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Abstract
Markov’s principle (MP) is an axiom in some varieties of constructive mathematics,

stating that Σ0
1 propositions (i.e. existential quantification over a decidable predicate on N)

are stable under double negation. However, there are various non-equivalent definitions of
decidable predicates and thus Σ0

1 in constructive foundations, leading to non-equivalent
Markov’s principles. This fact is often overlooked and leads to confusion: At the time of
writing, both Wikipedia and nlab claim propositions to be equivalent to MP, which are
however only respectively equivalent to two non-equivalent forms of MP.

We give three variants of MP in constructive type theory, along with respective equiva-
lence proofs to different formulations of Post’s theorem (“Σ0

1-predicates with complement in
Σ0

1 are decidable”), stability of termination of computations, the statement that an extended
natural number is finite if it is not infinite, and to completeness of natural deduction w.r.t.
Tarski semantics over the (∀,→,⊥)-fragment of classical first-order logic for Σ0

1-theories.
The first definition (MPP) uses a purely logical definition of Σ0

1 for predicates N→ P, while
the second one (MPB) relies on type-theoretic functions N→ B, and the third one (MPPR)
on a model of computation.

We conclude with the – to the best of our knowledge – first proof that MPB is not
equivalent to MPPR using a model via Cohen and Rahli’s TT□

C , and pose the open question
how to separate MPP from MPB – where the model would have to invalidate unique choice.

Definitions We work in constructive type theory with a universe of propositions P, e.g. in the
calculus of inductive constructions (CIC). We define three variants of Markov’s principle:

MPP ∶= ∀A ∶ N→ P. (∀n. An ∨ ¬An)→ ¬¬(∃n. An)→ (∃n. An)
MPB ∶= ∀f ∶ N→ B. ¬¬(∃n. fn = true)→ (∃n. fn = true)
MPPR ∶= ∀f ∶ N→ B. primitive-recursive f → ¬¬(∃n. fn = true)→ (∃n. fn = true)
We write MPPR following Troelstra and van Dalen [12]. Due to the Kleene normal form

theorem [7], any principle replacing primitive recursiveness with computability in any Turing
complete model is equivalent, e.g. called MPL in [4] after the weak call-by-value λ-calculus L [6].

Note that MPP implies MPB, which in turn implies MPPR. The first implication is an
equivalence given the axiom of (type-theoretic) unique choice, i.e. if ∀R ∶ N → B → P.
(∀n ∶ N.∃!b ∶ B.Rnb)→ ∃f ∶ N→ B.∀n. Rn(fn) holds, because then any such A ∶ N→ P gives
rise to a decider of type N→ B. The second implication is an equivalence under CT (“Church’s
thesis” [9]), i.e. if the proposition ∀f ∶ N→ B. computable f holds. MPP is consistent because it
is a consequence of the law of excluded middle (LEM). MPB is proved independent from type
theory by Mannaa and Coquand [2] as well as Pedrót and Tabareau [10], and MPL by Forster,
Kirst, and Wehr [5]. In a (weak) type theory such as CIC, both the unique choice axiom from
above and CT are independent. In many constructive foundations (CZF, IZF, HoTT, or in
MLTT with ∃ as Σ), unique choice is a theorem, but CT remains independent. Since in all these
foundations ∃n ∶ N. fn = true implies Σn ∶ N. fn = true, stating MP with Σ or ∃ is equivalent.
On Σ0

1 Predicates A predicate p ∶ X → P is stable under double negation if ∀x. ¬¬px→ px,
and is Σ0

1 if there exists a decidable predicate A ∶ X → N → P such that ∀x. px↔ ∃n. Axn.
Now if decidable predicates A ∶ X → N→ P only need to fulfill ∀xn. Axn∨¬Axn, then stability
of Σ0

1 predicates is equivalent to MPP. If however decidable predicates are associated with a
function of type X → N→ B, stability of Σ0

1 predicates is equivalent to MPB. And if decidable
predicates are associated with a computable function of that type, it is equivalent to MPPR.
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Post’s Theorem (PT) [11] states that Σ0
1 predicates with complement in Σ0

1 are decidable.
With decidable predicates defined using type-theoretic functions, PT is equivalent to MPB [12],
formalised in Coq by Forster, Kirst, and Smolka [3]. With decidable predicates defined using
computable functions, PT is equivalent to MPPR, formalised in Coq by Forster and Smolka [6].
With the logical definition, PT is equivalent to MPP, a proof we contribute with this abstract.
Termination of Computation It is folklore that “a computation halts if it does not run
forever” is equivalent to MP. Taking a computation as a Σ0

1 relation N→N→P, the three respective
definitions of Σ0

1 indeed render this equivalent to the respective version of MP. In particular,
the statement “a Turing machine halts if it does not run forever” is equivalent to MPPR.
Extended Natural Numbers One can model the extension of N with a point of infinity as
monotonous infinite sequences of truth values bi (if bi then bj holds for j ≥ i). MP is equivalent
to “an extended natural number which is not infinite is finite”, precisely to MPP if sequences are
defined as predicates N→ P, and to MPB if defined as functions N→ B. Defining sequences as
computable functions N→ B is unusual, but would be equivalent to MPPR.
First-order Completeness It was already known to Gödel that completeness of natural
deduction w.r.t. Tarski-semantics over the (∀,→,⊥)-fragment of classical first-order logic is
equivalent to MPPR [8]. The result can be extended to Σ0

1-theories, but again the definition of
Σ0

1 is crucial. The equivalences to MPB and MPPR are proved in Coq by Forster, Kirst, and
Wehr [4], we contribute the respective (Coq) proof for MPP.
TT□

C is a general framework for type theories modeled through an abstract modality □ and
parameterised by a type of time-progressing choice operators C due to Cohen and Rahli [1],
which is formalised in Agda. Time-progression here means that TT□C ’s computation system
includes stateful computations that can evolve non-deterministically over time (captured by
a poset W of worlds), and that can change the state of the world. Instantiating □ and C can
either validate or invalidate axioms such as MP.
Separation of MPB and MPPR We prove that instantiating C with choice sequences and □
with a Beth modality as in [1] yields a model validating constructively ¬MPB, and, assuming
LEM in the meta-theory, MPPR. To do so, we translate the types N and B to the types Nat and
Bool of possibly effectful terms with two properties: (1) if they compute to a value in a world,
they compute to the same value in all extensions of that world; and (2) whenever they compute
to a value, they leave the world unchanged. Such effectful terms do not satisfy MPB because f
can be undetermined for all inputs and thus satisfy ¬¬(∃n. fn = true) but not ∃n. fn = true.
However, primitive recursive functions can be encoded as natural numbers, and thus behave like
a pure, effect-free function. Concretely, we have that

∀(w ∶W).w /⊨ Πf ∶Nat→ Bool.(¬¬↓Σn∶Nat.f n = true)→ ↓Σn∶Nat.f n = true

Here, the ↓ operation discards the computational content of the dependent pair type Σ. Fur-
thermore, with LEM in the meta-theory, MP for pure (i.e. effect-free) functions is valid in all
models in [1] (see mpp.lagda), with Πp letting f range over pure, effect-free terms only:

∀(w ∶W).w ⊨ Πpf ∶Nat→ Bool.(¬¬↓Σn∶Nat.f n = true)→ ↓Σn∶Nat.f n = true

To show that this implies MPPR, note that MPPR can be equivalently stated as

∀(w ∶W).w ⊨ Πm∶Nat.(¬¬↓Σn∶Nat.eval m n = true)→ ↓Σn∶Nat.eval m n = true

where eval ∶ N→ N→ B is a pure function which interprets its first argument as the Gödelisation
of a primitive recursive function f , and for any primitive recursive f there is m with ∀n.fn =
eval m n. Now whenever an effectful m evaluates to c in a world w, we have that eval c is a pure
function for all w ′

⊒ w, making the pure form of MP applicable (see pure2.lagda).

2

https://github.com/uds-psl/coq-synthetic-computability/blob/180ccbf27fa8f6b1cfd0976d1a4aaec98afb006b/CRM/MP_prop.v
https://github.com/uds-psl/coq-library-fol/blob/0fe6a74eebe8b567d8196e0f62608ac3c55753f3/theories/Completeness/TarskiCompleteness.v#L338
https://github.com/vrahli/opentt/blob/master/mp.lagda
https://github.com/vrahli/opentt/blob/master/not_mp.lagda
https://github.com/vrahli/opentt/blob/master/not_mp.lagda
https://github.com/vrahli/opentt/blob/master/mpp.lagda
https://github.com/vrahli/opentt/blob/master/pure2.lagda
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