S-
formula is S-satisfiable with respect to standard frames iff there is a standard S-interpretation
I that satisfies s. An S-formula is S-valid with respect to standard frames iff it is satisfied
by all standard S-interpretations.

A set of S-formulas is satisfiable (with respect to standard frames) iff there is a (standard)
interpretation which satisifes all formulas in this set.

2.3 Normalization & Substitution

Given a signature S, we assume a type preserving and total normalization operator [·] from
S-terms to S-terms. A term is normal iff [s] = s. Instead of committing to a specific
operator such as β or long-β, we require the following properties:
N1 [[s]] = [s]
N2 [[s]t] = [st]
N3 [νs1 . . . sm] = ν[s1] . . . [sm] if ns1 . . . sm : β for some base type β and m ≥ 0
N4 Î[s] = Îs

S-substitutions (θ) are partial functions from names to S-terms of the same type such
that c 6∈ Dom θ for all c ∈ S. We write θxs to denote the substitution that is like θ but maps
x to s. ∅ is the substitution that is undefined on all names. We can lift a substitution θ to a
function θ̂ from S-terms to S-terms. Again, we do not give a concrete definition but require
the following properties:
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S1 θ̂ν = if ν ∈ Dom θ then θν else ν
S2 θ̂(st) = (θ̂s)(θ̂t)

S3 [(θ̂(λx. s))t] = [θ̂xt s]

S4 [∅̂s] = [s]

Note that we will sometimes omit the signature and talk for example only about terms,
formulas or satisfiability. In such cases, the signature should be clear from the context or
unimportant.
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3 Independence Results

3.1 Closure

In this thesis, we want to analyze whether certain properties of existing tableau systems can
be preserved when adding support for new logical constants. First, we need to answer one
important question: Why do we want to add new logical constants? Can we express more
things? What does it mean to express something?

Assume we are in the context of simply typed lambda calculus as defined in the last chapter,
together with a signature S1 that contains =o (equivalence) and ⊥ (bottom). Does it make
sense to add ¬ (negation) to S1 (yielding a signature S2) in order to get more expressivity?

Intuitively, it should not make sense because we can replace any occurence of ¬ by
λx. x =o ⊥, we can express negation. What happens when we add ¬? Given the defi-
nitions from the last chapter, mainly one thing changes: We explicitly force the frames which
we are considering to contain the negation function. Does this really affect the frames in
this case?

The answer is “no”. Any S1-interpretation will have to interpret the lambda abstract
λx. x =o ⊥ as the negation function because there are no free variables and the interpretation
of each logical constant is fixed. As a consequence, all S1-frames will also contain the
negation function because we only consider combinatory frames. Explicitly adding negation
has no impact because the frames already realized it before. This leads to the definition of
a closure on signatures: Let S be a signature. The closure of S is the set

S = {c ∈ LC | ∀D ∈ F(S). D realizes c}

The closure of a signature contains all logical constants which are realized by all corresponding
frames. We say that a signature S implies a logical constant c iff c ∈ S. We use this notion
ambiguously and say that a logical constant c1 implies another logical constant c2 relative
to a signature S iff c2 ∈ S ∪ {c1}

Note that there are many other possible ways to define “implies”. For example, we could
consider signatures S and S ∪ {c} and compare F(S) and F(S ∪ {c}). Alternatively, we
could compare certain sets of valid formulas induced by two signatures because the set of
frames (and hence the set of interpretations) possibly gets smaller when adding new logical
constants. However, since all these ideas cause other problems and do not give us any
advantage in the context of this thesis, we decided to define “implies” in terms of the closure
of signatures.

19



3.2 Ordering Logical Constants

From now on and for the rest of this chapter, we assume full simply typed higher-order
logic, that is the signature LChol. In this section, we will start to bring order to if-then-else,
description and choice in terms of implications among them. One obvious observation is:
εσ implies ισ, i.e., given a choice operator at type σ, we also have a description operator at
that type. The corresponding term for description is εσ. Also, ισ implies ifσ. This fact is not
that easy to see. The following term does the job (we write s∧ t here as an abbreviation for
¬(¬s ∨ ¬t):

λx : o, y : σ, z : σ. ισ(λu : σ.(x ∧ y = u) ∨ (¬x ∧ z = u))

These two facts yield one possible order: “Choice implies description implies if-then-else”.
For this order to be useful, the other direction should not hold, i.e., choice should not be
implied by description and description should not be implied by if-then-else. In addition,
simply typed higher-order logic should not imply if-then-else.

Already in 1972, Andrews solved one of these problems [2]: He proved that ιι does not
imply ει, i.e., that choice is really more powerful than description. He used a technique which
was introduced by Fraenkel in 1922 [15] [14] and later refined and extended by Lindenbaum
and Mostowski in 1938 [19].

In the next two sections, we will solve the two remaining problems and show that the order
proposed above indeed holds. The idea is to construct nonstandard combinatory frames
which realize for example all logical constants in LChol but not if. As a consequence, the
related closure will not contain if either.

These constructions will be based on so-called logical relation frames: Given definitions
for all base types, and given some specific relations on them, the relations and the definition
for the functional types follow by an inductive definition. The definitions for the base types
together with the definitions for the functional types then form a frame. Very detailed
information about such frame constructions can be found in [6]; we will only present the
most important lemmas here and refer to this book for the corresponding proofs.

As already said, we want to construct nonstandard combinatory frames using logical re-
lations. In this case, we express these relations as follows: Given a frame D, we define an
index set A of size i and represent an i-ary tuple on some Dσ as a function p from A to
Dσ (which corresponds to a tuple 〈p(j)〉j∈A). A relation R on Dσ is represented as a set
of such functions. For example, the equality relation on the natural numbers can be defined
as follows: Equality, as we normally use it, is a binary relation. One obvious index set is
A = {1, 2}. Given the frame Dι = {0, 1, 2, 3, . . . }, the equality relation should contain the
pairs 〈0, 0〉, 〈1, 1〉, 〈2, 2〉, 〈3, 3〉, . . . . This set can be represented by all constant functions
from A to Dι, i.e., R= = {p | ∃n ∈ Dι. ∀j ∈ A. p(j) = n}.

Given an index set A, relations Rβ for all base types β and a frame D which is defined
for all base types, we define the frame and relations for functional types στ by induction.
Assume Dσ,Dτ,Rσ,Rτ are defined:

D(στ) := {f : Dσ → Dτ | ∀p ∈ Rσ. (f ◦ p) ∈ Rτ}
Rστ := {q : A→ D(στ) | ∀p ∈ Rσ. S(q, p) ∈ Rτ}
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where S(q, p)(i) = q(i)(p(i)). Since we want frames constructed this way to be combinatory,
we will use the following lemma to enforce this property already at the time of construction:

Lemma 3.1. Let D be a frame constructed using logical frames as described in this section.
D is combinatory if the relations on the base types contain all constant functions.

Proof. See Theorem 4.4.7 in [6].

The frames constructed here need to realize all logical constants in LChol. To enforce this,
we will always take Ro to be the full relation on Do, i.e., Ro = (Do)A. The types of
these logical constants only consist of elements returning something of type o. For example
∃ : (ιo)o takes an argument returning something of type o and returns something of type o
itself. The conditions in the inductive definitions of D(στ) andRστ only consider the relation
on Dτ which is in this case Do. Since we have the full relation on Do, these conditions are
trivially fulfilled. Hence, the relations on the types of the logical constants in LChol will be
the full relations and the frame will realize all these constants.

3.3 If-Then-Else

3.3.1 Frame Construction

The goal in this section is to prove the following proposition:

Proposition 3.2. Let S ⊆ LChol. ifι 6∈ S

Proof. We need to construct a frame which realizes all logical constants in LChol but not
ifι. As described in the last section, the first condition can be easily fulfilled: We take Ro

to be the full relation on Do. This also ensures that we have all constant functions in Do.
The only remaining part is to give a definition of Dι and a corresponding relation on that
set such that ifι is not realized by D.

We follow our example from the last section: Dι will be the set of the natural numbers,
i.e., Dι = {0, 1, 2, . . . }. We take the index set A to be {1, 2} and define Rι to be equality
on the natural numbers: Rι = {p | ∃n ∈ Dι. ∀j ∈ A. p(j) = n}. This relation is exactly
the set of all constant functions. Hence, by Lemma 3.1, the frame will be combinatory.

In order to show that ifι is not realized by D, we need to find functions p ∈ Ro, q ∈
Rι, r ∈ Rι such that S(S(if ◦ p, q), r) 6∈ Rι. The trick here is to take a non-constant p, for
example p =̂ 〈0, 1〉. q and r can be arbitrary but they must be different, e.g. q =̂ 〈0, 0〉 and
r =̂ 〈1, 1〉. In this case, S(S(if ◦ p, q), r) =̂ 〈if 0 0 1, if 1 0 1〉 = 〈1, 0〉. This is clearly not
constant and hence not in Rι.

3.3.2 If-Then-Else at Higher Types

Another interesting fact is that having if at base types implies if at all types, as the following
proposition states:
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Proposition 3.3. Let S be a signature such that LChol ⊆ S. If ifι ∈ S, then ifσ ∈ S for
any type σ.

This proposition can be easily seen using the following two lemmas:

Lemma 3.4. Let S be any signature. If ifβ ∈ S for any base type β, then ifσ ∈ S for every
type σ.

Proof. We give an inductive construction of ifσ. The base cases follow by assumption. Let
σ = µτ . Consider the following term:

λif : oτττ, x : o, f : σ, g : σ, y : µ. ifx(fy)(gy)

This term does not have any free variables so its interpretation is fixed: We will always get a
function which, given if-then-else at type τ as argument, returns if-then-else at type σ.

Lemma 3.5. Let S be a signature such that LChol ⊆ S. Then ifσ ∈ S for any purely
propositional type σ.

Proof. We construct ifo using the following term:

λx : o, y : o, z : o. ¬(¬x ∨ ¬y) ∨ ¬(x ∨ ¬z)

Starting from this term, we can construct ifσ for any purely propositional type using the same
construction as in the previous lemma.

3.3.3 Swapping Functions and If-Then-Else

The frame constructed here says even more than “if-then-else is not implied by simply typed
higher-order logic”: The frame also contains swapping functions which are described by the
following formula, called swapσ:

¬∃x : σ, y : σ. ¬∃f : σσ. ¬(fx 6= y ∨ fy 6= x)

To see this fact, we prove the following, even stronger, lemma:

Lemma 3.6. Let D be the frame as constructed above. D(ιι) = Dι → Dι, i.e., D(ιι)
contains all functions from Dι to Dι.

Proof. We need to show that, given a function f ∈ Dι→ Dι, f ◦p ∈ Rι for all p ∈ Rι. Let
f ∈ Dι → Dι and let p ∈ Rι, i.e., p =̂ 〈a, a〉 for some a ∈ Dι. f ◦ p =̂ 〈fa, fa〉 = 〈b, b〉
for some b ∈ Dι. This pair is clearly constant and thus still in Rι

In [10], the authors give a model construction showing that there are frames which realize all
logical constants in LChol but do not contain swapping functions. As a consequence, swapσ
is not LChol-valid. Although the frame constructed here contains swapping functions, it still
does not realize if. In contrast to that, the following proposition holds:
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Proposition 3.7. Let S be a signature. If LChol ∪ {ifσ} ⊆ S, then swapσ is S-valid.

Proof. We construct the swapping function at type σ:

λx : σ, y : σ, z : σ. if(x = z)yx

Since we only consider combinatory frames, any frame realizing ifσ and =σ will also contain
swapping functions at type σ. Hence, swapσ will be S-valid.

3.4 Description

In [2], Andrews shows that ιι is not implied by LChol. We give a stronger result in this
section. We show that ιι is not implied by LChol ∪ {ifι}.

3.4.1 Frame Construction

The construction of a frame realizing all logical constants in LChol and ifι but not ιι is not
that straightforward. As in the last frame construction, we take Ro to be the full relation on
{0, 1} and Dι to be the the set of the natural numbers. It remains to find the corresponding
relation on Dι. Taking equality as in Section 3.3 reveals a problem.

Equality is the “least” relation which fulfills the condition from Lemma 3.1 for a frame
construction to result in a combinatory frame. Requiring if-then-else to be realized by the
frame has the following effect: Let p =̂ 〈a, a〉, q =̂ 〈b, b〉 ∈ Rι. As we have the full relation on
Ro, we also need 〈if 1ab, if 0ab〉 = 〈a, b〉 and 〈if 0ab, if 1ab〉 = 〈b, a〉 to be in Rι. This holds
for any p and q which finally results in the full relation on Dι. The constructed frame will be
a standard frame and therefore also realize description. This effect occurs with any relation
of finite arity which fulfills the condition of Lemma 3.1. Hence, to avoid this situation, we
need to find a relation of infinite arity. The solution is to take a relation of infinite arity
which consists only of tuples containing a finite number of different elements:

A = N
Rι = {p ∈ A→ N | Ran (p) is finite}

Obviously, Rι contains all constant functions. Hence, by Lemma 3.1, the constructed frame
will be combinatory. The following proposition concludes this section:

Proposition 3.8. Let D be the frame as constructed above. Then:

1. ifι is realized by D

2. ιι is not realized by D
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Proof.

1. Let p ∈ Ro, q, r ∈ Dι. We need to show that S(S(if ◦ p, q), r) ∈ Dι, i.e., that
S(S(if ◦ p, q), r) ∈ Dι has a finite range. By the definition of if,

Ran (S(S(if ◦ p, q), r)) ⊆ Ran (q) ∪ Ran (r)

Since we know that Ran (q) as well as Ran (r) are finite, Ran (q) ∪ Ran (r) is finite,
too. Hence, every subset of Ran (q)∪Ran (r) is finite and thus, S(S(if◦p, q), r) ∈ Dι.

2. We know that Rιo contains all functions from A to Dιo, including the function p:

p(i)(j) =

{
1 if i = j

0 otherwise

p corresponds to the tuple containing all singleton sets, i.e., p =̂ 〈{0}, {1}, {2}, . . . 〉.
Assume ι ∈ D((ιo)ι). Then (ι ◦ p) ∈ Rι. By the definition of ι

(ι ◦ p) =̂ 〈ι{0}, ι{1}, ι{2}, . . . 〉 = 〈0, 1, 2 . . . 〉

This tuple clearly has an infinite range. Contradiction.

We now know that there is a frame which realizes all logical constants in LChol ∪ {ifι} but
not ιι. Hence, ιι 6∈ LChol ∪ {ifι} and thus if-then-else does not imply description.

3.4.2 Description at Higher Types

As for if-then-else, a description operator at type ι implies a description operator at all types:

Proposition 3.9. Let S be a signature such that LChol ⊆ S. If ιι ∈ S, then ισ ∈ S for all
types σ.

Again, we present two lemmas which make it easy to see that this proposition holds:

Lemma 3.10. Let S be a signature such that LChol ⊆ S. If ιβ ∈ S for any base type β,
then ισ ∈ S

Proof. We give an inductive construction of ισ. The base cases follow by assumption. Let
σ = τµ. Consider the following term:

λι : (µo)µ, f : σo, x : τ. ι(λy : µ. ∃g : σ. ¬(¬fg ∨ gx 6=µ y)

We use the same trick here which we already used in Lemma 3.4: The interpretation of this
term is fixed. It will be interpreted as a function which returns description at type σ when
getting description at type µ as argument.

Note that this construction is not new. For example, Andrews presents it in his book [2, p.
234]. He also proves the following lemma [2, p. 233]. We give a slightly different proof.
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Lemma 3.11. Let S be be a signature such that LChol ⊆ S. Then ισ ∈ S for any purely
propositional type σ.

Proof. We construct ιo using the following term:

λp : oo. p> ∨ ¬p⊥

Starting from this term, we can construct ισ for any purely propositional type σ using the
same construction as in the previous lemma.
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4 A Signature Dependent Tableau
System

4.1 Tableau Rules as Templates

Before we present the tableau system, we first need to clarify how the definitions for tableau
rules and branches given in the introduction to this thesis fit into the world of S-parameterized
terms, frames and interpretations. For example can the rule

s ∨ t
s t

exist given a signature without ∨? And what are s and t? Another, even more important
problem is that we will use discriminating terms (which are defined using disequations) for
the definition of Dι. Moreover, disequations, in general, will be the “internal workhorses”
of the system. What happens if the signature neither contains =ι nor ¬? One solution
could be to only consider signatures which contain at least ¬ and =σ. Although this seems
to be a good solution at first sight, this also has negative consequences: Equality is a very
powerful logical constant. For example, it can be used to describe quantifiers. This means
that adding equality (at all types) to a signature will very quickly end up in full simply typed
higher-order logic and it is well known that there no proof system which is complete with
respect to standard models (for example proven by Andrews [2, Theorem 7206 and Corollary
7207]).

To circumvent this problem, we introduce one additional level of terms, so-called quasi-S-
formulas: Let S be a signature. Every S-formula is a quasi-S-formula; if s is an S-formula
then ¬s is a quasi-S-formula; if s and t are S-terms of type σ then s 6=σ t is a quasi-S-
formula. We use qwff(S) to denote the set of all quasi-S-formulas.

To make life easier, we define a normalization operator [·] on quasi-S-formulas. If s is an
S-formula then [s] is already defined. In the other two cases, we define the normalization
operator as follows:

[¬s] = ¬[s] if s is an S-formula
[s 6= t] = [s] 6= [t]

A quasiformula s is normal iff [s] = s. A set of quasiformulas is normal iff every quasifor-
mula in this set is normal.

Given the notion of quasi-S-formulas, we also need a corresponding definition for inter-
pretations. However, since this is not important at this point, we will postpone this problem
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and discuss it again in the next section.
Also note that when adding equality and negation, then the set of quasi-S-formulas is

subsumed by the set of S-formulas. For example if the signature contains negation, the
formula ¬s can be a quasi-S-formula as well as an S-formula. It is intended that we will not
be able to tell the difference. In order to avoid trouble, we will need to make sure that the
definition of “satisfiability” on quasiformulas is compatible with the definition of satisfiability
on formulas.

Back to the question of what s and t mean in the rule above and what happens in a
signature without ∨. To make things more precise, we introduce the notion of a step: Let
S be a signature. An S-step is a pair 〈A, {A1, . . . An}〉 such that n ≥ 0, A,A1, . . . , An ⊆
qwff(S) are normal and finite and A ( Ai for 1 ≤ i ≤ n. An S-step with n = 0 is called a
closing step. Note that we only allow steps where all Ai (if there are any) contain something
new.

In this context, tableau rules can be considered as step templates because they represent
sets of steps. For example the disjunction rule from above corresponds to the set of all
S-steps such that there are normal s, t ∈ wff(S) with s∨ t ∈ A, s 6∈ A, t 6∈ A, A1 = A∪{s}
and A2 = A ∪ {t}. Since the formulas in A,A1 and A2 need to be quasi-S-formulas, this
set will be always empty for signatures without ∨. Given a tableau rule T , we use RS(T )
to denote all S-steps induced by T .

An S-branch is a finite set of normal quasi-S-formulas. Given a set T of S-steps, we say
that a step 〈A, {A1, . . . , An} ∈ T applies to an S-branch A′ iff A = A′. An S-branch A′ is
closed (under T ) iff there is closing step in T that applies to A′. An S-branch A′ is refutable
(under T ) iff it is closed (under T ) or there is a non-closing step in T that applies to A′ and
all alternatives of this step are refutable (under T ).

4.2 The Basic Tableau System

We will now start to present the tableau system. Most rules are taken from [11], [9] and [8]
where the authors discuss them in detail or give relevant references. We will explain them
only very shortly and concentrate on the new rules for if-then-else, description and choice.

To begin with, we need rules for the empty signature. These rules handle almost all
disequations and contrary formulas on the branch:

Tfe
s 6=στ t

[sx] 6=τ [tx]
x fresh Tbe

s 6=o t

s, ¬t | ¬s, t

Tdec
xs1 . . . sn 6=ι xt1 . . . tn

s1 6= t1 | . . . | sn 6= tn
n ≥ 0 Tmat

xs1 . . . sn, ¬xt1 . . . tn
s1 6= t1 | . . . | sn 6= tn

n ≥ 0

Note that Tdec and Tmat only apply if there is a variable at the head of the formulas,
respectively at the head of the terms on both sides of the disequation. Moreover, the set of
steps induced by these two rules also contain closing steps for n = 0.

The first two logical constants we are considering are true and false. Having ⊥ on the
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branch immediately represents a contradiction because ⊥ can never be satisfied. Similarly,
¬> always represents a contradiction. Hence, the corresponding rules induce only closing
steps:

T⊥
⊥

T>
¬>

Note that in the case of T>, we cannot say whether ¬> is an S-formula or a quasi-S-formula.
The rule applies in both cases.

Disjunction is straightforward. There is one rule for a negated ∨ and one rule for a
non-negated ∨:

T∨
s ∨ t
s | t

T¬∨
¬(s ∨ t)
¬s, ¬t

In the case of negation, we only need to consider formulas with two negations at their head.
They cancel each other out:

T¬¬
¬¬s
s

As for disjunction, there are two rules for the existential quantifiers:

T∃
∃s

[sx]
x fresh T¬∃

¬(∃s)
[st]

t ∈ ΛSσ normal

The freshness condition “x fresh” means x does not occur free in any of the formulas on the
branch before the application of the rule.

The last usual logical constant is equality:

Tbq
s =τ1...τno t

[su1 . . . un], [tu1 . . . un] | ¬[su1 . . . un], ¬[tu1 . . . un]

n ≥ 0,
ui ∈ ΛSτi normal

Tcon
s =τ1...τnι t, u 6=ι v

[sw1 . . . wn] 6=ι u, [tw1 . . . wn] 6=ι u | [sw1 . . . wn] 6=ι v, [tw1 . . . wn] 6=ι v

n ≥ 0,
wi ∈ ΛSτi normal

In the systems in [11], [9] and [8], the authors present two similar rules without the τ1 . . . τn
extension i.e., they restrict the rules to equations at ι respectively at o. The resulting gap is
filled by an additional third rule to resolve functional equations:

s =στ t

[su] =τ [tu]
u normal

In the context of this thesis, this rule has a very negative effect: Adding =στ to some
signature forces us to also add =τ to the signature if we want to preserve completeness. As
a consequence, the tableau system does not only depend on the signature, but the signature
also depends on the tableau system. In other words, we are restricted to a certain set of
“nice” signatures. Hence, we decided to integrate this rule into Tbq and Tcon to avoid this
additional dependency.
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The system we have seen so far has the following general concept: Tfe copes with functional
disequations and turns them into disequations at o or at ι. Tbe handles disequations at o
which are then mated by Tmat to either close the branch or to get new disequations. Tdec
handles disequations at ι, again to either close the branch or to yield new disequations. In
those cases, where formulas cannot be mated by Tmat, we check whether there is a logical
constant at the head different from a disequation. If yes, the rules for this logical constant
apply, if possible.

4.3 The New Logical Constants

4.3.1 Accessibility

We will need to ensure that certain terms do not occur underneath a lambda binder. For
that purpose, we introduce the novel notion of accessibility.

We first define elimination contexts. Every []σ is an elimination context. If C is an
elimination context of type στ and s is a term of type σ, then Cs is an elimination context
of type τ .

Using elimination contexts, we define accessibility contexts: If C is an elimination context
of type o, then C and ¬C are accessibility contexts. If s is a term of type ι and C is an
elimination context of the same type, then s 6= C and C 6= s are accessibility contexts.

Note that we can see here one more advantage of having quasiformulas: We neither need
to have ¬ nor = in the signature to have accessibility contexts. On the other hand, we need
to define how accessibility context can be applied to terms yielding quasiformulas. We do
that the obvious way.

Let E be a set of quasiformulas. A term s is accessible in E iff there is an accessibility
context C such that C[s] ∈ E.

4.3.2 If-Then-Else

As already explained in Section 1.2, one interesting fact about if-then-else is that, in contrast
to all usual constants discussed in the previous section, it does not necessarily return some-
thing of type o. As a consequence, the general concept of the tableau system as described
in the last section will not work anymore. Consider the following example:

ifι⊥xy 6=ι y

This formula is clearly unsatisfiable but we have no chance in accessing ifι here as we did
with the usual logical constant. Hence we need two new tableau rules, one for each side of
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a disequation:

Tifl
(ifσstu)v1 . . . vn 6=ι v

′

s, [tv1 . . . vn] 6=ι v
′ | ¬s, [uv1 . . . vn] 6=ι v

′ n ≥ 0

Tifr
v′ 6=ι (ifσstu)v1 . . . vn

s, [tv1 . . . vn] 6=ι v
′ | ¬s, [uv1 . . . vn] 6=ι v

′ n ≥ 0

The idea of these rules is not surprising: Informally, given some if-conditional which is
different from some term, then either the condition is true and we know that the first branch
is different from the term or the condition is false and the second branch is different from
the term. The v1 . . . vn are to incorporate possible applications of Tfe. As an alternative, we
could require one side of the disequation in Tifl and Tifr to be ifstu (and nothing more) and
introduce two additional rules:

(ifσstu)v1 . . . vn 6=ι v
′

ifιs[tv1 . . . vn][uv1 . . . vn] 6=ι v
′ n ≥ 1

v′ 6=ι (ifσstu)v1 . . . vn

v′ 6=ι ifιs[tv1 . . . vn][uv1 . . . vn]
n ≥ 1

The reason why we did not choose these rules is that they only have disadvantages: First, the
tableau system would be bigger. Second, these rules introduce (at least) one intermediate
step which we do not need: The proofs in the following sections will also work with Tifl
and Tifr. Third, similar to the equality rules, we would cause additional dependencies when
adding if at a certain type to the signature.

Apart from the case that if occurs at the head of a discriminating term, it is still possible
for if to return something of type o, i.e., to behave like a usual logical constant. The
corresponding rules are straightforward:

Tifb
(ifσstu)v1 . . . vn

s, [tv1 . . . vn] | ¬s, [uv1 . . . vn]
n ≥ 0

T¬ifb
¬((ifσstu)v1 . . . vn)

s, ¬[tv1 . . . vn] | ¬s, ¬[uv1 . . . vn]
n ≥ 0

Given these rules for if, we can make an interesting observation: In all four cases, if is
accessible in a certain accessibility context. We can make use of this fact to compress
everything into one single rule:

Tif
C[ifσstu]

s, [C[t]] | ¬s, [C[u]]
C accessibility context

Note that in both conclusions, the outer square brackets are the normalization operator and
the inner square brackets correspond to the application of the contexts. Also note that the
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use of the accessibility contexts is more a cosmetic compression and will not save any work.
For the proofs in the following sections, we will still need to expand the definition and cover
all four cases.

4.3.3 Choice

As already mentioned in the introduction to this thesis, Mints [20] published in 1999 a proof
system based on a sequent calculus by Takeuti [25]. This system had support for choice and
was complete and cut-free. Since Mints did not use the simply typed lambda calculus as
the underlying logic but the relational style, we needed to translate the new rules. The first
rather direct translation resulted in the following three tableau rules (the subterm condition
means that the term occurs somewhere as a subterm on the branch):

¬[st] | [s(εs)]

εσs subterm,
t ∈ ΛSσ normal

[sx],¬[tx] | ¬[sx], [tx] | s = t
εσs, εσt subterms,
x fresh

as,¬at
[sx],¬[tx] | ¬[sx], [tx]

a either some variable
or ε, x fresh

Mints called the first rule ε-rule, the second one choice extensionality and the third one
standard extensionality. Unfortunately, there were several problems with these translated
rules:

• The subterm conditions are too weak. Consider for example the formula ∃x. ¬(x(εx)).
Applying the first rule from above pulls the bound variable x out of its binding context
∃x. [] where it does not make sense anymore. Mints did not have this problem because
he had a clear distinction between bound and free variables.

• The second rule introduces =, i.e., requires equality to be in the signature. In addition,
the rule considers two arbitrary subterms εs and εt on the branch. Given n different

subterms of this kind, we can apply the rule n2−n
2

times which results in 3
n2−n

2 branches.
This exponential blow-up is a nasty property when it comes to automated proof search.

• The third rule looks similar to Tmat but does not only allow variables at the head but
also the choice operator. We were not sure whether we really needed this rule and, if
yes, whether we also need a corresponding Tdec rule.

The subterm problem could be easily solved: We developed the notion of accessibility and
replaced the “is a subterm”-condition by an “is accessible”-condition. As already mentioned,
accessibility ensures that the corresponding term cannot occur underneath a binder1. Using

1This problem was the original reason to introduce accessible terms. It turned out later on that it was also
useful for simplifying the rules for if-then-else.
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accessibility, the choice rule looks as follows:

Tε
C[εs]

¬[st] | [s(εs)]

C accessibility context,
t ∈ ΛSσ normal

This rule mimics the definition of choice: Given εs, either s corresponds to the empty set
and hence ¬(st) holds for arbitrary t, or s represents a set containing at least one element
and choice will choose such an element. Thus s(εs) holds.

The other two problems could not be solved that easily. During our research, it turned
out that there is a certain trade-off between having the second rule and having Tmat and
Tdec with ε at their heads. Since the ε-extensionality rule has the disadvantageous properties
mentioned above, we decided to try to prove completeness with modified versions of Tmat
and Tdec:

Tmatε
εs1 . . . sn, ¬εt1 . . . tn
s1 6= t1 | . . . | sn 6= tn

Tdecε
εs1 . . . sn 6=ι εt1 . . . tn

s1 6= t1 | . . . | sn 6= tn

As we will see in the next chapter, these two rules, together with Tε, indeed suffice.

4.3.4 Description

Given the rules for choice, it was straightforward to introduce corresponding rules for de-
scription: Besides the modified versions of Tmat and Tdec, we copied Tε and extended it with
an additional third branch to cope with the case that a set contains more than one element:

Tι
C[ιs]

¬[st] | x 6= y, [sx], [sy] | [s(ιs)]

C accessibility context,
t ∈ ΛSσ normal, x, y fresh

Tmatι
ιs1 . . . sn, ¬ιt1 . . . tn
s1 6= t1 | . . . | sn 6= tn

Tdecι
ιs1 . . . sn 6=ι ιt1 . . . tn

s1 6= t1 | . . . | sn 6= tn

4.4 The Final Tableau System

We have now seen all rules that will make up our tableau system. One interesting fact about
this system is that, except for Tdec, Tmat, Tfe and Tbe, there is no rule which requires certain
logical constants to be in the signature, except the one for which the rule was made. Hence,
we can always add a logical constant separately to the signature without the need to also
add other logical constants.

We now define the signature dependent tableau system TS given a signature S. Note
that the signature will not be affected by the tableau rules. Thus, all tableau systems will
consist of the same tableau rules, regardless of the logical constants in the signature. What
will change is the set of steps induced by these rules and we will use this fact to define the

32



signature dependent tableau system TS, given a signature S:

TS = RS(Tfe) ∪RS(Tbe) ∪RS(Tdec) ∪RS(Tmat) ∪RS(T⊥) ∪RS(T∨) ∪RS(T¬∨)
∪RS(T¬¬) ∪RS(T∃) ∪RS(T¬∃) ∪RS(Tfq) ∪RS(Tbq) ∪RS(Tcon) ∪RS(Tif)
∪RS(Tε) ∪RS(Tmatε) ∪RS(Tdecε) ∪RS(Tι) ∪RS(Tmatι) ∪RS(Tdecι)

As a reference, Figure 4.1 shows all tableau rules. It remains to show that TS is sound. This
fact is expressed by the following proposition:

Proposition 4.1 (Soundness). Let A be a set of normal quasiformulas. If A is refutable,
then A is unsatisfiable.

Unfortunately, this proposition does not make sense at the moment. We first need to intro-
duce a notion that deals with the problem of “satisfying quasiformulas”.

Clearly, given a signature without the negation constant and a corresponding frame without
the negation function, an interpretation into this frame cannot interpret the symbol ¬ as
negation function. Hence, we need to introduce one more level above interpretations. We
say that an S-interpretation I is a model for a quasi-S-formula s iff I |= s where |= is
defined on quasiformulas by cases:

I |= s :⇐⇒ Îs = 1 if s is an S-formula

I |= ¬s :⇐⇒ Îs 6= 1

I |= s 6= t :⇐⇒ Îs 6= Ît

Note that for S-formulas, the notion of a model agrees with the notion of satisfiability
on these terms. The definition of a model for quasiformulas reflects what we understand
by “negation” or “disequation”: An interpretation is a model for ¬s iff it does not satisfy
s. An interpetation is a model for s 6= t iff the interpretation of s is different from the
interpretation of t.

We extend the notions of satisfiability and validity to quasiformulas the obvious way and
write “with respect to standard models” instead of “with respect to standard frames”.

Proof of Proposition 4.1. This proof is straightforward. In the case that a closing step applies
to A, the claim is obvious. Otherwise, it is enough to check for each step 〈A, {A1, · · · , An}〉
in TS with n > 0 that if A is satisfiable, then Ai is satisfiable for some i ∈ {1, . . . , n}. Each
case is easy. For the steps involving the normalization operator, property N4 is used.
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Tfe
s 6=στ t

[sx] 6=τ [tx]
x fresh Tbe

s 6=o t

s, ¬t | ¬s, t

Tmat
xs1 . . . sn, ¬xt1 . . . tn
s1 6= t1 | . . . | sn 6= tn

n ≥ 1 Tdec
xs1 . . . sn 6=ι xt1 . . . tn

s1 6= t1 | . . . | sn 6= tn
n ≥ 1

T⊥
⊥

T>
¬> T∨

s ∨ t
s | t

T¬∨
¬(s ∨ t)
s, t

T¬¬
¬¬s
s

T∃
∃x. s
[sx]

x fresh T¬∃
¬(∃x. s)

[st]
t ∈ ΛSσ normal

Tbq
s =τ1...τno t

[su1 . . . un], [tu1 . . . un] | ¬[su1 . . . un], ¬[tu1 . . . un]

n ≥ 0,
ui ∈ ΛSτi normal

Tcon
s =τ1...τnι t, u 6=ι v

[sw1 . . . wn] 6=ι u, [tw1 . . . wn] 6=ι u | [sw1 . . . wn] 6=ι v, [tw1 . . . wn] 6=ι v

n ≥ 0,
wi ∈ ΛSτi
normal

Tif
C[ifσstu]

s, [C[t]] | ¬s, [C[u]]
C accessibility context

Tε
C[εs]

¬[st] | [s(εs)]

C accessibility context,
t ∈ ΛSσ normal

Tmatε
εs1 . . . sn, ¬εt1 . . . tn
s1 6= t1 | . . . | sn 6= tn

Tdecε
εs1 . . . sn 6=ι εt1 . . . tn

s1 6= t1 | . . . | sn 6= tn

Tι
C[ιs]

¬[st] | x 6= y, [sx], [sy] | [s(ιs)]

C accessibility context,
t ∈ ΛSσ normal, x, y fresh

Tmatι
ιs1 . . . sn, ¬ιt1 . . . tn
s1 6= t1 | . . . | sn 6= tn

Tdecι
ιs1 . . . sn 6=ι ιt1 . . . tn

s1 6= t1 | . . . | sn 6= tn

Figure 4.1: The signature dependent tableau system TS
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5 Completeness

5.1 Evidence

Our goal in this section is to define the notion of evident sets. The definition will be based
on a number of evidence conditions which look similar to the tableau rules presented in the
last section.

Evident sets will have the property that there is a model for this set. This property is
called Model Existence and its proof will be the most important part of this thesis.

Let S be a signature. A set E ⊆ qwff(S) is S-evident iff it fullfils the evidence conditions
from Figure 5.1 relative to S.

Informally, an evident set corresponds to a branch which is not closed and where no tableau
rule applies. The big difference is that branches (as well as steps) cannot be infinite. We will
establish the connection between evident sets and branches later using a technique called
abstract consistency.

Note that in Emat and Edec (and in the corresponding conditions for choice and description),
we allow n to be equal to zero but require i to be greater than zero. This will explicitly
exclude branches closed by these rules. Also note that most evidence conditions are signature
independent. For example if a signature does not contain ∨, the condition in E∨ holds
vacuously. On the other hand, E¬∃ is signature dependent because it considers a certain set
of S-terms. We marked all such rules by a superscript S.

5.2 Model Existence

As already mentioned, this section represents the most important part of this thesis. Our
goal here is to prove the following theorem:

Theorem 5.1 (Model Existence). Let S be a signature and E ⊆ qwff(S) be an evident set.
Then, there is an S-frame D and an interpretation I into D such that I |= s for all s ∈ E

The proof of this theorem is not straightforward. In order to structure it, we will split it up
into several parts. Most of the definitions and techniques are taken from [11], [9] and [8].
We will also reuse many lemmas and only sketch the corresponding proofs or give references.

Let S be some signature and E ⊆ qwff(S) be an evident set. The first important part
when constructing a model for E is to define D and especially Dι. This definiton will be
based on discriminants.
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Efe If s 6=στ t in E, then [sx] 6= [tx] is in E for some variable x
Ebe If s 6=o t in E, then either s and ¬t are in E or ¬s and t are in E
Edec If xs1 . . . sn 6=ι xt1 . . . tn is in E for some n ≥ 0 and some variable x,

then si 6= ti is in E for some 1 ≤ i ≤ n
Emat If xs1 . . . sn and ¬xt1 . . . tn are in E for some n ≥ 0 and some variable x,

then si 6= ti is in E for some 1 ≤ i ≤ n
E⊥ ⊥ is not in E
E> ¬> is not in E
E∨ If s ∨ t is in E, then either s in E or t in E
E¬∨ If ¬(s ∨ t) is in E, then ¬s and ¬t are in E
E¬¬ If ¬¬s is in E, then s is in E
E∃ If ∃s is in E, then [sx] is in E for some variable x
ES¬∃ If ¬(∃σs) is in E, then ¬[st] is in E for all normal S-terms t of type σ
Ebq If s =τ1...τno t is in E for some n ≥ 0, then either [su1 . . . un] and [tu1 . . . un]

are in E or ¬[su1 . . . un] and ¬[tu1 . . . un] are in E for all normal
ui ∈ ΛSτi for 1 ≤ i ≤ n

Econ If s =τ1...τnι t and u 6=ι v are in E for some n ≥ 0, then either [sw1 . . . wn] 6= u
and [tw1 . . . wn] 6= u are in E or [sw1 . . . wn] 6= v and [tw1 . . . wn] 6= v are in E
for all normal wi ∈ ΛSτi for 1 ≤ i ≤ n

Eif If C[if s t u] is in E and C is an accessibility context, then s and [C[t]] are in E
or ¬s and [C[u]] are in E

ESι If C[ισs] is in E and C is an accessibility context, then either [s(ιs)] is in E,
or ¬[st] is in E for all normal S-terms t of type σ, or x 6= y, [sx] and [sy] are
in E for some variables x and y

Edecι If ιs1 . . . sn 6=ι ιt1 . . . tn is in E for some n ≥ 0,
then si 6= ti is in E for some 1 ≤ i ≤ n

Ematι If ιs1 . . . sn and ¬ιt1 . . . tn are in E for some n ≥ 0,
then si 6= ti is in E for some 1 ≤ i ≤ n

ESε If C[εσs] is in E and C is an accessibility context, then either [s(εs)] is in E,
or ¬[st] is in E for all normal S-terms t of type σ

Edecε If εs1 . . . sn 6=ι εt1 . . . tn is in E for some n ≥ 0,
then si 6= ti is in E for some 1 ≤ i ≤ n

Ematε If εs1 . . . sn and ¬εt1 . . . tn are in E for some n ≥ 0,
then si 6= ti is in E for some 1 ≤ i ≤ n

Figure 5.1: Evidence conditions for a set of quasi-S-formulas
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5.2.1 Discriminants

From now on, we write s]t iff s 6= t ∈ E or t 6= s ∈ E. We will also use s]t to denote one
of the two disequations. A term s of type ι is discriminating iff there is a term t of type ι
such that s]t. A discriminant d of E is a maximal set of discriminating terms of E such that
there are no s, t ∈ d with s]t.

We define Dι to be the set of all discriminants of E.

Example 5.2. Let E be {x 6= y, y 6= z} where x : ι, y : ι, z : ι. In this case, E has two
discriminants: {x, z} and {y}

Example 5.3. Let E be {fx} where f : ιo, x : ι. Since there are no discriminating terms, ∅
is the only discriminant.

5.2.2 Compatibility

Before we continue to defineD, we introduce an auxiliary notion, called compatibility. Among
other things, it will help us to prove that s 6= s 6∈ E for any term s. Compatibility is defined
by induction on types:

s ‖o t :⇐⇒ {[s],¬[t]} 6⊆ E and {¬[s], [t]} 6⊆ E
s ‖ι t :⇐⇒ not [s]][t]
s ‖τµ t :⇐⇒ su ‖µ tv whenever u ‖τ v

We also define compatibility on substitutions:

θ ‖ θ′ :⇐⇒ θx ‖ θ′x for all variables x

We say that two terms s and t are compatible iff s ‖ t. Two substitutions θ and θ′ are
compatible iff θ ‖ θ′. A set A of equi-typed terms is compatible iff s ‖ t for all s, t ∈ A.
The compatibility relations are obviously symmetric. They are also reflexive. To show that,
we first prove x ‖ x for all variables x.

Lemma 5.4. For every type σ and all terms s, t, xs1 . . . sn, xt1 . . . tn of type σ with n ≥ 0:

1. Not both s ‖σ t and [s]][t].

2. Either xs1 . . . sn ‖ xt1 . . . tn or [si]][ti] for some 0 < i ≤ n.

Proof. The full proof is given in [9, Lemma 7.6]. It is done by mutual induction on σ and
uses Ebe, Efe, Emat and Edec

The second statement of this lemma implies x ‖ x (for n = 0). The first statement is very
interesting concerning our goal to prove s 6= s 6∈ E: It is indeed enough to show that the
compatibility relations are reflexive.
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Lemma 5.5. Let s and t be terms of type σ. s ‖σ t iff [s] ‖σ [t].

Proof. Proof by induction on σ. The base cases follow by N1 and N2. Let σ = µτ and
let u, v be two terms of type µ such that u ‖µ v. By the definition of ‖, su ‖ tv. By the
inductive hypothesis, [su] ‖ [tv]. [[s]u] ‖ [[t]v] by N2. By the inductive hypothesis, [s]u ‖ [t]v
and by the definition of ‖, [s] ‖ [t].

The following lemma shows that every logical constant is compatible to itself:

Lemma 5.6. c ‖ c for any c ∈ S

Proof.

• c ∈ {⊥,>}: Follows by the definition of ‖o, N1 and N3

• c = ¬: Assume ¬ ∦ ¬. Then, there are terms t, u such that t ‖o u but ¬t ∦o ¬u. By
t ‖o u, we know that {[t],¬[u]} 6⊆ E and {¬[t], [u]} 6⊆ E. By ¬t ∦o ¬u, N3 and E¬¬,
we know that {¬[t], [u]} ⊆ E or {[t],¬[u]} ⊆ E. Contradicition.

• c = ∨: Assume ∨ ∦ ∨. Then, there are terms t1, t2, u1, u2 such that t1 ‖ u1 and t2 ‖ u2
but s1∨s2 ∦ t1∨t2. We know that none of {[t1],¬[u1]}, {¬[t1], [u1]}, {[t2],¬[u2]} and
{¬[t2], [u2]} is a subset of E. Using N3, we also know that either {[t1]∨ [t2],¬([u1]∨
[u2])} ⊆ E or {¬([t1] ∨ [t2]), [u1] ∨ [u2]} ⊆ E. Thus, by E∨ and E¬∨, one of
{[t1],¬[u1],¬[u2]}, {[t2],¬[u1],¬[u2]}, {¬[t1],¬[t2], [u1]} or {¬[t1],¬[t2], [u2]} is a
subset of E. Contradiction.

• c = ∃σ: Assume ∃ ∦ ∃. Then, there are terms t, u of type σo such that t ‖ u
but ∃t ∦ ∃u. Without loss of generality, we assume {[∃t],¬[∃u]} ⊆ E. By N3
{∃[t],¬∃[u]} ⊆ E. By E∃, E¬∃ and N2, there is a variable x of type σ such that
{[tx],¬[ux]} ⊆ E. By Lemma 5.4, we know that x ‖ x. Hence, sx ‖ tx. By definition
of ‖o, {[tx],¬[ux]} 6⊆ E. Contradiction.

• c = =τ1...τnµ for n ≥ 0 and µ ∈ {ι, o}: Assume =∦=. Then, there are terms
t1, t2, u1, u2 of type τ1 . . . τnµ such that t1 ‖ u1, t2 ‖ u2 but t1 = t2 ∦ u1 = u2.
By the definition of ‖o and N3, we know that either {[t1] = [t2], [u1] 6= [u2]} ⊆ E
or {[t1] 6= [t2], [u1] = [u2]} ⊆ E. We will only show that the first case yields a
contradiction. The second case works analogously.

By Efe and N2, there are fresh variables x1, . . . , xn such that

[u1x1 . . . xn] 6=µ [u2x1 . . . xn] ∈ E

xi ‖ xi by Lemma 5.4 for 0 ≤ i ≤ n and hence,

t′1︷ ︸︸ ︷
t1x1 . . . xn ‖µ

u′1︷ ︸︸ ︷
u1x1 . . . xn and

t′2︷ ︸︸ ︷
t2x1 . . . xn ‖µ

u′2︷ ︸︸ ︷
u2x1 . . . xn
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Suppose µ = o. Then, by the definition of ‖o, we know that none of {[t′1],¬[u′1]},
{¬[t′1], [u

′
1]}, {[t′2],¬[u′2]} and {¬[t′2], [u

′
2]} is a subset of E. On the other hand,

by Ebq and Ebe, we know that one of {[t′1], [t′2], [u′1],¬[u′2]}, {[t′1], [t′2],¬[u′1], [u
′
2]},

{¬[t′1],¬[t′2], [u
′
1],¬[u′2]} or {¬[t′1],¬[t′2],¬[u′1], [u

′
2]} is a subset of E. Contradiction

in all four cases.

Suppose µ = ι. Then, by the definition of ‖ι, we know that neither [t′1]][u
′
1] nor

[t′2]][u
′
2]. By Econ, we also know that either {[t′1] 6= [u′1], [t

′
2] 6= [u′1]} ⊆ E or {[t′1] 6=

[u′2], [t
′
2] 6= [u′2]} ⊆ E. Contradiction in both cases.

• c = ifτ1...τnµ for some n ≥ 0 and µ ∈ {ι, o}: Assume ifτ1...τnµ ∦ ifτ1...τnµ. Then, there
are terms t1, t2, t3, u1, u2, u3, v1 . . . vn and w1 . . . wn such that t1 ‖o u1, t2 ‖τ1...τnµ u2,
t3 ‖τ1...τnµ u3 and vi ‖τi wi for 0 ≤ i ≤ n but

if t1 t2 t3 v1 . . . vn ∦µ if u1 u2 u3w1 . . . wn

By Lemma 5.5 and definition of ‖, we know that

[t2][v1] . . . [vn] ‖µ [u2][w1] . . . [wn] and [t3][v1] . . . [vn] ‖µ [u3][w1] . . . [wn]

Suppose µ = o. Then by N3, either

{if[t1][t2][t3][v1] . . . [vn],¬(if[u1][u2][u3][w1] . . . [wn])} ⊆ E

or
{¬(if[t1][t2][t3][v1] . . . [vn]), if[u1][u2][u3][w1] . . . [wn]} ⊆ E

We only show that the first case yields a contradiction. We use Eif twice, once with
accessibility context [][v1] . . . [vn] and once with accessibility context ¬([][w1] . . . [wn]).
We get four cases where we need to apply the definition of normalization on quasi-
formulas. In two of the four cases, either {¬[t1], [u1]} ⊆ E or {[t1],¬[u1]} ⊆ E
contradicting the compatibility of t1 and u1. In the other two cases, either

{[[t2][v1] . . . [vn]],¬[[u2][w1] . . . [wn]]} ⊆ E

or
{[[t3][v1] . . . [vn]],¬[[u3][w1] . . . [wn]]} ⊆ E

contradicting the compatibility of those terms as stated above.

Suppose µ = ι: Analogously to µ = o using accessibility contexts

[][v1] . . . [vn]]if[u1][u2][u3][w1] . . . [wn] and if[t1][t2][t3][v1] . . . [vn]][][w1] . . . [wn]

• c = ε: Assume for contradiction ε ∦(σo)σ ε. Then there are terms s, t, u1 . . . un,
v1 . . . vn for n ≥ 0 (depending on σ) such that s ‖ t, ui ‖ vi but εsu1 . . . un ∦µ
εtv1 . . . vn and µ = o or µ = ι.
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Suppose µ = o: By the definition of ‖o and N3, ε[s][u1] . . . [un],¬ε[t][v1] . . . [vn] ∈ E
or ¬ε[s][u1] . . . [un], ε[t][v1] . . . [vn] ∈ E. In both cases, by Ematε , either [s]][t] or
[ui]][vi] for some i. Contradiction by Lemma 5.4.

Suppose µ = ι: Analogously to µ = o using Edecε instead of Ematε .

• c = ι: Analogously to ε using Edecι and Ematι .

Lemma 5.7. Let θ, θ′ be two compatible substitutions. Then θ̂s ‖ θ̂′s for all terms s.

Proof. Proof by induction on s. Case analysis:

• s = x: The claim holds by the compatibility of θ and θ′

• s = c: By S1, θ̂c ‖ θ̂′c = c ‖ c which follows from Lemma 5.6.

• s = tu: We show θ̂(tu) ‖ θ̂′(tu). By S2 this is equivalent to (θ̂t)(θ̂u) ‖ (θ̂′t)(θ̂′u)
which holds by the inductive hypothesis and by the definition of ‖.

• s = λx. t: We show θ̂(λx. t) ‖ θ̂′(λx. t). Assume for contradiction that θ̂(λx. t) ∦
θ̂′(λx. t). Then there are terms u, v such that u ‖ v but (θ̂(λx. t))u ∦ (θ̂′(λx. t))v.

By Lemma 5.5 [(θ̂(λx. t))u] ∦ [(θ̂′(λx. t))v], [θ̂xut] ∦ [θ̂′xvt] by S3 and θ̂xut ∦ θ̂′
x
vt again

by Lemma 5.5. Since u and v are compatible, θ̂xu and θ̂′xv are still compatible, too.
Hence, we have a contradiction using the inductive hypothesis.

Lemma 5.8. s ‖ s for all terms s.

Proof. By Lemma 5.5 and by S4, s ‖ s is equivalent to [∅̂s] ‖ [∅̂s]. This is, again by

Lemma 5.5, equivalent to ∅̂s ‖ ∅̂s which holds by Lemma 5.7 and by the fact that the empty
substitution is compatible to itself (which trivially follows from Lemma 5.4).

Lemma 5.9. s 6= s 6∈ E for all terms s.

Proof. Follows by Lemma 5.4 (1) and Lemma 5.8.

5.2.3 Possible Values

Given Dι it remains to define Do and D(στ) for all types σ and τ . We do that by mutual
induction on types using D on the one hand and a possible values relation .σ ⊆ ΛSσ × Dσ
for all types σ on the other hand:

s .o 0 :⇐⇒ [s] 6∈ E
s .o 1 :⇐⇒ ¬[s] 6∈ E
s .ι a :⇐⇒ ([s] discriminating =⇒ [s] ∈ a)

s .στ f :⇐⇒ st .τ fa whenever t .σ a

In the last case, a ranges over the elements of Dσ which we define as Ran (.σ) for σ 6= ι.
Informally, D contains all those values which are related to some term, i.e., which are a
possible value for some term.
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Proposition 5.10. . is surjective, i.e., for any type σ and any value a ∈ Dσ, there is some
term s : σ such that s .σ a

Proof. For σ ∈ {ι, o}, the claim trivially follows from the definition of D. Let σ = ι. Assume
there are no discriminating terms in E. Then ∅ is the only discriminant and x .ι ∅ for any
variable x of type ι. Assume there are discriminating terms in E. We first observe that
for any discriminating term s, s 6= s 6∈ E by Lemma 5.9. Hence, by the maximality of
discriminants, there is at least one term t for each discriminant d such that t ∈ d. By the
definition, t .ι d.

Lemma 5.11. For any term s and any value a, s . a iff [s] . a.

Proof. The full proof is given in [8, Lemma 3.1]. It is done by a simple induction on types
using N2.

Given the definition of D, we need to show that D is an S-frame. We first show that D
is a frame, i.e., that Dσ is nonempty for all σ. Let T ⊆ ΛSσ be a set of equi-typed terms.
We write T .σ a iff s .σ a for all s ∈ T and say that T has common possible value a. The
following lemma shows that a set of compatible terms has a common possible value:

Lemma 5.12. Let T ⊆ ΛSσ . T is compatible iff T has a common possible value.

Proof. The full proof given in [8, Lemma 6.3]. It is done by induction on σ.

This lemma finally allows us to show that D is a frame:

Lemma 5.13. Dσ is nonempty for any σ.

Proof. We know that for any σ there is a variable x : σ. By Lemma 5.4, we know that x ‖ x.
By Lemma 5.12 there is a value a such that x .σ a. By the definition of D, a ∈ Dσ.

It remains to show that D is an S-frame, i.e., that D realizes all logical constants in S. We
first turn to choice and description.

Let c ∈ {ε, ι}, f ∈ D(σo) be a function and cs be a term in ΛSσ . We write f ∝ cs (read
f chooses cs) iff s . f and c[s] is accessible in E. We call the set f c = {cs ∈ ΛSσ |f ∝ cs}
the set of c-relevant terms for f .

Lemma 5.14. Let c ∈ {ε, ι}, E be an evident set and let f ∈ D(σo) be a function. Then,
there is some a ∈ Dσ such that f c . a.

Proof. We show that f c is compatible. Lemma 5.12 gives us the claim. Let cs, ct ∈ f c. By
the definition of ∝, s, t . f and hence, by Lemma 5.12, s ‖ t. By Lemma 5.8 c ‖ c. Thus
cs ‖ ct.

For any type σ, we define a choice operator Φσ ∈ D(σo)→ Dσ and a description operator
Ψσ ∈ D(σo)→ Dσ:

Φσf =

{
some b such that fb = 1 if f εσ is empty and such a b exists.

some a such that f εσ . a.

Ψσf =

{
some b such that fb = 1 if f ισ is empty and such a b exists and is unique.

some a such that f ισ . a.
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Lemma 5.15. Let E be an evident branch, c ∈ S, ct1 . . . tn ∈ ΛSσ and a ∈ Dσ. If
ct1 . . . tn 7 a, then c[t1] . . . [tn] is accessible in E.

Proof. By induction on σ. Case analysis:

• σ = o: If a = 0 then by the definition of .o and N3, c[t1] . . . [tn] ∈ E. If a = 1 then,
again by the definition of .o and N3, ¬c[t1] . . . [tn] ∈ E.

• σ = ι: By the definition of .ι and N3, we know that c[t1] . . . [tn] is discriminating and
hence accessible.

• σ = µτ : By the definition of .σ, we know that there is some term u ∈ ΛSµ and some
value b ∈ Dµ such that u . b but ct1 . . . tnu 7 ab. By the inductive hypothesis, we
know that c[t1] . . . [tn][u] is accessible in E. Hence, c[t1] . . . [tn] is accessible.

The next lemma shows that for any type σ, Φσ and Ψσ are indeed in D((σo)σ)

Lemma 5.16. For any type σ, we have εσ . Φσ and ισ .Ψσ

Proof. Assume ε 7 Φ. Then, there are s, f such that s . f but εs 7 Φf . By Lemma 5.15
ε[s] is accessible in E. Hence εs ∈ f ε. There is some a such that Φf = a and f ε . a. Thus
εs . a, a contradiction. The proof for ι .Ψ can be done analogously.

Now, we can show that Pεσ(Φσ) (respectively Pισ(Ψσ)) holds, i.e., that ε and ι are realized
by D if these logical constants are in S.

Lemma 5.17. Pεσ(Φσ) holds. That is, Φ as defined above is a choice function.

Proof. Let f ∈ D(σo) be a function and b ∈ Dσ be such that fb = 1. Suppose f(Φf) = 0.
Then f εσ must be nonempty (by the definition of Φf). Choose some εs ∈ f εσ . We will
show a contradiction. By Eε there are two possibilities:

1. [s(εs)] ∈ E: In this case s(εs) 7 0. On the other hand, s.f and ε.Φ (by Lemma 5.16)
and so s(εs) . f(Φf). This contradicts our assumption that f(Φf) = 0.

2. ¬[st] ∈ E for every normal t ∈ ΛSσ . By Proposition 5.10 and Lemma 5.11 there is
some normal term u ∈ ΛSσ such that u . b. Hence ¬[su] ∈ E. By the definition of .o,
su 7 1. On the other hand, we know su . fb since s . f and u . b, contradicting the
assumption that fb = 1.

Lemma 5.18. Pισ(Ψσ) holds. That is, Ψ as defined above is a description function.

Proof. Let f ∈ D(σo) be a function and b ∈ Dσ be such that fb = 1 and fc = 0 for
all c ∈ Dσ different from b. Suppose f(Φf) = 0. Then f ισ must be nonempty (by the
definition of Ψf). Choose some ιs ∈ f ισ . We will show a contradiction. By Eι there are
three possibilities:

1. [s(ιs)] ∈ E: In this case s(ιs) 7 0. On the other hand, s.f and ι.Ψ (by Lemma 5.16)
and so s(εs) . f(Ψf). This contradicts our assumption that f(Ψf) = 0.
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2. ¬[st] ∈ E for every normal t ∈ ΛSσ . By Proposition 5.10 and Lemma 5.11 there is
some normal term u ∈ ΛSσ such that u . b. Hence ¬[su] ∈ E. By the definition of .o,
su 7 1. On the other hand, we know su . fb since s . f and u . b, contradicting the
assumption that fb = 1.

3. {x 6= y, [sx], [sy]} ⊆ E for some variables x and y. By Lemma 5.4(2) and Lemma 5.12,
we know that there must be values c1 and c2 such that x . c1 and y . c2. On the other
hand, by N3 and Lemma 5.4(1), we know that x and y are not compatible. Hence, by
Lemma 5.12, there is no common possible value for x and y. As a consequence, c1 and
c2 must be different. By s . f , we know sx . fc1 and sy . fc2. Since {[sx], [sy]} ⊆ E,
fc1 and fc2 must both be 1 contradicting the uniqueness of b.

This concludes the main part for choice and description. The following lemma will help us
to prove that D realizes =σ (assuming that =σ is in S).

Lemma 5.19. Let s =τ1...τnµ t ∈ E, s . a and t . b for n ≥ 0 and µ ∈ {o, ι}. Then a = b.

Proof. By contradiction. Assume s.σ a, t.σ b, (s=t) ∈ E, and a 6= b. Then there are values
c1, . . . , cn such that

a′︷ ︸︸ ︷
ac1 . . . cn 6=

b′︷ ︸︸ ︷
bc1 . . . cn

By Proposition 5.10 and Lemma 5.11, there are normal terms u1, . . . , un such that ui . ci
for 0 ≤ i ≤ n and thus

s′︷ ︸︸ ︷
su1 . . . un .µa

′ and

t′︷ ︸︸ ︷
tu1 . . . un .µb

′

Case analysis on µ.
µ = o. By Ebq either [s′], [t′] ∈ E or ¬[s′],¬[t′] ∈ E. Hence, using Lemma 5.11, a′ and

b′ are either both 1 or both 0. Contradiction.
σ = ι. Since a′ 6= b′, there must be discriminating terms of type ι. Since the discriminant

a′ is maximal there is some v ∈ a′\b′. Since b′ is also maximal, b′∪{v} is not a discriminant.
Hence there is some w ∈ b′ such that v]w. By Econ, we know either [s′]]v or [t′]]w. If [s′]]v,
then [s′] is discriminating and [s′] ∈ a′, contradicting that a′ is a discriminant with v ∈ a′.
Likewise, if [t′]]w, then [t′] ∈ b′, contradicting w ∈ b′.

Lemma 5.20. For any logical constant c : σ ∈ S, there is some a ∈ Dσ such that c . a and
Pc(a) holds.

Proof. We show c.a for all possible logical constants c. Since these proofs are independent
from each other, they still work when S is restricted to a certain subset of LC.

The cases for ε and ι are already covered by Lemma 5.17 and Lemma 5.18. Let n ∈ D(oo)
be the negation function, d ∈ D(ooo) the disjunction function, iσ ∈ D(oσσσ) be the if-then-
else function, qσ ∈ D(σσo) the equality function and eσ ∈ D((σo)o) be the function such
that eσf = 1 if f is not the constant 0 function.

• > . 1 and ⊥ . 0: The claim follows by E> (respectively E⊥) and N3
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• ¬ . n: Assume ¬ 7 n. Then, there is term s and a value a such that s . a but
¬s 7 na. If a = 0 then [s] 6∈ E and ¬[¬s] ∈ E. By N3, ¬¬[s] ∈ E and [s] ∈ E by
E¬¬. Contradiction. If a = 1 then ¬[s] 6∈ E and [¬s] ∈ E. Contradiction by N3.

• ∨ . d: Assume ∨ 7 d. Then, there are are terms s, t and values a, b such that s . a
and t . b but s ∨ t 7 dab.

If a = 0 and b = 0, then, [s ∨ t] ∈ E and by N3, [s] ∨ [t] ∈ E. By E∨, [s] ∈ E or
[t] ∈ E contradicting s . 0 and t . 0.

If a = 1 or b = 1, then ¬[s ∨ t] ∈ E and by N3, ¬([s] ∨ [t]) ∈ E. By E¬∨, ¬[s] ∈ E
and ¬[t] ∈ E contradicting s . 1 or t . 1

• ifσ . iσ: Assume ifσ 7 iσ. By the definition of ., there are s, t, u, v1, . . . , vn and
a, b, c, d1, . . . , dn for some n ≥ 0 (depending on σ) such that s . a, t .σ b, u .σ c and
vi.di but if s t u v1 . . . vn 7τ i a b c d1 . . . dn for τ = ι or τ = o. In addition, by Lemma
5.11 and definition of ., we know that [t][v1] . . . [vn] .τ bd1 . . . dn and [u][v1] . . . [vn] .τ
cd1 . . . dn. Case analysis on τ :

– τ = o: If a = 1, then we have ¬[s] 6∈ E and if s t u v1 . . . vn 7 b d1 . . . dn.
Suppose b d1 . . . dn = 1. Then, using N3, ¬(if[s][t][u][v1] . . . [vn]) ∈ E and
¬[[t][v1] . . . [vn]] 6∈ E. By definition of [·] and Eif with accessibility context
¬([][v1] . . . [vn]) we know that either [s] ∈ E and ¬[[t][v1] . . . [vn]] ∈ E con-
tradicting ¬[[t][v1] . . . [vn]] 6∈ E or ¬[s] ∈ E and ¬[[u][v1] . . . [vn]) ∈ E con-
tradicting ¬[s] 6∈ E. Suppose bd1 . . . dn = 0. Then if[s][t][u][v1] . . . [vn] ∈ E
and [[t][v1] . . . [vn]] 6∈ E. By Eif with accessibility context [][v1] . . . [vn], we know
that either [s] ∈ E and [[t][v1] . . . [vn]] ∈ E contradicting [[t][v1] . . . [vn]] 6∈ E or
¬[s] ∈ E and [[u][v1] . . . [vn]] ∈ E contradicting ¬[s] 6∈ E.

The case for a = 0 is analogous.

– τ = ι i.e., b′ = b d1 . . . dn and c′ = c d1 . . . dn are discriminants.

If a = 1, then we have ¬[s] 6∈ E and if s t u v1 . . . vn 7 b′. By the def-
inition of .ι and N3 we know that if[s][t][u][v1] . . . [vn] is discriminating but
if[s][t][u][v1] . . . [vn] 6∈ b′. In particular, this means that there is a term v′ such that
v′ . b′ and if[s][t][u][v1] . . . [vn]][v′]. By definition of [·] and Eif with accessibility
context [][v1] . . . [vn] 6= [v′] or [v′] 6= [][v1] . . . [vn], we know that either ¬[s] ∈ E
and [[u] [v1] . . . [vn]]][v′] contradicting ¬[s] 6∈ E or [s] ∈ E and [[t][v1] . . . [vn]]][v′]
contradicting [t][v1] . . . [vn] . b′ and v′ . b′, i.e., that both, [[t][v1] . . . [vn]] and [v′]
are in b′ which is not possible because of the disequation.

The case for a = 0 is analogous.

• ∃σ . eσ. Assume ∃σ 7 eσ. Then, there is a term s : σo and a function f ∈ D(σo)
such that s . f but ∃s 7 ef .

Suppose fa = 0 for all a ∈ Dσ. Then ef = 0 and ∃[s] ∈ E by N3. By E∃ and N2,
there is a variable x such that [sx] ∈ E. By Lemma 5.4 and Lemma 5.12 there is
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some value b ∈ Dσ such that x. b. By the definition of ., sx.fb and sx 7 0. Hence,
fb 6= 0 contradicting the assumption that f is a constant 0 function.

Suppose fa = 1 for some a ∈ Dσ. Then, ef = 1 and ¬(∃[f ]) ∈ E by N3. By
Proposition 5.10, there is some t ∈ ΛSσ such that a . t. By s . f , we know that st . fa.
By the definition, ¬[st] 6∈ E. On the other hand, by E¬∃ and N2, ¬[su] ∈ E for all
u ∈ ΛSσ . Contradiction.

• =σ . qσ. Assume for contradiction =σ7 qσ. Then, there are terms s, t and values a, b
such that s . a, t . b but s = t 7 qab.

Suppose a = b. Then [s]][t] by N3 and s, t . a. Hence, s ‖ t by Lemma 5.12.
Contradiction by Lemma 5.4(1).

Suppose a 6= b. Then by N3, [s] = [t] ∈ E. a = b by Lemma 5.11 and by Lemma 5.19.
Contradiction.

We say that an assignment into an S-frame D is admissible if c .Ic for all c in S and x.Ix
for all variables x.

5.2.4 Model Existence Theorem

Before we show that every evident set has a model, we prove the following lemma which
helps to close the gap between assignments and interpretations.

Lemma 5.21. Let S be a signature, D be an S-frame, θ be a substitution and I be an
admissible assignment into D. Suppose θx . Ix for every x ∈ Dom θ. Then s ∈ Dom Î and
θ̂s . Îs for every S-term s.

Proof. By induction on s. Suppose s is a variable x with x 6∈ Dom θ. Then x . Ix by the
admissibility of I and θ̂x . Îx by the definition of Î and by S1. If s is a variable x with
x ∈ Dom θ then θx . Ix by assumption and so θ̂s . Îs by S1. If s is a logical constant c,
then θ̂s . Îs by admissibility of I, S4 and Lemma 5.11. The case where s is an application
term follows from the inductive hypotheses, S2 and the definitions of Î and .. Finally,
suppose s is of the form λx.t where x : σ and t ∈ ΛSτ . Let u .σ a be given. We prove
(θ̂(λx.t))u . (Î(λx.t))a. Applying the inductive hypothesis to t with θxu and Ixa , we have

that t ∈ Dom θ̂xu and θ̂xut . Îxa t. By S3 [(θ̂(λx.t))u] is [θ̂xut]. Two applications of Lemma 5.11
complete the proof.

Now, we can finally prove Theorem 5.1, the Model Existence Theorem:

Proof of Theorem 5.1. Let D be defined using discriminants and the possible values relation
as shown in the last section. We construct an S-assignment I as follows: For each c ∈ S,
we define Ic to be some value a such that c . a. The existence of such values follows from
Lemma 5.20. By Lemma 5.4(2) and Lemma 5.12, we know that there is a value b for each
variable x such that x. b. We define Ix to be b. I is clearly admissible and ∅ trivially fulfills
the condition of Lemma 5.21. Hence, I is an S-interpretation and s . Îs by Lemma 5.11
and S4. It remains to show that I |= t for each t ∈ E. Note that t is normal and thus
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t = [t]. Suppose t ∈ wff(S). We know that t . Ît and t 7 0 by the definition of .. Hence Ît
must be 1. Suppose t = ¬u for some u ∈ wff(S). We know that u . Îu and u 7 1. Hence,
Îu 6= 1. Suppose t = (u 6= v) for some u, v ∈ wff(S) and assume for contradiction that
Îu = Îv. Then, u, v . Îu and by Lemma 5.12, u ‖ v. Contradiction by Lemma 5.4(1).

5.3 Standard Models

In the last section we showed that for arbitrary signatures S, a set E ⊆ qwff(S) which fulfills
the corresponding evidence conditions has a model over a certain S-frame D. This frame
might be nonstandard.

In this section, we want to investigate what happens with the Model Existence Theorem
if we only consider assignments into standard frames. The general idea from the last section
including most of the proofs still work. However, there are lemmas which we need to modify.
Instead of copying the last section, we will only discuss what needs to be changed and why
it needs to be changed.

Assume S = LC. As already mentioned, it is a well known fact that we cannot get
completeness (which is our goal in this chapter) with respect to standard models. This
means that we cannot always construct a model over a standard frame for arbitrary evident
sets. One solution to this problem is to only consider certain subsets of LC as possible
candidates for the signatures. Unfortunately, this upper bound does not suffice.

Assume S = {∀o}. We consider the branch {∀ox.x}. There is no S-interpretation into
a standard frame that satisfies this branch: The identity function at type o returns 0 for
0 as its argument. However, we cannot refute this branch. The only possibility is to add
formulas to the branch consisting of variables and ∀o. The problem is that we are not able
to express 0 using S-terms. To solve this problem, one might consider removing ∀o from
the set of possible logical constants. Another less restricting solution is to require certain
logical constants to always be elements of the signature. These logical constants should have
the property that they can be used to express both, 0 and 1. Examples for such candidates
are {¬,>} or {=o,⊥}. We decided to take the simplest solution: From now on, we only
consider signatures in this section which contain at least > and ⊥.

It remains to identify the logical constants which can prevent us from constructing standard
models. The problem here is, similar to the problem just solved, that there are values
which have are not related to any term. More precisely, the possible values relations are
not surjective anymore for arbitrary types, i.e., Proposition 5.10 does not hold anymore in
general. How are the possible values relations in the context of standard models (denoted
by .s) defined? At first sight, they have not changed at all:

s .so 0 :⇐⇒ [s] 6∈ E
s .so 1 :⇐⇒ ¬[s] 6∈ E
s .sι a :⇐⇒ ([s] discriminating =⇒ [s] ∈ a)
s .sστ f :⇐⇒ st .sτ fa whenever t .sσ a

The important difference is that the frame is already fixed, i.e., there is no mutual induction
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going on:
Do := {0, 1}
Dι := set of all discriminants of E

D(στ) := Dσ → Dτ
Although we cannot preserve the surjectivity of the possible values relations, we can at least
give certain types where they are still surjective:

Proposition 5.22. Let S be a signature restricted as described in this section and let E be
an S-evident set. Let σ ∈ {o, ι}. For any value a ∈ Dσ, there is a term s ∈ ΛSσ such that
s .sσ a.

Proof. Suppose σ = o. {>,⊥} ⊆ S by assumption. It is easy to see that > .s 1 and ⊥ .s 0
using E>, E⊥ and N3. The case for σ = ι is identical to the proof of Proposition 5.10.

Given this proposition, we know that .s is at least surjective for types ι and o. As a conse-
quence, all proofs in the last section which used Proposition 5.10 must use Proposition 5.22
now and are restricted to base types. This affects the possible logical constants as follows:

1. In Lemma 5.17 and Lemma 5.18, we use all terms at arbitrary types to show that
some function is a constant 0 function. Consequently, we need to restrict choice and
description to base types, i.e., we only allow εσ and ισ for σ ∈ {ι, o}

2. In Lemma 5.19, we consider =τ1...τnµ for arbitrary τi. We now need to restrict these τi
to the base types. For example =ι(ιι) is still a possible candidate for being an element
of the signature but =(ιι)ι is not.

3. As a consequence of (1) and (2), we are restricted in the same way in Lemma 5.20
because we use these lemmas there. Furthermore, we use Proposition 5.10 to prove
∃σ . eσ. Hence, we also need to restrict the existential quantifier to base types.

Altogether, we found the following upper and lower bounds:

Theorem 5.23. Let S be a signature such that S contains at least > and ⊥ and contains
at most ∃σ, ισ, εσ or =τ1...τnµ if σ, τ1 . . . τn, µ are base types. Let E ⊆ qwff(S) be an evident
set. Then, there is a standard frame D and an interpretation I into D such that I |= s for
every s ∈ E.

5.4 Abstract Consistency & Completeness

In the last two sections, we showed how to construct models for evident sets. It remains
to show how to connect evident sets (which can possibly be infinite) to nonclosed branches
(which can only be finite). This will finally allow us to prove completeness of a tableau
system TS for some signature S. We will use a technique called abstract consistency which
was first used by Smullyan [24] and later by several other authors, also for example in [9] or
[8].

47



Cfe If s 6=στ t is in A, then A ∪ {[sx] 6= [tx]} is in Γ for some variable x.
Cbe If s 6=o t is in E, then A ∪ {s,¬t} or A ∪ {¬s, t} is in Γ.
Cdec If xs1 . . . sn 6=ι xt1 . . . tn is in A for some n ≥ 0 and some variable x,

then A ∪ {si 6= ti} is in Γ for some 1 ≤ i ≤ n.
Cmat If xs1 . . . sn and ¬xt1 . . . tn are in A for some n ≥ 0 and some variable x,

then A ∪ {si 6= ti} is in Γ for some 1 ≤ i ≤ n.
C⊥ ⊥ is not in A.
C> ¬> is not in A.
C∨ If s ∨ t is in E, then either A ∪ {s} is in Γ or A ∪ {t} is in Γ.
C¬∨ If ¬(s ∨ t) is in A, then A ∪ {¬s,¬t} is in Γ.
C¬¬ If ¬¬s is in A, then A ∪ {s} is in Γ.
C∃ If ∃s is in A, then A ∪ {[sx]} is in Γ for some variable x.
CS¬∃ If ¬(∃σs) is in A, then A ∪ {¬[st]} is in Γ for all normal S-terms t of type σ.
Cbq If s =τ1...τno t is in A for some n ≥ 0, then either A ∪ [su1 . . . un], [tu1 . . . un]}

is in Γ or {A ∪ ¬[su1 . . . un],¬[tu1 . . . un]} is in Γ for all normal
ui ∈ ΛSτi for 1 ≤ i ≤ n.

Ccon If s =τ1...τnι t and u 6=ι v are in A for some n ≥ 0, then either
A ∪ {[sw1 . . . wn] 6= u, [tw1 . . . wn] 6= u} is in Γ or
A ∪ {[sw1 . . . wn] 6= v, [tw1 . . . wn] 6= v} is in Γ for all normal
wi ∈ ΛSτi for 1 ≤ i ≤ n.

Cif If C[if s t u] is in A and C is an accessibility context, then A ∪ {s, [C[t]]}
is in Γ or A ∪ {¬s, [C[u]]} is in Γ.

CSι If C[ισs] is in A and C is an accessibility context, then either A ∪ {¬[st]}
is in Γ for all normal S-terms t of type σ or A ∪ {x 6= y, [sx], [sy]} is in Γ
for some variables x and y or A ∪ {[s(ιs)]} is in Γ.

Cdecι If ιs1 . . . sn 6=ι ιt1 . . . tn is in A for some n ≥ 0,
then A ∪ {si 6= ti} is in Γ for some 1 ≤ i ≤ n.

Cmatι If ιs1 . . . sn and ¬ιt1 . . . tn are in A for some n ≥ 0,
then A ∪ {si 6= ti} is in Γ for some 1 ≤ i ≤ n.

CSε If C[εσs] is in A and C is an accessibility context, then either A ∪ {¬[st]}
is in Γ for all normal S-terms t of type σ or A ∪ {[s(εs)]} is in Γ.

Cdecε If εs1 . . . sn 6=ι εt1 . . . tn is in A for some n ≥ 0,
then A ∪ {si 6= ti} is in Γ for some 1 ≤ i ≤ n.

Cmatε If εs1 . . . sn and ¬εt1 . . . tn are in A for some n ≥ 0,
then A ∪ {si 6= ti} is in Γ for some 1 ≤ i ≤ n.

Figure 5.2: Abstract consistency conditions (must hold for every A ∈ Γ)
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Definition 5.24. Let S be a signature. A set of S-branches Γ is an abstract consistency
class iff Γ fulfills the conditions from Figure 5.2.

Lemma 5.25. Let Γ be an abstract consistency class with respect to a signature S and
A ∈ Γ. Then, there exists an evident set E such that A ⊆ E.

Proof. Let u1, u2, u3, . . . be an enumeration of all normal quasi-S-formulas. We will con-
struct a sequence A0 ⊆ A1 ⊆ A2 ⊆ · · · of branches such that every An ∈ Γ. Let A0 := A.
We define An+1 by cases. If there is no B ∈ Γ such that An ∪ {un} ⊆ B, then let
An+1 := An. Otherwise, choose some B ∈ Γ such that An ∪ {un} ⊆ B. We consider four
subcases.

1. If un is of the form ∃σs, then choose An+1 to be B ∪ {[sx]} ∈ Γ for some variable x.
This is possible since Γ satisfies C∃.

2. If un is of the form s 6=στ t, then choose An+1 to be B ∪ {[sx] 6=τ [tx]} ∈ Γ for some
variable x. This is possible by Cfe.

3. Suppose un is of the form C[ιs] where C is an accessibility context and B∪{[sx], [sy], x 6=
y} is in Γ for some variables x and y. We then choose An+1 to be B ∪{[sx], [sy], x 6=
y}. This is possible by Cι.

4. If none of the previous cases applies then let An+1 be B.

Let E :=
⋃
n∈N

An. We prove E satisfies the evidence conditions.

Efe Assume s 6=στ t is in E. Let n be such that un is s 6=στ t. Let r ≥ n be such that un
is in Ar. Since An ∪ {un} ⊆ Ar, there is some variable x such that [sx] 6= [tx] is in
An+1 and hence in E.

Ebe Assume s 6=o t is in E. Let n,m, j, k be such that un = s, um = t, uj = ¬s and
uk = ¬t. Let r ≥ n,m, j, k be such that s 6=o t is in Ar. By Cbe either Ar ∪ {s,¬t}
or Ar ∪ {¬s, t} is in Γ. Assume Ar ∪ {s,¬t} is in Γ. Since An ∪ {s} ⊆ Ar ∪ {s,¬t},
we have s ∈ E. Since Ak ∪ {¬t} ⊆ Ar ∪ {s,¬t}, we have ¬t ∈ E. Next assume
Ar ∪ {¬s, t} is in Γ. Since Aj ∪ {¬s} ⊆ Ar ∪ {¬s, t}, we have ¬s ∈ E. Since
Am ∪ {t} ⊆ Ar ∪ {¬s, t}, we have t ∈ E.

Emat Assume xs1 . . . sn and ¬xt1 . . . tn are in E where n ≥ 1. For each i ∈ {1, . . . , n},
let mi be such that umi is si 6= ti. Let r ≥ m1, . . . ,mn be such that xs1 . . . sn and
¬xt1 . . . tn are in Ar. By Cmat there is some i ∈ {1, . . . , n} such that Ar ∪{si 6= ti} ∈
Γ. Since Ami ∪ {si 6= ti} ⊆ Ar ∪ {si 6= ti}, we have (si 6= ti) ∈ Ami+1 ⊆ E.

Edec Similar to Emat

E⊥ Assume E contains ⊥. Then An contains ⊥ for some n contradicting C⊥.

E> Assume E contains ¬>. Then An contains ¬> for some n contradicting C>.
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E∨ Assume s ∨ t is in E. Let n,m be such that un = s and um = t. Let r ≥ n,m
be such that s ∨ t is in Ar. By C∨, Ar ∪ {s} ∈ Γ or Ar ∪ {t} ∈ Γ. In the first
case, An ∪ {s} ⊆ Ar ∪ {s} ∈ Γ, and so s ∈ An+1 ⊆ E. In the second case,
Am ∪ {t} ⊆ Ar ∪ {t} ∈ Γ, and so t ∈ Am+1 ⊆ E. Hence either s or t is in E.

E¬∨ Assume ¬(s ∨ t) is in E. Let n,m be such that un = s and um = t. Let r ≥ n,m
be such that ¬(s ∨ t) is in Ar. By C¬∨, Ar ∪ {¬s,¬t} ∈ Γ. Since An ∪ {¬s} ⊆
Ar ∪ {¬s,¬t}, we have ¬s ∈ An+1 ⊆ E. Since Am ∪ {¬t} ⊆ Ar ∪ {¬s,¬t}, we have
¬t ∈ Am+1 ⊆ E.

E¬¬ Assume ¬¬s is in E. Let n be such that un = s. Let r ≥ n be such that ¬¬s is in
Ar. By C¬¬, Ar ∪ {s} ∈ Γ. Since An ∪ {s} ⊆ Ar ∪ {s}, we have s ∈ An+1 ⊆ E.

E∃ Assume ∃s is in E. Let n be such that un is ∃s. Let r ≥ n be such that un is in Ar.
Since An ∪ {un} ⊆ Ar, there is some variable x such that [sx] is in An+1 and hence
in E.

ES¬∃ Assume ¬(∃σs) is in E and u ∈ ΛSσ is normal. Let n be such that un is ¬[su]. Let
r ≥ n be such that ∃s is in Ar. By C¬∃, we know that Ar ∪ {¬[su]} is in Γ. Hence,
¬[su] is in An+1 and also in E.

Ebq Assume s =τ1...τho t is in E for some h ≥ 0 and u1 ∈ ΛSτ1 , . . . , uh ∈ ΛSτh are normal. Let
un be [sw1 . . . wh], um be [tw1 . . . wh], uj be ¬[sw1 . . . wh] and uk be ¬[tw1 . . . wh]. Let
r ≥ m,n, j, k such that s =τ1...τho t ∈ Ar. By Cbq either Ar∪{un, um} or Ar∪{uj, uk}
is in Γ. Assume Ar ∪ {un, um} is in Γ. Since An ∪ {un} ⊆ Ar ∪ {un, um}, we have
un ∈ E. Since Am ∪ {um} ⊆ Ar ∪ {un, um}, we have um ∈ E. Next assume
Ar ∪ {uj, uk} is in Γ. Since Aj ∪ {uj} ⊆ Ar ∪ {uj, uk}, we have uj ∈ E. Since
Ak ∪ {uk} ⊆ Ar ∪ {uj, uk}, we have uk ∈ E.

Econ Assume s =τ1...τhι t and u 6=ι v are in E for some h ≥ 0. Assume w1 ∈ ΛSτ1 , . . . , wh ∈
ΛSτh are normal. Let n,m, j, k be such that un is [sw1 . . . wh] 6= u, um is [tw1 . . . wh] 6=
u, uj is [sw1 . . . wh] 6= v and uk is [tw1 . . . wh] 6= v. Let r ≥ n,m, j, k be such that
s =τ1...τhι t and u 6=ι v are in Ar. By Ccon either Ar ∪ {un, um} or Ar ∪ {uj, uk} is
in Γ. Assume Ar ∪ {un, um} is in Γ. Since An ∪ {un} ⊆ Ar ∪ {un, um}, we have
un ∈ An+1 ⊆ E. Since Am∪{um} ⊆ Ar ∪{un, um}, we have um ∈ Am+1 ⊆ E. Next
assume Ar ∪ {uj, uk} is in Γ. By a similar argument we know uj and uk must be in
E.

Eif Assume C[if s t u] is in E and C is an accessibility context. Let n,m, j, k be such that
un = s, um = [C[t]], uj = ¬s and uk = [C[u]]. Let r ≥ n,m, j, k such that C[if s t u]
is in Ar. By Cif either Ar ∪ {un, um} or Ar ∪ {uj, uk} is in Γ. Assume Ar ∪ {un, um}
is in Γ. Since An ∪ {un} ⊆ Ar ∪ {un, um}, we have un ∈ An+1 ⊆ E. Since
Am ∪ {um} ⊆ Ar ∪ {un, um}, we have um ∈ Am+1 ⊆ E. Next assume Ar ∪ {uj, uk}
is in Γ. As for Econ, we know by a similar argument that uj and uk must be in E.

ESι Assume C[ισs] is in E and C is an accessibility context. Let u ∈ ΛSσ be normal. Let
n,m, j be such that un is C[ισs], um is ¬[su] and uj is [s(ιs)]. Let r ≥ n,m, j such
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that C[ισs] is in Ar. Ar witnesses that there is some B such that An ∪ {un} ⊆ B.
Suppose B ∪ {[sx], [sy], x 6= y} ∈ Γ for some variables x and y. Then, by definition,
{[sx], [sy], x 6= y} ⊆ An+1 and we are done. Otherwise, by Cι either Ar∪{¬[su]} ∈ Γ
or Ar ∪ {[s(ιs)]} ∈ Γ. In the first case, Am ∪ {¬[su]} ⊆ Ar ∪ {¬[su]} and hence
¬[su] ∈ Am+1 ⊆ E. In the second case, Aj ∪ {[s(ιs)]} ⊆ Ar ∪ {[s(ιs)]} and hence
[s(ιs)] ∈ Aj+1 ⊆ E.

Edecι Similar to Emat

Ematι Similar to Emat

ESε Assume C[εσs] is in E and C is an accessibility context. Let u ∈ ΛSσ be normal. Let
n,m be such that un is ¬[su] and um is [s(εs)]. Let r ≥ n,m such that C[εσs]
is in Ar. By Cι either Ar ∪ {¬[su]} ∈ Γ or Ar ∪ {[s(εs)]} ∈ Γ. In the first case,
An ∪ {¬[su]} ⊆ Ar ∪ {¬[su]} and hence ¬[su] ∈ An+1 ⊆ E. In the second case,
Am ∪ {[s(εs)]} ⊆ Ar ∪ {[s(εs)]} and hence [s(εs)] ∈ Am+1 ⊆ E.

Edecε Similar to Emat

Ematε Similar to Emat

We now show that the set of all branches which are not refutable is an abstract consistency
class.

Lemma 5.26. Let S be a signature. Let ΓT be the set of all S-branches which are not
refutable under TS. ΓT is an abstract consistency class.

Proof. We need to check all conditions for an abstract consistency class. As this is very
straightforward using the corresponding tableau rules, we only give two examples. Let A ∈
ΓT .

Cε Assume C[εσs] ∈ A for some accessibility context C but A ∪ {[s(εs]]} 6∈ ΓT and
A ∪ {¬[st]} 6∈ ΓT for some normal t ∈ ΛSσ . We know A ∪ {[s(εs]]} and A ∪ {¬[st]}
are refutable. Hence, A is refutable using Tε with t as the corresponding instantiation.
Contradiction to A ∈ ΓT .

C∃ Assume ∃σs ∈ A but A∪ {[sx]} 6∈ A for all variables x of type σ. Then A∪ {[sx]} is
refutable for all variables x : σ. Hence, A is refutable using T∃ and the finiteness of A.

We can finally show that our tableau system is complete.
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Theorem 5.27 (Completeness). Let S be a signature and A ⊆ qwff(S) be a branch. A is
refutable using TS if A is unsatisfiable. Moreover, if S fulfills the conditions from Theorem
5.23, then A is refutable using TS if A is unsatisfiable with respect to standard models.

Proof. Suppose A is unsatisfiable but not refutable. Then, A ∈ ΓT . By Lemma 5.26, there is
an evident set E such that A ⊆ E. By Theorem 5.1, there is a model for E. Contradiction.

Suppose S fulfills the conditions from Theorem 5.23 and A is unsatisfiable with respect
to standard models but not refutable. By Lemma 5.26, there is an evident set E such that
A ⊆ E. By Theorem 5.23, there is a standard model for E. Contradiction.

Since the second claim sounds weaker than the first claim, we consider the contraposition of
the second caim: A is satisfiable with respect to standard models if A is not refutable using
the tableau system. This means, that if it is impossible to refute a branch, there is not just
some model which satisfies all formulas in A but a model into a standard frame.
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6 Examples

In this chapter, we will give several examples showing how the new tableau rules work in
practice. To make life as easy as possible, we assume the full signature and take β-reduction
as normalization operator (it is easy to check that β-reduction fulfills all N properties).

6.1 Axiom of Choice

We start by proving the validity of the Axiom of Choice at type ι:

∃f : (ιo)ι. ∀p : ιo. (∃x : ι. px)→ p(fp)

Since we have neither the forall quantifier nor logical implication defined, we replace ∀x. sx
by ¬(∃x. ¬(sx)) and s→ t by ¬s ∨ t:

∃f. ¬(∃p. ¬(¬(∃x. px) ∨ p(fp)))

To prove the validity of this formula, we need to refute its negation:

¬(∃f. ¬(∃p. ¬(¬(∃x. px) ∨ p(fp))))
¬¬(∃p. ¬(¬(∃x. px) ∨ p(εp)))
∃p. ¬(¬(∃x. px) ∨ p(εp))
¬(¬(∃x. px) ∨ p(εp))

¬¬(∃x. px)
¬(p(εp))
∃x. px
px

x 6=ι εp

¬(px)
x 6= x

p(εp)
εp 6= εp
p 6= p
py 6= py

py
¬(py)
y 6= y

¬(py)
py

y 6= y

We instantiated ε for f and applied Tε to εp because it was accessible in the formula x 6= εp.
The tableau refutation for the Axiom of Description is very similar so we do not present it
here. Instead, we turn to if-then-else.
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6.2 Axiom of If-Then-Else

In the introduction, we presented two axioms defining if-then-else. We combine them into
one single Axiom of if-then-else as follows:

∃f : oιιι. ∀x : ι, y : ι. (f>xy = x) ∧ (f⊥xy = y)

We need to replace s∧t by ¬(¬s∨¬t) and ∀ as above and refute the negation of the formula
(note that we also removed some double negations):

¬(∃f. ¬(∃x, y. (f>xy 6= x) ∨ (f⊥xy 6= y)))
¬¬(∃x, y. (if>xy 6= x) ∨ (if⊥xy 6= y))
∃x, y. (if>xy 6= x) ∨ (if⊥xy 6= y)
∃y. (if>xy 6= x) ∨ (if⊥xy 6= y)

(if>xy 6= x) ∨ (if⊥xy 6= y)
if>xy 6= x
>

x 6= x
¬>
y 6= x

if⊥xy 6= y
⊥

x 6= y
¬⊥
y 6= y

We instantiated f by if and used Tif once with accessibility context [] 6= x and once with
accessibility context [] 6= y.

Another possibility to prove this axiom is to use the fact “description implies if-then-else”.
Since the corresponding tableau refutation is very long we moved it to Appendix A.

6.3 Swapping Functions

In this section, we prove the existence of swapping functions using if-then-else, similar to
Proposition 3.7. Swapping functions at type ι are described by the following formula:

∀x : ι, y : ι. ∃f : ιι. fx = y ∧ fy = x

Again, we rewrite the formula so that it only contains logical constants we can use:

¬∃x, y.¬∃f. ¬(fx 6= y ∨ fy 6= x)
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We refute the negation:

¬¬∃x, y.¬∃f. ¬(fx 6= y ∨ fy 6= x)
∃x, y.¬∃f. ¬(fx 6= y ∨ fy 6= x)
∃y.¬∃f. ¬(fx 6= y ∨ fy 6= x)
¬∃f. ¬(fx 6= y ∨ fy 6= x)

¬¬((if(x = x)yx) 6= y ∨ (if(x = y)yx) 6= x)
(if(x = x)yx) 6= y ∨ (if(x = y)yx) 6= x

(if(x = x)yx) 6= y
x = x
y 6= y

x 6= x
x 6= y

(if(x = y)yx) 6= x
x = y
y 6= x

x 6= y
y 6= y

x 6= x
y 6= x

x 6= y
x 6= x

As already shown in the proof of Proposition 3.7, we instantiated f by λz. if(x = z)yx.

6.4 Skolem

Skolem functions can be used can be used to remove certain existential quantifiers in formulas.
One possibility to describe the existence of Skolem functions at type ι is the following formula:

∀r : ιιo. (∀x : ι. ∃y : ι. rxy)→ ∃f : ιι. ∀x : ι. rx(fx)

We rewrite this formula to

¬∃r. ¬((∃x. ¬∃y. rxy) ∨ ∃f. ¬∃x : ι. ¬rx(fx))

and prove its validity by refuting its negation. The idea is that we can use a choice operator
to choose the y for each rx. Hence, the instantiation for f will be λx. ε(rx):

¬¬∃r. ¬((∃x. ¬∃y. rxy) ∨ ∃f. ¬∃x. ¬rx(fx))
∃r. ¬((∃x. ¬∃y. rxy) ∨ ∃f. ¬∃x. ¬rx(fx))
¬((∃x. ¬∃y. rxy) ∨ ∃f. ¬∃x. rx(fx))

¬∃x. ¬∃y. rxy
¬∃f. ¬∃x. ¬rx(fx)
¬¬∃x. ¬rx(ε(rx))
∃x. ¬rx(ε(rx))
¬rx(ε(rx))
¬¬∃y. rxy
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∃y. rxy
rxy

x 6= x

y 6= ε(rx)

¬rxy
x 6= x y 6= y

rx(ε(rx))

x 6= x

ε(rx) 6= ε(rx)
rx 6= rx
rxz 6= rxz

rxz
¬rxz

x 6= x z 6= z

same as
left branch

6.5 Choice Complement

While choice functions choose for every nonempty set an element out of this set, there are
also choice complement functions which choose for every set which is not full an element
which is not in this set. We can describe choice complement at type ι using the following
formula:

∃f : (ιo)ι. ∀p : ιo. (∃x : ι. ¬px)→ ¬(p(fp))

We rewrite this formula to

∃f. ¬∃p. ¬(¬(∃x. ¬px) ∨ ¬(p(fp)))

and refute its negation. We use choice to prove the existence of choice complement and
instantiate λp. ε(λx. ¬px) for f , i.e., given some set we use choice to choose an element
out of the complement of the set:

¬∃f. ¬∃p. ¬(¬(∃x. ¬px) ∨ ¬(p(fp)))
¬¬∃p. ¬(¬(∃x. ¬px) ∨ ¬(p(ε(λx. ¬px))))
∃p. ¬(¬(∃x. ¬px) ∨ ¬(p(ε(λx. ¬px))))
¬(¬(∃x. ¬px) ∨ ¬(p(ε(λx. ¬px))))

¬¬(∃x. ¬px)
¬¬(p(ε(λx. ¬px)))

∃x. ¬px
¬px

p(ε(λx. ¬px))
ε(λx. ¬px) 6= x

¬¬px
px

x 6= x

¬p(ε(λx.¬px))
ε(λx.¬px) 6= ε(λx.¬px)
(λx.¬px) 6= (λx.¬px)

¬pz 6= ¬pz
pz
¬pz
z 6= z

¬pz
pz

z 6= z
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7 Extensions

In this chapter, we will try to improve our tableau system by adding even more logical con-
stants plus the corresponding tableau rules. These new logical constants will not necessarily
be more powerful in terms of Chapter 3 but they will make our life easier when refuting
formulas.

7.1 n-ary Choice

In Section 6.4, we have seen that we can prove the existence of Skolem functions at type ι
using a choice operator. We expressed Skolem functions using the following formula:

∀r : ιιo. (∀x : ι. ∃y : ι. rxy)→ ∃f : ιι. ∀x : ι. rx(fx)

Let us perform a Gedankenexperiment. Imagine that r does not map individuals to individuals
but individuals to coordinates, i.e., to pairs of individuals. Pairs are commonly expressed using
product types:

∀r : ι(ι× ι)o. (∀x : ι. ∃y : (ι× ι). rxy)→ ∃f : ι(ι× ι). ∀x : ι. rx(fx)

Given this formula, it is easy to see that we can still use ει×ι to prove its validity. Unfortu-
nately, we do not have product types in our simply typed lambda calculus.

To solve this problem, we can use the well-known technique of Currying. Doing so results
in the following formula:

∀r : ιιιo. (∀x : ι. ∃y : ι, z : ι. rxyz)→ ∃f : ιι, g : ιι. ∀x : ι. rx(fx)(gx)

Is it still possible to prove the validity of this formula? It turns out that it is. The hard part
is to find instantiations for f and g. We start by giving the instantiation for f :

f := λx : ι. ε(λy : ι. ∃z : ι. rxyz)

Unfortunately, using the same idea for the instantiation of g does not work:

g′ := λx : ι. ε(λz : ι. ∃y : ι. rxyz)

The problem is that f and g′ are completely independent. Imagine that ι represents
{1, 2, 3, 4, 5} and r represents a relation that contains the tuples (n, n, n) for all n ∈ ι
plus the tuples (1, 2, 3) and (1, 4, 5). Depending on the choice function, it is possible that
for the argument 1, f returns 2 and g′ returns 5. However, the tuple (1, 2, 5) is not in r.
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The solution to this problem is to define g depending on the choice of f :

g := λx : ι. ε(λz : ι. rx(fx)z)

Given these two instantiation, it is possible (after some rewriting) to prove the validity of the
Curried Skolem formula by refuting its negation using our tableau system.

Unfortunately, we cannot always use Currying. Consider the following example which
makes again use of product types:

∀r : ι(ι× ι)o. (∀x : ι. ∃y : ι× ι. rxy)→ ∀x : ι. rx(ει×ι(rx))

There is no obvious way to Curry the choice operator.

We will now present a solution to this problem. Moreover, this solution will provide a
better way to prove the validity of curried formula from above. We introduce two new logical
constants ε2,1 : (ιιo)ι and ε2,2 : (ιιo)ι where ε2,1 takes the position of f and ε2,1 takes the
position of g as follows:

f := λx : ι. ε2,1(rx)
g := λx : ι. ε2,2(rx)

If we want to do the refutation using these two instantiations, we need to give tableau rules
for ε2,1 and ε2,2. We can find them by looking at the fundamental property of ε2,1 and ε2,2,
i.e., at the predicate which must hold for two functions if they want to be represented by the
two logical constants:

Pε2(f, g) = ∀r ∈ D(ιιo). (∃x, y ∈ Dι. rxy)→ r(fr)(gr)

Using this axiom and the ideas we already developed for Tε, we present the following two
new tableau rules:

Tε2,1
C[ε2,1s]

¬[stu] | [s(ε2,1s)(ε2,2s)]

C accessibility context,
t, u ∈ ΛSι normal

Tε2,2
C[ε2,2s]

¬[stu] | [s(ε2,1s)(ε2,2s)]

C accessibility context,
t, u ∈ ΛSι normal

As we can see, there is again a dependence between both choice operators: We cannot add
ε2,1 to the signature without adding ε2,2 and vice versa. This is not surprising since the
predicate shown above is also defined on two functions. Moreover, we have already seen that
there must be a connection between ε2,1 and ε2,2. The evidence conditions for Tε2,1 and Tε2,2
look as follows:

ESε2,1 If C[ε2,1s] is in E and C is an accessibility context, then either [s(ε2,1s)(ε2,2s)]

is in E, or ¬[stu] is in E for all normal S-terms t, u of type ι.
ESε2,2 If C[ε2,2s] is in E and C is an accessibility context, then either [s(ε2,1s)(ε2,2s)]

is in E, or ¬[stu] is in E for all normal S-terms t, u of type ι.

To show that ε2,1 ‖ ε2,1 and ε2,2 ‖ ε2,2 we also need decomposition and mating rules for
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both logical constants:

Tmatε2,1
ε2,1s1 . . . sn, ¬ε2,1t1 . . . tn
s1 6= t1 | . . . | sn 6= tn

Tdecε2,1
ε2,1s1 . . . sn 6=ι ε2,1t1 . . . tn

s1 6= t1 | . . . | sn 6= tn

Tmatε2,2
ε2,2s1 . . . sn, ¬ε2,2t1 . . . tn
s1 6= t1 | . . . | sn 6= tn

Tdecε2,2
ε2,2s1 . . . sn 6=ι ε2,2t1 . . . tn

s1 6= t1 | . . . | sn 6= tn

We will not present the corresponding evidence conditions here because they can be read off
the tableau rules in a straightforward way. Instead, we turn to the possible values for ε2,1
and ε2,2. We first extend the notion of relevant terms to ε2,1 and ε2,2 the obvious way and
observe that Lemma 5.15 also holds for c ∈ {ε2,1, ε2,2}. We define Φ2,1 ∈ D((ιιo)ι) and
Φ2,2 ∈ D((ιιo)ι):

Φ2,1f =


some b such that there is a c such that fbc = 1 if f ε2,1 is empty

and such a b exists.

some a such that f ε2,1 . a.

Φ2,2f =

{
some b such that f(Φ2,1f)b = 1 if f ε2,2 is empty and such a b exists.

some a such that f ε2,2 . a.

The idea is similar to the one we used for the first working instantiations of f and g in the
Skolem example above: We use Φ2,1 to define Φ2,2. The following two lemmas correspond
to Lemmas 5.16 and 5.17:

Lemma 7.1. We have ε2,1 . Φ2,1 and ε2,2 . Φ2,2

Proof. We only show ε2,1 .Φ2,1. ε2,2 .Φ2,2 can analogously be proven. Assume ε2,1 7 Φ2,1.
Then, there are s, f such that s . f but ε2,1s 7 Φ2,1f . By Lemma 5.15 ε2,1[s] is accessible
in E. Hence ε2,1s ∈ f ε2,1 . By definition, there is some a such that Φ2,1f = a and f ε2,1 . a.
Thus ε2,1s . a, a contradiction.

Lemma 7.2. Pε2(Φ2,1,Φ2,2) holds. That is, Φ2,1 and Φ2,2 as defined above are choice
functions for binary relations.

Proof. Let f ∈ D(ιιo) be a function and a, b ∈ Dι be such that fab = 1. Suppose
f(Φ2,1f)(Φ2,2f) = 0. Then, by definition of Φ2,1 and Φ2,2, at least one f ε2,i must be
nonempty for i ∈ {1, 2}. We choose such an i and some ε2,is ∈ f ε2,i . We will show a
contradiction. By Eε2,i there are two possibilities:

1. [s(ε2,1s)(ε2,2s)] ∈ E: In this case s(ε2,1s)(ε2,2s) 7 0. On the other hand, s . f ,
ε2,1 . Φ2,1 and ε2,2 . Φ2,2 (by Lemma 7.1) and so s(ε2,1s)(ε2,2s) . f(Φ2,1f)(Φ2,2f).
This contradicts our assumption that f(Φ2,1f)(Φ2,2f) = 0.

2. ¬[stu] ∈ E for every normal t, u ∈ ΛSι . By Proposition 5.10 and Lemma 5.11 there
are normal terms t′, u′ ∈ ΛSι such that t′ . a and u′ . b. Hence ¬[s t′u′] ∈ E. By the
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definition of .o, s t
′u′ 7 1. On the other hand, we know s t′u′ . fab since s . f , t′ . a

and u′ . b, contradicting the assumption that fab = 1.

Using these two lemmas, we see that we can easily integrate choice for binary relations at
type ι into Theorem 5.1 (Model Existence Theorem). We omit the rest of the completeness
proof here (Abstract Consistency and Completeness) because it does not reveal anything
new. Instead, we show how we can generalize choice even further by considering relations
of arbitrary arity at arbitrary types, i.e., terms s : σ where σ = τ1 . . . τno for some n ≥ 1
and some types τ1, ..., τn. In this case, we need n choice constants εσ,i : (τ1 . . . τno)τi for
1 ≤ i ≤ n.

Consequently, we have 3n new tableau rules, three for each εσ,i

Tεσ,i
C[εσ,is]

¬[st1 . . . tn] | [s(εσ,1s) . . . (εσ,ns)]

C accessibility context,
t1, . . . , tn ∈ ΛSσ normal

Tmatεσ,i
εσ,is1 . . . sm, ¬εσ,it1 . . . tm
s1 6= t1 | . . . | sm 6= tm

Tdecεσ,i
εσ,is1 . . . sm 6=ι εσ,it1 . . . tm

s1 6= t1 | . . . | sm 6= tm

together with the corresponding evidence conditions (again, we omit the conditions for de-
composition and mating):
ESεn,i If C[εσ,is] is in E and C is an accessibility context, then either

[s(εσ,1s) . . . (εσ,ns)] is in E, or ¬[st1 . . . tn] is in E for all normal S-terms
t1 : τ1, . . . , tn : τn.

It remains to give a possible value Φσ,i for each εσ,i. Moreover, these functions together
should satisfy the following predicate:

Pεσ(f1, . . . , fn) = ∀r ∈ D(τ1 . . . τno). (∃x1 ∈ Dτ1, . . . , xn ∈ Dτn. rx1 . . . xn)→ r(f1r) . . . (fnr)

Again, we extend the notion of relevant terms to each εσ,i and define Φσ,i as follows:

Φσ,if =


some b such that f(Φσ,1f) . . . (Φσ,i−1f) b ci+1 . . . cn = 1 if f εσ,i is empty

and such ci+1 . . . cn exist.

some a such that f εσ,i . a.

We can use these definitions to prove two lemmas similar to Lemma 7.1 and Lemma 7.2
and can finally integrate choice for relations of arity n at types τ1, . . . , τn into the Model
Existence Theorem. For signatures as described in Section 5.3 and types τ1, . . . , τn ∈ {ι, o},
this even holds with respect to standard models. We omit these proofs here since they are
essentially the same as above with some modified indices.

7.2 Restricting Instantiations

While this thesis was still being written, we published parts of it in [3]. We want to give a
short overview of this paper. It is focused on two aspects.
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First, we present a complete tableau calculus for higher-order logic with choice. For
this purpose, we fixed the signature {=σ, ∀σ, εσ,∨,¬,>} where ∀σ can be seen as λx :
σo. ¬∃y. ¬(xy). We mainly follow the completeness proof of this thesis but it was possible
to avoid some of the problems we had here: Since we fixed a single signature, it was not
necessary to define for example signature dependent terms or signature dependent frames.
Moreover, we have ¬ and = in the signature so we did not need to introduce quasiformulas
or models.

The second aspect of the paper concentrates on restricting the instantiations for ε, ∀
and =. We found out that we can restrict the set of possible instantiations to a universe
depending on the type as follows:

• ⊥ and ¬⊥ (acting as >) at type o

• discriminating terms at type ι, or a special logical constant ∗ : ι if there are no
discriminating terms

• terms only containing free variables which were already free on the branch before at
all other types

While the restrictions at type o and type ι caused no problems, the restrictions at functional
types had several impacts. It was necessary to define the compatibility relations and the
possible values relations on the limited universes of terms. To see the consequences of these
changes, consider Lemma 5.4. This lemma implies that x ‖ x for all variables x. Applying
the restriction results in x ‖ x for all x that are free in E.

We use this lemma for example to prove the ∃-part in Lemma 5.20. This proof says “By
E∃ and N2, there is a variable x such that [sx] ∈ E. By Lemma 5.4...”. However, can we
really apply Lemma 5.4? No, we cannot. Depending on the normalization operator, it is
possible that x is normalized away. For example when assuming β-normalization, the normal
form of (λx.y)z is just y, i.e., z is not contained in the normal form anymore. In this case,
we could replace z by an arbitrary term. Unfortunately, it is not possible to show this using
the existing N- or S-properties. We needed to modify and extend them as follows:

• Add N5: V [s] ⊆ Vs, i.e., the normalization operator never introduces additional free
variables

• Modify S4: [θ̂s] = [s] if θx = x for all x ∈ Dom θ ∩ Vs. This means we do not only
consider the empty substitution but all substitutions that behave on a specific term
like the empty substitution.

• Add S5: [θ̂[s]] = [θ̂s], i.e. it does not matter if we normalize before substituting when
normalizing the result again.

We need N5 to prove the modified version of Lemma 5.11 (which now only considers terms
from the restricted universe). S4 and S5 are used to prove the following proposition:
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Proposition 7.3. If x 6∈ V [sx] then [sx] = [st] for any term t.

Proof. Let θ = ∅xt . We compute

[sx]
N1
= [[sx]]

S4
= [θ̂[sx]]

S5
= [θ̂(sx)]

S1,S2
= [(θ̂s)t]

N2
= [[θ̂s]t]

S4
= [[s]t]

N2
= [st]

Another lemma that caused problems was Lemma 5.13. It says that Dσ is nonempty for all
types σ, i.e., that the D we constructed to show the Model Existence Theorem is really a
frame. Recall the proof:

Proof of Lemma 5.13. We know that for any σ there is a variable x : σ. By Lemma 5.4, we
know that x ‖ x. By Lemma 5.12 there is a value a such that x .σ a. By the definition of
D, a ∈ Dσ.

As above, we have the problem that we do not know whether x is really free in E, i.e., it is
possible that ‖ is not defined on x. In such cases, the proof breakes down. As a solution to
this problem, we used the choice operator and showed that εσ(λx : σ. ⊥) is compatible to
itself at all types σ. The claim still follows from Lemma 5.12.

In the context of this thesis, this is a suboptimal solution. It forces the signatures to
contain at least ε at all types and ⊥. It is future work to find a better solution.

7.3 Primitive Recursion and The Natural Numbers

In this section we want to propose tableau rules for a tableau system with support for the
natural numbers as well as primitive recursion. Due to Gödel’s first incompleteness theorem,
we know that there is no chance of getting a corresponding complete proof system. We
explicitly do not claim that these rules suffice to show completeness. Instead, it should be
seen as a collection of thoughts which came up while this thesis was being written.

7.3.1 The Peano Axioms

We fix a type η and assume two new logical constants 0 : η (zero) and S : ηη (the successor
function). Following the ideas by Peano, we use the following three axioms to specify η as
a type corresponding to an infinite set:

∀x : η. 0 6= S(x)
∀x, y : η. Sx = Sy → x = y

∀p : ηo. p0→ ((∀x : η. px→ p(Sx))→ ∀x : η. px)

The first axiom says that zero is different from the successor of any element and the second
axiom expresses the injectivity of the successor function. The third axiom is also known as
the induction axiom. We need to translate these axioms to tableau rules. The first axiom
induces two closing rules:

St = 0 0 = St
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The second axiom is also straightforward:

St = Su

t = u

The next tableau rule is to represent the induction axiom:

[tu]

[t0] | ¬[ty], [t(Sy)]
t : ηo, y fresh

It can be explained as follows: If we know that a property t holds for some u, then either t
holds for 0 or it does not hold for some y but for the successor of y. As we will later see, we
also need a form of decomposition rules for 0, S and variables x : η:

x 6= x 0 6= 0 St 6= Su

t 6= u

We will now show that these rules are indeed enough to prove the validity of the induction
axiom. For this proof, we assume the full signature, including the new logical constants. We
first replace any logical constant that is not supported:

¬∃p. ¬(¬(p0) ∨ ((∃x. ¬(¬(px) ∨ p(Sx))) ∨ ¬(∃x. ¬(px))))

We assume β-reduction as normalization operator and refute the negation:

¬¬∃p. ¬(¬(p0) ∨ ((∃x. ¬(¬(px) ∨ p(Sx))) ∨ ¬(∃x. ¬(px))))
∃p. ¬(¬(p0) ∨ ((∃x. ¬(¬(px) ∨ p(Sx))) ∨ ¬(∃x. ¬(px))))
¬(¬(p0) ∨ ((∃x. ¬(¬(px) ∨ p(Sx))) ∨ ¬(∃x. ¬(px))))

¬¬(p0)
p0

¬((∃x. ¬(¬(px) ∨ p(Sx))) ∨ ¬(∃x. ¬(px)))
¬(∃x. ¬(¬(px) ∨ p(Sx)))

¬¬(∃x. ¬(px))
∃x. ¬(px)
¬(px)

¬(p0)
0 6= 0

¬¬(py)
¬(p(Sy))

py
¬¬(¬(py) ∨ p(Sy))
¬(py) ∨ p(Sy)

¬(py)
y 6= y

p(Sy)
Sy 6= Sy
y 6= y

Note that we used [(λx. ¬px)x] to apply the tableau rule corresponding to the third axiom.
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The next example shows that there is still at least one rule missing. We want to prove the
validity of ∀x : η. (Sx) 6= x. We rewrite the formula and refute its negation:

¬¬∃x. (Sx) = x
∃x. (Sx) = x

(Sx) = x

(S0) = 0
(Sy) 6= y

(S(Sy)) = (Sy)
(Sy) = y

While the left branch is already closed at this point, we are stuck at the right branch.
Although it obviously contains a contradiction, we cannot apply any tableau rule in a useful
way to close this branch. The solution is to introduce confrontation at type η:

s =η t, u 6=η v

s 6= u, t 6= u | s 6= v, t 6= v

Using this rule, we can finally finish the example from above. We present again the full
refutation:

¬¬∃x. (Sx) = x
∃x. (Sx) = x

(Sx) = x

(S0) = 0

(Sy) 6= y
(S(Sy)) = (Sy)

(Sy) = y
(Sy) 6= (Sy)
y 6= (Sy)
y 6= y

y 6= y

To prove completeness using the logical relations method, we would need to define Dη and
.η. As already said, due to Gödel’s first incompleteness theorem, we cannot expect to obtain
completeness if we assume Dη is the set of natural numbers. We leave determining the right
notion of model and corresponding completeness proof as future work. Instead, we turn to
another logical constant.

7.3.2 Primitive Recursion

Primitive recursion or primitive recursive functions are very important in theoretical computer
science as well as in programming languages. Given a logical constant pr : σ(ησσ)ησ at each
type σ, we describe its properties by the following two axioms:

pr a g 0 = a
pr a g (Sx) = g x (pr a g x)
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Similar to ε or if, pr does not necessarily return something of type o. Hence, our idea was
to use again accessibility contexts. The corresponding rule looks as follows:

C[pr s t u]

u = 0, [C[s]] | u = S(x), [C[t x (pr s t x)]]

C accessibility
context, x fresh

The connection to the axioms from above is obvious: Either u is 0 and we simply return s
(embedded into the corresponding accessibility context) or u is the successor of some value
and we go into the recursion case. While this seems to be working at first sight, we are facing
a problem here which also affects all other rules that make use of accessibility contexts: pr
could also return something of type η and so far, we have not defined accessibility contexts
for that type. Consider the following example:

if>0S(0) 6=η 0

This formula is clearly unsatisfiable but we cannot make any progress. This suggests to
extend accessibility contexts to disequations at type η. However, the following example
shows that this is not enough:

if>0S(0) =η S(0)

It seems like we also need to define accessibility contexts for positive equations at type η.
This could also be a hint to extend the definition for quasiformulas using equations as well
as disequations at type η. Again, we leave this question open as future work.
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8 Conclusion

In this thesis, we have presented a modular cut-free tableau calculus with support for if-
then-else, description and choice. Up to this point, there was no known tableau system with
support for these three logical constants.

Using the logical relation frames technique, we have proven that if-then-else is independent
of classical simply typed higher-order logic. In a similar way, we have shown that description
is independent of classical simply typed higher-order logic including if-then-else. Together
with the well-known fact that choice is independent of description, we have motivated why
it is interesting to consider these three logical constants.

The modularity of our tableau system is achieved by introducing signatures. They represent
sets of logical constants. Notions like terms, frames or interpretations all depend on a
signature. Especially, the tableau system itself depends on a signature. Using the notion
of quasiformulas we ensure that we always have a basic tableau system, regardless of the
signature. We designed the remaining tableau rules in such a way that each logical constant
can separately be added to the signature without being forced to add other logical constants.

We have given a general completeness result. This means in particular that we can present
a cut-free and complete tableau calculus for arbitrary signatures. We have also shown how
signatures can be restricted to get completeness with respect to standard models.

In Section 1.3, we claimed that we will extend two tableau systems presented by Brown
and Smolka while maintaining their properties. Using signatures, this can be easily achieved:
In [9], the tableau calculus is cut-free and complete with respect to standard models. The
supported logical constants are ⊥, ¬, ∧, =ι and ∀ι. Since not all of them are available in the
context of this thesis, we replace ∀ι by λx. ¬(∃ι(λy. ¬(xy)) and ∧ by λx, y. ¬(¬x ∨ ¬y).
The resulting signature is {⊥,¬,∨,=ι,∃ι}. We extend this signature to {⊥,>,¬,∨,=ι

,∃ι, ifσ, ιι, ει}. By Theorem 5.27, we have a cut-free tableau system for this signature which
is complete with respect to standard models.

In [8], the tableau system is cut-free and complete (with respect to general models). =σ,
→ and ⊥ are the supported logical constants. We replace → by ∨ and ¬ the obvious way
and extend the resulting signature to {=σ,⊥,∨,¬, ifσ, ισ, εσ}. Again, Theorem 5.27 tells us
that we have a complete and cut-free tableau calculus.

8.1 Future Work

We have already presented many ideas for future work in Chapter 7. Besides these ideas,
we also wanted to develop a tableau system which has only very few logical constants but
is still very powerful. Having as few logical constants as possible is especially interesting for
automated theorem proving because it restricts the set of possible instantiations. Our first
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idea was to introduce a logical constant ifeqσ,τ : σστττ which combines if-then-else and
equality. The corresponding function is defined as follows:

ifeq a b c d := if a = b then c else d

This logical constant is very powerful. Together with > and ⊥, it can be used to express for
example quantifiers but of course also if-then-else and equality. So far, we have no tableau
rules which might yield a reasonable tableau system.

Another idea for future work is to find an abstraction for the interpretations we gave for
ε and ι. It looks like these interpretations have the pattern:

I(c)f =

{
some b such that some nice property holds for b and f c is empty

some a such that f c . a otherwise.

As a consequence, almost all of the proofs based on these interpretations are very similar.
Hence, a suitable abstraction could be a great simplification. Moreover, it might yield
a procedure which allows to easily add other logical constant whose interpretation is not
unique.

The last idea we want to present here is to extend the first tableau system mentioned in
Section 1.3. This system does not support lambda abstracts but it is cut-free, terminating
and complete with respect to standard models. There is strong evidence that we can at least
add ifσ at all types σ, ιι and ει to the corresponding signature while preserving all three
properties and especially termination.
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A Description Implies If-Then-Else

As already mentioned, it is possible to prove the existence of the if-then-else function using
a description operator. The tableau refutation will be very long. We split it up into several
parts and also omit some branches which are not so interesting. We start by proving a trivial
fact: Given variables x and y of type ι, we can always refute the set {x = y, x 6= y}:

x = y
x 6= y

x 6= x
y 6= x

x 6= y
y 6= y

Branches which can be closed this way will be marked by a *. We start the tableau refutation.
The most important part is the instatiation for f in the first step:

λx, y, z. ι(λu. ¬(¬x ∨ y 6= u) ∨ ¬(x ∨ z 6= u))

Note that we split several terms into two lines and mark such situations by a ;:

¬(∃f. ¬(∃x, y. (f>xy 6= x) ∨ (f⊥xy 6= y)))
¬¬(∃x, y. (ι(λu. ¬(¬> ∨ x 6= u) ∨ ¬(> ∨ y 6= u)) 6= x) ;

∨(ι(λu. ¬(¬⊥ ∨ x 6= u) ∨ ¬(⊥ ∨ y 6= u)) 6= y))
∃x, y. (ι(λu. ¬(¬> ∨ x 6= u) ∨ ¬(> ∨ y 6= u)) 6= x) ;
∨(ι(λu. ¬(¬⊥ ∨ x 6= u) ∨ ¬(⊥ ∨ y 6= u)) 6= y)

∃y. (ι(λu. ¬(¬> ∨ x 6= u) ∨ ¬(> ∨ y 6= u)) 6= x) ;
∨(ι(λu. ¬(¬⊥ ∨ x 6= u) ∨ ¬(⊥ ∨ y 6= u)) 6= y)

(ι(λu. ¬(¬> ∨ x 6= u) ∨ ¬(> ∨ y 6= u)) 6= x) ;
∨(ι(λu. ¬(¬⊥ ∨ x 6= u) ∨ ¬(⊥ ∨ y 6= u)) 6= y)

This branch now splits into two branches. We only refute the left branch. The right branch
can be analogously refuted.

ι(λu. ¬(¬> ∨ x 6= u) ∨ ¬(> ∨ y 6= u)) 6= x
(1) (2) (3)
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where (1) is
¬(¬(¬> ∨ x 6= x) ∨ ¬(> ∨ y 6= x)))

¬¬(¬> ∨ x 6= x))
¬¬(> ∨ y 6= x))
¬> ∨ x 6= x
¬> x 6= x

(2) is
x′ 6= y′

¬(¬> ∨ x 6= x′) ∨ ¬(> ∨ y 6= x′)
¬(¬> ∨ x 6= y′) ∨ ¬(> ∨ y 6= y′)
¬(¬> ∨ x 6= x′)

¬¬>
¬(x 6= x′)
x = x′

¬(¬> ∨ x 6= y′)
¬¬>
¬(x 6= y′)
x = y′

x 6= x′

x′ 6= x′

x 6= y′

x′ 6= y′

∗

¬(> ∨ y 6= y′)
¬>

¬(> ∨ y 6= x′)
¬>

(3) is
¬(¬> ∨ x 6= ι(λu.¬(¬> ∨ x 6= u) ∨ ¬(> ∨ y 6= u))) ;
∨¬(> ∨ y 6= ι(λu.¬(¬> ∨ x 6= u) ∨ ¬(> ∨ y 6= u)))

(4) (5)

(4) is
¬(¬> ∨ x 6= ι(λu.¬(¬> ∨ x 6= u) ∨ ¬(> ∨ y 6= u)))

¬¬>
¬(x 6= ι(λu.¬(¬> ∨ x 6= u) ∨ ¬(> ∨ y 6= u)))
x = ι(λu.¬(¬> ∨ x 6= u) ∨ ¬(> ∨ y 6= u))

(6) x 6= x

(5) is
¬(> ∨ y 6= ι(λu.¬(¬(> ∨ x 6= u) ∨ ¬(> ∨ y 6= u)))

¬>
¬(y 6= ι(λu.¬(¬(> ∨ x 6= u) ∨ ¬(> ∨ y 6= u)))
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and (6) is

x 6= ι(λu.¬(¬(> ∨ x 6= u) ∨ ¬(> ∨ y 6= u))
ι(λu.¬(¬> ∨ x 6= u) ∨ ¬(> ∨ y 6= u)) 6= ι(λu.¬(¬> ∨ x 6= u) ∨ ¬(> ∨ y 6= u))

(λu.¬(¬> ∨ x 6= u) ∨ ¬(> ∨ y 6= u)) 6= λu.¬(¬> ∨ x 6= u) ∨ ¬(> ∨ y 6= u)
(¬(¬> ∨ x 6= z) ∨ ¬(> ∨ y 6= z)) 6= (¬(¬> ∨ x 6= z) ∨ ¬(> ∨ y 6= z))
¬(¬> ∨ x 6= z) ∨ ¬(> ∨ y 6= z)
¬(¬(¬> ∨ x 6= z) ∨ ¬(> ∨ y 6= z))

¬¬(¬> ∨ x 6= z)
¬¬(> ∨ y 6= z)
¬> ∨ x 6= z

¬(¬> ∨ x 6= z)
¬¬>
¬(x 6= z)
x = z

¬> x 6= z
∗

¬(> ∨ y 6= z)
¬>

identical to the left branch
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