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There is a simple folklore proof of Gödel’s first incompleteness theorem (G1) by Kleene using
computability theory and undecidability of the halting problem [8]. As opposed to Gödel’s
original proof [6], which directly arithmetizes provability, and Rosser’s improvement on this
result by modifying the provability predicate [17], Kleene’s proof is much easier to spell out in
detail, only relying on basic results in computability theory [9].

Constructive logics are a useful tool for formalizing results in computability theory because
in such logics usually all definable functions are computable, avoiding the need to argue via a
concrete model of computation. They therefore appear to provide an elegant way to formalize
G1 when combined with Kleene’s folklore proof [7]. However, Kleene’s proof only shows a
considerably weaker statement: It only works for sound as opposed to just consistent formal
systems, and does not construct an independent sentence.

Nevertheless, Kleene did find a way to fix these weaknesses using Rosser’s trick [10, 9].
However, this result is much less well-known, as evidenced by [1, 20].

We first outline how to formalize both the folklore and the strengthened versions of
Kleene’s incompleteness proofs for abstract formal systems in the calculus of inductive construc-
tions (CIC) [3, 14]. To do this synthetically, we assume the axiom of Church’s thesis [12, 19, 4],
internalizing the fact that all constructively definable functions are computable. Secondly, we
instantiate these proofs with a concrete presentation of first-order logic using Rosser’s trick.

Most of the results presented here have been mechanized using the Coq proof assistant [18].

Synthetic computability. We are using synthetic computability theory [15, 2, 5] to formalize
our results without directly working with a concrete model of computation. We write X? for the
option type X + 1, containing values °x and a none value. We say that a predicate P : X → P is
enumerable if there is a function f : N → X? such that ∀x. Px ↔ ∃k. fk = °x, and decidable if
there is a function f : X → B such that ∀x. Px ↔ fx = tt. We also work with a type of partial
functions N⇀ N. It can for example be realized using step indexed functions N → N → N?. We
write fx ▷ y if fx halts and evaluates to y.

Weak G1. Our abstract notion of a formal system consists of an enumerable and discrete
type of sentences S, an enumerable provability predicate ⊢ : S → P, and a negation function
¬ : S → S such that ⊢ is consistent: ∀s.¬(⊢ s ∧ ⊢¬s). We call a formal system complete if
∀s.⊢ s ∨ ⊢¬s. Note that in a complete formal system, provability is decidable.

We say that a formal system weakly represents a predicate P : N → P if there is a
representation function RP : N → S such that ∀x. Px ↔ ⊢RP x.

Assume that there is a formal system that is complete and weakly represents the halting
problem H for some model of computation. Now, H is decidable, because λx.⊢ RH x is decidable,
since the formal system is complete. This is the folklore proof of G1, as mechanized in [7].

There are multiple ways in which we strengthen this result, following Kleene:

• Instead of decidability of the halting problem, we derive falsity from completeness.
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• There are unsound (but consistent) formal systems that do not weakly represent H because
the direction from right to left requires a form of soundness. We show incompleteness even
for such formal systems by modifying the representability property required.

• We explicitly construct an independent sentence, that is, we show ∃s.⊬ s ∧ ⊬¬s.
Unfortunately, the above notions from synthetic computability theory are not strong enough

to obtain these results without directly working with a concrete model of computation.

Church’s thesis. We can however internalize the notion that all definable functions are
computable by assuming a formulation of the axiom of Church’s thesis (CT) [12, 19, 4], that is,
in our case, a universal function θ : N → (N⇀ N) such that:

∀f : N⇀ N.∃c.∀xy. θcx ▷ y ↔ fx ▷ y

We can now show that the halting problem H := λc.∃y. θcc ▷ y is undecidable. We can either
assume θ to be abstract or to be an interpreter of a Turing-complete model of computation [11].

Strong G1. For Kleene’s stronger result, consider the following two predicates:

A1 := {x | θxx ▷ 1} A0 := {x | θxx ▷ 0}

A1 and A0 are enumerable and recursively inseparable, that is, there is no decidable predicate
D such that A1 ⊆ D and A0 ⊆ D. We assume that the formal system strongly separates A1

and A0, that is, there is a representation function R : N → S such that:

x ∈ A1 → ⊢Rx x ∈ A0 → ⊢¬Rx

Note that we do not need any form of soundness anymore. Consider a partial function that
checks whether ⊢Rx or ⊢¬Rx by enumerating all provable sentences and outputting 1 or 0
respectively. This function must diverge on some input c, because it would separate A1 and
A0 otherwise, and therefore ⊬Rc and ⊬¬Rc. This input can be constructed explicitly using
diagonalization and an application of CT. This would not be possible had we not assumed CT.

Instantiation. We use the same framework for first-order logic as in the instantiation of the
folklore proof [7] with the theory of Robinson’s Q [16]. We instantiate θ with an interpreter for
µ-recursive functions, as described in [13]. Q weakly represents all predicates enumerable in µ
(and by CT, all synthetically enumerable predicates) using Σ1 formulas [13, 7].

Let φ1, φ0 be Σ1-formulas that weakly represent A1, A0 respectively, that is ∀c. c ∈ Ai ↔
Q ⊢ φi(c). We can concretely assume that φi(x) = ∃k. ψi(x, k), where ψi is Q-decidable, that is
Q ⊢ ψi(x, k) ∨ Q ⊢ ¬ψi(x, k). We now apply Rosser’s trick to φi, that is, we choose:

Φi(x) := ∃k. ψi(x, k) ∧ ∀k′ ≤ k.¬ψ1−i(x, k
′)

Intuitively, Φi can be understood as “There is a proof k of x ∈ Ai, and there is no smaller proof
of x ∈ A1−i”. Now, Φ1 and Φ0 both strongly separate A1 and A0:

x ∈ Ai → Q ⊢ Φi(x) x ∈ A1−i → Q ⊢ ¬Φi(x)

Just as Rosser’s trick allowed weakening the precondition of ω-consistency in Gödel’s original
proof of G1, it allows us to drop the requirement of soundness for the theory we are working with
by relying on another form of representability. All properties required also hold for consistent
extensions of Q, which allows us to show essential incompleteness of Q. It is also possible to
obtain essential undecidability of Q by modifying the abstract results slightly.

This approach can be used to show incompleteness of other formal systems, such as CIC or
other higher-order logics, as long as they weakly represent H and can apply Rosser’s trick.
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