
Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Intersection Type Systems
Corresponding to Nominal Automata
UdS Qualifying Exam / MFoCS Dissertation

Dominik Kirst
Supervised by Steven Ramsay and Luke Ong

Lady Margaret Hall
University of Oxford

November 23, 2016

1 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Outline

1 Motivation

2 Intersection Type Systems

3 Nominal Automata

4 Example Correspondences

5 Conclusion

2 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Outline

1 Motivation

2 Intersection Type Systems

3 Nominal Automata

4 Example Correspondences

5 Conclusion

3 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Example

Consider the word w := abca over the alphabet Σ := {a, b, c , d}.

Let A be an NFA over Σ that accepts the language:

L := {w ∈ Σ∗ | w contains two a}

Then we clearly have w ∈ L(A, qI ) for the initial state qI of A.

If we translate A into a type system, we can have more:
• ` w : qI with w interpreted as term of the system language
• ` (λx .xbcx)a : qI for a simple program computing w

• ` K ((λx .xbcx)a)Ω : qI for a more complex program
• Theorem: ∀ Γ, s, q. Γ ` s : q ⇐⇒ ∃n. s ⇓ n ∧ n ∈ L(A, q)

4 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Example

Consider the word w := abca over the alphabet Σ := {a, b, c , d}.

Let A be an NFA over Σ that accepts the language:

L := {w ∈ Σ∗ | w contains two a}

Then we clearly have w ∈ L(A, qI ) for the initial state qI of A.

If we translate A into a type system, we can have more:
• ` w : qI with w interpreted as term of the system language
• ` (λx .xbcx)a : qI for a simple program computing w

• ` K ((λx .xbcx)a)Ω : qI for a more complex program
• Theorem: ∀ Γ, s, q. Γ ` s : q ⇐⇒ ∃n. s ⇓ n ∧ n ∈ L(A, q)

4 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Example

Consider the word w := abca over the alphabet Σ := {a, b, c , d}.

Let A be an NFA over Σ that accepts the language:

L := {w ∈ Σ∗ | w contains two a}

Then we clearly have w ∈ L(A, qI ) for the initial state qI of A.

If we translate A into a type system, we can have more:
• ` w : qI with w interpreted as term of the system language
• ` (λx .xbcx)a : qI for a simple program computing w

• ` K ((λx .xbcx)a)Ω : qI for a more complex program
• Theorem: ∀ Γ, s, q. Γ ` s : q ⇐⇒ ∃n. s ⇓ n ∧ n ∈ L(A, q)

4 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Example

Consider the word w := abca over the alphabet Σ := {a, b, c , d}.

Let A be an NFA over Σ that accepts the language:

L := {w ∈ Σ∗ | w contains two a}

Then we clearly have w ∈ L(A, qI ) for the initial state qI of A.

If we translate A into a type system, we can have more:

• ` w : qI with w interpreted as term of the system language
• ` (λx .xbcx)a : qI for a simple program computing w

• ` K ((λx .xbcx)a)Ω : qI for a more complex program
• Theorem: ∀ Γ, s, q. Γ ` s : q ⇐⇒ ∃n. s ⇓ n ∧ n ∈ L(A, q)

4 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Example

Consider the word w := abca over the alphabet Σ := {a, b, c , d}.

Let A be an NFA over Σ that accepts the language:

L := {w ∈ Σ∗ | w contains two a}

Then we clearly have w ∈ L(A, qI ) for the initial state qI of A.

If we translate A into a type system, we can have more:
• ` w : qI with w interpreted as term of the system language

• ` (λx .xbcx)a : qI for a simple program computing w

• ` K ((λx .xbcx)a)Ω : qI for a more complex program
• Theorem: ∀ Γ, s, q. Γ ` s : q ⇐⇒ ∃n. s ⇓ n ∧ n ∈ L(A, q)

4 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Example

Consider the word w := abca over the alphabet Σ := {a, b, c , d}.

Let A be an NFA over Σ that accepts the language:

L := {w ∈ Σ∗ | w contains two a}

Then we clearly have w ∈ L(A, qI ) for the initial state qI of A.

If we translate A into a type system, we can have more:
• ` w : qI with w interpreted as term of the system language
• ` (λx .xbcx)a : qI for a simple program computing w

• ` K ((λx .xbcx)a)Ω : qI for a more complex program
• Theorem: ∀ Γ, s, q. Γ ` s : q ⇐⇒ ∃n. s ⇓ n ∧ n ∈ L(A, q)

4 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Example

Consider the word w := abca over the alphabet Σ := {a, b, c , d}.

Let A be an NFA over Σ that accepts the language:

L := {w ∈ Σ∗ | w contains two a}

Then we clearly have w ∈ L(A, qI ) for the initial state qI of A.

If we translate A into a type system, we can have more:
• ` w : qI with w interpreted as term of the system language
• ` (λx .xbcx)a : qI for a simple program computing w

• ` K ((λx .xbcx)a)Ω : qI for a more complex program

• Theorem: ∀ Γ, s, q. Γ ` s : q ⇐⇒ ∃n. s ⇓ n ∧ n ∈ L(A, q)

4 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Example

Consider the word w := abca over the alphabet Σ := {a, b, c , d}.

Let A be an NFA over Σ that accepts the language:

L := {w ∈ Σ∗ | w contains two a}

Then we clearly have w ∈ L(A, qI ) for the initial state qI of A.

If we translate A into a type system, we can have more:
• ` w : qI with w interpreted as term of the system language
• ` (λx .xbcx)a : qI for a simple program computing w

• ` K ((λx .xbcx)a)Ω : qI for a more complex program
• Theorem: ∀ Γ, s, q. Γ ` s : q ⇐⇒ ∃n. s ⇓ n ∧ n ∈ L(A, q)

4 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Motivation

...for type systems corresponding to automata:
• First appearance in higher-order model checking1

• Acceptance reduces to type checking, allowing new algorithms
• Generalised acceptance of programs evaluating to words/trees

=⇒ Contribute a self-contained presentation

...for nominal automata2:
• Well-behaved automata over infinite alphabets
• Equivariant properties independent of concrete names

=⇒ Contribute new instances for new automaton models

5 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Motivation

...for type systems corresponding to automata:
• First appearance in higher-order model checking1

• Acceptance reduces to type checking, allowing new algorithms
• Generalised acceptance of programs evaluating to words/trees

=⇒ Contribute a self-contained presentation

...for nominal automata2:
• Well-behaved automata over infinite alphabets
• Equivariant properties independent of concrete names

=⇒ Contribute new instances for new automaton models

5 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Motivation

...for type systems corresponding to automata:
• First appearance in higher-order model checking1

• Acceptance reduces to type checking, allowing new algorithms
• Generalised acceptance of programs evaluating to words/trees

=⇒ Contribute a self-contained presentation

...for nominal automata2:
• Well-behaved automata over infinite alphabets
• Equivariant properties independent of concrete names

=⇒ Contribute new instances for new automaton models

5 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Motivation

...for type systems corresponding to automata:
• First appearance in higher-order model checking1

• Acceptance reduces to type checking, allowing new algorithms
• Generalised acceptance of programs evaluating to words/trees

=⇒ Contribute a self-contained presentation

...for nominal automata2:
• Well-behaved automata over infinite alphabets
• Equivariant properties independent of concrete names

=⇒ Contribute new instances for new automaton models

5 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Motivation

...for type systems corresponding to automata:
• First appearance in higher-order model checking1

• Acceptance reduces to type checking, allowing new algorithms
• Generalised acceptance of programs evaluating to words/trees

=⇒ Contribute a self-contained presentation

...for nominal automata2:
• Well-behaved automata over infinite alphabets
• Equivariant properties independent of concrete names

=⇒ Contribute new instances for new automaton models

5 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Outline

1 Motivation

2 Intersection Type Systems

3 Nominal Automata

4 Example Correspondences

5 Conclusion

6 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Lambda Calculus3

Minimal (functional) programming language defined by...

• Term language: s, t ::= x ∈ Var | λx .s | st
• Reduction: (λx .s)t → s[t/x ] + syntactic closure

(λx .x)y → y terminates, we write (λx .x)y ⇓ y and call y normal
(λx .xx)(λx .xx)→ (λx .xx)(λx .xx)→ . . . diverges

Can encode booleans, natural numbers and recursion, hence:

Theorem

The (untyped) lambda calculus is Turing complete.

7 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Lambda Calculus3

Minimal (functional) programming language defined by...
• Term language: s, t ::= x ∈ Var | λx .s | st

• Reduction: (λx .s)t → s[t/x ] + syntactic closure

(λx .x)y → y terminates, we write (λx .x)y ⇓ y and call y normal
(λx .xx)(λx .xx)→ (λx .xx)(λx .xx)→ . . . diverges

Can encode booleans, natural numbers and recursion, hence:

Theorem

The (untyped) lambda calculus is Turing complete.

7 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Lambda Calculus3

Minimal (functional) programming language defined by...
• Term language: s, t ::= x ∈ Var | λx .s | st
• Reduction: (λx .s)t → s[t/x ] + syntactic closure

(λx .x)y → y terminates, we write (λx .x)y ⇓ y and call y normal
(λx .xx)(λx .xx)→ (λx .xx)(λx .xx)→ . . . diverges

Can encode booleans, natural numbers and recursion, hence:

Theorem

The (untyped) lambda calculus is Turing complete.

7 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Lambda Calculus3

Minimal (functional) programming language defined by...
• Term language: s, t ::= x ∈ Var | λx .s | st
• Reduction: (λx .s)t → s[t/x ] + syntactic closure

(λx .x)y →

y terminates, we write (λx .x)y ⇓ y and call y normal
(λx .xx)(λx .xx)→ (λx .xx)(λx .xx)→ . . . diverges

Can encode booleans, natural numbers and recursion, hence:

Theorem

The (untyped) lambda calculus is Turing complete.

7 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Lambda Calculus3

Minimal (functional) programming language defined by...
• Term language: s, t ::= x ∈ Var | λx .s | st
• Reduction: (λx .s)t → s[t/x ] + syntactic closure

(λx .x)y → y

terminates, we write (λx .x)y ⇓ y and call y normal
(λx .xx)(λx .xx)→ (λx .xx)(λx .xx)→ . . . diverges

Can encode booleans, natural numbers and recursion, hence:

Theorem

The (untyped) lambda calculus is Turing complete.

7 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Lambda Calculus3

Minimal (functional) programming language defined by...
• Term language: s, t ::= x ∈ Var | λx .s | st
• Reduction: (λx .s)t → s[t/x ] + syntactic closure

(λx .x)y → y terminates, we write (λx .x)y ⇓ y and call y normal

(λx .xx)(λx .xx)→ (λx .xx)(λx .xx)→ . . . diverges

Can encode booleans, natural numbers and recursion, hence:

Theorem

The (untyped) lambda calculus is Turing complete.

7 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Lambda Calculus3

Minimal (functional) programming language defined by...
• Term language: s, t ::= x ∈ Var | λx .s | st
• Reduction: (λx .s)t → s[t/x ] + syntactic closure

(λx .x)y → y terminates, we write (λx .x)y ⇓ y and call y normal
(λx .xx)(λx .xx)→

(λx .xx)(λx .xx)→ . . . diverges

Can encode booleans, natural numbers and recursion, hence:

Theorem

The (untyped) lambda calculus is Turing complete.

7 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Lambda Calculus3

Minimal (functional) programming language defined by...
• Term language: s, t ::= x ∈ Var | λx .s | st
• Reduction: (λx .s)t → s[t/x ] + syntactic closure

(λx .x)y → y terminates, we write (λx .x)y ⇓ y and call y normal
(λx .xx)(λx .xx)→ (λx .xx)(λx .xx)→ . . .

diverges

Can encode booleans, natural numbers and recursion, hence:

Theorem

The (untyped) lambda calculus is Turing complete.

7 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Lambda Calculus3

Minimal (functional) programming language defined by...
• Term language: s, t ::= x ∈ Var | λx .s | st
• Reduction: (λx .s)t → s[t/x ] + syntactic closure

(λx .x)y → y terminates, we write (λx .x)y ⇓ y and call y normal
(λx .xx)(λx .xx)→ (λx .xx)(λx .xx)→ . . . diverges

Can encode booleans, natural numbers and recursion, hence:

Theorem

The (untyped) lambda calculus is Turing complete.

7 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Lambda Calculus3

Minimal (functional) programming language defined by...
• Term language: s, t ::= x ∈ Var | λx .s | st
• Reduction: (λx .s)t → s[t/x ] + syntactic closure

(λx .x)y → y terminates, we write (λx .x)y ⇓ y and call y normal
(λx .xx)(λx .xx)→ (λx .xx)(λx .xx)→ . . . diverges

Can encode booleans, natural numbers and recursion, hence:

Theorem

The (untyped) lambda calculus is Turing complete.

7 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Lambda Calculus3

Minimal (functional) programming language defined by...
• Term language: s, t ::= x ∈ Var | λx .s | st
• Reduction: (λx .s)t → s[t/x ] + syntactic closure

(λx .x)y → y terminates, we write (λx .x)y ⇓ y and call y normal
(λx .xx)(λx .xx)→ (λx .xx)(λx .xx)→ . . . diverges

Can encode booleans, natural numbers and recursion, hence:

Theorem

The (untyped) lambda calculus is Turing complete.

7 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Simply Typed Lambda Calculus4

Introduce typing judgements Γ ` s : A by...

• Type language: A,B ::= a ∈ TVar | A→ B

• Typing rules:

Γ(x) = A

Γ ` x : A

Γ, x : A ` s : B

Γ ` λx .s : A→ B
Γ ` s : A→ B Γ ` t : A

Γ ` st : B

...implying the following properties:
• Subject Reduction: s → t =⇒ Γ ` s : A =⇒ Γ ` t : A

• Strong Normalisation: Γ ` s : A =⇒ all reductions terminate
• Decidability of type checking, typability and type inhabitance

However, some normal forms like λx .xx are untybable...

8 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Simply Typed Lambda Calculus4

Introduce typing judgements Γ ` s : A by...
• Type language: A,B ::= a ∈ TVar | A→ B

• Typing rules:

Γ(x) = A

Γ ` x : A

Γ, x : A ` s : B

Γ ` λx .s : A→ B
Γ ` s : A→ B Γ ` t : A

Γ ` st : B

...implying the following properties:
• Subject Reduction: s → t =⇒ Γ ` s : A =⇒ Γ ` t : A

• Strong Normalisation: Γ ` s : A =⇒ all reductions terminate
• Decidability of type checking, typability and type inhabitance

However, some normal forms like λx .xx are untybable...

8 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Simply Typed Lambda Calculus4

Introduce typing judgements Γ ` s : A by...
• Type language: A,B ::= a ∈ TVar | A→ B

• Typing rules:

Γ(x) = A

Γ ` x : A

Γ, x : A ` s : B

Γ ` λx .s : A→ B
Γ ` s : A→ B Γ ` t : A

Γ ` st : B

...implying the following properties:
• Subject Reduction: s → t =⇒ Γ ` s : A =⇒ Γ ` t : A

• Strong Normalisation: Γ ` s : A =⇒ all reductions terminate
• Decidability of type checking, typability and type inhabitance

However, some normal forms like λx .xx are untybable...

8 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Simply Typed Lambda Calculus4

Introduce typing judgements Γ ` s : A by...
• Type language: A,B ::= a ∈ TVar | A→ B

• Typing rules:

Γ(x) = A

Γ ` x : A

Γ, x : A ` s : B

Γ ` λx .s : A→ B
Γ ` s : A→ B Γ ` t : A

Γ ` st : B

...implying the following properties:

• Subject Reduction: s → t =⇒ Γ ` s : A =⇒ Γ ` t : A

• Strong Normalisation: Γ ` s : A =⇒ all reductions terminate
• Decidability of type checking, typability and type inhabitance

However, some normal forms like λx .xx are untybable...

8 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Simply Typed Lambda Calculus4

Introduce typing judgements Γ ` s : A by...
• Type language: A,B ::= a ∈ TVar | A→ B

• Typing rules:

Γ(x) = A

Γ ` x : A

Γ, x : A ` s : B

Γ ` λx .s : A→ B
Γ ` s : A→ B Γ ` t : A

Γ ` st : B

...implying the following properties:
• Subject Reduction: s → t =⇒ Γ ` s : A =⇒ Γ ` t : A

• Strong Normalisation: Γ ` s : A =⇒ all reductions terminate
• Decidability of type checking, typability and type inhabitance

However, some normal forms like λx .xx are untybable...

8 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Simply Typed Lambda Calculus4

Introduce typing judgements Γ ` s : A by...
• Type language: A,B ::= a ∈ TVar | A→ B

• Typing rules:

Γ(x) = A

Γ ` x : A

Γ, x : A ` s : B

Γ ` λx .s : A→ B
Γ ` s : A→ B Γ ` t : A

Γ ` st : B

...implying the following properties:
• Subject Reduction: s → t =⇒ Γ ` s : A =⇒ Γ ` t : A

• Strong Normalisation: Γ ` s : A =⇒ all reductions terminate

• Decidability of type checking, typability and type inhabitance

However, some normal forms like λx .xx are untybable...

8 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Simply Typed Lambda Calculus4

Introduce typing judgements Γ ` s : A by...
• Type language: A,B ::= a ∈ TVar | A→ B

• Typing rules:

Γ(x) = A

Γ ` x : A

Γ, x : A ` s : B

Γ ` λx .s : A→ B
Γ ` s : A→ B Γ ` t : A

Γ ` st : B

...implying the following properties:
• Subject Reduction: s → t =⇒ Γ ` s : A =⇒ Γ ` t : A

• Strong Normalisation: Γ ` s : A =⇒ all reductions terminate
• Decidability of type checking, typability and type inhabitance

However, some normal forms like λx .xx are untybable...

8 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Simply Typed Lambda Calculus4

Introduce typing judgements Γ ` s : A by...
• Type language: A,B ::= a ∈ TVar | A→ B

• Typing rules:

Γ(x) = A

Γ ` x : A

Γ, x : A ` s : B

Γ ` λx .s : A→ B
Γ ` s : A→ B Γ ` t : A

Γ ` st : B

...implying the following properties:
• Subject Reduction: s → t =⇒ Γ ` s : A =⇒ Γ ` t : A

• Strong Normalisation: Γ ` s : A =⇒ all reductions terminate
• Decidability of type checking, typability and type inhabitance

However, some normal forms like λx .xx are untybable...

8 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Intersection Types5

Introduce (finite) type intersections A ∧ B with rules:

Γ ` s : A Γ ` s : B
Γ ` s : A ∧ B

Γ ` s :
∧

i Ai

Γ ` s : Ai

Γ ` s : (
∧

i Ai )→ B Γ ` t : Ai

Γ ` st : B

Then the term λx .xx can be assigned a type:

[x :
∧
∅ → A] ` x :

∧
∅ → A

[x :
∧
∅ → A] ` xx : A

` λx .xx : (
∧
∅ → A)→ A

In general, the intersection type system satisfies:
• Subject Expansion: s → t =⇒ Γ ` t : A =⇒ Γ ` s : A
• (Weak) Normalisation: Γ ` s : A =⇒ ∃n. s ⇓ n
• Typability: s ⇓ n =⇒ ∃Γ,A. Γ ` s : A

However, general type checking and typability become
undecidable...

9 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Intersection Types5

Introduce (finite) type intersections A ∧ B with rules:

Γ ` s : A Γ ` s : B
Γ ` s : A ∧ B

Γ ` s :
∧

i Ai

Γ ` s : Ai

Γ ` s : (
∧

i Ai )→ B Γ ` t : Ai

Γ ` st : B

Then the term λx .xx can be assigned a type:

[x :
∧
∅ → A] ` x :

∧
∅ → A

[x :
∧
∅ → A] ` xx : A

` λx .xx : (
∧
∅ → A)→ A

In general, the intersection type system satisfies:
• Subject Expansion: s → t =⇒ Γ ` t : A =⇒ Γ ` s : A
• (Weak) Normalisation: Γ ` s : A =⇒ ∃n. s ⇓ n
• Typability: s ⇓ n =⇒ ∃Γ,A. Γ ` s : A

However, general type checking and typability become
undecidable...

9 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Intersection Types5

Introduce (finite) type intersections A ∧ B with rules:

Γ ` s : A Γ ` s : B
Γ ` s : A ∧ B

Γ ` s :
∧

i Ai

Γ ` s : Ai

Γ ` s : (
∧

i Ai )→ B Γ ` t : Ai

Γ ` st : B

Then the term λx .xx can be assigned a type:

[x :
∧
∅ → A] ` x :

∧
∅ → A

[x :
∧
∅ → A] ` xx : A

` λx .xx : (
∧
∅ → A)→ A

In general, the intersection type system satisfies:

• Subject Expansion: s → t =⇒ Γ ` t : A =⇒ Γ ` s : A
• (Weak) Normalisation: Γ ` s : A =⇒ ∃n. s ⇓ n
• Typability: s ⇓ n =⇒ ∃Γ,A. Γ ` s : A

However, general type checking and typability become
undecidable...

9 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Intersection Types5

Introduce (finite) type intersections A ∧ B with rules:

Γ ` s : A Γ ` s : B
Γ ` s : A ∧ B

Γ ` s :
∧

i Ai

Γ ` s : Ai

Γ ` s : (
∧

i Ai )→ B Γ ` t : Ai

Γ ` st : B

Then the term λx .xx can be assigned a type:

[x :
∧
∅ → A] ` x :

∧
∅ → A

[x :
∧
∅ → A] ` xx : A

` λx .xx : (
∧
∅ → A)→ A

In general, the intersection type system satisfies:
• Subject Expansion: s → t =⇒ Γ ` t : A =⇒ Γ ` s : A

• (Weak) Normalisation: Γ ` s : A =⇒ ∃n. s ⇓ n
• Typability: s ⇓ n =⇒ ∃Γ,A. Γ ` s : A

However, general type checking and typability become
undecidable...

9 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Intersection Types5

Introduce (finite) type intersections A ∧ B with rules:

Γ ` s : A Γ ` s : B
Γ ` s : A ∧ B

Γ ` s :
∧

i Ai

Γ ` s : Ai

Γ ` s : (
∧

i Ai )→ B Γ ` t : Ai

Γ ` st : B

Then the term λx .xx can be assigned a type:

[x :
∧
∅ → A] ` x :

∧
∅ → A

[x :
∧
∅ → A] ` xx : A

` λx .xx : (
∧
∅ → A)→ A

In general, the intersection type system satisfies:
• Subject Expansion: s → t =⇒ Γ ` t : A =⇒ Γ ` s : A
• (Weak) Normalisation: Γ ` s : A =⇒ ∃n. s ⇓ n

• Typability: s ⇓ n =⇒ ∃Γ,A. Γ ` s : A

However, general type checking and typability become
undecidable...

9 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Intersection Types5

Introduce (finite) type intersections A ∧ B with rules:

Γ ` s : A Γ ` s : B
Γ ` s : A ∧ B

Γ ` s :
∧

i Ai

Γ ` s : Ai

Γ ` s : (
∧

i Ai )→ B Γ ` t : Ai

Γ ` st : B

Then the term λx .xx can be assigned a type:

[x :
∧
∅ → A] ` x :

∧
∅ → A

[x :
∧
∅ → A] ` xx : A

` λx .xx : (
∧
∅ → A)→ A

In general, the intersection type system satisfies:
• Subject Expansion: s → t =⇒ Γ ` t : A =⇒ Γ ` s : A
• (Weak) Normalisation: Γ ` s : A =⇒ ∃n. s ⇓ n
• Typability: s ⇓ n =⇒ ∃Γ,A. Γ ` s : A

However, general type checking and typability become
undecidable...

9 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Intersection Types5

Introduce (finite) type intersections A ∧ B with rules:

Γ ` s : A Γ ` s : B
Γ ` s : A ∧ B

Γ ` s :
∧

i Ai

Γ ` s : Ai

Γ ` s : (
∧

i Ai )→ B Γ ` t : Ai

Γ ` st : B

Then the term λx .xx can be assigned a type:

[x :
∧
∅ → A] ` x :

∧
∅ → A

[x :
∧
∅ → A] ` xx : A

` λx .xx : (
∧
∅ → A)→ A

In general, the intersection type system satisfies:
• Subject Expansion: s → t =⇒ Γ ` t : A =⇒ Γ ` s : A
• (Weak) Normalisation: Γ ` s : A =⇒ ∃n. s ⇓ n
• Typability: s ⇓ n =⇒ ∃Γ,A. Γ ` s : A

However, general type checking and typability become
undecidable...

9 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Outline

1 Motivation

2 Intersection Type Systems

3 Nominal Automata

4 Example Correspondences

5 Conclusion

10 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Nominal Sets6

Let A be a countable set of atomic names.
Then consider sets X with actions · : Perm(A)× X → X such that

π · (π′ · x) = (π ◦ π′) · x id · x = x

We define the following:
• x ∈ X has finite support if it is fixed by a finite A ⊂ A,
that is, π · x = x whenever π|A = idA

• X is nominal if every x ∈ X is finitely supported
• X is orbit-finite if there exist only finitely many Perm(A) · x
• Subsets Y ⊆ X are equivariant if Perm(A) · Y = Y

Examples: A itself, (finite) syntax over A, singleton sets etc.

11 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Nominal Sets6

Let A be a countable set of atomic names.
Then consider sets X with actions · : Perm(A)× X → X such that

π · (π′ · x) = (π ◦ π′) · x id · x = x

We define the following:
• x ∈ X has finite support if it is fixed by a finite A ⊂ A,
that is, π · x = x whenever π|A = idA

• X is nominal if every x ∈ X is finitely supported
• X is orbit-finite if there exist only finitely many Perm(A) · x
• Subsets Y ⊆ X are equivariant if Perm(A) · Y = Y

Examples: A itself, (finite) syntax over A, singleton sets etc.

11 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Nominal Sets6

Let A be a countable set of atomic names.
Then consider sets X with actions · : Perm(A)× X → X such that

π · (π′ · x) = (π ◦ π′) · x id · x = x

We define the following:

• x ∈ X has finite support if it is fixed by a finite A ⊂ A,
that is, π · x = x whenever π|A = idA

• X is nominal if every x ∈ X is finitely supported
• X is orbit-finite if there exist only finitely many Perm(A) · x
• Subsets Y ⊆ X are equivariant if Perm(A) · Y = Y

Examples: A itself, (finite) syntax over A, singleton sets etc.

11 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Nominal Sets6

Let A be a countable set of atomic names.
Then consider sets X with actions · : Perm(A)× X → X such that

π · (π′ · x) = (π ◦ π′) · x id · x = x

We define the following:
• x ∈ X has finite support if it is fixed by a finite A ⊂ A,
that is, π · x = x whenever π|A = idA

• X is nominal if every x ∈ X is finitely supported
• X is orbit-finite if there exist only finitely many Perm(A) · x
• Subsets Y ⊆ X are equivariant if Perm(A) · Y = Y

Examples: A itself, (finite) syntax over A, singleton sets etc.

11 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Nominal Sets6

Let A be a countable set of atomic names.
Then consider sets X with actions · : Perm(A)× X → X such that

π · (π′ · x) = (π ◦ π′) · x id · x = x

We define the following:
• x ∈ X has finite support if it is fixed by a finite A ⊂ A,
that is, π · x = x whenever π|A = idA

• X is nominal if every x ∈ X is finitely supported

• X is orbit-finite if there exist only finitely many Perm(A) · x
• Subsets Y ⊆ X are equivariant if Perm(A) · Y = Y

Examples: A itself, (finite) syntax over A, singleton sets etc.

11 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Nominal Sets6

Let A be a countable set of atomic names.
Then consider sets X with actions · : Perm(A)× X → X such that

π · (π′ · x) = (π ◦ π′) · x id · x = x

We define the following:
• x ∈ X has finite support if it is fixed by a finite A ⊂ A,
that is, π · x = x whenever π|A = idA

• X is nominal if every x ∈ X is finitely supported
• X is orbit-finite if there exist only finitely many Perm(A) · x

• Subsets Y ⊆ X are equivariant if Perm(A) · Y = Y

Examples: A itself, (finite) syntax over A, singleton sets etc.

11 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Nominal Sets6

Let A be a countable set of atomic names.
Then consider sets X with actions · : Perm(A)× X → X such that

π · (π′ · x) = (π ◦ π′) · x id · x = x

We define the following:
• x ∈ X has finite support if it is fixed by a finite A ⊂ A,
that is, π · x = x whenever π|A = idA

• X is nominal if every x ∈ X is finitely supported
• X is orbit-finite if there exist only finitely many Perm(A) · x
• Subsets Y ⊆ X are equivariant if Perm(A) · Y = Y

Examples: A itself, (finite) syntax over A, singleton sets etc.

11 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Nominal Sets6

Let A be a countable set of atomic names.
Then consider sets X with actions · : Perm(A)× X → X such that

π · (π′ · x) = (π ◦ π′) · x id · x = x

We define the following:
• x ∈ X has finite support if it is fixed by a finite A ⊂ A,
that is, π · x = x whenever π|A = idA

• X is nominal if every x ∈ X is finitely supported
• X is orbit-finite if there exist only finitely many Perm(A) · x
• Subsets Y ⊆ X are equivariant if Perm(A) · Y = Y

Examples: A itself, (finite) syntax over A, singleton sets etc.

11 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Finite Automata

A finite automaton A consists of:
• Σ, a finite alphabet
• Q, a finite set of states
• I ⊆ Q, a finite subset of initial states
• F ⊆ Q, a finite subset of final states
• δ ⊆ Q × A× Q, a finite transition relation

We write:
• q

a→ q′ for a ∈ Σ, q, q′ ∈ Q and (q, a, q′) ∈ δ
• q

w→ q′ for w ∈ Σ∗ and the reflexive-transitive closure of δ
• w ∈ L(A) for q w→ q′ with q ∈ I and q′ ∈ F

Example language: all words that contain at least two a ∈ Σ

12 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Finite Automata

A finite automaton A consists of:
• Σ, a finite alphabet
• Q, a finite set of states
• I ⊆ Q, a finite subset of initial states
• F ⊆ Q, a finite subset of final states
• δ ⊆ Q × A× Q, a finite transition relation

We write:
• q

a→ q′ for a ∈ Σ, q, q′ ∈ Q and (q, a, q′) ∈ δ
• q

w→ q′ for w ∈ Σ∗ and the reflexive-transitive closure of δ
• w ∈ L(A) for q w→ q′ with q ∈ I and q′ ∈ F

Example language: all words that contain at least two a ∈ Σ

12 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Finite Automata

A finite automaton A consists of:
• Σ, a finite alphabet
• Q, a finite set of states
• I ⊆ Q, a finite subset of initial states
• F ⊆ Q, a finite subset of final states
• δ ⊆ Q × A× Q, a finite transition relation

We write:
• q

a→ q′ for a ∈ Σ, q, q′ ∈ Q and (q, a, q′) ∈ δ
• q

w→ q′ for w ∈ Σ∗ and the reflexive-transitive closure of δ
• w ∈ L(A) for q w→ q′ with q ∈ I and q′ ∈ F

Example language: all words that contain at least two a ∈ Σ

12 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Nominal Automata2

A nominal automaton A over names A consists of:

• Σ, an orbit-finite nominal alphabet
• Q, an orbit-finite nominal set of states
• I ⊆ Q, an equivariant subset of initial states
• F ⊆ Q, an equivariant subset of final states
• δ ⊆ Q × A× Q, an equivariant transition relation

We write:
• q

a→ q′ for (q, a, q′) ∈ δ
• q

w→ q′ for w ∈ Σ∗ and the reflexive-transitive closure of δ
• w ∈ L(A) for q w→ q′ with q ∈ I and q′ ∈ F

Example language: all words containing their initial letter twice

13 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Nominal Automata2

A nominal automaton A over names A consists of:
• Σ, an orbit-finite nominal alphabet
• Q, an orbit-finite nominal set of states
• I ⊆ Q, an equivariant subset of initial states
• F ⊆ Q, an equivariant subset of final states
• δ ⊆ Q × A× Q, an equivariant transition relation

We write:
• q

a→ q′ for (q, a, q′) ∈ δ
• q

w→ q′ for w ∈ Σ∗ and the reflexive-transitive closure of δ
• w ∈ L(A) for q w→ q′ with q ∈ I and q′ ∈ F

Example language: all words containing their initial letter twice

13 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Nominal Automata2

A nominal automaton A over names A consists of:
• Σ, an orbit-finite nominal alphabet
• Q, an orbit-finite nominal set of states
• I ⊆ Q, an equivariant subset of initial states
• F ⊆ Q, an equivariant subset of final states
• δ ⊆ Q × A× Q, an equivariant transition relation

We write:
• q

a→ q′ for (q, a, q′) ∈ δ
• q

w→ q′ for w ∈ Σ∗ and the reflexive-transitive closure of δ
• w ∈ L(A) for q w→ q′ with q ∈ I and q′ ∈ F

Example language: all words containing their initial letter twice

13 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Nominal Automata2

A nominal automaton A over names A consists of:
• Σ, an orbit-finite nominal alphabet
• Q, an orbit-finite nominal set of states
• I ⊆ Q, an equivariant subset of initial states
• F ⊆ Q, an equivariant subset of final states
• δ ⊆ Q × A× Q, an equivariant transition relation

We write:
• q

a→ q′ for (q, a, q′) ∈ δ
• q

w→ q′ for w ∈ Σ∗ and the reflexive-transitive closure of δ
• w ∈ L(A) for q w→ q′ with q ∈ I and q′ ∈ F

Example language: all words containing their initial letter twice

13 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

ν-Tree Automata

Work building on Pitts/Stark (ν-calculus7) and Stirling (NDTA8).

Consider a ranked finite alphabet Σ ⊂ A and ν-trees constructed by

n ::= akn1 . . . nk | νak .n

Think of ν as binding new names, so ν-trees denote sets of A-trees.

νa

a

c νb

b

ν-tree automaton (NTA) A consists of
finite sets Q and L of states and labels
together with transition rules of the form:

1 (q, ak)⇒ (q1, . . . qk)

2 ((q, l), ak)⇒ (q1, . . . qk)

3 (q, νak)⇒ (q′, l)

⇒ closed under union, product + decidable acceptance, emptiness

14 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

ν-Tree Automata

Work building on Pitts/Stark (ν-calculus7) and Stirling (NDTA8).
Consider a ranked finite alphabet Σ ⊂ A and ν-trees constructed by

n ::= akn1 . . . nk | νak .n

Think of ν as binding new names, so ν-trees denote sets of A-trees.

νa

a

c νb

b

ν-tree automaton (NTA) A consists of
finite sets Q and L of states and labels
together with transition rules of the form:

1 (q, ak)⇒ (q1, . . . qk)

2 ((q, l), ak)⇒ (q1, . . . qk)

3 (q, νak)⇒ (q′, l)

⇒ closed under union, product + decidable acceptance, emptiness

14 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

ν-Tree Automata

Work building on Pitts/Stark (ν-calculus7) and Stirling (NDTA8).
Consider a ranked finite alphabet Σ ⊂ A and ν-trees constructed by

n ::= akn1 . . . nk | νak .n

Think of ν as binding new names, so ν-trees denote sets of A-trees.

νa

a

c νb

b

ν-tree automaton (NTA) A consists of
finite sets Q and L of states and labels
together with transition rules of the form:

1 (q, ak)⇒ (q1, . . . qk)

2 ((q, l), ak)⇒ (q1, . . . qk)

3 (q, νak)⇒ (q′, l)

⇒ closed under union, product + decidable acceptance, emptiness

14 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

ν-Tree Automata

Work building on Pitts/Stark (ν-calculus7) and Stirling (NDTA8).
Consider a ranked finite alphabet Σ ⊂ A and ν-trees constructed by

n ::= akn1 . . . nk | νak .n

Think of ν as binding new names, so ν-trees denote sets of A-trees.

νa

a

c νb

b

ν-tree automaton (NTA) A consists of
finite sets Q and L of states and labels
together with transition rules of the form:

1 (q, ak)⇒ (q1, . . . qk)

2 ((q, l), ak)⇒ (q1, . . . qk)

3 (q, νak)⇒ (q′, l)

⇒ closed under union, product + decidable acceptance, emptiness

14 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

ν-Tree Automata

Work building on Pitts/Stark (ν-calculus7) and Stirling (NDTA8).
Consider a ranked finite alphabet Σ ⊂ A and ν-trees constructed by

n ::= akn1 . . . nk | νak .n

Think of ν as binding new names, so ν-trees denote sets of A-trees.

νa

a

c νb

b

ν-tree automaton (NTA) A consists of
finite sets Q and L of states and labels
together with transition rules of the form:

1 (q, ak)⇒ (q1, . . . qk)

2 ((q, l), ak)⇒ (q1, . . . qk)

3 (q, νak)⇒ (q′, l)

⇒ closed under union, product + decidable acceptance, emptiness

14 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

ν-Tree Automata

Work building on Pitts/Stark (ν-calculus7) and Stirling (NDTA8).
Consider a ranked finite alphabet Σ ⊂ A and ν-trees constructed by

n ::= akn1 . . . nk | νak .n

Think of ν as binding new names, so ν-trees denote sets of A-trees.

νa

a

c νb

b

q1 ν-tree automaton (NTA) A consists of
finite sets Q and L of states and labels
together with transition rules of the form:

1 (q, ak)⇒ (q1, . . . qk)

2 ((q, l), ak)⇒ (q1, . . . qk)

3 (q, νak)⇒ (q′, l)

⇒ closed under union, product + decidable acceptance, emptiness

14 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

ν-Tree Automata

Work building on Pitts/Stark (ν-calculus7) and Stirling (NDTA8).
Consider a ranked finite alphabet Σ ⊂ A and ν-trees constructed by

n ::= akn1 . . . nk | νak .n

Think of ν as binding new names, so ν-trees denote sets of A-trees.

νa

a

c νb

b

q1

q2

ν-tree automaton (NTA) A consists of
finite sets Q and L of states and labels
together with transition rules of the form:

1 (q, ak)⇒ (q1, . . . qk)

2 ((q, l), ak)⇒ (q1, . . . qk)

3 (q, νak)⇒ (q′, l)

⇒ closed under union, product + decidable acceptance, emptiness

14 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

ν-Tree Automata

Work building on Pitts/Stark (ν-calculus7) and Stirling (NDTA8).
Consider a ranked finite alphabet Σ ⊂ A and ν-trees constructed by

n ::= akn1 . . . nk | νak .n

Think of ν as binding new names, so ν-trees denote sets of A-trees.

νa

a

c νb

b

q2

(q1, l1) ν-tree automaton (NTA) A consists of
finite sets Q and L of states and labels
together with transition rules of the form:

1 (q, ak)⇒ (q1, . . . qk)

2 ((q, l), ak)⇒ (q1, . . . qk)

3 (q, νak)⇒ (q′, l)

⇒ closed under union, product + decidable acceptance, emptiness

14 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

ν-Tree Automata

Work building on Pitts/Stark (ν-calculus7) and Stirling (NDTA8).
Consider a ranked finite alphabet Σ ⊂ A and ν-trees constructed by

n ::= akn1 . . . nk | νak .n

Think of ν as binding new names, so ν-trees denote sets of A-trees.

νa

a

c νb

b

q2

(q1, l1)

q3 q4

ν-tree automaton (NTA) A consists of
finite sets Q and L of states and labels
together with transition rules of the form:

1 (q, ak)⇒ (q1, . . . qk)

2 ((q, l), ak)⇒ (q1, . . . qk)

3 (q, νak)⇒ (q′, l)

⇒ closed under union, product + decidable acceptance, emptiness

14 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

ν-Tree Automata

Work building on Pitts/Stark (ν-calculus7) and Stirling (NDTA8).
Consider a ranked finite alphabet Σ ⊂ A and ν-trees constructed by

n ::= akn1 . . . nk | νak .n

Think of ν as binding new names, so ν-trees denote sets of A-trees.

νa

a

c νb

b

q2

(q1, l1)

q3 (q4, l2)

q5

ν-tree automaton (NTA) A consists of
finite sets Q and L of states and labels
together with transition rules of the form:

1 (q, ak)⇒ (q1, . . . qk)

2 ((q, l), ak)⇒ (q1, . . . qk)

3 (q, νak)⇒ (q′, l)

⇒ closed under union, product + decidable acceptance, emptiness

14 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

ν-Tree Automata

Work building on Pitts/Stark (ν-calculus7) and Stirling (NDTA8).
Consider a ranked finite alphabet Σ ⊂ A and ν-trees constructed by

n ::= akn1 . . . nk | νak .n

Think of ν as binding new names, so ν-trees denote sets of A-trees.

νa

a

c νb

b

q2

(q1, l1)

q3 (q4, l2)

q5

ν-tree automaton (NTA) A consists of
finite sets Q and L of states and labels
together with transition rules of the form:

1 (q, ak)⇒ (q1, . . . qk)

2 ((q, l), ak)⇒ (q1, . . . qk)

3 (q, νak)⇒ (q′, l)

⇒ closed under union, product + decidable acceptance, emptiness
14 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Outline

1 Motivation

2 Intersection Type Systems

3 Nominal Automata

4 Example Correspondences

5 Conclusion

15 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

General Procedure

1 Fix an automaton of a certain model for words/trees
2 Interpret alphabet as constants and states as base types
3 Define s ⇓ n if n is normal and a pure word/tree
4 Derive typing rules for constants from automaton transitions
5 Show that the type system is still well-behaved and captures

acceptance: (Lemma) ∀ n, q. ` n : q ⇐⇒ n ∈ L(A, q)

6 Prove a correspondence theorem of the shape:

Theorem

∀ Γ, s, q. Γ ` s : q ⇐⇒ ∃n. s ⇓ n ∧ n ∈ L(A, q)

"=⇒" by Normalisation, Subject Reduction and Lemma
"⇐=" by Lemma and Subject Expansion

16 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

General Procedure

1 Fix an automaton of a certain model for words/trees

2 Interpret alphabet as constants and states as base types
3 Define s ⇓ n if n is normal and a pure word/tree
4 Derive typing rules for constants from automaton transitions
5 Show that the type system is still well-behaved and captures

acceptance: (Lemma) ∀ n, q. ` n : q ⇐⇒ n ∈ L(A, q)

6 Prove a correspondence theorem of the shape:

Theorem

∀ Γ, s, q. Γ ` s : q ⇐⇒ ∃n. s ⇓ n ∧ n ∈ L(A, q)

"=⇒" by Normalisation, Subject Reduction and Lemma
"⇐=" by Lemma and Subject Expansion

16 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

General Procedure

1 Fix an automaton of a certain model for words/trees
2 Interpret alphabet as constants and states as base types

3 Define s ⇓ n if n is normal and a pure word/tree
4 Derive typing rules for constants from automaton transitions
5 Show that the type system is still well-behaved and captures

acceptance: (Lemma) ∀ n, q. ` n : q ⇐⇒ n ∈ L(A, q)

6 Prove a correspondence theorem of the shape:

Theorem

∀ Γ, s, q. Γ ` s : q ⇐⇒ ∃n. s ⇓ n ∧ n ∈ L(A, q)

"=⇒" by Normalisation, Subject Reduction and Lemma
"⇐=" by Lemma and Subject Expansion

16 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

General Procedure

1 Fix an automaton of a certain model for words/trees
2 Interpret alphabet as constants and states as base types
3 Define s ⇓ n if n is normal and a pure word/tree

4 Derive typing rules for constants from automaton transitions
5 Show that the type system is still well-behaved and captures

acceptance: (Lemma) ∀ n, q. ` n : q ⇐⇒ n ∈ L(A, q)

6 Prove a correspondence theorem of the shape:

Theorem

∀ Γ, s, q. Γ ` s : q ⇐⇒ ∃n. s ⇓ n ∧ n ∈ L(A, q)

"=⇒" by Normalisation, Subject Reduction and Lemma
"⇐=" by Lemma and Subject Expansion

16 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

General Procedure

1 Fix an automaton of a certain model for words/trees
2 Interpret alphabet as constants and states as base types
3 Define s ⇓ n if n is normal and a pure word/tree
4 Derive typing rules for constants from automaton transitions

5 Show that the type system is still well-behaved and captures
acceptance: (Lemma) ∀ n, q. ` n : q ⇐⇒ n ∈ L(A, q)

6 Prove a correspondence theorem of the shape:

Theorem

∀ Γ, s, q. Γ ` s : q ⇐⇒ ∃n. s ⇓ n ∧ n ∈ L(A, q)

"=⇒" by Normalisation, Subject Reduction and Lemma
"⇐=" by Lemma and Subject Expansion

16 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

General Procedure

1 Fix an automaton of a certain model for words/trees
2 Interpret alphabet as constants and states as base types
3 Define s ⇓ n if n is normal and a pure word/tree
4 Derive typing rules for constants from automaton transitions
5 Show that the type system is still well-behaved and captures

acceptance: (Lemma) ∀ n, q. ` n : q ⇐⇒ n ∈ L(A, q)

6 Prove a correspondence theorem of the shape:

Theorem

∀ Γ, s, q. Γ ` s : q ⇐⇒ ∃n. s ⇓ n ∧ n ∈ L(A, q)

"=⇒" by Normalisation, Subject Reduction and Lemma
"⇐=" by Lemma and Subject Expansion

16 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

General Procedure

1 Fix an automaton of a certain model for words/trees
2 Interpret alphabet as constants and states as base types
3 Define s ⇓ n if n is normal and a pure word/tree
4 Derive typing rules for constants from automaton transitions
5 Show that the type system is still well-behaved and captures

acceptance: (Lemma) ∀ n, q. ` n : q ⇐⇒ n ∈ L(A, q)

6 Prove a correspondence theorem of the shape:

Theorem

∀ Γ, s, q. Γ ` s : q ⇐⇒ ∃n. s ⇓ n ∧ n ∈ L(A, q)

"=⇒" by Normalisation, Subject Reduction and Lemma
"⇐=" by Lemma and Subject Expansion

16 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

General Procedure

1 Fix an automaton of a certain model for words/trees
2 Interpret alphabet as constants and states as base types
3 Define s ⇓ n if n is normal and a pure word/tree
4 Derive typing rules for constants from automaton transitions
5 Show that the type system is still well-behaved and captures

acceptance: (Lemma) ∀ n, q. ` n : q ⇐⇒ n ∈ L(A, q)

6 Prove a correspondence theorem of the shape:

Theorem

∀ Γ, s, q. Γ ` s : q ⇐⇒ ∃n. s ⇓ n ∧ n ∈ L(A, q)

"=⇒" by Normalisation, Subject Reduction and Lemma

"⇐=" by Lemma and Subject Expansion

16 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

General Procedure

1 Fix an automaton of a certain model for words/trees
2 Interpret alphabet as constants and states as base types
3 Define s ⇓ n if n is normal and a pure word/tree
4 Derive typing rules for constants from automaton transitions
5 Show that the type system is still well-behaved and captures

acceptance: (Lemma) ∀ n, q. ` n : q ⇐⇒ n ∈ L(A, q)

6 Prove a correspondence theorem of the shape:

Theorem

∀ Γ, s, q. Γ ` s : q ⇐⇒ ∃n. s ⇓ n ∧ n ∈ L(A, q)

"=⇒" by Normalisation, Subject Reduction and Lemma
"⇐=" by Lemma and Subject Expansion

16 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

...for Finite Automata

1 Let A be a finite automaton for words over finite Σ

2 Consider terms s, t ::= x ∈ Var | λx .s | st | a ∈ Σ

3 Define s ⇓ n if s →∗ n and n = a(b(. . . )) is a pure word
4 Add the following typing rules:

(q, a, q′) ∈ δ
Γ ` a : q′ → q

(q, a, q′) ∈ δ q′ ∈ F

Γ ` a : q

5 Correspondence Lemma for words by induction on length
6 Theorem by steps as outlined above

17 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

...for Finite Automata

1 Let A be a finite automaton for words over finite Σ

2 Consider terms s, t ::= x ∈ Var | λx .s | st | a ∈ Σ

3 Define s ⇓ n if s →∗ n and n = a(b(. . . )) is a pure word
4 Add the following typing rules:

(q, a, q′) ∈ δ
Γ ` a : q′ → q

(q, a, q′) ∈ δ q′ ∈ F

Γ ` a : q

5 Correspondence Lemma for words by induction on length
6 Theorem by steps as outlined above

17 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

...for Finite Automata

1 Let A be a finite automaton for words over finite Σ

2 Consider terms s, t ::= x ∈ Var | λx .s | st | a ∈ Σ

3 Define s ⇓ n if s →∗ n and n = a(b(. . . )) is a pure word
4 Add the following typing rules:

(q, a, q′) ∈ δ
Γ ` a : q′ → q

(q, a, q′) ∈ δ q′ ∈ F

Γ ` a : q

5 Correspondence Lemma for words by induction on length
6 Theorem by steps as outlined above

17 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

...for Finite Automata

1 Let A be a finite automaton for words over finite Σ

2 Consider terms s, t ::= x ∈ Var | λx .s | st | a ∈ Σ

3 Define s ⇓ n if s →∗ n and n = a(b(. . . )) is a pure word

4 Add the following typing rules:

(q, a, q′) ∈ δ
Γ ` a : q′ → q

(q, a, q′) ∈ δ q′ ∈ F

Γ ` a : q

5 Correspondence Lemma for words by induction on length
6 Theorem by steps as outlined above

17 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

...for Finite Automata

1 Let A be a finite automaton for words over finite Σ

2 Consider terms s, t ::= x ∈ Var | λx .s | st | a ∈ Σ

3 Define s ⇓ n if s →∗ n and n = a(b(. . . )) is a pure word
4 Add the following typing rules:

(q, a, q′) ∈ δ
Γ ` a : q′ → q

(q, a, q′) ∈ δ q′ ∈ F

Γ ` a : q

5 Correspondence Lemma for words by induction on length
6 Theorem by steps as outlined above

17 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

...for Finite Automata

1 Let A be a finite automaton for words over finite Σ

2 Consider terms s, t ::= x ∈ Var | λx .s | st | a ∈ Σ

3 Define s ⇓ n if s →∗ n and n = a(b(. . . )) is a pure word
4 Add the following typing rules:

(q, a, q′) ∈ δ
Γ ` a : q′ → q

(q, a, q′) ∈ δ q′ ∈ F

Γ ` a : q

5 Correspondence Lemma for words by induction on length

6 Theorem by steps as outlined above

17 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

...for Finite Automata

1 Let A be a finite automaton for words over finite Σ

2 Consider terms s, t ::= x ∈ Var | λx .s | st | a ∈ Σ

3 Define s ⇓ n if s →∗ n and n = a(b(. . . )) is a pure word
4 Add the following typing rules:

(q, a, q′) ∈ δ
Γ ` a : q′ → q

(q, a, q′) ∈ δ q′ ∈ F

Γ ` a : q

5 Correspondence Lemma for words by induction on length
6 Theorem by steps as outlined above

17 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

...for Nominal Automata

1 Let A be a nominal automaton for words over orbit-finite Σ

2 Consider terms s, t ::= x ∈ Var | λx .s | st | a ∈ Σ

3 Define s ⇓ n if s →∗ n and n = a(b(. . . )) is a pure word
4 Add the following typing rules:

(q′, a, q) ∈ δ
Γ ` a : q → q′

(q, a, q′) ∈ δ q′ ∈ F

Γ ` a : q

5 Correspondence Lemma for words by induction on length
6 Theorem by steps as outlined above

18 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

...for Nominal Automata

1 Let A be a nominal automaton for words over orbit-finite Σ

2 Consider terms s, t ::= x ∈ Var | λx .s | st | a ∈ Σ

3 Define s ⇓ n if s →∗ n and n = a(b(. . . )) is a pure word
4 Add the following typing rules:

(q′, a, q) ∈ δ
Γ ` a : q → q′

(q, a, q′) ∈ δ q′ ∈ F

Γ ` a : q

5 Correspondence Lemma for words by induction on length
6 Theorem by steps as outlined above

18 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

...for Nominal Automata

1 Let A be a nominal automaton for words over orbit-finite Σ

2 Consider terms s, t ::= x ∈ Var | λx .s | st | a ∈ Σ

3 Define s ⇓ n if s →∗ n and n = a(b(. . . )) is a pure word
4 Add the following typing rules:

(q′, a, q) ∈ δ
Γ ` a : q → q′

(q, a, q′) ∈ δ q′ ∈ F

Γ ` a : q

5 Correspondence Lemma for words by induction on length
6 Theorem by steps as outlined above

18 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

...for Nominal Automata

1 Let A be a nominal automaton for words over orbit-finite Σ

2 Consider terms s, t ::= x ∈ Var | λx .s | st | a ∈ Σ

3 Define s ⇓ n if s →∗ n and n = a(b(. . . )) is a pure word

4 Add the following typing rules:

(q′, a, q) ∈ δ
Γ ` a : q → q′

(q, a, q′) ∈ δ q′ ∈ F

Γ ` a : q

5 Correspondence Lemma for words by induction on length
6 Theorem by steps as outlined above

18 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

...for Nominal Automata

1 Let A be a nominal automaton for words over orbit-finite Σ

2 Consider terms s, t ::= x ∈ Var | λx .s | st | a ∈ Σ

3 Define s ⇓ n if s →∗ n and n = a(b(. . . )) is a pure word
4 Add the following typing rules:

(q′, a, q) ∈ δ
Γ ` a : q → q′

(q, a, q′) ∈ δ q′ ∈ F

Γ ` a : q

5 Correspondence Lemma for words by induction on length
6 Theorem by steps as outlined above

18 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

...for Nominal Automata

1 Let A be a nominal automaton for words over orbit-finite Σ

2 Consider terms s, t ::= x ∈ Var | λx .s | st | a ∈ Σ

3 Define s ⇓ n if s →∗ n and n = a(b(. . . )) is a pure word
4 Add the following typing rules:

(q′, a, q) ∈ δ
Γ ` a : q → q′

(q, a, q′) ∈ δ q′ ∈ F

Γ ` a : q

5 Correspondence Lemma for words by induction on length

6 Theorem by steps as outlined above

18 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

...for Nominal Automata

1 Let A be a nominal automaton for words over orbit-finite Σ

2 Consider terms s, t ::= x ∈ Var | λx .s | st | a ∈ Σ

3 Define s ⇓ n if s →∗ n and n = a(b(. . . )) is a pure word
4 Add the following typing rules:

(q′, a, q) ∈ δ
Γ ` a : q → q′

(q, a, q′) ∈ δ q′ ∈ F

Γ ` a : q

5 Correspondence Lemma for words by induction on length
6 Theorem by steps as outlined above

18 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

...for ν-Tree Automata

1 Let A be an NTA for ν-trees over finite ranked Σ
2 Consider terms s, t ::= x ∈ Var | λx .s | st | ak ∈ Σ | νak .s
3 Add reduction rule νak .λx .s → λx .νak .s and abbreviate with

s ⇓ n if s →∗ n and n is a well-ranked ν-tree
4 Add the following typing rules:

(q, ak)⇒ (q1, . . . , qk) ak 6∈ dom(ϕ)

Γ, ϕ ` ak : q1 → · · · → qk → q

((q, l), ak)⇒ (q1, . . . , qk) ϕ(ak) = l

Γ, ϕ ` ak : q1 → · · · → qk → q

(q, νak)⇒ (q′, l) Γ, ϕ[ak := l ] ` s : q′

Γ, ϕ ` νak .s : q

Γ, ϕ ` λx .νak .s : σ → τ

Γ, ϕ ` νak .λx .s : σ → τ

5 Lemma for ν-trees by inductive reformulation of acceptance
6 Theorem by ingredients as above

Type checking, typability, inhabitance all decidable
for base types and normal forms!

19 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

...for ν-Tree Automata

1 Let A be an NTA for ν-trees over finite ranked Σ

2 Consider terms s, t ::= x ∈ Var | λx .s | st | ak ∈ Σ | νak .s
3 Add reduction rule νak .λx .s → λx .νak .s and abbreviate with

s ⇓ n if s →∗ n and n is a well-ranked ν-tree
4 Add the following typing rules:

(q, ak)⇒ (q1, . . . , qk) ak 6∈ dom(ϕ)

Γ, ϕ ` ak : q1 → · · · → qk → q

((q, l), ak)⇒ (q1, . . . , qk) ϕ(ak) = l

Γ, ϕ ` ak : q1 → · · · → qk → q

(q, νak)⇒ (q′, l) Γ, ϕ[ak := l ] ` s : q′

Γ, ϕ ` νak .s : q

Γ, ϕ ` λx .νak .s : σ → τ

Γ, ϕ ` νak .λx .s : σ → τ

5 Lemma for ν-trees by inductive reformulation of acceptance
6 Theorem by ingredients as above

Type checking, typability, inhabitance all decidable
for base types and normal forms!

19 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

...for ν-Tree Automata

1 Let A be an NTA for ν-trees over finite ranked Σ
2 Consider terms s, t ::= x ∈ Var | λx .s | st | ak ∈ Σ | νak .s

3 Add reduction rule νak .λx .s → λx .νak .s and abbreviate with
s ⇓ n if s →∗ n and n is a well-ranked ν-tree

4 Add the following typing rules:
(q, ak)⇒ (q1, . . . , qk) ak 6∈ dom(ϕ)

Γ, ϕ ` ak : q1 → · · · → qk → q

((q, l), ak)⇒ (q1, . . . , qk) ϕ(ak) = l

Γ, ϕ ` ak : q1 → · · · → qk → q

(q, νak)⇒ (q′, l) Γ, ϕ[ak := l ] ` s : q′

Γ, ϕ ` νak .s : q

Γ, ϕ ` λx .νak .s : σ → τ

Γ, ϕ ` νak .λx .s : σ → τ

5 Lemma for ν-trees by inductive reformulation of acceptance
6 Theorem by ingredients as above

Type checking, typability, inhabitance all decidable
for base types and normal forms!

19 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

...for ν-Tree Automata

1 Let A be an NTA for ν-trees over finite ranked Σ
2 Consider terms s, t ::= x ∈ Var | λx .s | st | ak ∈ Σ | νak .s
3 Add reduction rule νak .λx .s → λx .νak .s and abbreviate with

s ⇓ n if s →∗ n and n is a well-ranked ν-tree

4 Add the following typing rules:
(q, ak)⇒ (q1, . . . , qk) ak 6∈ dom(ϕ)

Γ, ϕ ` ak : q1 → · · · → qk → q

((q, l), ak)⇒ (q1, . . . , qk) ϕ(ak) = l

Γ, ϕ ` ak : q1 → · · · → qk → q

(q, νak)⇒ (q′, l) Γ, ϕ[ak := l ] ` s : q′

Γ, ϕ ` νak .s : q

Γ, ϕ ` λx .νak .s : σ → τ

Γ, ϕ ` νak .λx .s : σ → τ

5 Lemma for ν-trees by inductive reformulation of acceptance
6 Theorem by ingredients as above

Type checking, typability, inhabitance all decidable
for base types and normal forms!

19 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

...for ν-Tree Automata

1 Let A be an NTA for ν-trees over finite ranked Σ
2 Consider terms s, t ::= x ∈ Var | λx .s | st | ak ∈ Σ | νak .s
3 Add reduction rule νak .λx .s → λx .νak .s and abbreviate with

s ⇓ n if s →∗ n and n is a well-ranked ν-tree
4 Add the following typing rules:

(q, ak)⇒ (q1, . . . , qk) ak 6∈ dom(ϕ)

Γ, ϕ ` ak : q1 → · · · → qk → q

((q, l), ak)⇒ (q1, . . . , qk) ϕ(ak) = l

Γ, ϕ ` ak : q1 → · · · → qk → q

(q, νak)⇒ (q′, l) Γ, ϕ[ak := l ] ` s : q′

Γ, ϕ ` νak .s : q

Γ, ϕ ` λx .νak .s : σ → τ

Γ, ϕ ` νak .λx .s : σ → τ

5 Lemma for ν-trees by inductive reformulation of acceptance
6 Theorem by ingredients as above

Type checking, typability, inhabitance all decidable
for base types and normal forms!

19 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

...for ν-Tree Automata

1 Let A be an NTA for ν-trees over finite ranked Σ
2 Consider terms s, t ::= x ∈ Var | λx .s | st | ak ∈ Σ | νak .s
3 Add reduction rule νak .λx .s → λx .νak .s and abbreviate with

s ⇓ n if s →∗ n and n is a well-ranked ν-tree
4 Add the following typing rules:

(q, ak)⇒ (q1, . . . , qk) ak 6∈ dom(ϕ)

Γ, ϕ ` ak : q1 → · · · → qk → q

((q, l), ak)⇒ (q1, . . . , qk) ϕ(ak) = l

Γ, ϕ ` ak : q1 → · · · → qk → q

(q, νak)⇒ (q′, l) Γ, ϕ[ak := l ] ` s : q′

Γ, ϕ ` νak .s : q

Γ, ϕ ` λx .νak .s : σ → τ

Γ, ϕ ` νak .λx .s : σ → τ

5 Lemma for ν-trees by inductive reformulation of acceptance

6 Theorem by ingredients as above
Type checking, typability, inhabitance all decidable
for base types and normal forms!

19 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

...for ν-Tree Automata

1 Let A be an NTA for ν-trees over finite ranked Σ
2 Consider terms s, t ::= x ∈ Var | λx .s | st | ak ∈ Σ | νak .s
3 Add reduction rule νak .λx .s → λx .νak .s and abbreviate with

s ⇓ n if s →∗ n and n is a well-ranked ν-tree
4 Add the following typing rules:

(q, ak)⇒ (q1, . . . , qk) ak 6∈ dom(ϕ)

Γ, ϕ ` ak : q1 → · · · → qk → q

((q, l), ak)⇒ (q1, . . . , qk) ϕ(ak) = l

Γ, ϕ ` ak : q1 → · · · → qk → q

(q, νak)⇒ (q′, l) Γ, ϕ[ak := l ] ` s : q′

Γ, ϕ ` νak .s : q

Γ, ϕ ` λx .νak .s : σ → τ

Γ, ϕ ` νak .λx .s : σ → τ

5 Lemma for ν-trees by inductive reformulation of acceptance
6 Theorem by ingredients as above

Type checking, typability, inhabitance all decidable
for base types and normal forms!

19 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

...for ν-Tree Automata

1 Let A be an NTA for ν-trees over finite ranked Σ
2 Consider terms s, t ::= x ∈ Var | λx .s | st | ak ∈ Σ | νak .s
3 Add reduction rule νak .λx .s → λx .νak .s and abbreviate with

s ⇓ n if s →∗ n and n is a well-ranked ν-tree
4 Add the following typing rules:

(q, ak)⇒ (q1, . . . , qk) ak 6∈ dom(ϕ)

Γ, ϕ ` ak : q1 → · · · → qk → q

((q, l), ak)⇒ (q1, . . . , qk) ϕ(ak) = l

Γ, ϕ ` ak : q1 → · · · → qk → q

(q, νak)⇒ (q′, l) Γ, ϕ[ak := l ] ` s : q′

Γ, ϕ ` νak .s : q

Γ, ϕ ` λx .νak .s : σ → τ

Γ, ϕ ` νak .λx .s : σ → τ

5 Lemma for ν-trees by inductive reformulation of acceptance
6 Theorem by ingredients as above

Type checking, typability, inhabitance all decidable
for base types and normal forms!

19 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Outline

1 Motivation

2 Intersection Type Systems

3 Nominal Automata

4 Example Correspondences

5 Conclusion

20 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Possible Next Directions

• Develope unranked ν-trees and their automata:
Generalisation of Stirling’s dependency tree automata

• Consider simply typed λY -terms as base language:
Restriction potentially allowing for general decidability

• Relate the work to nominal type theory (Cheney 2009)9:
Based on nominal set of type variables similar to NNA

21 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Possible Next Directions

• Develope unranked ν-trees and their automata:
Generalisation of Stirling’s dependency tree automata

• Consider simply typed λY -terms as base language:
Restriction potentially allowing for general decidability

• Relate the work to nominal type theory (Cheney 2009)9:
Based on nominal set of type variables similar to NNA

21 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Possible Next Directions

• Develope unranked ν-trees and their automata:
Generalisation of Stirling’s dependency tree automata

• Consider simply typed λY -terms as base language:
Restriction potentially allowing for general decidability

• Relate the work to nominal type theory (Cheney 2009)9:
Based on nominal set of type variables similar to NNA

21 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

Possible Next Directions

• Develope unranked ν-trees and their automata:
Generalisation of Stirling’s dependency tree automata

• Consider simply typed λY -terms as base language:
Restriction potentially allowing for general decidability

• Relate the work to nominal type theory (Cheney 2009)9:
Based on nominal set of type variables similar to NNA

21 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

References I

[1] Naoki Kobayashi. Types and higher-order recursion schemes for
verification of higher-order programs. In Proceedings of the
36th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2009, Savannah, GA, USA,
January 21-23, 2009, pages 416–428, 2009.

[2] Mikolaj Bojańczyk, Bartek Klin, and Slawomir Lasota.
Automata theory in nominal sets. Logical Methods in Computer
Science, 10(3), 2014.

[3] H.P. Barendregt. The lambda calculus: its syntax and
semantics. Studies in logic and the foundations of mathematics.
North-Holland, 1984.

22 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

References II

[4] H. Barendregt, W. Dekkers, and R. Statman. Lambda Calculus
with Types. Lambda Calculus with Types. Cambridge University
Press, 2013.

[5] J. Roger Hindley. Types with intersection: An introduction.
Formal Aspects of Computing, 4(5):470–486, 1992.

[6] A. M. Pitts. Nominal Sets: Names and Symmetry in Computer
Science, volume 57 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2013.

[7] Ian Stark. Names, equations, relations: Practical ways to
reason about new. Fundamenta Informaticae, 33(4):369–396,
April 1998.

23 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

References III

[8] Colin Stirling. Foundations of Software Science and
Computational Structures: 12th International Conference,
FOSSACS 2009, York, UK, March 22-29. Proceedings, chapter
Dependency Tree Automata, pages 92–106. Springer, Berlin,
Heidelberg, 2009.

[9] James Cheney. A simple nominal type theory. Electr. Notes
Theor. Comput. Sci., 228:37–52, 2009.

24 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

On the Denotation of ν-Trees

We want a denotation with e.g. [[νa.ab]] = {ab | a ∈ A \ {b}}:

Definition

We define functions [[−]]A : ν-Tree→ P(A-Tree) for A ∈ Pfin(A):

mi ∈ [[ni ]]A∪{ak}

akm1 . . .mk ∈ [[akn1 . . . nk ]]A

m ∈ [[(ak bk) · n]]A∪{bk} bk 6∈ A ∪ FN(νak .n)

m ∈ [[νak .n]]A

Properties we could establish:
• The function [[−]]− is equivariant (hence morphism in Nom)
• If π fixes the free names of n we have [[π · n]]A = [[n]]A

• [[n]]A = [[n′]]A iff both are α-equivalent

Moreover, our treatment of ν is related name abstraction6.

25 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

On the Denotation of ν-Trees

We want a denotation with e.g. [[νa.ab]] = {ab | a ∈ A \ {b}}:

Definition

We define functions [[−]]A : ν-Tree→ P(A-Tree) for A ∈ Pfin(A):

mi ∈ [[ni ]]A∪{ak}

akm1 . . .mk ∈ [[akn1 . . . nk ]]A

m ∈ [[(ak bk) · n]]A∪{bk} bk 6∈ A ∪ FN(νak .n)

m ∈ [[νak .n]]A

Properties we could establish:
• The function [[−]]− is equivariant (hence morphism in Nom)
• If π fixes the free names of n we have [[π · n]]A = [[n]]A

• [[n]]A = [[n′]]A iff both are α-equivalent

Moreover, our treatment of ν is related name abstraction6.

25 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

On the Denotation of ν-Trees

We want a denotation with e.g. [[νa.ab]] = {ab | a ∈ A \ {b}}:

Definition

We define functions [[−]]A : ν-Tree→ P(A-Tree) for A ∈ Pfin(A):

mi ∈ [[ni ]]A∪{ak}

akm1 . . .mk ∈ [[akn1 . . . nk ]]A

m ∈ [[(ak bk) · n]]A∪{bk} bk 6∈ A ∪ FN(νak .n)

m ∈ [[νak .n]]A

Properties we could establish:

• The function [[−]]− is equivariant (hence morphism in Nom)
• If π fixes the free names of n we have [[π · n]]A = [[n]]A

• [[n]]A = [[n′]]A iff both are α-equivalent

Moreover, our treatment of ν is related name abstraction6.

25 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

On the Denotation of ν-Trees

We want a denotation with e.g. [[νa.ab]] = {ab | a ∈ A \ {b}}:

Definition

We define functions [[−]]A : ν-Tree→ P(A-Tree) for A ∈ Pfin(A):

mi ∈ [[ni ]]A∪{ak}

akm1 . . .mk ∈ [[akn1 . . . nk ]]A

m ∈ [[(ak bk) · n]]A∪{bk} bk 6∈ A ∪ FN(νak .n)

m ∈ [[νak .n]]A

Properties we could establish:
• The function [[−]]− is equivariant (hence morphism in Nom)

• If π fixes the free names of n we have [[π · n]]A = [[n]]A

• [[n]]A = [[n′]]A iff both are α-equivalent

Moreover, our treatment of ν is related name abstraction6.

25 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

On the Denotation of ν-Trees

We want a denotation with e.g. [[νa.ab]] = {ab | a ∈ A \ {b}}:

Definition

We define functions [[−]]A : ν-Tree→ P(A-Tree) for A ∈ Pfin(A):

mi ∈ [[ni ]]A∪{ak}

akm1 . . .mk ∈ [[akn1 . . . nk ]]A

m ∈ [[(ak bk) · n]]A∪{bk} bk 6∈ A ∪ FN(νak .n)

m ∈ [[νak .n]]A

Properties we could establish:
• The function [[−]]− is equivariant (hence morphism in Nom)
• If π fixes the free names of n we have [[π · n]]A = [[n]]A

• [[n]]A = [[n′]]A iff both are α-equivalent

Moreover, our treatment of ν is related name abstraction6.

25 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

On the Denotation of ν-Trees

We want a denotation with e.g. [[νa.ab]] = {ab | a ∈ A \ {b}}:

Definition

We define functions [[−]]A : ν-Tree→ P(A-Tree) for A ∈ Pfin(A):

mi ∈ [[ni ]]A∪{ak}

akm1 . . .mk ∈ [[akn1 . . . nk ]]A

m ∈ [[(ak bk) · n]]A∪{bk} bk 6∈ A ∪ FN(νak .n)

m ∈ [[νak .n]]A

Properties we could establish:
• The function [[−]]− is equivariant (hence morphism in Nom)
• If π fixes the free names of n we have [[π · n]]A = [[n]]A

• [[n]]A = [[n′]]A iff both are α-equivalent

Moreover, our treatment of ν is related name abstraction6.

25 / 25



Motivation Intersection Type Systems Nominal Automata Example Correspondences Conclusion References

On the Denotation of ν-Trees

We want a denotation with e.g. [[νa.ab]] = {ab | a ∈ A \ {b}}:

Definition

We define functions [[−]]A : ν-Tree→ P(A-Tree) for A ∈ Pfin(A):

mi ∈ [[ni ]]A∪{ak}

akm1 . . .mk ∈ [[akn1 . . . nk ]]A

m ∈ [[(ak bk) · n]]A∪{bk} bk 6∈ A ∪ FN(νak .n)

m ∈ [[νak .n]]A

Properties we could establish:
• The function [[−]]− is equivariant (hence morphism in Nom)
• If π fixes the free names of n we have [[π · n]]A = [[n]]A

• [[n]]A = [[n′]]A iff both are α-equivalent

Moreover, our treatment of ν is related name abstraction6.
25 / 25


	Motivation
	Intersection Type Systems
	Nominal Automata
	Example Correspondences
	Conclusion

