Intersection Type Systems
Corresponding to Nominal Automata
UdS Qualifying Exam / MFoCS Dissertation

Dominik Kirst
Supervised by Steven Ramsay and Luke Ong

Lady Margaret Hall
G University of Oxford

November 23, 2016

1/25



Outline

Motivation

Intersection Type Systems
Nominal Automata
Example Correspondences

Conclusion

2/25



Motivation

Outline

Motivation

3/25



Motivation

Example

Consider the word w := abca over the alphabet X = {a, b, c, d}.

4/25



Motivation

Example

Consider the word w := abca over the alphabet X = {a, b, c, d}.

Let A be an NFA over ¥ that accepts the language:

L ={w € X* | w contains two a}

4/25



Motivation

Example

Consider the word w := abca over the alphabet X = {a, b, c, d}.

Let A be an NFA over ¥ that accepts the language:
L ={w € X* | w contains two a}

Then we clearly have w € L( A, q;) for the initial state g, of A.

4/25



Motivation

Example

Consider the word w := abca over the alphabet X = {a, b, c, d}.

Let A be an NFA over ¥ that accepts the language:
L ={w € X* | w contains two a}

Then we clearly have w € L( A, q;) for the initial state g, of A.

If we translate A into a type system, we can have more:

4/25



Motivation

Example

Consider the word w := abca over the alphabet X = {a, b, c, d}.

Let A be an NFA over ¥ that accepts the language:
L ={w € X* | w contains two a}

Then we clearly have w € L( A, q;) for the initial state g, of A.

If we translate A into a type system, we can have more:

e - w: g; with w interpreted as term of the system language

4/25



Motivation

Example

Consider the word w := abca over the alphabet X = {a, b, c, d}.
Let A be an NFA over ¥ that accepts the language:
L ={w € X* | w contains two a}

Then we clearly have w € L( A, q;) for the initial state g, of A.

If we translate A into a type system, we can have more:
e - w: g; with w interpreted as term of the system language

e - (Ax.xbex)a : gy for a simple program computing w

4/25



Motivation

Example

Consider the word w := abca over the alphabet X = {a, b, c, d}.
Let A be an NFA over ¥ that accepts the language:
L ={w € X* | w contains two a}

Then we clearly have w € L( A, q;) for the initial state g, of A.

If we translate A into a type system, we can have more:
e - w: g; with w interpreted as term of the system language
e - (Ax.xbex)a : gy for a simple program computing w

e = K((Ax.xbecx)a)2 : q; for a more complex program

4/25



Motivation

Example

Consider the word w := abca over the alphabet X = {a, b, c, d}.
Let A be an NFA over ¥ that accepts the language:
L ={w € X* | w contains two a}

Then we clearly have w € L( A, q;) for the initial state g, of A.

If we translate A into a type system, we can have more:

e - w: g; with w interpreted as term of the system language

F (Ax.xbcx)a : g for a simple program computing w

F K((Ax.xbcx)a)S2 : q; for a more complex program
Theorem: VI,s,q. Tks:q <= 3dns{nAneL(Aq)

4/25



Motivation

Motivation

5/25



Motivation

Motivation

...for type systems corresponding to automata:
e First appearance in higher-order model checking
e Acceptance reduces to type checking, allowing new algorithms

e Generalised acceptance of programs evaluating to words/trees

5/25



Motivation

Motivation

...for type systems corresponding to automata:
e First appearance in higher-order model checking
e Acceptance reduces to type checking, allowing new algorithms
e Generalised acceptance of programs evaluating to words/trees

— Contribute a self-contained presentation

5/25



Motivation

Motivation

...for type systems corresponding to automata:
e First appearance in higher-order model checking
e Acceptance reduces to type checking, allowing new algorithms
e Generalised acceptance of programs evaluating to words/trees

— Contribute a self-contained presentation

...for nominal automata?:
e Well-behaved automata over infinite alphabets

e Equivariant properties independent of concrete names

5/25



Motivation

Motivation

...for type systems corresponding to automata:
e First appearance in higher-order model checking
e Acceptance reduces to type checking, allowing new algorithms
e Generalised acceptance of programs evaluating to words/trees

— Contribute a self-contained presentation

...for nominal automata?:
e Well-behaved automata over infinite alphabets
e Equivariant properties independent of concrete names

= Contribute new instances for new automaton models

5/25



Intersection Type Systems

Outline

Intersection Type Systems

6/25



Intersection Type Systems

Lambda Calculus®

Minimal (functional) programming language defined by...

7/25



Intersection Type Systems

Lambda Calculus®

Minimal (functional) programming language defined by...

e Term language: s,t ::=x € Var | Ax.s | st

7/25



Intersection Type Systems

Lambda Calculus®

Minimal (functional) programming language defined by...
e Term language: s,t ::=x € Var | Ax.s | st

e Reduction: (Ax.s)t — s[t/x] + syntactic closure

7/25



Intersection Type Systems

Lambda Calculus®

Minimal (functional) programming language defined by...
e Term language: s,t ::=x € Var | Ax.s | st

e Reduction: (Ax.s)t — s[t/x] + syntactic closure

(Ax.x)y —

7/25



Intersection Type Systems

Lambda Calculus®

Minimal (functional) programming language defined by...
e Term language: s,t ::=x € Var | Ax.s | st

e Reduction: (Ax.s)t — s[t/x] + syntactic closure

(Ax.x)y —y

7/25



Intersection Type Systems

Lambda Calculus®

Minimal (functional) programming language defined by...
e Term language: s,t ::=x € Var | Ax.s | st

e Reduction: (Ax.s)t — s[t/x] + syntactic closure

(Ax.x)y — y terminates, we write (Ax.x)y { y and call y normal

7/25



Intersection Type Systems

Lambda Calculus®

Minimal (functional) programming language defined by...
e Term language: s,t ::=x € Var | Ax.s | st

e Reduction: (Ax.s)t — s[t/x] + syntactic closure

(Ax.x)y — y terminates, we write (Ax.x)y { y and call y normal
(Ax.xx)(Ax.xx) —

7/25



Intersection Type Systems

Lambda Calculus®

Minimal (functional) programming language defined by...
e Term language: s,t ::=x € Var | Ax.s | st

e Reduction: (Ax.s)t — s[t/x] + syntactic closure

(Ax.x)y — y terminates, we write (Ax.x)y { y and call y normal
(Axxx)(Ax.xx) = (Axxx)(Ax.xx) — ...

7/25



Intersection Type Systems

Lambda Calculus®

Minimal (functional) programming language defined by...
e Term language: s,t ::=x € Var | Ax.s | st

e Reduction: (Ax.s)t — s[t/x] + syntactic closure

(Ax.x)y — y terminates, we write (Ax.x)y { y and call y normal
(Axxx)(Ax.xx) = (Ax.xx)(Ax.xx) — ... diverges

7/25



Intersection Type Systems

Lambda Calculus®

Minimal (functional) programming language defined by...
e Term language: s,t ::=x € Var | Ax.s | st

e Reduction: (Ax.s)t — s[t/x] + syntactic closure

(Ax.x)y — y terminates, we write (Ax.x)y { y and call y normal
(Axxx)(Ax.xx) = (Ax.xx)(Ax.xx) — ... diverges

Can encode booleans, natural numbers and recursion, hence:

7/25



Intersection Type Systems

Lambda Calculus®

Minimal (functional) programming language defined by...
e Term language: s,t ::=x € Var | Ax.s | st

e Reduction: (Ax.s)t — s[t/x] + syntactic closure

(Ax.x)y — y terminates, we write (Ax.x)y { y and call y normal
(Axxx)(Ax.xx) = (Ax.xx)(Ax.xx) — ... diverges

Can encode booleans, natural numbers and recursion, hence:

Theorem

The (untyped) lambda calculus is Turing complete.

7/25



Intersection Type Systems

Simply Typed Lambda Calculus*

Introduce typing judgements ' F s : A by...

8/25



Intersection Type Systems

Simply Typed Lambda Calculus*

Introduce typing judgements ' F s : A by...
e Type language: A,B::=ac TVar|A— B

8/25



Intersection Type Systems

Simply Typed Lambda Calculus*

Introduce typing judgements ' F s : A by...
e Type language: A,B::=ac TVar|A— B
e Typing rules:

rx)=A Mx:AFs:B [Fs:A—>B THt:A
N-x:A FXxs:A— B [Fst: B

8/25



Intersection Type Systems

Simply Typed Lambda Calculus*

Introduce typing judgements ' F s : A by...
e Type language: A,B::=ac TVar|A— B
e Typing rules:

rx)=A Mx:AFs:B [Fs:A—>B THt:A
N-x:A FXxs:A— B [Fst: B

...implying the following properties:

8/25



Intersection Type Systems

Simply Typed Lambda Calculus*

Introduce typing judgements ' F s : A by...
e Type language: A,B::=ac TVar|A— B
e Typing rules:

rx)=A Mx:AFs:B [Fs:A—>B THt:A
N-x:A FXxs:A— B [Fst: B

...implying the following properties:
e Subject Reduction: s +t—=TFs:A—TFt:A

8/25



Intersection Type Systems

Simply Typed Lambda Calculus*

Introduce typing judgements ' F s : A by...
e Type language: A,B::=ac TVar|A— B
e Typing rules:

rx)=A Mx:AFs:B [Fs:A—>B THt:A
N-x:A FXxs:A— B [Fst: B

...implying the following properties:
e Subject Reduction: s +t—=TFs:A—TFt:A

e Strong Normalisation: I s : A= all reductions terminate

8/25



Intersection Type Systems

Simply Typed Lambda Calculus*

Introduce typing judgements ' F s : A by...
e Type language: A,B::=ac TVar|A— B
e Typing rules:

rx)=A Mx:AFs:B [Fs:A—>B THt:A
N-x:A FXxs:A— B [Fst: B

...implying the following properties:
e Subject Reduction: s +t—=TFs:A—TFt:A
e Strong Normalisation: I s : A= all reductions terminate

e Decidability of type checking, typability and type inhabitance

8/25



Intersection Type Systems

Simply Typed Lambda Calculus*

Introduce typing judgements ' F s : A by...
e Type language: A,B::=ac TVar|A— B
e Typing rules:

rx)=A Mx:AFs:B [Fs:A—>B THt:A
N-x:A FXxs:A— B [Fst: B

...implying the following properties:
e Subject Reduction: s +t—=TFs:A—TFt:A
e Strong Normalisation: I s : A= all reductions terminate

e Decidability of type checking, typability and type inhabitance

However, some normal forms like Ax.xx are untybable...

8/25



Intersection Type Systems

Intersection Types®

Introduce (finite) type intersections A A B with rules:
fr-s:A TEs:B TEs:NA Trks:(NA)—=B TEtiA
Nl-s:AAB MN=s: A MN-st:B

9/25



Intersection Type Systems

Intersection Types®

Introduce (finite) type intersections A A B with rules:
fr-s:A TEs:B TEs:NA Trks:(NA)—=B TEtiA
Nl-s:AAB MN=s: A MN-st:B

Then the term Ax.xx can be assigned a type:
x: A0 —=AFx:AN0— A

[x: A0 — AlFxx: A
Faxxx: (A0 —A)— A

9/25



Intersection Type Systems

Intersection Types®

Introduce (finite) type intersections A A B with rules:
fr-s:A TEs:B TEs:NA Trks:(NA)—=B TEtiA
Nl-s:AAB MN=s: A MN-st:B

Then the term Ax.xx can be assigned a type:
x: A0 —=AFx:AN0— A

[x: A0 — AlFxx: A
Faxxx: (A0 —A)— A

In general, the intersection type system satisfies:

9/25



Intersection Type Systems

Intersection Types®

Introduce (finite) type intersections A A B with rules:
fr-s:A TEs:B TEs:NA Trks:(NA)—=B TEtiA
Nl-s:AAB MN=s: A MN-st:B

Then the term Ax.xx can be assigned a type:
x: A0 —=AFx:AN0— A

[x: A0 — AlFxx: A
Faxxx: (A0 —A)— A

In general, the intersection type system satisfies:
e Subject Expansion: s v t=TFt: A= TFs:A

9/25



Intersection Type Systems

Intersection Types®

Introduce (finite) type intersections A A B with rules:
fr-s:A TEs:B TEs:NA Trks:(NA)—=B TEtiA
Nl-s:AAB MN=s: A MN-st:B

Then the term Ax.xx can be assigned a type:
x: A0 —=AFx:AN0— A

[x: A0 — AlFxx: A
Faxxx: (A0 —A)— A

In general, the intersection type system satisfies:
e Subject Expansion: s v t=TFt: A= TFs:A
e (Weak) Normalisation: T+s: A= 3n.s | n

9/25



Intersection Type Systems

Intersection Types®

Introduce (finite) type intersections A A B with rules:
fr-s:A TEs:B TEs:NA Trks:(NA)—=B TEtiA
Nl-s:AAB MN=s: A MN-st:B

Then the term Ax.xx can be assigned a type:
x: A0 —=AFx:AN0— A

[x: A0 — AlFxx: A
Faxxx: (A0 —A)— A

In general, the intersection type system satisfies:
e Subject Expansion: s v t=TFt: A= TFs:A
e (Weak) Normalisation: T+s: A= 3n.s | n
e Typability: s n= 3 ATFs:A

9/25



Intersection Type Systems

Intersection Types®

Introduce (finite) type intersections A A B with rules:
fr-s:A TEs:B TEs:NA Trks:(NA)—=B TEtiA
Nl-s:AAB MN=s: A MN-st:B

Then the term Ax.xx can be assigned a type:
x: A0 —=AFx:AN0— A

[x: A0 — AlFxx: A
Faxxx: (A0 —A)— A

In general, the intersection type system satisfies:
e Subject Expansion: s v t=TFt: A= TFs:A
e (Weak) Normalisation: T+s: A= 3n.s | n
e Typability: s n= 3 ATFs:A

However, general type checking and typability become

undecidable...
9/25



Nominal Automata

Outline

Nominal Automata

10/25



Nominal Automata

Nominal Sets®

11/25



Nominal Automata

Nominal Sets®

Let A be a countable set of atomic names.
Then consider sets X with actions - : Perm(A) x X — X such that

m- (' x)=(mon') x id-x=x

11/25



Nominal Automata

Nominal Sets®

Let A be a countable set of atomic names.
Then consider sets X with actions - : Perm(A) x X — X such that

m- (' x)=(mon') x id-x=x

We define the following:

11/25



Nominal Automata

Nominal Sets®

Let A be a countable set of atomic names.
Then consider sets X with actions - : Perm(A) x X — X such that

m- (' x)=(mon') x id-x=x

We define the following:

e x € X has finite support if it is fixed by a finite A C A,
that is, - x = x whenever m|a = ida

11/25



Nominal Automata

Nominal Sets®

Let A be a countable set of atomic names.
Then consider sets X with actions - : Perm(A) x X — X such that

m- (' x)=(mon') x id-x=x

We define the following:

e x € X has finite support if it is fixed by a finite A C A,
that is, - x = x whenever m|a = ida

e X is nominal if every x € X is finitely supported

11/25



Nominal Automata

Nominal Sets®

Let A be a countable set of atomic names.
Then consider sets X with actions - : Perm(A) x X — X such that

m- (' x)=(mon') x id-x=x

We define the following:

e x € X has finite support if it is fixed by a finite A C A,
that is, - x = x whenever m|a = ida

e X is nominal if every x € X is finitely supported

e X is orbit-finite if there exist only finitely many Perm(A) - x

11/25



Nominal Automata

Nominal Sets®

Let A be a countable set of atomic names.
Then consider sets X with actions - : Perm(A) x X — X such that

m- (' x)=(mon') x id-x=x

We define the following:

e x € X has finite support if it is fixed by a finite A C A,
that is, - x = x whenever m|a = ida

e X is nominal if every x € X is finitely supported
e X is orbit-finite if there exist only finitely many Perm(A) - x
e Subsets Y C X are equivariant if Perm(A) - Y =Y

11/25



Nominal Automata

Nominal Sets®

Let A be a countable set of atomic names.
Then consider sets X with actions - : Perm(A) x X — X such that

m- (' x)=(mon') x id-x=x

We define the following:

e x € X has finite support if it is fixed by a finite A C A,
that is, - x = x whenever m|a = ida

e X is nominal if every x € X is finitely supported
e X is orbit-finite if there exist only finitely many Perm(A) - x
e Subsets Y C X are equivariant if Perm(A) - Y =Y

Examples: A itself, (finite) syntax over A, singleton sets etc.

11/25



Nominal Automata

Finite Automata

A finite automaton A consists of:
e Y, a finite alphabet

LN,
e @, a finite set of states A@v®\c
b
b

e | C @, a finite subset of initial states
a

° C
F C @, a finite subset of final states @v
d

e ) C @ x Ax Q, a finite transition relation

12/25



Nominal Automata

Finite Automata

A finite automaton A consists of:
e Y, a finite alphabet

LN,
e @, a finite set of states A@v@\c
b
b

e | C @, a finite subset of initial states
a

e FC finite subset of final stat ‘K f\
C @, a finite subset of final states @v
d

e ) C @ x Ax Q, a finite transition relation

We write:
e qg3qgforack, q,¢d cQand(qg,aq)ecs
e g g for w € X* and the reflexive-transitive closure of &

o we L(A)forqg 2 g withgeland g €F

12/25



Nominal Automata

Finite Automata

A finite automaton A consists of:
e Y, a finite alphabet

LN,
e @, a finite set of states A@v@\c
b
b

e | C @, a finite subset of initial states
a

e FC finite subset of final stat ‘K f\
C @, a finite subset of final states @v
d

e ) C @ x Ax Q, a finite transition relation

We write:
e qg3qgforack, q,¢d cQand(qg,aq)ecs
e g g for w € X* and the reflexive-transitive closure of &

o we L(A)forqg 2 g withgeland g €F

Example language: all words that contain at least two a € &

12/25



Nominal Automata

Nominal Automata?

A nominal automaton A over names A consists of:

13/25



Nominal Automata

Nominal Automata?

A nominal automaton A over names A consists of:

e Y, an orbit-finite nominal alphabet

Q, an orbit-finite nominal set of states

| C Q, an equivariant subset of initial states

F C Q, an equivariant subset of final states

0 C @ x Ax Q, an equivariant transition relation

13/25



Nominal Automata

Nominal Automata?

A nominal automaton A over names A consists of:
e Y, an orbit-finite nominal alphabet
e @, an orbit-finite nominal set of states
e | C Q, an equivariant subset of initial states
e [ C @, an equivariant subset of final states

e 0 C Q@ x Ax @, an equivariant transition relation

We write:
o g3 q for(q,a,¢)€d
e g = g for w € * and the reflexive-transitive closure of &

o we L(A)forqg X g withgeland g €F

13/25



Nominal Automata

Nominal Automata?

A nominal automaton A over names A consists of:

e Y, an orbit-finite nominal alphabet

Q, an orbit-finite nominal set of states
e | C Q, an equivariant subset of initial states
e [ C @, an equivariant subset of final states

e 0 C Q@ x Ax @, an equivariant transition relation

We write:
o g3 q for(q,a,¢)€d
e g = g for w € * and the reflexive-transitive closure of &

o we L(A)forqg X g withgeland g €F

Example language: all words containing their initial letter twice

13/25



Nominal Automata

v-Tree Automata

Work building on Pitts/Stark (v-calculus”) and Stirling (NDTAS).

14 /25



Nominal Automata

v-Tree Automata

Work building on Pitts/Stark (v-calculus”) and Stirling (NDTAS).
Consider a ranked finite alphabet ¥ C A and v-trees constructed by

n = agny...ng | vag.n

14 /25



Nominal Automata

v-Tree Automata

Work building on Pitts/Stark (v-calculus”) and Stirling (NDTAS).
Consider a ranked finite alphabet ¥ C A and v-trees constructed by

n = agny...ng | vag.n

Think of v as binding new names, so v-trees denote sets of A-trees.

14 /25



Nominal Automata

v-Tree Automata

Work building on Pitts/Stark (v-calculus”) and Stirling (NDTAS).
Consider a ranked finite alphabet ¥ C A and v-trees constructed by

n = agny...ng | vag.n

Think of v as binding new names, so v-trees denote sets of A-trees.

va

14 /25



Nominal Automata

v-Tree Automata

Work building on Pitts/Stark (v-calculus”) and Stirling (NDTAS).
Consider a ranked finite alphabet ¥ C A and v-trees constructed by

n = agny...ng | vag.n

Think of v as binding new names, so v-trees denote sets of A-trees.

va v-tree automaton (NTA) A consists of
‘ finite sets Q and L of states and labels
d together with transition rules of the form:
/ \ (9;ak) = (q1,- - qk)
c vb
"‘ ((q7l)aak):>(CI17~-CIk)
b: (q7 Vak) = (q/7 /)

14 /25



Nominal Automata

v-Tree Automata

Work building on Pitts/Stark (v-calculus”) and Stirling (NDTAS).
Consider a ranked finite alphabet ¥ C A and v-trees constructed by

n:i=agni...ng | vag.n

Think of v as binding new names, so v-trees denote sets of A-trees.

va an v-tree automaton (NTA) A consists of
‘_: finite sets Q and L of states and labels
a together with transition rules of the form:
/N (¢31) = (a1, .- %)
c vb
‘P ((qvl)vak)i(qla"'qk)
y (q,vaK) = (q,)

14 /25



Nominal Automata

v-Tree Automata

Work building on Pitts/Stark (v-calculus”) and Stirling (NDTAS).
Consider a ranked finite alphabet ¥ C A and v-trees constructed by

n:i=agni...ng | vag.n

Think of v as binding new names, so v-trees denote sets of A-trees.

va an v-tree automaton (NTA) A consists of
‘_: finite sets Q and L of states and labels
a @ together with transition rules of the form:
/N (¢31) = (a1, .- %)
c vb
‘P ((qvl)vak)i(qla"'qk)
y (q,vaK) = (q,)

14 /25



Nominal Automata

v-Tree Automata

Work building on Pitts/Stark (v-calculus”) and Stirling (NDTA?).
Consider a ranked finite alphabet ¥ C A and v-trees constructed by

n = agni...Nng | vag.n

Think of v as binding new names, so v-trees denote sets of A-trees.

va (q1,h) v-tree automaton (NTA) A consists of
‘ finite sets Q and L of states and labels
a o together with transition rules of the form:
/ AN (g,2k) = (q1,- - - k)
9 vb
‘r ((qvl)vak):(qla'”qk)
b (q.va) = (q'.1)

14 /25



Nominal Automata

v-Tree Automata

Work building on Pitts/Stark (v-calculus”) and Stirling (NDTA?).
Consider a ranked finite alphabet ¥ C A and v-trees constructed by

n = agni...Nng | vag.n
Think of v as binding new names, so v-trees denote sets of A-trees.

va (g1, h) v-tree automaton (NTA) A consists of
‘ : finite sets @ and L of states and labels

a @ together with transition rules of the form:
/ N\ (9;aK) = (q1,-- - k)
©Eovh @ (1), 2) = (a1, )
b (g:va) = (d',1)

14 /25



Nominal Automata

v-Tree Automata

Work building on Pitts/Stark (v-calculus’) and Stirling (NDTA?).
Consider a ranked finite alphabet ¥ C A and v-trees constructed by

n:i=agni...ng | vag.n

Think of v as binding new names, so v-trees denote sets of A-trees.

va (g1, h) v-tree automaton (NTA) A consists of
‘ : finite sets @ and L of states and labels

a @ together with transition rules of the form:
/q \b( b) | (g,a«) = (g1, .- q«)
c @ .
V‘P, qa, b ((g;1),ak) = (g1, ---qk)
b G (g,vak) = (d',1)

14 /25



v-Tree Automata

Nominal Automata

Work building on Pitts/Stark (v-calculus’) and Stirling (NDTA?).
Consider a ranked finite alphabet ¥ C A and v-trees constructed by

n:i=agni...ng | vag.n

Think of v as binding new names, so v-trees denote sets of A-trees.

va (qi,h)

‘ o

a" qz
/ N\
c 93 wvb (qa,h)
"
b ds

= closed under union,

v-tree automaton (NTA) A consists of
finite sets @ and L of states and labels
together with transition rules of the form:

(g,ak) = (q1,- - - qk)

((g,1),ak) = (g1, - )

(q.vax) = (q/7 )

product + decidable acceptance, emptiness
14 /25



Example Correspondences

Outline

Example Correspondences

15/25



Example Correspondences

General Procedure

16 /25



Example Correspondences

General Procedure

Fix an automaton of a certain model for words/trees

16 /25



Example Correspondences

General Procedure

Fix an automaton of a certain model for words/trees

Interpret alphabet as constants and states as base types

16 /25



Example Correspondences

General Procedure

Fix an automaton of a certain model for words/trees
Interpret alphabet as constants and states as base types

Define s || n if nis normal and a pure word/tree

16 /25



Example Correspondences

General Procedure

Fix an automaton of a certain model for words/trees
Interpret alphabet as constants and states as base types
Define s || n if nis normal and a pure word/tree

Derive typing rules for constants from automaton transitions

16 /25



Example Correspondences

General Procedure

Fix an automaton of a certain model for words/trees
Interpret alphabet as constants and states as base types
Define s || n if nis normal and a pure word/tree

Derive typing rules for constants from automaton transitions

Show that the type system is still well-behaved and captures
acceptance: (Lemma)Vn,q. - n:q <= ne L(A,q)

16 /25



Example Correspondences

General Procedure

Fix an automaton of a certain model for words/trees
Interpret alphabet as constants and states as base types
Define s || n if nis normal and a pure word/tree

Derive typing rules for constants from automaton transitions

Show that the type system is still well-behaved and captures
acceptance: (Lemma)Vn,q. - n:q <= ne L(A,q)

@ Prove a correspondence theorem of the shape:

Vl,s,q. Tks:q <= 3nslnAneL(Aq)

16 /25



Example Correspondences

General Procedure

Fix an automaton of a certain model for words/trees
Interpret alphabet as constants and states as base types
Define s || n if nis normal and a pure word/tree

Derive typing rules for constants from automaton transitions

Show that the type system is still well-behaved and captures
acceptance: (Lemma)Vn,q. - n:q <= ne L(A,q)

@ Prove a correspondence theorem of the shape:

Vl,s,q. Tks:q <= 3nslnAneL(Aq)

"—" by Normalisation, Subject Reduction and Lemma

16 /25



Example Correspondences

General Procedure

]

[~ I

Fix an automaton of a certain model for words/trees
Interpret alphabet as constants and states as base types
Define s || n if nis normal and a pure word/tree

Derive typing rules for constants from automaton transitions

Show that the type system is still well-behaved and captures
acceptance: (Lemma)Vn,q. - n:q <= ne L(A,q)

Prove a correspondence theorem of the shape:
Vl,s,q. Tks:q <= 3nslnAneL(Aq)
1]

—" by Normalisation, Subject Reduction and Lemma
"«—=" by Lemma and Subject Expansion

16 /25



Example Correspondences

...for Finite Automata

17/25



Example Correspondences

...for Finite Automata

Let A be a finite automaton for words over finite &

17/25



Example Correspondences

...for Finite Automata

Let A be a finite automaton for words over finite &
Consider terms s, t :=x € Var | Ax.s | st |a€ &

17/25



Example Correspondences

_for Finite Automata

Let A be a finite automaton for words over finite &
Consider terms s, t :=x € Var | Ax.s | st |a€ &
Define s | nif s »* nand n= a(b(...)) is a pure word

17/25



Example Correspondences

...for Finite Automata

Let A be a finite automaton for words over finite &
Consider terms s, t :=x € Var | Ax.s | st |a€ &
Define s | nif s »* nand n= a(b(...)) is a pure word
Add the following typing rules:

(g,a,9')€d (g,a,)€d q €F
lr-a:qd —gq Nla:q

17/25



Example Correspondences

...for Finite Automata

Let A be a finite automaton for words over finite &
Consider terms s, t :=x € Var | Ax.s | st |a€ &
Define s | nif s »* nand n= a(b(...)) is a pure word
Add the following typing rules:

(g,a,9')€d (g,a,)€d q €F
lr-a:qd —gq Nla:q

Correspondence Lemma for words by induction on length

17/25



Example Correspondences

...for Finite Automata

Let A be a finite automaton for words over finite &
Consider terms s, t :=x € Var | Ax.s | st |a€ &
Define s | nif s »* nand n= a(b(...)) is a pure word

Add the following typing rules:

(g,a,9')€d (g,a,)€d q €F
lr-a:qd —gq Nla:q

Correspondence Lemma for words by induction on length

@ Theorem by steps as outlined above

17/25



Example Correspondences

...for Nominal Automata

18/25



Example Correspondences

...for Nominal Automata

Let A be a nominal automaton for words over orbit-finite &

18/25



Example Correspondences

...for Nominal Automata

Let A be a nominal automaton for words over orbit-finite &
Consider terms s, t :=x € Var | Ax.s | st |ac &

18/25



Example Correspondences

_.for Nominal Automata

Let A be a nominal automaton for words over orbit-finite &
Consider terms s, t :=x € Var | Ax.s | st |ac &
Define s | nif s »* nand n= a(b(...)) is a pure word

18/25



Example Correspondences

...for Nominal Automata

Let A be a nominal automaton for words over orbit-finite &
Consider terms s, t :=x € Var | Ax.s | st |ac &

Define s | nif s »* nand n= a(b(...)) is a pure word
Add the following typing rules:

(¢',a,q9)€d (g,a,)€d q €F
lr-a:qg—4q Nla:q

18/25



Example Correspondences

...for Nominal Automata

Let A be a nominal automaton for words over orbit-finite &
Consider terms s, t :=x € Var | Ax.s | st |ac &

Define s | nif s »* nand n= a(b(...)) is a pure word
Add the following typing rules:

(¢',a,q9)€d (g,a,)€d q €F
lr-a:qg—4q Nla:q

Correspondence Lemma for words by induction on length

18/25



Example Correspondences

...for Nominal Automata

Let A be a nominal automaton for words over orbit-finite &
Consider terms s, t :=x € Var | Ax.s | st |ac &
Define s | nif s »* nand n= a(b(...)) is a pure word

Add the following typing rules:

(¢',a,q9)€d (g,a,)€d q €F
lr-a:qg—4q Nla:q

Correspondence Lemma for words by induction on length

@ Theorem by steps as outlined above

18/25



Example Correspondences

...for v-Tree Automata

19/25



Example Correspondences

...for v-Tree Automata

Let A be an NTA for v-trees over finite ranked X

19/25



Example Correspondences

...for v-Tree Automata

Let A be an NTA for v-trees over finite ranked X
Consider terms s, t ::= x € Var | Ax.s | st | ax € X | vag.s

19/25



Example Correspondences

_for v-Tree Automata

Let A be an NTA for v-trees over finite ranked X

Consider terms s, t ::= x € Var | Ax.s | st | ax € X | vag.s

Add reduction rule vag.Ax.s — Ax.vag.s and abbreviate with
sl nif s =* nand nis a well-ranked v-tree

19/25



Example Correspondences

_for v-Tree Automata

Let A be an NTA for v-trees over finite ranked X

Consider terms s, t ::= x € Var | Ax.s | st | ax € X | vag.s

Add reduction rule vag.Ax.s — Ax.vag.s and abbreviate with
sl nif s =* nand nis a well-ranked v-tree

Add the following typing rules:

(qaak):}(qlw'qu) ak gdom(@) ((%l)»ak)#(fIlw-ka) @(ak):l
NekFac:q—--—=a—=q NekFaciq—--—a—q

(g,van) = (d',1) T,plak:=NFs:q T,pFXxwvags:oc—71
MpFvags:q MpkFvagAxs:o—T1

19/25



Example Correspondences

_for v-Tree Automata

Let A be an NTA for v-trees over finite ranked X

Consider terms s, t ::= x € Var | Ax.s | st | ax € X | vag.s

Add reduction rule vag.Ax.s — Ax.vag.s and abbreviate with
sl nif s =* nand nis a well-ranked v-tree

Add the following typing rules:

(qaak):(qlw'qu) ak gdom(@) ((%l)»ak)#(fIlw-ka) @(ak):l
NekFac:q—--—=a—=q NekFaciq—--—a—q

(g,van) = (d',1) T,plak:=NFs:q T,pFXxwvags:oc—71
MpFvags:q MpkFvagAxs:o—T1

Lemma for v-trees by inductive reformulation of acceptance

19/25



Example Correspondences

_for v-Tree Automata

Let A be an NTA for v-trees over finite ranked X

Consider terms s, t ::= x € Var | Ax.s | st | ax € X | vag.s

Add reduction rule vag.Ax.s — Ax.vag.s and abbreviate with
sl nif s =* nand nis a well-ranked v-tree

Add the following typing rules:

(qaak):(qlw'qu) ak gdom(@) ((%l)»ak)#(fIlw-ka) @(ak):l
NekFac:q—--—=a—=q NekFaciq—--—a—q

(g,van) = (d',1) T,plak:=NFs:q T,pFXxwvags:oc—71
MpFvags:q MpkFvagAxs:o—T1

Lemma for v-trees by inductive reformulation of acceptance
@ Theorem by ingredients as above

19/25



Example Correspondences

_for v-Tree Automata

Let A be an NTA for v-trees over finite ranked X

Consider terms s, t ::= x € Var | Ax.s | st | ax € X | vag.s

Add reduction rule vag.Ax.s — Ax.vag.s and abbreviate with
sl nif s =* nand nis a well-ranked v-tree

Add the following typing rules:

(qaak):(qlw'qu) ak gdom(@) ((%l)»ak)#(fIlw-ka) @(ak):l
NekFac:q—--—=a—=q NekFaciq—--—a—q

(g,van) = (d',1) T,plak:=NFs:q T,pFXxwvags:oc—71
MpFvags:q MpkFvagAxs:o—T1

Lemma for v-trees by inductive reformulation of acceptance
@ Theorem by ingredients as above
Type checking, typability, inhabitance all decidable

for base types and normal forms!
19/25



Conclusion

Outline

Conclusion

20/25



Conclusion

Possible Next Directions

21/25



Conclusion

Possible Next Directions

e Develope unranked v-trees and their automata:
Generalisation of Stirling’s dependency tree automata

21/25



Conclusion

Possible Next Directions

e Develope unranked v-trees and their automata:
Generalisation of Stirling’s dependency tree automata

e Consider simply typed \Y-terms as base language:
Restriction potentially allowing for general decidability

21/25



Conclusion

Possible Next Directions

e Develope unranked v-trees and their automata:
Generalisation of Stirling’s dependency tree automata

e Consider simply typed \Y-terms as base language:
Restriction potentially allowing for general decidability

¢ Relate the work to nominal type theory (Cheney 2009)°:
Based on nominal set of type variables similar to NNA

21/25



References

References |

[1]

2]

(3]

Naoki Kobayashi. Types and higher-order recursion schemes for
verification of higher-order programs. In Proceedings of the
36th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2009, Savannah, GA, USA,
January 21-23, 2009, pages 416-428, 2009.

Mikolaj Bojanczyk, Bartek Klin, and Slawomir Lasota.
Automata theory in nominal sets. Logical Methods in Computer
Science, 10(3), 2014.

H.P. Barendregt. The lambda calculus: its syntax and
semantics. Studies in logic and the foundations of mathematics.
North-Holland, 1984.

22/25



References

References |l

[4] H. Barendregt, W. Dekkers, and R. Statman. Lambda Calculus
with Types. Lambda Calculus with Types. Cambridge University
Press, 2013.

[5] J. Roger Hindley. Types with intersection: An introduction.
Formal Aspects of Computing, 4(5):470-486, 1992.

[6] A. M. Pitts. Nominal Sets: Names and Symmetry in Computer
Science, volume 57 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2013.

[7] lan Stark. Names, equations, relations: Practical ways to
reason about new. Fundamenta Informaticae, 33(4):369-396,
April 1998.

23/25



References

References ||

[8] Colin Stirling. Foundations of Software Science and
Computational Structures: 12th International Conference,
FOSSACS 2009, York, UK, March 22-29. Proceedings, chapter

Dependency Tree Automata, pages 92-106. Springer, Berlin,
Heidelberg, 2009.

[9] James Cheney. A simple nominal type theory. Electr. Notes
Theor. Comput. Sci., 228:37-52, 2009.

24 /25



References

On the Denotation of v-Trees

We want a denotation with e.g. [ra.ab] = {ab|ac A\ {b}}:

25 /25



References

On the Denotation of v-Trees

We want a denotation with e.g. [ra.ab] = {ab|ac A\ {b}}:

We define functions [—] 4 : v-Tree — P(A-Tree) for A € Pgn(A):

mj € [nilavgany m € [(ak b) - nlave,y bk & AUFN(vay.n)
agmy ...myg € [agny ...nk]a m € [vak.n]a

25 /25



References

On the Denotation of v-Trees

We want a denotation with e.g. [ra.ab] = {ab|ac A\ {b}}:

We define functions [—] 4 : v-Tree — P(A-Tree) for A € Pgn(A):

mj € [nilavgany m € [(ak b) - nlave,y bk & AUFN(vay.n)
agmy ...myg € [agny ...nk]a m € [vak.n]a

Properties we could establish:

25 /25



References

On the Denotation of v-Trees

We want a denotation with e.g. [ra.ab] = {ab|ac A\ {b}}:

We define functions [—] 4 : v-Tree — P(A-Tree) for A € Pgn(A):

mj € [nilavgany m € [(ak b) - nlave,y bk & AUFN(vay.n)
agmy ...myg € [agny ...nk]a m € [vak.n]a

Properties we could establish:

e The function [—]- is equivariant (hence morphism in Nom)

25 /25



References

On the Denotation of v-Trees

We want a denotation with e.g. [ra.ab] = {ab|ac A\ {b}}:

We define functions [—] 4 : v-Tree — P(A-Tree) for A € Pgn(A):

mj € [nilavgany m € [(ak b) - nlave,y bk & AUFN(vay.n)
agmy ...myg € [agny ...nk]a m € [vak.n]a

Properties we could establish:
e The function [—]- is equivariant (hence morphism in Nom)

e If 7 fixes the free names of n we have [7 - n]a = [n]a

25 /25



References

On the Denotation of v-Trees

We want a denotation with e.g. [ra.ab] = {ab|ac A\ {b}}:

We define functions [—] 4 : v-Tree — P(A-Tree) for A € Pgn(A):

mj € [nilavgany m € [(ak b) - nlave,y bk & AUFN(vay.n)
agmy ...myg € [agny ...nk]a m € [vak.n]a

Properties we could establish:
e The function [—]- is equivariant (hence morphism in Nom)
o If 7 fixes the free names of n we have [7 - n]a = [n]a

e [n]a =[] a iff both are a-equivalent

25 /25



References

On the Denotation of v-Trees

We want a denotation with e.g. [ra.ab] = {ab|ac A\ {b}}:

Definition
We define functions [—] 4 : v-Tree — P(A-Tree) for A € Pgn(A):

mj € [nilavgany m € [(ak b) - nlave,y bk & AUFN(vay.n)
agmy ...myg € [agny ...nk]a m € [vak.n]a

Properties we could establish:
e The function [—]- is equivariant (hence morphism in Nom)
o If 7 fixes the free names of n we have [7 - n]a = [n]a
e [n]a =[] a iff both are a-equivalent

Moreover, our treatment of v is related name abstraction®.
25 /25



	Motivation
	Intersection Type Systems
	Nominal Automata
	Example Correspondences
	Conclusion

