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Abstract
We discuss a definition of Turing reducibility in synthetic computability carried out in
CIC, the type theory underlying Coq. CIC distinguishes between functions (which can be
assumed to all be computable) and total functional relations, allowing for a definition of
Turing reducibility via continuous Turing functionals, based on an idea of Bauer.

Turing reductions A problem P is Turing-reducible to a problem @ if P can be solved
by a machine which has access to an oracle for @ (the notion was introduced in Turing’s
PhD thesis [21], but popularised by Post [16]). In less operational models of computation like
p-recursive functions, Turing reductions can be described via functionals F: (N—N)—(N—N)
where the value F'(«)x is obtained from the potentially non-computable a and the natural num-
ber x solely by the usual computable operations of u-recursive functions. As a consequence, a
p-recursive functional sends a p-recursive function « to a p-recursive function F(a). Kleene [12]
and Davis [5] both proved that any p-recursive functional F is continuous: Whenever F(a)z>,y,
then there is a list L included in the domain of « such that whenever 8 returns the same values
on L as alpha, then also F'(5)x >, y. Formally:

F(a)x>,y — 3L:LN. (Vz € L. Jy. ax>y) AVB. (Vo € L. aw = fx) = F(B)x >,y

To the best of our knowledge Turing reducibility and (continuous) p-recursive functionals
have not been studied in type theory or constructive (reverse) mathematics, or formalised using
machine-checked proofs in a proof assistant. The main hinderance regarding computability
theory is the ubiquitous use of the (informal) Church-Turing thesis, which connects “intuitive
calculability” with a formal notion (computability in a defined model of computation).
Synthetic computability Synthetic mathematics in general offers a solution for situations
where analytic encodings of notions muddle the clear view at the essence of concepts. Introduced
by Richman [18] and popularised by Richman, Bridges, and Bauer [4, 1, 2, 3] in synthetic
computability one assumes an axiom amounting to imposing a universal function for the space
N—N, or, equivalently, for N—N. For instance, one can state the axiom EPF as

30:N—(N—N).Vf:N—=N. Jc. . = f

for a suitable notion of partial functions (e.g. where partial values over X are modelled
by step-indexing as monotonous sequences from N to the option type over X). EPF is closely
related to the well-studied axiom CT (“Church’s thesis” [14, 20]) in constructive mathematics,
which postulates that all functions are p-recursive. CT immediately implies EPF, because 6
can be taken to be the universal function for p-recursive functions, see [8].

In synthetic computability, one can define an undecidable but enumerable problem /C, where
both enumerability and undecidability are formalised solely in terms of functions. Results like
Rice’s theorem [1, 8] and Myhill’s isomorphism theorem [9], are relatively easy to prove in
synthetic computability theory. Synthetic definitions of many-one and truth-table reducibility
can be given by just dropping “computable” from textbook definitions, and we have constructed
synthetic solutions for Post’s problem for many-one and truth-table reducibility [9]. Turing
reducibility is less easily synthesised, due to the notion of an oracle. For instance, under the
presence of EPF, a functional F: (N—N)—(N—N) only acts on computable input, thus it cannot
be seen as a Turing reduction acting on a (certainly non-computable) oracle input.
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Synthetic Turing reducibility We use the intuition behind the mentioned Kleene/Davis
theorem to define synthetic Turing reducibility, based on continuous Turing functionals. We
follow an idea by Bauer [3] and define Turing functionals based on a two-layered approach: They
consist of a (continuous) functional F: (Y ~~B)—(X~~B) mapping functional relations Y ~~ B
to functional relations X ~ B factoring through a (then also continuous) computational core
F': (Y—B)—(X—B) (see also [7] for a more detailed treatment).

Formally a Turing functional F: (Y~B) — (X ~B) ...

1. ...is continuous if: VR: Y ~~B.Va: X.Vb0:B. FRxb — 3L : LY. (Vy € L.3b. Ryb) A

VR':Y~B. (Vy € L.Vb. Ryb — R'yb) — FR'xb
2. ...factors through a computational core F': (Y —=B)—(X—B) if:

VY ~BVYR:Y~B. f computes R — F'f computes FR

where f:Z1—Z5 computes a functional relation R: Z1~~Z5 if Vay. Rzy <> fx>y.

Note that we follow the same intuition as for u-recursive functionals to define continuity
here. A synthetic Turing reduction from a predicate p: X =P to a predicate q: Y —P maps the
characteristic relation of ¢ (Azb. gz <> b = true) to the characteristic relation of p.

The definition makes crucial use of the fact that functional relations are completely distinct
from functions since unique choice is not provable in CIC.

Our definition of Turing reducibility is work-in-progress: We were able to prove various
results regarding Turing reducibility with machine-checked proofs in Coq, see below.

Bauer’s definition of Turing reducibility Our definition is based on (computable) func-
tional relations X ~~B, whereas Bauer’s definition [3] is based on disjoint pairs of (enumerable)
predicates X —P and using an order-theoretic definition of continuity. Proving our definition
of Turing reducibility equivalent without considering continuity is straightforward [7, §9.6].
We also have an equivalence proof w.r.t. continuity now for a variant of Bauer’s definition of
continuity, following well-known ideas explained for instance in Rogers’ book [19, I1.3.2].
Machine-checked results Turing reducibility is reflexive, transitive, and transports un-
decidability. Every truth-table reduction gives rise to a Turing reduction. When a Turing
reduction is total for all total inputs and the L in compactness is computable, it is in fact a
truth-table reduction (a result Rogers attributes to Nerode [19, Thm. XIX]). Lastly, the hyper-
simple deficiency predicate of K is Turing reduction complete, showing that Turing reducibility
is strictly more general than truth-table reducibility. All results are explained in [7, §10].
Open questions However, at least three more results for Turing reducibility are needed to
have confidence that our synthetic rendering is correct. The Kleene-Post theorem [13], stating
that there are incomparable Turing-reducibility degrees, Post’s theorem [17], connecting Turing
reducibility via the Turing jump to the arithmetical hierarchy, and the Friedberg-Muchnik the-
orem [10, 15], settling Post’s problem by proving that there exists an enumerable, undecidable,
but Turing-reducibility incomplete predicate. Central for all three results is, in contrast to the
results we have already proved, an enumerator of cores of Turing functional.

Towards a universal core We require a function ¢: N—((N—N)—N—N) which enumerates
at least all possible cores of Turing functionals. Certain variants of such a function are known
to be impossible: A computable modulus of continuity applying to itself would be inconsistent
in type theory [6]. We are attacking the problem from two directions: First, we are trying to
construct ¢ from 6 either directly or by enriching the definition of Turing reductions with more
computational requirements for cores, e.g. by asking for a computable modulus of continuity for
F’, which possibly has to be continuous itself. Secondly, in a concurrently submitted abstract
we are describing our work-in-progress proofs of synthetic variants of the Kleene-Post and Post’s
theorem, identifying sufficient properties of a universal function ¢ [11].
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