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Consider the word w := abca over the alphabet X = {a, b, c, d}.
Let A be an NFA over ¥ that accepts the language:
L ={w € X* | w contains two a}

Then we clearly have w € L( A, q;) for the initial state g, of A.

If we translate A into a type system, we can have more:

e - w: g; with w interpreted as term of the system language

F (Ax.xbcx)a : g for a simple program computing w

F K((Ax.xbcx)a)S2 : q; for a more complex program
Theorem: VI,s,q. Tks:q <= 3dns{nAneL(Aq)
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...for type systems corresponding to automata:
e First appearance in higher-order model checking
e Acceptance reduces to type checking, allowing new algorithms
e Generalised acceptance of programs evaluating to words/trees

— Contribute a self-contained presentation

...for nominal automata?:
e Well-behaved automata over infinite alphabets
e Equivariant properties independent of concrete names

= Contribute new instances for new automaton models
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Minimal (functional) programming language defined by...
e Term language: s,t ::=x € Var | Ax.s | st

e Reduction: (Ax.s)t — s[t/x] + syntactic closure

(Ax.x)y — y terminates, we write (Ax.x)y { y and call y normal
(Axxx)(Ax.xx) = (Ax.xx)(Ax.xx) — ... diverges

Can encode booleans, natural numbers and recursion, hence:

Theorem

The (untyped) lambda calculus is Turing complete.
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...implying the following properties:
e Subject Reduction: s +t—=TFs:A—TFt:A
e Strong Normalisation: I s : A= all reductions terminate

e Decidability of type checking, typability and type inhabitance

However, some normal forms like Ax.xx are untybable...
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Nl-s:AAB MN=s: A MN-st:B

Then the term Ax.xx can be assigned a type:
x: A0 —=AFx:AN0— A

[x: A0 — AlFxx: A
Faxxx: (A0 —A)— A

In general, the intersection type system satisfies:
e Subject Expansion: s v t=TFt: A= TFs:A
e (Weak) Normalisation: T+s: A= 3n.s | n
e Typability: s n= 3 ATFs:A

However, general type checking and typability become

undecidable...
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Let A be a countable set of atomic names.
Then consider sets X with actions - : Perm(A) x X — X such that

m- (' x)=(mon') x id-x=x

We define the following:

e x € X has finite support if it is fixed by a finite A C A,
that is, - x = x whenever m|a = ida

e X is nominal if every x € X is finitely supported
e X is orbit-finite if there exist only finitely many Perm(A) - x
e Subsets Y C X are equivariant if Perm(A) - Y =Y

Examples: A itself, (finite) syntax over A, singleton sets etc.
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A nominal automaton A over names A consists of:

e Y, an orbit-finite nominal alphabet

Q, an orbit-finite nominal set of states
e | C Q, an equivariant subset of initial states
e [ C @, an equivariant subset of final states

e 0 C Q@ x Ax @, an equivariant transition relation

We write:
o g3 q for(q,a,¢)€d
e g = g for w € * and the reflexive-transitive closure of &

o we L(A)forqg X g withgeland g €F

Example language: all words containing their initial letter twice
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Nominal Automata

Work building on Pitts/Stark (v-calculus’) and Stirling (NDTA?).
Consider a ranked finite alphabet ¥ C A and v-trees constructed by

n:i=agni...ng | vag.n

Think of v as binding new names, so v-trees denote sets of A-trees.

va (qi,h)

‘ o

a" qz
/ N\
c 93 wvb (qa,h)
"
b ds

= closed under union,

v-tree automaton (NTA) A consists of
finite sets @ and L of states and labels
together with transition rules of the form:

(g,ak) = (q1,- - - qk)

((g,1),ak) = (g1, - )

(q.vax) = (q/7 )

product + decidable acceptance, emptiness
14 /25
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General Procedure
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General Procedure

]

[~ I

Fix an automaton of a certain model for words/trees
Interpret alphabet as constants and states as base types
Define s || n if nis normal and a pure word/tree

Derive typing rules for constants from automaton transitions

Show that the type system is still well-behaved and captures
acceptance: (Lemma)Vn,q. - n:q <= ne L(A,q)

Prove a correspondence theorem of the shape:
Vl,s,q. Tks:q <= 3nslnAneL(Aq)
1]

—" by Normalisation, Subject Reduction and Lemma
"«—=" by Lemma and Subject Expansion
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NekFac:q—--—=a—=q NekFaciq—--—a—q

(g,van) = (d',1) T,plak:=NFs:q T,pFXxwvags:oc—71
MpFvags:q MpkFvagAxs:o—T1

Lemma for v-trees by inductive reformulation of acceptance
@ Theorem by ingredients as above
Type checking, typability, inhabitance all decidable

for base types and normal forms!
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Conclusion

Possible Next Directions

e Develope unranked v-trees and their automata:
Generalisation of Stirling’s dependency tree automata

e Consider simply typed \Y-terms as base language:
Restriction potentially allowing for general decidability

¢ Relate the work to nominal type theory (Cheney 2009)°:
Based on nominal set of type variables similar to NNA
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We want a denotation with e.g. [ra.ab] = {ab|ac A\ {b}}:

Definition
We define functions [—] 4 : v-Tree — P(A-Tree) for A € Pgn(A):

mj € [nilavgany m € [(ak b) - nlave,y bk & AUFN(vay.n)
agmy ...myg € [agny ...nk]a m € [vak.n]a

Properties we could establish:
e The function [—]- is equivariant (hence morphism in Nom)
o If 7 fixes the free names of n we have [7 - n]a = [n]a
e [n]a =[] a iff both are a-equivalent

Moreover, our treatment of v is related name abstraction®.
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