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Abstract

In this master’s dissertation we examine intersection type systems that corre-
spond to nominal automata. That is, for a given automaton we explain how to
define a type system such that its programs are typable (in a certain sense) exactly
if they evaluate to an input which is accepted by the automaton. This topic has
its origins in software verification where automata are used to analyse properties
of program executions. By defining an equivalent type system one obtains an as-
sociated type checking algorithm that solves the automaton acceptance problem
elegantly and efficiently.

Much of the correspondence is independent from the actual automaton model,
hence we factor out a fully generic treatment and evaluate its instantiation with
several examples. Those include standard finitary automaton models on words
and trees and nominal automaton models on words over atomic names and,
lastly, trees with fresh name binding. The latter is what we call ν-trees and as the
customised automaton model we introduce ranked ν-tree automata and discuss
some of their properties.

The contributions of this work lie firstly in presenting type system-automaton
correspondences independent from their original application in software veri-
fication. In particular, we provide self-contained introductions to intersection
types, nominal sets and (nominal) automata theory. Moreover, by studying new
concrete instances we strengthen the connection between the involved topics and
encounter some actual synergetic effects.
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Chapter 1
Introduction

In this master’s thesis we examine intersection type systems that correspond to
nominal automata. We begin by providing the necessary background and by
deriving the motivation for our project from a survey of related work.

Types are a widespread concept in mathematical logic and computer science. The
essence is to assign certain labels (the types) to the mathematical objects of interest,
in order to obtain a structural classification that excludes some paradoxical or
at least nonsensical expressions. For instance, for mathematicians it is a natural
intuition to distinguish “first-order” objects like natural numbers from “higher-
order” objects like functions or relations operating on them. It makes sense to
write down an expression like f(4) if f is a function operating on the natural
numbers but if g is another such function, writing f(g) is meaningless since the
types of f and g mismatch. This is exactly what led to type theories as foundations
of mathematics beginning with the work of Russell [Rus08] and contemporarily
being discussed in form of the homotopy type theory program [Uni13].

In modern computer science, the main applications of type systems are in typed
programming languages, where the attached types rule out some very trivial
programming flaws, in computational logic, exploiting a similarity between type
derivations and logical deductions [How80] and in cyber security where typable
protocols are guaranteed to meet some security policies (cf. [FKS11] for instance).
The common pattern is to consider the expressions of some formal language (in
our case this will be the so-called lambda calculus) and to study a rule-based
system that assigns types to some of those terms in a meaningful way.

Intersection types are a slightly less common notion basically allowing terms to
be assigned several types at once. This means that such terms can simultaneously
act in several roles which ultimately admits more typable expressions. We use
this style of systems to overcome some principal limitations of simpler types and
to capture the functionality of automata more naturally.
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2 Chapter 1. Introduction

Automata are a basic mathematical model of computation. Normally, they con-
sist of collections of symbols, states and transitions. When started on some input
symbols and an initial state, the machine processes the input as matching transi-
tions from state to state apply. The main functionality is to accept or reject the
input and hence to define a subset of the input space, the so-called language.

Apart from their origin in computability theory, automata have an important
application in software verification. In this field it is a common pattern to translate
some specification formula for program execution traces into an automaton. Then
the accepted language expresses exactly the set of valid executions and a decision
algorithm for acceptance is a tester for program executions.

Automata can be classified by the specification of their input, cardinality of
components and properties of their transition relation. First, typical input shapes
are words or trees over the alphabet of symbols; we will discuss several examples.
Secondly, an important specification is whether or not the input alphabet and
state space are finite. Treating infinite alphabets is one motivation for nominal
automata. In standard automata theory, all incorporated collections are finite
to enable decidability of problems such as acceptance of the input or emptiness
of the language. Also, finite automata can be implemented as actual physical
machines that process real (user) input. Finally, the transition relation can be
either non-deterministic, deterministic or alternating, incorporating both non-
determinism and the opposite universality of transitions. We will mostly discuss
non-deterministic automata since that is arguably a simpler formulation.

The theory of nominal sets is an attempt to elegantly present the use and symme-
tries of variable names in computer science [Pit13]. The underlying idea actually
dates back to the use of permutation models for independence proofs in axiomatic
set theory [Fra39]. In modern formulation, a set equipped with a permutation
group action is nominal if every element only depends on finitely many members
of the permutation carrier. Moreover, if the group action admits only finitely
many equivalence classes (the so-called orbits) it is called orbit-finite. We call
all automaton models nominal if they involve nominal sets or at least a notion
of atomic names. Nominal automata based on orbit-finite instead of just finite
components allow possibly infinite alphabets and can express more abstract
properties which can be independent from the concrete symbols.

Now a type system-automaton correspondence can be outlined as follows. For
a fixed automaton, we define an intersection type system for programs that com-
pute input words/trees. Then the correspondence is established in the way that
a program can be assigned a certain type exactly if it terminates and computes
an accepted word/tree. Hence typability in the system solves acceptance by the
automaton and type inhabitance solves non-emptiness of the language. More-
over, typing programs that eventually normalise to accepted input can be seen
as a strong generalisation of the acceptance condition of the automaton. This
generalisation can even be extended to programs with gaps referring to assumed
subroutines which reveals the compositional structure of acceptance.
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With this project we build on related work in mainly two fields. First, there is
the general theory of nominal sets as developed by Pitts and Gabbay [Pit13]
which provides the framework for nominal automaton models. In particular, the
work of Pitts and Stark on the so-called ν-calculus [PS93, Sta98] and the similar
λν-calculus by Odersky [Ode94] will play a role. Secondly, the primal use of a
type system-automaton correspondence was in the field of higher-order model
checking [Kob09, KO09, Ram14] which is concerned with verifying properties of
higher-order functional programs. Kobayashi was the first to exploit an example
correspondence in order to develop simpler decision algorithms which led to the
design of more efficient model checkers. Apart from these two fields we also refer
to some non-standard automaton models such as the nominal word automata
introduced by Bojanczyk [BKL14] and the dependency tree automata defined
by Stirling [Sti09]. We will further provide more background references at the
beginning of each chapter.

As initiated by Kobayashi, the main motivation for examining said correspon-
dences is the pragmatic search for better algorithms. As we will see in Chapter 3,
the acceptance conditions of some automaton models are rather complex and
hence algorithms deciding whether or not a word is element of the automaton
language can be rather obscure. Then simply translating the problem into the
language of a type system allows for applying the arguably simpler type checking
algorithms. Moreover, as usual when combining diverse perspectives, there are
some mutual benefits. For instance, when put in relation to type systems, the
compositional shape of automaton acceptance, that is acceptance of an input
structure based on the acceptance of the substructures, is made explicit. This cir-
cumstance simplifies the reasoning a lot and is usually rather implicit in common
definitions. Finally, there are the already hinted reasons to particularly study
nominal automata since they are a well-defined attempt to incorporate infinite
alphabets or other non-standard input spaces that for instance provide a notion
of name binding (cf. Section 3.5).

With this thesis, we contribute to these research areas in the following ways:

• Our presentation of the type system-automaton correspondence is fully
self-contained, making the topic accessible to a more general public than
the verification community. In particular, we provide introductory accounts
of intersection type systems (Section 2.3) and nominal sets (Section 3.3).

• We develop a schematic correspondence proof (Section 4.1) that allows for
instantiations by very different kinds of concrete automaton models.

• We evaluate the scheme by discussing correspondence proofs for finite
word automata (Section 4.2), unranked tree automata (Section 4.3), nominal
word automata (Section 4.4) and unranked ν-tree automata (Section 4.6).

• The last mentioned ν-tree automata are a streamlined instance of Stirling’s
dependency tree automata. We study the denotation of their accepted lan-
guages in the context of nominal sets (Section 3.5) and prove the acceptance
and emptiness problems decidable (Section 3.6).
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A main challenge during the work on this project was to incorporate the separate
fields of nominal sets, automata theory and type systems in one unified treatment.
The way how these theories are meshed is best illustrated by an informal early
example that foreshadows the type system correspondence for ν-tree automata.
To this end we consider the simple ν-tree νa.abc where the ν introduces a name a
that is used in the body abc with b and c denoting some unbound constants. All
these names range over a countably infinite set A. The actual tree structure of
νa.abc can be depicted as follows:

νa

a

b c

Here, the dotted arrow denotes the binding of the free constant a to its binder νa.
Now by embedding ν-trees into the framework of nominal sets, we can assign
a set [[n]] of pure trees over A to every ν-tree n where the unbound names are
fixed and the bound names are instantiated with all unused names from A. In
our example case that would be

[[νa.abc]] = { abc | a ∈ A ∧ b 6= a 6= c }

which is all one-layer binary trees with root different from the leaves b and c.
In the usual formalism of nominal sets this collection contains exactly the trees
π · abc := π(a)π(b)π(c) = π(a)bc for all finite permutations π over A that fix b and
c. Next, we will see that it is easy to define a ν-tree automaton A that accepts
exactly the ν-trees that contain a free b. Then in particular A accepts νa.abc, say
by starting from an initial state q. Anticipating some lambda calculus, we can see
that the program (λx.νa.axc)b computes our example ν-tree in one reduction step
by interpreting (λx.νa.axc) as a function with variable x and b acting as input:

(λx.νa.axc)b→ νa.abc

Now, once we established a correspondence of A to a customised type system,
this type system assigns type q to all programs that compute an input accepted
by A started in state q. So in particular the system types the example program
and the ν-tree itself with q, which is usually denoted by ` (λx.νa.axc)b : q
and ` νa.abc : q. This constitutes a generalisation of acceptance by A where
we include all state-typable programs. In particular, because the system for A
is based on a rich intersection type system, it generalises acceptance even to
programs like K((λx.νa.ax)b)Ω where K is a program that simply truncates its
second input and Ω denotes the program that always diverges. In a simpler type
systems such terms admitting non-terminating executions are not typable.
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The remainder of this document is structured as follows. In Chapter 2 we review
intersection types for the terms of the lambda calculus. We discuss the most
important properties of the system and put it in contrast to the standard system
of simple types. Then, in Chapter 3, we present some selected automaton models,
starting from very basic classical instances and ending in our contributed ranked
ν-tree automata. In parallel we outline the theory of nominal sets providing
the necessary language for our purposes. The actual correspondence between
intersection type systems and nominal automata is subject of Chapter 4. Here we
prove the equivalence of respectively adjusted versions of the pure intersection
type system to all the automaton models introduced in the chapter before. We
conclude with some summarising remarks and an overview about possible
further directions in Chapter 5.

We end this introduction by mentioning some of the notation used in the follow-
ing text. Many sections will incorporate inductive definitions presented in the
form of inference rules such as

H1 H2 H3

P

which justifies a judgement P whenever H1 through H3 are given. In particular,
we define grammars by giving a shorthand Backus-Naur Form such as

A,B ::= a | AB

which specifies a set by containing some atom a and for every two members A,B
the concatenation AB. Furthermore, to make the statements of propositions as
concise as possible, we will leave out universal quantification where possible
and reasonable. We use a consistent assignment of variable names to specify the
respective domains.



Chapter 2
Intersection Type Systems

In this chapter we develop the basic theory of lambda calculus up to a point that
allows for understanding intersection type systems. We begin by introducing the
untyped lambda calculus as a minimal Turing complete programming language
(cf. [Bar84] for a standard reference). Then we move to the simply typed lambda
calculus as introduced by Church [Chu40] and intersection type systems as
presented by Hindley [Hin92]. A comprehensive text-book on several styles of
typed lambda calculi is [BDS13].

2.1 Untyped Lambda Calculus

A good intuition is to think of the lambda calculus as a very simple programming
language. From this perspective, the calculus consists of a set of terms, the
programs, and a notion of term reduction, the execution of a program. There
are many more subtle applications of lambda calculi in logic and foundations of
mathematics but for our purposes this approach is perfectly fine. We first define
the set of lambda terms:

Definition 2.1. The set Λ of lambda terms is generated by the following grammar:

s, t ::= x | λx.s | st

Here, the variables x range over some countably infinite set Var = {x, y, z, . . .}.

Variables in a term can occur in two ways, either bound to a lambda or free. The
set of free variables in a term s is usually denoted FV(s) and if FV(s) = ∅ we
call s closed. The three syntactical shapes of terms s, t ∈ Λ can be understood
as variables x denoting some already defined programs, functions λx.s taking
an input x and computing the body s and function applications st where t is

6



2.1. Untyped Lambda Calculus 7

the input argument for the function s. The last case gives rise to an intuition
of reduction as, if we apply an actual function λx.s to a term t, we expect to
compute s with every occurrence of x bound to t.

We make this formal by first introducing the non-capturing substitution function:

Definition 2.2. We define a function s[t/x] by recursion on s ∈ Λ (where y 6∈ FV(t)):

• x[t/x] := t

• y[t/x] := y

• (λx.s)[t/x] := λx.s

• (λy.s)[t/x] := λy.s[t/x]

• (ss′)[t/x] := s[t/x]s′[t/x]

Now we define the actual reduction:

Definition 2.3. We introduce the β-reduction relation s→ t by the following rules:

(λx.s)t→ s[t/x]
s→ s′

λx.s→ λx.s′
s→ s′

st→ s′t
t→ t′

st→ st′

The reflexive-transitive closure of s → t is usually denoted s →∗ t and the smallest
equivalence relation closed under β-reduction is usually called β-conversion.

Note that the first rule captures the actual reduction which replaces the variable
name in a function body by the input argument. The other three rules are syntactic
closure for allowing reductions at any place in terms. This makes β-reduction in
particular non-deterministic, so we can obtain several distinct reduction paths
starting from a single term. If there exists a reduction path s →∗ n and n does
not admit any further reductions we call n a normal form and write s ⇓ n.

A first observation is that we can now distinguish three classes of terms. First,
there are terms s that have a normal form n. We call them weakly normalising
and write s ∈ WN. Consider for example Iy := (λx.x)y ⇓ y, so (λx.x)y ∈ WN.
Moreover, since the applied reduction is the only one applicable, this term comes
with the even stronger property that all possible reduction paths end in a normal
form. We call such terms strongly normalising and denote the corresponding
set with SN. Finally, there exist terms that do not admit a normal form at all. For
instance note that Ω := (λx.xx)(λx.xx) only reduces to itself in a single step and
hence diverges on every reduction path. Of course it is SN ⊆WN and an example
of a weakly but not strongly normalising term is KIΩ where K := λxy.x. From
the programming perspective the three kinds are simply programs that terminate
if the operations are executed in a clever order, terminate always or diverge
always. We will see that one motivation for intersection types is to characterise
the sets WN and SN.

A more involved observation is that β-reduction is Church-Rosser [CR36]:

Theorem 2.1. If s→∗ t and s→∗ t′ then there is u with t→∗ u and t′ →∗ u.
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Sketch. This is a standard result that can be found in the cited literature. We give
a brief outline of the proof to provide the main idea. For the slightly different
parallel reduction s→|| t we can show the so-called diamond property, that is,
there is u with t→|| u and t′ →|| u if s→|| t and s→|| t′ for t 6= t′. Then parallel
reduction is established to be Church-Rosser by induction on the length of the
reductions. Finally, we conclude the claim for β-reduction by observing that both
reduction notions have the same reflexive-transitive closure.

This means that, although β-reduction is not really deterministic we can still
make no irreversible mistakes during searching for normal forms. In particular, a
direct consequence is that β-reduction admits unique normal forms:

Corollary 2.2. If s ⇓ n and s ⇓ n′ then n = n′.

Proof. We have s→∗ n and s→∗ n′ so by the Church-Rosser property there is
a unifier u with n →∗ u and n′ →∗ u. Since n and n′ are normal and so do not
admit any further reduction we have n = u = n′.

So considered as a programming language, the untyped lambda calculus comes
with a very well-behaved program execution. Moreover, it provides the full
computational power as any other Turing complete language. We will not study
this in detail given that it is only conceptually interesting for our purposes. The
main idea can be outlined as follows (cf. [Bar84]). First, one encodes numerals
that capture the behaviour of the natural numbers as actual lambda terms. Then
one encodes the booleans and pairs and hence obtains expressiveness of simple
conditional calculations. In a last step, one encodes the concept of recursion by
the means of so-called fixpoint combinators that compute fixpoints of arbitrary
terms. Then one can prove a theorem along the lines of:

Theorem 2.3. A numerical function f : Nn → N is definable as a lambda term exactly
if it is general recursive (which we do not actually define here).

Sketch. There is no further interest for us to study general recursive functions in
detail. The only important message is that they are structured similarly as lambda
terms in the sense that they consist of a certain set of base functions and provide
a recursion operator. The base functions can directly be implemented using the
encoded numbers, booleans and pairs, the recursion operator is modelled by
fixpoint combinators.

Historically, this result is at least due to Church, Kleene and Rosser. After the same
equivalence for Turing computable functions had been established by Turing, the
computability community grew convinced that this captured the intuitive notion
of “effectively” computable functions by pen-and-paper algorithms. Nowadays
it is common to classify programming languages as Turing complete and in
particular the modern functional languages are direct implementations of the
idea of lambda calculus. These often provide a notion of typing that we will
introduce in the next section. An important consequence of being Turing complete
is that the calculus comes with the same limitations. For instance, there exist no
computable functions that decide the sets WN or SN (cf. the halting problem).
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2.2 Simply Typed Lambda Calculus

In Chapter 1 we gave some intuition for type systems as ruling out mathematically
meaningless or contradictory statements. Specifically in computer science we
can find the same concept in typed programming languages. Those come with a
notion of data types (such as integers or strings) that are assigned to the operating
variables. Then functions have an exact functional type from an input type to
an output type. The advantage is that even before execution some very basic
programming flaws like applying a function to an argument of the wrong type
can be ruled out. Since we understand lambda calculus as a simple programming
language, we can study a typing system implementing this idea. To start, we
introduce the set of types:

Definition 2.4. The set SType of simple types is generated by the following grammar:

σ, τ ::= a | σ → τ

Here the type variables a range over some set Type = {a, b, c, . . .} of base types.

In an actual implementation the base types become the normal atomic types such
as integers and strings. However, we treat the set abstractly to in particular allow
for customised instantiations in Chapter 4. The arrow types σ → τ are intended
for functions taking arguments of type σ and producing results of type τ . Note
that it is common to have the arrow associate to the right.

We can now examine how to assign these types to matching lambda terms by a
rule-based syntactical definition. The system we introduce is known as simply
typed lambda calculus (STLC):

Definition 2.5. Let Γ : Var ⇀ SType be a finite partial function, a so-called context.
We define a typing relation of judgements Γ ` s : τ by the following rules:

Γ(x) = τ

Γ ` x : τ
(V ar)

(Γ, x : σ) ` s : τ

Γ ` λx.s : σ → τ
(Abs) Γ ` s : σ → τ Γ ` t : σ

Γ ` st : τ
(App)

Here (Γ, x : σ) denotes the function that behaves like Γ but also maps x to σ. As a
shorthand, if we have ∅ ` s : τ we simply write ` s : τ .

In words, variables are typed exactly following the assignments in the context.
Abstractions are assigned a function type σ → τ if the body can be assigned type
τ whenever the input variable is assumed to be of type σ. Finally, applications
are typed if the first operand has a function type and the second operand has
matching input type.

We will now study some properties of this system. A first observation is that
all judgements remain derivable in expanded contexts. We say a context Γ′

expands Γ, denoted Γ ⊆ Γ′ if dom(Γ) ⊆ dom(Γ′) and we have Γ(x) = Γ′(x) for all
x ∈ dom(Γ). The mentioned property is usually called weakening:
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Fact 2.4. If Γ ` s : τ and Γ ⊆ Γ′ then Γ′ ` s : τ .

Proof. This is by a straight-forward structural induction on s ∈ Λ.

The converse strengthening is true only if we erase typings of non-free variables:

Fact 2.5. If (Γ, y : τ ′) ` s : τ and y 6∈ FV(s) then Γ ` s : τ .

Proof. This is again by structural induction on s ∈ Λ.

In particular, this means that if s is closed and Γ ` s : τ we already know ` s : τ .
The next property is again best accessible from the programming perspective.
If we have a program of a certain type we want to derive the same type after
executing a computation step. This is normally named subject reduction:

Lemma 2.6. If Γ ` s : τ and s→ t then Γ ` t : τ .

Proof. We begin by an induction on the derivation of s → t. In the three cases
for syntactic closure the claim follows directly by induction. So we assume we
are in the case (λx.s)t → s[t/x] and have a judgement Γ ` (λx.s)t : τ . This can
be inverted to (Γ, x : σ) ` s : τ and Γ ` t : σ for some σ. Then a structural
induction on s ∈ Λ together with strengthening and weakening establishes
Γ ` s[t/x] : τ .

Now we could ask whether the converse subject expansion is true as well, that
is, whether from s→ t and Γ ` t : τ we can conclude Γ ` s : τ . In fact, it is easy
to show that this is not the case. Just consider the term K := λxy.x. With the
terms I and Ω from above we observe KIΩ → I . Now obviously we can type
` I : τ → τ for every τ ∈ SType. However, we cannot derive any typing for
KIΩ since this would include a typing of the self-application xx appearing as a
subterm in Ω. So in particular we cannot expect ` KIΩ : τ → τ .

The fact that terms containing self-applications are not typable in STLC has
further consequences. Since, intuitively speaking, self-application is essential
for every term yielding a reduction loop, we can prove the following strong
normalisation theorem:

Theorem 2.7. If Γ ` s : τ then s ∈ SN.

Sketch. This is an instance of a proof with “logical relations”. In a first step,
a class of reducible terms (so a unary logical relation) is defined by recursion
on types. Then strong normalisation is established for every reducible term by
induction on types and finally by induction on the syntax of terms every typable
term is shown reducible.

In fact, this property marks one of the main differences between simple types
and intersection types, as we will see in the next section. Since the typable terms
turn out to be a very restricted class, many problems of STLC are algorithmically
decidable. The three most common problems to consider are:
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• Type checking: deciding whether a typing Γ ` s : τ is derivable

• Typability: deciding whether for a term s there is a typing Γ ` s : τ

• Inhabitance: deciding whether for a type τ there is a closed s with ` s : τ

All of the above can be proven decidable, we simply refer the reader to presen-
tations as given by Hindley [Hin97]. These results make STLC a type system
which is well-suited for algorithmic implementation. However, the cost is a very
restricted typing system that lacks a lot of expressiveness. First, given strong
normalisation, all functions definable in STLC are total which of course leaves the
system far from Turing complete. Secondly, as we have discussed above, terms
containing self-applications are generally not typable which does not only rule
out the diverging or weakly normalising terms but also some strongly normal-
ising terms such as ω := λx.xx. The latter was a main motivation for studying
more generous systems such as the intersection type system we introduce in the
next section.

2.3 Intersection Types

So how to assign a meaningful type to ω? Taking a closer look, the problem
with the self-application xx is that the variable x appears in two roles, once as
a function and once as an argument. So the first x must have a type σ → τ
which determines the second x to have type σ. Now we cannot derive a type
accommodating both since there is no σ, τ ∈ SType with σ → τ = σ. The solution
is to simply assign both types to x by introducing a type intersection (σ → τ)∧σ.
Hence, if we have x : (σ → τ)∧ σ we can derive xx : τ . This idea is due to Coppo
and Dezani [CDC80] and we refer to the presentation given by Hindley [Hin92].
We begin by first defining a richer type language incorporating the intersection
operator ∧:

Definition 2.6. We define a set IType of intersection types τ by the following grammar:

τ ::= a | σ → τ

σ ::=
∧k
i=1τi

Again, we have the type variables a range over the set Type = {a, b, c, . . .} of base types.

The two-sorted grammar mainly has the purpose to only allow base types at
the right-most position in a composite type. If k > 1 we will often just write∧
τi to improve readability. For k = 1 we just write τ and if k = 0 we write

∧
∅.

Moreover, if k is small we write the intersection infix, as in the above (σ → τ)∧ σ,
where we have the intersection bind tighter than the arrow. The type system
we are about to define is set up in a way that we do not have to care about
associativity and commutativity of ∧. Incorporating all this, examples for correct
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intersection types are
∧
∅ → a and a∧b→ c. Ill-formed are types like a→ a∧b or

(a→
∧
τi)→ a. This is no actual lack of expressibility since the idea of a→ a ∧ b

can be captured by the well-formed type (a→ a) ∧ (a→ b). With this in mind,
we can now introduce the intersection typed lambda calculus (ITLC):

Definition 2.7. Let Γ be a context mapping variables to type intersections of the syntac-
tical sort σ. We introduce typing judgements Γ ` s : τ by the following rules:

Γ(x) =
∧
τi

Γ ` x : τi
(V ar)

(Γ, x : σ) ` s : τ

Γ ` λx.s : σ → τ
(Abs)

Γ ` s :
∧
τi → τ Γ ` t : τi
Γ ` st : τ

(App)

The requirement Γ ` t : τi in (App) abbreviates a necessary typing for all 1 ≤ i ≤ k.
In particular, if k = 0 there is no typing condition on the argument t at all.

Note that this system always provides types of the sort τ which are not pure
intersections. In words, we can type a variable with every type the context
provides. Abstractions are typed as usual and applications are typed with τ if
the argument can be typed with every type expected by the function. To first see
an example, we give a full derivation of a typing for ω:

[x :
∧
∅ → τ ] ` x :

∧
∅ → τ

(V ar)

[x :
∧
∅ → τ ] ` xx : τ

(App)

` λx.xx : (
∧
∅ → τ)→ τ

(Abs)

Note the trick how we incorporate
∧
∅ to have no requirement for the argument

in the (App) rule. This will become essential when we prove subject expansion.
First note that the intersection type system satisfies weakening, strengthening and
subject reduction in the same form as STLC did. The proofs are very similar so we
omit them here and instead study subject expansion in full detail. This property
is crucial for the correspondences in Chapter 4 and implies the completeness
direction of Theorem 2.9.

Lemma 2.8. If Γ ` t : τ and s→ t then Γ ` s : τ .

Proof. This proof has the same structure as the above one for subject reduction. A
first induction on s→ t leaves as only interesting case (λx.s)t→ s[t/x]. Then we
assume Γ ` s[t/x] : τ and want to prove Γ ` (λx.s)t : τ . This is again by a second
induction on s ∈ Λ for arbitrary Γ and τ . Since the resulting cases are slightly
more complex and use the properties of intersection types, we go through them
explicitly:

• If s = x the assumption is Γ ` t : τ and we derive the claim with:

(Γ, x : τ) ` x : τ

Γ ` λx.x : τ → τ Γ ` t : τ
Γ ` (λx.x)t : τ
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• If s = y 6= x the assumption is Γ ` y : τ and we establish the claim by:

(Γ, x :
∧
∅) ` y : τ

Γ ` λx.y :
∧
∅ → τ

Γ ` (λx.y)t : τ

• If s = λx.s′ the assumption is Γ ` λx.s′ : τ . The claimed typing follows by:

(Γ, x :
∧
∅) ` λx.s′ : τ

Γ ` λxx.s′ :
∧
∅ → τ

(λxx.s′)t : τ

• If s = λy.s′ for y 6= x the assumed judgement is Γ ` λy.s′[t/x] : σ → τ . This
inverts to (Γ, y : σ) ` s′[t/x] : τ . By IH (Γ, y : σ) ` (λx.s′)t : τ which inverts
to (Γ, y : σ, x :

∧
τi) ` s′ : τ and (Γ, y : σ) ` t : τi for each i. Then:

(Γ, x :
∧
τi, y : σ) ` s′ : τ

Γ ` λxy.s′ :
∧
τi → σ → τ

y 6∈ t
Γ ` t : τi

Γ ` (λxy.s′)t : σ → τ

• If s = s1s2 the assumption is Γ ` s1[t/x]s2[t/x]. Inverting this yields
Γ ` s1[t/x] :

∧
τi → τ and Γ ` s2[t/x] : τi. Then the IH applies yielding

Γ ` (λx.s1)t :
∧
τi → τ and Γ ` (λx.s2)t : τi which respectively invert to

(Γ, x :
∧
τ ′k) ` s1 :

∧
τi → τ with Γ ` t : τ ′k and (Γ, x :

∧
τ ′′l ) ` s2 : τi with

Γ ` t : τ ′′l . This altogether allows for the following derivation where τj
denotes a combined indexing of both the τ ′k and τ ′′l :

(Γ, x :
∧
τj) ` s1 :

∧
τi → τ (Γ, x :

∧
τj) ` s2 : τi

Γ ` λx.s1s2 :
∧
τj → τ Γ ` t : τj

Γ ` (λx.s1s2)t : τ

This finishes the proof as we have shown Γ ` (λx.s)t : τ for all cases of s ∈ Λ.

In contrast to STLC, an intersection type system such as the one discussed here
also provides types for only weakly normalising terms. For instance, consider
the following derivation for the term KIΩ for some arbitrary τ ∈ IType:

[x : τ → τ, y :
∧
∅] ` x : τ → τ

` K : (τ → τ)→
∧
∅ → (τ → τ)

[x : τ ] ` x : τ

` I : τ → τ

` KI :
∧
∅ → (τ → τ)

` KIΩ : τ → τ

As a consequence, we cannot expect the system to normalise strongly. However,
it is still weakly normalising and in fact it types exactly the terms in WN:
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Theorem 2.9. Every s ∈ Λ is ITLC-typable if and only if s is weakly normalising.

Proof. The proof that ITLC-typable terms are weakly normalising is in [BCDC83]
(Theorem 4.13). The converse direction is rather simple. First, we can establish
by structural induction that all β-normal forms are typable. This is trivial for
variables and directly by induction for lambdas. All β-normal applications have
the form xn1 . . . nk and from the inductive typings of the ni we can derive a
typing for the whole of xn1 . . . nk where we exploit the properties of intersection
types. Then all s ∈WN are typable by subject expansion.

Recall that the set WN is not decidable as it expresses a limitation of Turing com-
plete languages. A way to justify this is via the Scott-Curry theorem which implies
undecidability of every non-trivial subset of Λ that is closed under β-conversion.
Thus and as a consequence of Theorem 2.9, typability is not decidable in ITLC.
Moreover, the Scott-Curry theorem applies to the set S := { s ∈ Λ | Γ ` s : τ }
for fixed Γ, τ given subject expansion and subject reduction. Hence also type
checking is undecidable. Finally, Urzyzcyn has proven the inhabitance problem
undecidable [Urz99], which altogether marks ITLC very different from STLC.

Note that there are also variants of intersection type systems that provide types
exactly for the smaller set of strongly normalising terms, leading to slightly
different settings. We use the generous system ITLC as a base for the systems
capturing automata in order to achieve a correspondence for as many terms as
possible.



Chapter 3
Nominal Automata

We begin this chapter by briefly discussing two standard types of automata,
namely finite word and tree automata. In particular the former are common
knowledge in computer science and we just provide the basic definitions to allow
for a very simple example type system-automaton correspondence. The latter
yield a suitable introduction into the treatment of trees as they arise from reduc-
tion of lambda-terms which will become important in Chapter 4. Much more
background about tree automata is discussed in [CDG+07]. Then, in Section 3.3,
we give a brief introduction into the theory of nominal sets as developed by Pitts
and Gabbay [Pit13]. A first instance of a nominal automaton will be examined
in Section 3.4 which presents the work of Bojanczyk, Klin and Lasota [BKL14].
The remainder is our original work on automata on so-called ν-trees which are
related to the ν-calculus of Pitts and Stark [PS93, Sta98]. The actual relationship
will be discussed in more detail in Chapter 4. All automaton models will be de-
fined in a non-deterministic way to keep some closure constructions as simple as
possible. If not stated otherwise the definitions could equivalently be formulated
deterministically.

3.1 Finite Word Automata

We begin by introducing finite word automata, probably the most simple instance
of a finite-state machine. They belong to the basic education of every student
in computer science and are normally studied as the most primitive class of
computing machines. A standard text-book containing a profound presentation of
finite automata is [Koz97]. In this text-book, one of the examined standard results
is that finite automata express exactly the regular languages. Our discussion will
be based on the following definition:

15
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Definition 3.1. A non-deterministic finite automaton (NFA) A consists of:

• Σ: a finite alphabet of symbols

• Q: a finite set of states

• F ⊆ Q: a finite subset of final states

• δ ⊆ Q× Σ×Q: a finite transition relation

We write q a→ q′ if (q, a, q′) ∈ δ and for w = a1 . . . an ∈ Σ∗ we write q w→ q′ if
q
a1→ q1

a2→ . . .
an→ q′ for some q1, . . . , qn−1 ∈ Q.

Note that in contrast to the standard presentation we do not fix a subset of
initial states. This has the purpose that we can give a compositional definition of
acceptance relative to a starting state, which is well-suited for reinterpretation in
a type system. To illustrate this, we first give a traditional definition:

Definition 3.2. Let A be an NFA. We say that A accepts a word w ∈ Σ∗ from state
q if there is q′ ∈ F with q w→ q′. All accepted w are collected in the set L(A, q), the
q-language of A.

Typical examples for NFA-definable languages are words that begin with a, con-
tain at least two b and so on. The standard theory provides results for closure of
NFA-languages under boolean operations, decidability of acceptance and empti-
ness and the equality of regular and NFA-languages. We will not discuss these
properties here since we will see a more complex instance in Section 3.6. Instead,
we study the mentioned compositional definition and prove both equivalent:

Definition 3.3. For an NFA A we define the q-language L′(A, q) by:

q ∈ F
ε ∈ L′(A, q)

(LF )
q

a→ q′ w ∈ L′(A, q′)
aw ∈ L′(A, q)

(LCst)

Here, ε ∈ Σ∗ denotes the empty word of length 0 and aw is the concatenation of a and w.

The following lemma establishes the equality of both definitions:

Lemma 3.1. For every NFA A and q ∈ Q we have L(A, q) = L′(A, q).

Proof. We justify both inclusions by inductive reasoning:

• Suppose a1 . . . an ∈ L(A, q), so there are q1, . . . , qn ∈ Q with qn ∈ F and
q

a1→ q1
a2→ . . .

an→ qn. Then we establish a1 . . . an ∈ L′(A, q) by natural
induction on n ∈ N. If n = 0 we have a1 . . . an = ε and q ∈ F . Hence
a1 . . . an ∈ L′(A, q) by the first definitional rule. In the inductive case for
n > 0 the IH yields a2 . . . an ∈ L′(A, q1). Then a1 . . . an ∈ L′(A, q) follows
from q

a1→ q1 and the second definitional rule.

• Conversely, if we assume a1 . . . an ∈ L′(A, q) we show a1 . . . an ∈ L(A, q)
by induction on the derivation of the assumption. In the case of the first
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rule we have a1 . . . an = ε and q ∈ F . Then a1 . . . an ∈ L(A, q) since q ε→ q.
In the case of the second rule we have q a1→ q1 and a2 . . . an ∈ L′(A, q1) for
some q1 ∈ Q. Then by IH we have a run q1

a2...an→ qn and by attaching q a1→ q1

we obtain a1 . . . an ∈ L(A, q).

Henceforth and in all further instances, we will use the inductive reformulation as
the working definition. The advantage is that the correspondence to type systems
will be much easier to prove if we already start with a rule-based definition of
acceptance. In particular for the following more complex automaton models
reformulating the language definition is a major step in the correspondence proof.

3.2 Finite Tree Automata

In this section we discuss finite automata that operate on trees rather than pure
words. Tree alphabets can come in two forms, namely ranked or unranked. In
the case of a ranked alphabet Σ there is a function rk : Σ → N such that every
node labelled with a symbol a has exactly rk(a) children. For ranked alphabets
we simply write ak to denote that rk(a) = k. In the following example, the left
tree is unranked given that the labels a and b appear with varying arity whereas
the right tree is ranked with the arities attached as subscripts:

a

a

c b

b

a1

b2

c0 a1

d0

Since we will present ν-trees in a ranked form in Section 3.5 we will just introduce
unranked tree automata here. For ranked tree automata we refer the reader to
[CDG+07] and note that, since they can be seen as special unranked tree automata,
the correspondence result shown in Section 4.3 applies to them as well. Therefore,
consider the following formal definition of the set of finite unranked trees over a
given alphabet:

Definition 3.4. Let Σ denote an alphabet. Then the set Σ-Tree is generated by:

n ::= an1 . . . nk

Here a ∈ Σ and k = 0 is included to allow for obtaining leaves but there is no empty tree.

Note that we exclude the empty tree in order to embed Σ-Tree into the non-empty
terms of a lambda calculus with constant symbols in Chapter 4. Further, note that
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this definition is purely syntactic but still allows for a more common representa-
tion of trees as functions from an address space to the alphabet. Addresses w are
simply words over N and we set an1 . . . nk(ε) := a and an1 . . . nk(iw) := ni(w) for
1 ≤ i ≤ k. Then dom(n) ⊆ N∗ is the set of all valid addresses of the tree n which
has the usual properties of being prefix closed and satisfying that, if wi ∈ dom(n)
then wj ∈ dom(n) for all 1 ≤ j ≤ i.
To understand these different representations, consider the tree on the left from
the previous example. Syntactically, this is represented by a(ac(bb)) ∈ Σ-Tree
for any Σ ⊇ {a, b, c}. Then we obtain the second representation as a function
a(ac(bb)) : {ε, 1, 11, 12, 121} → Σ by a(ac(bb))(ε) := a and a(ac(bb))(12) := b etc.
We now define automata on unranked trees following Cristau et al. [CLT05]:

Definition 3.5. A finite unranked tree automaton (UTA) A consists of:

• Σ: a finite alphabet of symbols

• Q: a finite set of states

• δ ⊆ Reg(Q)× Σ×Q: a finite transition relation

Here, Reg(Q) denotes the set of all regular languages over Q.

In the case of ranked tree automata, Reg(Q) would be restricted to the set of
k-tuples over Q for symbols ak ∈ Σ. Also note that this definition is bottom-up
in the sense that the transitions are in the direction from children to parents. This
does not matter as long as we allow non-determinism but we remark that for
deterministic automata the top-down formulation is strictly less expressive. As
we did before for finite word automata, we first define acceptance traditionally
which incorporates the common notion of a run of an automaton on a tree:

Definition 3.6. Let A be an UTA and n ∈ Σ-Tree. A run of A on n is a function
ρ : dom(n) → Q such that for every w ∈ dom(n) with k successors w1, . . . , wk there
is a transition (L, n(w), ρ(w)) ∈ δ with ρ(w1) . . . ρ(wk) ∈ L. The q-language of A,
denoted L(A, q), is the set of all n ∈ Σ-Tree such that there is a run ρ of A on n such
that ρ(ε) = q.

Note that, having acceptance relativised to a state, introducing a subset of final
states is equally unnecessary as it was the case for initial states of NFAs. A run on
a tree can be understood as a labelling that attaches a state to every node. Starting
from the leaves, parents are labelled whenever there is an applicable transition
taking the child labels into account. If this process does not get stuck, meaning it
is possible to assign a label state to every node including the root, the automaton
accepts the input tree from the root state.

As it was the case for finite word automata, the recognisable languages of both
ranked and unranked tree automata are closed under boolean operations and
all automaton models come with decidable acceptance and emptiness [CDG+07,
CLT05]. We conclude this section by again bringing the definition of L(A, q) in a
compositional shape:



3.3. Basic Theory of Nominal Sets 19

Definition 3.7. We define the q-language L′(A, q) of an UTA A inductively by:

(L, a, q) ∈ δ q1 . . . qk ∈ L ni ∈ L′(A, qi)
an1 . . . nk ∈ L′(A, q)

(LCst)

As in Definition 2.7 the hypothesis ni ∈ L′(A, qi) needs justification for all 1 ≤ i ≤ k
and vanishes for k = 0.

We show both definitions equivalent by the following lemma:

Lemma 3.2. For every UTA A and q ∈ Q we have L(A, q) = L′(A, q).

Proof. We establish both inclusions by structural induction on n ∈ Σ-Tree:

• Suppose an1 . . . nk ∈ L(A, q), so there is a run ρ of A on an1 . . . nk with
ρ(ε) = q. Since being a run, ρ witnesses a transition (L, a, q) ∈ δ with
ρ(1) . . . ρ(k) ∈ L. Now set ρi(w) := ρ(iw) and observe that ρi is a run on ni
with ρi(ε) = ρ(i). Hence we have ni ∈ L(A, ρ(i)) and derive ni ∈ L′(A, ρ(i))
inductively. This allows for applying the definitional rule of L′(A, q) to
conclude an1 . . . nk ∈ L′(A, q).

• Now let an1 . . . nk ∈ L(A, q) hence there is a transition (L, a, q) ∈ δ and
qi . . . qk ∈ L such that ni ∈ L′(A, qi). Then by IH ni ∈ L(A, qi) so there are
runs ρi of A on ni with ρi(ε) = qi. This time we set conversely ρ(ε) = q and
ρ(iw) := ρi(w) which yields a run ρ of A on an1 . . . nk with ρ(ε) = q. Thus
an1 . . . nk ∈ L(A, q).

3.3 Basic Theory of Nominal Sets

Now that we have seen some classical automata we can move on to automata
based on nominal sets. Therefore, we first summarise some theoretical back-
ground as presented in [Pit13]. Following the standard set-up, we first fix a
countable set A = {a, b, c, . . .} of atomic names, that is black box objects provid-
ing no structure but their identity. Note that the set Var of variable names of
lambda calculus is exactly such a set. In fact, syntax with binders is one original
motivation for the more general theory of nominal sets.

Next we consider the group Perm(A) of finite permutations π on A, that is, we
have π(a) 6= a for only finitely many a ∈ A. Of course this defines a subgroup
of the group Sym(A) of all permutations on A. It is a standard result that every
π ∈ Perm(A) can be written as a finite composition of transpositions of the form
(a b) ∈ Perm(A) that swap a, b ∈ A and fix all other names. Then the underlying
concept for nominal sets is the notion of an action of Perm(A) on a set:

Definition 3.8. A perm action on a set X is a function · : Perm(A)×X → X with:

id · x = x π · (π′ · x) = (π ◦ π′) · x

We call a set X equipped with a perm action · a perm set.
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Note that the definition of a group action makes sense for arbitrary groups, in
particular any other subgroup of Perm(A). This is examined to a certain extent in
[BKL14] but we will only focus on actions of Perm(A) as those yield the standard
theory of nominal sets from [Pit13].

We give some examples of such perm sets. First, note that every set X can be
considered a perm set equipped with the trivial group action π · x := x. Only
slightly less trivial is the perm action π · a := π(a) on A itself. Furthermore, given
two perm sets X,Y we inherit a perm action on X ×Y by π · (x, y) := (π ·x, π · y).
Of course this works for tuples of arbitrary length as well as unordered subsets.
The most important example for our purpose is syntax incorporating variables,
for instance the terms of the lambda calculus over the set A := Var from Chapter 2.
The perm action on Λ is renaming of variables, defined recursively by:

• π · x := π(x)

• π · (λx.s) := λπ(x).π · s

• π · (st) := (π · s)(π · t)

That this in fact yields a well defined perm action is established with a simple
induction on s ∈ Λ. The treatment of ν-trees in Section 3.5 as perm set will be very
similar. Every perm set comes with an induced equivalence relation as follows:

Definition 3.9. LetX be a perm set and x ∈ X . The orbit of x is the set Perm(A) ·x :=
{π · x | π ∈ Perm(A) }. We write x ≈ y to indicate that x and y have the same orbit or,
equivalently, that there is π with x = π · y. If X admits only finitely many equivalence
classes of ≈ we call it orbit-finite.

That ≈ defines an actual equivalence relation follows from the basic properties
of Perm(A) being a group. We now introduce the concept of support and the
derived notion of nominal sets:

Definition 3.10. Let X be a perm set. We say that A ⊆ A supports x ∈ X if every
finite permutation π ∈ Perm(A) with π(a) = a for all a ∈ A already satisfies π · x = x.
Since the intersection of any two supports of x supports x again and we always have A
supporting x there exists a minimal support denoted supp(x). If supp(x) is finite for all
x ∈ X we call X nominal.
Subsets Y ⊆ X of a nominal setX are called equivariant if π ·Y := {π · y | y ∈ Y } =
Y for all π. In particular, functions f ⊆ X × Y for nominal X,Y are equivariant if
π · f(x) = f(π · x).

Intuitively, a set is nominal if every element only depends on finitely many names.
Subsets are equivariant exactly if they are a union of orbits and functions are
equivariant if they do not depend on concrete names.

It is easy to verify that nominal sets as objects and equivariant functions as
morphisms form a well-defined category Nom. That this category provides all the
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defining structure of a Boolean topos is a much more involved result (cf. Theorem
2.23 in [Pit13]) and is beyond the scope of this dissertation.

Reconsidering the examples from above, we can state the following. First, arbi-
trary setsX equipped with the trivial group action π ·x = x are of course nominal
given that every x ∈ X has already empty support. Since all orbits are singletons,
this nominal set is orbit-finite if and only if it is finite.

The perm set A with π · a = π(a) is nominal given that every a ∈ A is supported
by {a}. Moreover, since for any b we have a = (a b) · b the set comes with the
single orbit A.

Derived structure such as the product X × Y of nominal X,Y is nominal again.
For (x, y) ∈ X,Y we obtain a finite support by taking the union of the finite
supports of x and y, respectively. The same works for finite subsets but infinite
subsets, however, are not necessarily nominal again. For instance, only the finite
and cofinite subsets of A are nominal.

If we consider syntax with A as variable names the generated set of terms is
nominal as long as the terms are finite. As soon as the grammar admits infinite
terms with infinitely many distinct variables the supports become infinite. On the
other hand, already finite grammars may allow infinitely many distinct shapes of
terms which results in infinitely many orbits. For our running example of lambda
calculus it is the case that Λ is nominal but orbit-infinite.

The last concept we introduce here is called name abstraction. This captures the
idea of treating elements of nominal sets independent from their concrete naming.
For instance, it is common to identify the lambda terms Λ which are equal up to
permutation of their bound variables, so called α-equivalence. Then it is natural
to consider equivalence classes of s ∈ Λ containing every permutation of a bound
variable x. In a next step one can obtain all instantiations for fresh names y ∈ Var
by defining a concretion operation (<x>s) @ y. We make this idea precise in the
general case as follows:

Definition 3.11. Let X be a nominal set. We define an equivalence relation on A×X
by writing (a1, x1) ≡ (a2, x2) if there is some a#(a1, x1, a2, x2) such that (a1 a) · x1 =
(a2 a) · x2. Here, the freshness condition a#(x1, . . . , xk) expresses that a 6∈ supp(xi) for
all 1 ≤ i ≤ k. We denote the equivalence class of (a, x) by <a>x and call it the a-name
abstraction of x.

For the sake of completeness we just mention some of the properties of this
construction. First, the equivalence relation ≡ itself is equivariant, that is we
have π · (a1, x1) ≡ π · (a2, x2) whenever we have (a1, x1) ≡ (a2, x2). Secondly,
π· <a>x :=<π(a)>(π · x) defines a perm action on the quotient [A]X := X/≡. It
follows that [A]X can be considered a nominal set. Finally, we can easily define
the hinted concretion operation to either recover the element x ∈ X we started
with or to obtain all other meaningful instantiations (a b) · x:



22 Chapter 3. Nominal Automata

Definition 3.12. For nominal X we define the partial concretion @ : [A]X ×A⇀ X :

(<a>x) @ b :=

{
x if b = a

(a b) · x if b 6= a and b#x

In the case where b 6= a but b ∈ supp(x) we leave (<a>x) @ b undefined.

We will see examples of name abstraction and concretion in Section 3.5.

3.4 Nominal Word Automata

We now know enough about nominal sets to study the nominal word automata
as defined by Bojanczyk et al. [BKL14]. In fact, they are exactly the same as finite
automata where the required finite components are relaxed to be orbit-finite
nominal sets. We discuss the strictly more expressive non-deterministic model:

Definition 3.13. A non-deterministic nominal automaton (NNA) A consists of:

• Σ: an orbit-finite nominal alphabet of symbols

• Q: an orbit-finite nominal finite set of states

• F ⊆ Q: an equivariant subset of final states

• δ ⊆ Q× Σ×Q: an equivariant transition relation

As we did for NFA, we write q a→ q′ if (q, a, q′) ∈ δ and for w = a1 . . . an ∈ Σ∗ we
write q w→ q′ if q a1→ q1

a2→ . . .
an→ q′ for some q1, . . . , qn−1 ∈ Q.

Acceptance of words w ∈ Σ and ultimately the q-language L(A, q) are defined
equally as for NFA. Now recall that the set A of atomic names is nominal with
a single orbit. Hence it makes an example alphabet for NNA. Since the NNA-
recognised languages with this choice of alphabet are equivariant subsets of A∗
they express properties that must be independent from the concrete names. For
instance, the regular languages of style “all words that contain at least two a” are
not expressible for this alphabet. Instead, the acceptable languages express more
general properties such as “all words that contain some letter at least two times”.

To study an example, we give an automaton accepting the above language:

• Σ := A, the countably infinite set of all atomic names.
Recall that a trivial perm action can be defined by π · a := π(a) with
supp(a) = {a}which makes it a nominal set. Moreover, the single orbit of
Σ is of course Σ itself.

• Q := {?} ∪ A ∪ A2

We define a perm action component-wise by π(?) := ?, π · a := π(a) for
a ∈ A and π · ab := π(a)π(b) for ab ∈ A2. This yields a nominal set given
that supp(?) = ∅, supp(a) = {a} and supp(ab) = supp(a) ∪ supp(b) = {a, b}.
The four orbits of Q are {?}, A, { aa | a ∈ A } and { ab | a 6= b }.
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• F := A2

This is equivariant since for any π ∈ Perm(A) and ab ∈ A2 we have π · ab =
π(a)π(b) ∈ A2. Equivalently, this can be justified by just mentioning that
A2 is a union of two orbits of Q.

• δ :=
{
?

a→ ?
}
∪
{
?

a→ a
}
∪
{
a

b→ a
}
∪
{
a

a→ aa
}
∪
{
aa

b→ aa
}

for all a, b ∈ A

Note that this in particular includes transitions a a→ a and aa a→ aa for all
a ∈ A. The relation is equivariant since each form of transitions is a union
of orbits of Q× A×Q.

Although this automaton contains infinite components, it works quite similar to
a standard finite automaton accepting words that contain a concrete symbol at
least twice. First, on the initial state ? a loop for all names is admitted. Then at
any point a consumed name a ∈ A can be used to transition to state a. Once in
this state, the automaton will only accept if a second a triggering the transition
to the state aa is encountered. It is straight-forward to establish formally that
every A-word with some name appearing at least twice can be processed by the
automaton starting in ? and ending in a final state and, conversely, that no word
with all names distinct is accepted.

Note that we only consider NNA based on the group Perm(A). As shown in the
article [BKL14], the languages of nominal automata of this form are closed under
union and intersection. However, complementation of languages is not provided
in general, the example used in the article is exactly the above language of words
containing at least one letter twice since it can be shown that there is no NNA
that accepts the complement language of words with all letters distinct.

Moreover, although the components of NNA may well be infinite, it is possible to
derive decision procedures for emptiness and acceptance if one is given concrete
representatives for all state, alphabet and transition orbits. This is due to the fact
that the orbit equivalence ≈ can be shown decidable for every nominal set and
hence particular states and symbols can be tested to be members of orbits of Q
and Σ. Then, similarly as for NFA, an algorithm just has to test the effectively
finitely many transitions and final states in order to determine a decision.

3.5 Ranked ν-Trees

The ν-calculus as developed by Stark and Pitts [PS93, Sta98] and, similarly, the
λν-calculus of Odersky [Ode94] are two extensions of the ordinary λ-calculus
with binders for new atomic names and constants for booleans. That is, the usual
grammar of λ-terms is extended with a binder νa.s introducing a fresh atomic
name a ∈ A that might occur in the body s. The main use of names in the original
calculi is to compute boolean values depending on freshness constraints. Since
we are interested in trees as input for automata, we first discuss lambda-free
ν-trees and postpone studying our fragment of the full calculi to Section 4.6.
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Said ν-trees give a finite representation of possibly infinite sets of trees over
the infinite alphabet A via the binding of unused names. We intend to develop
an automaton model in the style of Stirling’s dependency tree automata [Sti09]
which is capable of deciding properties of ν-trees and hence also properties of
pure A-trees. This use of ν-trees is very different from the use in ν-calculus
and λν-calculus which is why we develop our own semantics of this class of
structures. In fact, our use of ν extends Kozen’s work on ν-strings [KMS15] to
tree structures, which to the best of our knowledge has not been done in this way.

To simplify the automaton model, we assume A to be ranked for the remainder
of this document. In fact, to obtain an infinite supply of fresh names of arbitrary
rank, we assume A to be countably infinite on every rank. In particular, in this
setting the group Perm(A) only contains finite rank-preserving permutations,
that is for all π ∈ Perm(A) and ak ∈ A we have rk(π(ak)) = k. Then we define the
set of A-trees with nus as follows:

Definition 3.14. The set ν-Tree of ranked ν-trees is generated by:

n ::= akn1 . . . nk | νak.n

Here the names ak range over A and we assume all binders in a tree to be distinct,
that is, if n contains a nu νak then all other bound variables differ from ak.
The set Nme(n) denotes all names occurring in n, whether in a nu, free or bound.
We denote the free names of a ν-tree n by FN(n). If FN(n) = ∅ we call n closed.

Obviously, ν-trees do not contain lambdas and are well-ranked. Hence we can
identify ν-trees n ∈ ν-Tree with functions from the address domain dom(n) to the
syntax nodes of n together with a partial binding function : dom(n) ⇀ dom(n)
that maps each bound variable ak to its binder νak. For instance consider the
following ν-tree with the binding function depicted by the dotted arrows:

νa2

a2

c0 νb0

b0

From this perspective, ν-trees can be seen as a special instance or a streamlining
of the binding trees used by Stirling [Sti09] whose definition allows an arbitrary
alphabet of binders but puts some structural restrictions on the tree construction.
In our formulation we only allow a single form of binders, namely the nodes νak
for a single fresh name. On the other hand, our notion is a relaxation since we do
not require all names to be bound and allow children of names to be names again
(whereas Stirling uses dummy binders to achieve a regular alternation). Hence
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our definition naturally fits to the terms that arise from execution of programs
and moreover allows for studying properties like closedness and alternation.

In this section we study how single ν-trees n can be used to denote subsets [[n]] ⊆
A-Tree of pure A-trees (cf. Definition 3.4). The aim is to obtain a denotational
semantics in the sense that ν-trees equivalent in a certain way get assigned the
same denotation. This semantics will employ the language of nominal sets and
hence justifies classifying the soon to be defined ν-tree automata as nominal.

Before we give the definition of the denotation [[n]] we set up the framework to
apply the formalism of nominal sets. First, we can equip pure A-trees m ∈ A-Tree
with a group action by setting π · (akm1 . . .mk) := π(ak)(π ·m1) . . . (π ·mk) for
finite rank-preserving permutations π ∈ Perm(A). Since these trees are finite
and hence contain only finitely many names it follows that A-Tree is a nominal
set. Obviously, A-Tree is far from being orbit-finite given that there exist already
infinitely many strings of different length. Secondly, we can add the definitional
rule π · (νak.n) := νπ(ak).π · n to obtain a group action on ν-trees n ∈ ν-Tree. For
the same reasons as above this makes ν-Tree nominal but not orbit-finite.

Now we move to the definition of [[n]]. The idea is that we want m1,m2 ∈ [[n]]
iff m1 and m2 are α-equivalent with respect to the bound names and all nus are
instantiated with fresh names. As we will see later, this form of parametrised α-
equivalence is related to name abstraction as defined in [Pit13] and in Section 3.3.
The following examples should provide some intuition:

[[a]] = {a}
[[νa.a]] = {a | a ∈ A} = A

[[νa.ab]] = {ab | a ∈ A \ {b}}
[[a(νb.bc)]] = {abc | b ∈ A \ {a, c}}

[[a(νb.b)(νc.c)]] = {abc | b, c ∈ A \ {a}}
[[a(νb.b(νc.c))]] = {a(bc) | b, c ∈ A \ {a} ∧ c 6= b}

To improve readability, we left out the rank indices at the names and will do so
where possible and reasonable for the rest of the section. Note that it is a design
choice in order to, for instance, have abb ∈ [[a(νb.b)(νb.b)]] and aac 6∈ [[a(νb.bc)]].
The intuition we follow is the way how variables are treated in programming
languages. In distinct branches of a conditional (such as in a(νb.b)(νb.b)) we may
well introduce the same variable (meaning abb) but if there are globally or earlier
defined variables (like a and c in a(νb.bc)) we want to avoid renaming them
(which would be done by the instantiation aac). We will compare our decisions
to the work by Stark, Pitts and Odersky in Section 4.5.

We now give the formal definition. To allow for this to be compositional and
hence to enable inductive proofs, we parametrise to an additional argument that
carries the already used names as follows:
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Definition 3.15. We define functions [[−]]A : ν-Tree→ P(A-Tree) for A ∈ Pfin(A) by

mi ∈ [[ni]]A∪{ak}

akm1 . . .mk ∈ [[akn1 . . . nk]]A

m ∈ [[(ak bk) · n]]A∪{bk} bk 6∈ A ∪ FN(νak.n)

m ∈ [[νak.n]]A

We can now write [[n]] instead of [[n]]∅. Then it easy to verify that all of the above
examples are correct with respect to our formal definition. An important property
of the just defined function is equivariance:

Lemma 3.3. The function [[−]]− is equivariant, that is, we have π · [[n]]A = [[π · n]]π·A
for all finite rank-preserving permutations π, ν-trees n and finite subsets A ⊆ A.
In particular [[−]] is equivariant, that is π · [[n]] = [[π · n]].

Proof. We prove the first claim by structural induction on n ∈ ν-Tree:

• We establish π · [[an1 . . . nk]]A = [[π · (an1 . . . nk)]]π·A by:

π · (am1 . . .mk) ∈ π · [[an1 . . . nk]]A

⇔ am1 . . .mk ∈ [[an1 . . . nk]]A
def⇔ mi ∈ [[ni]]A∪{a}
IH⇔ π ·mi ∈ [[π · ni]]π·(A∪{a})
⇔ π ·mi ∈ [[π · ni]]π·A∪{π(a)}
def⇔ π(a)(π ·m1) . . . (π ·mk) ∈ [[π(a)(π · n1) . . . (π · nk)]]π·A
⇔ π · (am1 . . .mk) ∈ [[π · (an1 . . . nk)]]π·A

• We establish π · [[νa.n]]A = [[π · (νa.n)]]π·A by:

π ·m ∈ π · [[νa.n]]A

⇔ m ∈ [[νa.n]]A
def⇔ m ∈ [[(a b) · n]]A∪{b} ∧ b 6∈ A ∪ FN(νa.n)

IH⇔ π ·m ∈ [[π · ((a b) · n)]]π·(A∪{β}) ∧ b 6∈ A ∪ FN(νa.n)

(∗)⇔ π ·m ∈ [[(π(a)π(b)) · (π · n)]]π·A∪{π(b)} ∧ π(b) 6∈ π ·A ∪ FN(π · (νa.n))

def⇔ π ·m ∈ [[νπ(a).π · n]]π·A

⇔ π ·m ∈ [[π · (νa.n)]]π·A

Note that we used the simple fact that FN is an equivariant function at (∗). The
second claim follows since π · ∅ = ∅ for all π.

Since the [[n]]A denote subsets of the nominal set A-Tree it is reasonable to examine
when those subsets are equivariant themselves, that is, when π · [[n]]A = [[n]]A
holds for all π ∈ Perm(A). This is obviously not true if n contains free names,
for instance [[a]] = {a} is not equivariant since (a b) · {a} = {b}. Moreover,
allowing non-empty A causes problems since b 6∈ [[νa.a]]{b} but for a 6= b we have
b ∈ (a b) · [[νa.a]]{b}. A general formulation of this insight can be stated as follows:
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Lemma 3.4. Let n be an arbitrary ν-tree and let π be a finite rank-preserving permutation
that fixes all free names of n, that is, let π(ak) = ak for all ak ∈ FN(n).
Then [[π · n]]A = [[n]]A holds.

Proof. We prove this claim by structural induction on n ∈ ν-Tree:

• The following shows [[π · (an1 . . . nk)]]A = [[an1 . . . nk]]A:

am1 . . .mk ∈ [[π · (an1 . . . nk)]]A

⇔ am1 . . .mk ∈ [[a(π · n1) . . . (π · nk)]]A
⇔ mi ∈ [[π · ni]]A∪{a}
IH⇔ mi ∈ [[ni]]A∪{a}

⇔ am1 . . .mk ∈ [[an1 . . . nk]]A

The IH was applicable since, given that FN(ni) ⊆ FN(an1 . . . nk), if π fixes
the free names of an1 . . . nk it fixes the free names of each ni.

• The following shows [[π · (νa.n)]]A = [[νa.n]]A:

m ∈ [[π · (νa.n)]]A

⇔ m ∈ [[νπ(a).π · n)]]A

⇔ m ∈ [[(π(a) b) · (π · n)]]A∪{b} ∧ b 6∈ A ∪ FN(νπ(a).π · n)

⇔ m ∈ [[((π(b) b) ◦ π) · ((a b) · n)]]A∪{b} ∧ b 6∈ A ∪ π · FN(νa.n)

IH⇔ m ∈ [[(a b) · n]]A∪{b} ∧ b 6∈ A ∪ π · FN(νa.n)

(∗)⇔ m ∈ [[(a b) · n]]A∪{b} ∧ b 6∈ A ∪ FN(νa.n)

⇔ m ∈ [[νa.n]]A

The IH was applicable since (π(b) b) ◦ π fixes all free names of (a b) · n. To
see this, note that FN((a b) · n) = FN(νa.n) ∪ {b} and recall that we assume
π to be fixed on FN(νa.n). Then (π(b) b) ◦ π(b) concludes the justification.
The step at (∗) is just the assumed property of π.

Then we can establish the following consequence:

Lemma 3.5. If n is a closed ν-tree then [[n]] ⊆ ν-Tree is equivariant.

Proof. Note that for closed n we have FN(n) = ∅ so Lemma 3.4 is applicable for
all π. Then we prove equivariance of [[n]] by π · [[n]] = [[π · n]] = [[n]].

Note that in the definition of [[−]]− it suffices to restrict to finite sets A of used
names since, when processing a finite tree, only finitely many names will be
touched. Given that Pfin(A) is nominal since finite subsets of nominal sets are
supported by the finite union of the supports of all their elements, the function
[[−]]− lives in a nominal argument space. Contrarily, the set P(A-Tree) is not
nominal in total given that it contains for instance sets D ⊆ A that are neither
finite nor cofinite. However, we can show that [[−]]− still lives in a nominal value
space:
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Lemma 3.6. The set ran([[−]]A) is nominal for all A ∈ Pfin(A).

Proof. We show that [[n]]A ∈ has finite support Nme(n) ∪A. First recall that this
set is finite since we consider finite trees and have A ∈ Pfin(A). Now let π fix
Nme(n) ∪A, so π(ak) = ak for all ak ∈ Nme(n) ∪A. Then in particular π · n = n
and π ·A = A so we have π · [[n]]A = [[π · n]]π·A = [[n]]A.

In other words, with Lemma 3.3 and 3.6 we conclude that [[−]]− is a proper
morphism in the category Nom of nominal sets and equivariant functions. Also
note that Lemma 3.6 is an instance of the more general insight that equivariant
functions with nominal domain have a nominal range (cf. Lemma 2.12 in [Pit13]).

By now we have developed enough machinery to give a concise formulation
and proof of the correctness of our denotational semantics. As mentioned above,
correctness relies on a notion of equivalence of terms. In the context of nominal
sets, a natural choice would be the orbit-equivalence n ≈ n′ from Section 3.3
expressing that there is a permutation π with n = π · n′. However, since our
denotation function distinguishes distinct free names, we will mainly use the
slightly finer α-equivalence of bound names:

Definition 3.16. Two ν-trees n, n′ are α-equivalent, written n ≈α n′, if n = π · n′
for a finite rank-respecting permutation π that fixes all free names of n.

Note that if n = π · n′ we have FN(n) = π · FN(n′) so we could as well have
required π to fix all free names of n′ or simply both. The following fact makes the
relationship between both equivalences precise:

Fact 3.7. The following two statements hold for arbitrary n, n′ ∈ ν-Tree:
(1) If n ≈α n′ then n ≈ n′.
(2) If n ≈ n′ and n, n′ are closed then n ≈α n′.

Proof. Both are trivial, for (2) recall that FN(n) = ∅ if n closed.

We first prove the denotation function correct with respect to α-equivalence:

Theorem 3.8. For arbitrary n, n′ and A we have n ≈α n′ iff [[n]]A = [[n′]]A.

Proof. The soundness direction follows immediately from Lemma 3.4. Suppose
n ≈α n′ so there is π with n = π · n′ that fixes the free names of n and n′. Then
[[n]]A = [[π · n′]]A = [[n′]]A where we applied Lemma 3.4 in the last step. We prove
the completeness direction by mutual induction on n, n′ ∈ ν-Tree:

• Suppose [[an1 . . . nk]]A = [[an′1 . . . n
′
k]]A. By simply inverting the first def-

initional rule of [[−]]− we observe [[ni]]A∪{a} = [[n′i]]A∪{a}. This is subject
to the IH, so there are πi witnessing ni ≈α n′i. Since we assume all
binders within an1 . . . nk to be distinct the πi are mutually compatible.
Thus we can define the permutation π := π1 ◦ · · · ◦ πk that still satisfies
π · (an′1 . . . n′k) = π(a)(π ·n′1) . . . (π ·n′k) = an1 . . . nk. Moreover, since π fixes
a itself and all free names of the ni we conclude an1 . . . nk ≈α an′1 . . . n′k.
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• Now suppose [[νa.n]]A = [[νa′.n′]]A. By a similar observation as above
we obtain [[n]]A = [[(a a′) · n′]]A. Then the IH yields some π witnessing
n ≈α (a a′) · n. We easily establish νa.n ≈α νa′.n′ by considering the
permutation π ◦ (a a′).

Then a weaker form for orbit-equivalence follows for closed trees:

Corollary 3.9. For closed n, n′ we have n ≈ n′ iff [[n]]A = [[n′]]A.

Proof. This follows immediately from Theorem 3.8 and Lemma 3.7.

We conclude this section by studying the similarity of our denotation and name
abstraction from [Pit13] and Section 3.3. Intuitively, νa.n and <a>n have the
same effect in denoting the equivalence class of nwith all occurences of a replaced
by names b that are not already mentioned in n. Of course we have no exact
equality since [[νa.n]] ⊆ A-Tree whereas <a>n ⊆ A× ν-Tree but we can state the
similarity as follows:

Lemma 3.10. If n ∈ A-Tree we have [[νa.n]] = {<a>n@ b | b ∈ A} =: S.

Proof. Letm ∈ [[νa.n]] som ∈ [[(b a)·n]] for some b ∈ A\FN(νa.n). By equivariance
(b a) ·m ∈ [[n]] and since n ∈ A-Tree implies [[n]] = {n}we have m = (b a) ·n. Now
since (b a) ·n =<a>n@ bwe concludem ∈ S. The second inclusion is similar.

If we aim at generalising this result to any ν-trees we can only go as far as:

Lemma 3.11. [[νa.n]] ⊇ {<a>m@ b | b ∈ A ∧m ∈ [[n]]} =: S

Proof. Let <a>m@ b ∈ S so m ∈ [[n]]. If a = b we have <a>m@ b = m and we
clearly havem ∈ [[νa.n]] given thatm ∈ [[n]]. If b#mwe have<a>m@ b = (a b)·m.
By m ∈ [[n]] we have (a b) ·m ∈ [[(a b) · n]] so (a b) ·m ∈ [[νa.n]]. In any other case
<a>m@ b is undefined.

In fact, the converse direction is not necessarily true. For instance, we have
d(ac) ∈ [[νa.a(νb.bc)]] since d(ac) ∈ [[(a d) · (a(νb.bc))]]. However, we fail at writing
d(ac) as <a>a(bc) @ d for a 6= b 6= c. This just shows that our denotation function
is similar but not exactly the same as all possible conrections of name abstraction.

3.6 Ranked ν-Tree Automata

In this section we define an automaton model suitable to decide properties of
ν-trees. Given the denotational semantics of ν-trees from the previous section,
the accepted languages L can be lifted to languages of A-trees by taking the
union of all denotations [[n]] for n ∈ L. We roughly follow Stirling’s definition of
nondeterministic dependency tree automata in [Sti09].

Definition 3.17. A ranked ν-tree automaton (NTA)A consists of the following data:
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• Σ ⊂ A: a finite ranked alphabet

• Q = {q1, . . . qm}: a finite set of states

• L = {l1, . . . ln}: a finite set of labels

• ∆: a finite set of transitions of the following form:

(I) (q, ak)⇒ (q1, . . . , qk)

(II) ((q, l), ak)⇒ (q1, . . . , qk)

(III) (q, νak)⇒ (q′, l)

We do not require ranked ν-tree automata to be deterministic, that is, we allow distinct
rules that agree on their left-hand sides. We abbreviate the statement R ∈ ∆ for a rule R
by just stating R.

First note that the direction of the transitions is reversed in comparison to the
definition of UTA in Section 3.2. So contrarily, the defined ν-tree automata work
in a top-down fashion. The idea behind that is to follow the binding structure
more intuitively, meaning that whenever a bound name is encountered the
next transition already depends on a unique label previously assigned to the
corresponding nu. This will become more clear once we have defined runs in the
upcoming Definition 3.18. Also note that, allowing non-determinism, we could
still define the transitions bottom-up which would leave to guess the right label
when processing bound names.

As we will see at the end of this section, employing only finite subsets Σ ⊂ A and
hence only allowing finitely many transitions admits decidable acceptance and
emptiness. This restriction is not too expensive since the binding of a single new
name can express properties involving infinitely many names. For instance, if
an NTA accepts the tree νa.a then the lifted language on the level of A-trees will
include the whole of A given that [[νa.a]] = A. This is still way beyond the scope
of finite tree automata on trees without name binding.

In comparison to our definition of ranked ν-tree automata, Stirling’s dependency
tree automata run on general binding trees as they were discussed in Section 3.5.
Hence they admit an arbitrary alphabet of binders and using nus is a mere
instance. However, we alter the definition in adding labels to express the non-
local dependency of applicable transitions whereas Stirling reuses the states.
We believe that separating these two control functionalities is a simplification
of the definition of concrete automata where binding symbols can be coarsely
grouped by states and then finely specified by labels. Also, as mentioned in
the previous section, our automaton model is more general since we put less
structural restrictions like dummy binders on the input trees, allowing for testing
properties like closedness. Note that we could also give a generalised definition
independent from the concrete use of ν-trees which would yield a strictly more
expressive automaton model.

Definition 3.18. A (q0, ϕ)-run of an NTA A on a ν-tree n for a state q0 ∈ Q and a
partial label assignment ϕ : Σ ⇀ L is a partial function ρ : dom(n) ⇀ Q ∪ (Q × L)
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defined as follows. First set ρ(ε) := q0. Then iteratively, for w ∈ dom(n) with ρ(w) = q
lastly defined we set:

• If n(w) = ak and w 6∈ dom( ) and ak 6∈ dom(ϕ) and there is a transition
(q, ak)⇒ (q1, . . . , qk) we set ρ(wi) := qi for all 1 ≤ i ≤ k.

• If n(w) = ak and w  w′ and ρ(w′) = (q′, l) and there is a transition
((q, l), ak)⇒ (q1, . . . , qk) we set ρ(wi) := qi for all 1 ≤ i ≤ k.

• If n(w) = ak and w 6∈ dom( ) but ϕ(ak) = l and there is a transition
((q, l), ak)⇒ (q1, . . . , qk) we set ρ(wi) := qi for all 1 ≤ i ≤ k.

• If n(w) = νak and there is a transition (q, νak)⇒ (q′, l) we first update ρ(w) :=
(q, l) and then set ρ(w1) = q′.

This procedure is iterated until no more transitions are applicable. Note that although the
four cases above are exclusive, there may well be several distinct (q0, ϕ)-runs on n given
that the automaton itself is not necessarily deterministic. We say that a (q0, ϕ)-run ρ of
A on n is accepting and write n ∈ L(A, q0, ϕ) if dom(ρ) = dom(n) and for all leaves
a0 of n there is an applicable transition of the form (q, a0)⇒ () or ((q, l), a0)⇒ (). If ϕ
is empty we just write n ∈ L(A, q0).

This is a procedural definition following the intuition of a computation of an
actual physical machine. Given a tree, a start state and a label assignment as
input, the machine first tags the root with the start state. Then it follows the
structure downwards, always checking for a suitable rule to tag the children with
successor states and where required consulting the label assignment. It accepts if
it can tag all nodes, else it gets stuck halfway. The following illustrates a run of
a trivial automaton with enumerated states qi and labels li and some matching
transitions on our example ν-tree from Section 3.5:

νa2

a2

c0 νb0

b0

q0

−→

νa2

a2

c0 νb0

b0

q1

(q0, l0)

−→

νa2

a2

c0 νb0

b0

q1

(q0, l0)

q2 q3

−→

νa2

a2

c0 νb0

b0

q1

(q0, l0)

q2 (q3, l1)

q4

Initially, the root νa2 is tagged with q0 and we start with the empty partial label
assignment ∅. Now we assume a type (III) transition (q0, νa2)⇒ (q1, l0). Hence in
the next step the root is additionally assigned the label l0 and the child a2 is tagged
with the next state q1. Now we have a2 bound by the root νa2 which is expressed
by the binding function 1  ε. Hence only a type (II) transition depending on
both q1 and l0 is applicable. So we assume a transition ((q1, l0), a2)⇒ (q2, q3) and
tag the children with the next states q2 and q3, respectively. Next we assume a
type (III) transition (q3, νb0) ⇒ (q4, l1) and hence assign l1 to νb0 and q4 to the
child q4. This defines a (q0, ∅)-run on our example tree. It is accepting if we
assume final transitions (q2, c0)⇒ () and ((q4, l1), b0)⇒ ().
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This example should provide some intuition for the mechanical interpretation
of acceptance. However, having acceptance relativised to a start state and label
assignment, we can give a much more elegant definition:

Definition 3.19. We define the predicate n ∈ L′(A, q, ϕ) inductively by:

(q, ak)⇒ (q1, . . . , qk) ni ∈ L′(A, qi, ϕ) ak 6∈ dom(ϕ)

akn1 . . . nk ∈ L′(A, q, ϕ)
(LFCst)

((q, l), ak)⇒ (q1, . . . , qk) ni ∈ L′(A, qi, ϕ) ϕ(ak) = l

akn1 . . . nk ∈ L′(A, q, ϕ)
(LBCst)

(q, νak)⇒ (q′, l) n ∈ L′(A, q′, ϕ[ak := l])

νak.n ∈ L′(A, q, ϕ)
(LNu)

Here, ϕ[ak := l] denotes the function that behaves like ϕ but maps ak to l.

We let the reader verify that for the specified NTA A and ν-tree n from the
example above we can derive n ∈ L′(A, q0, ∅). Indeed, the definitions turn out to
be equivalent:

Lemma 3.12. n ∈ L(A, q, ϕ) ⇐⇒ n ∈ L′(A, q, ϕ)

Proof. We first prove “⇒” by induction on n ∈ ν-Tree for q, ϕ arbitrary:

• Suppose akn1 . . . nk ∈ L(A, q, ϕ). Then there exists an accepting (q, ϕ)-run
ρ with ρ(ε) = q. By being a run it holds either (q0, ak) ⇒ (ρ(1), . . . , ρ(k))
and ak 6∈ dom(ϕ) or ((q0, l), ak)⇒ (ρ(1), . . . , ρ(k)) and ϕ(ak) = l. In either
case we can define functions ρi on dom(ni) by ρi(w) := ρ(i · w). Then each
ρi is an accepting (ρ(i), ϕ)-run on ni so we have ni ∈ L(A, ρ(i), ϕ). By IH
we obtain ni ∈ L′(A, ρ(i), ϕ) and hence akn1 . . . nk ∈ L′(A, q, ϕ) by either
(LFCst) or (LBCst).

• Suppose νak.n ∈ L(A, q, ϕ). Then there exists an accepting (q, ϕ)-run ρ on
νak.n with ρ(ε) = (q, l). By being a run this yields (q, νak)⇒ (ρ(1), l). We
define a function ρ′ on dom(n) by ρ′(w) := ρ(1 · w). It follows that ρ′ is an
accepting (ρ(1), ϕ[ak := l])-run on n so we obtain n ∈ L(A, ρ(1), ϕ[ak := l]).
Then by IH we obtain n ∈ L′(A, ρ(1), ϕ[ak := l]) and we conclude νak.n ∈
L′(A, q, ϕ) by (LNu).

Now we show “⇐” by induction on n ∈ L′(A, q, ϕ):

• If we have akn1 . . . nk ∈ L′(A, q, ϕ) by (LFCst) or (LBCst) we know that
either (q0, ak) ⇒ (q1, . . . , qk) and ak 6∈ dom(ϕ) or ((q0, l), ak) ⇒ (q1, . . . , qk)
and ϕ(ak) = l. In either case IH yields ni ∈ L(A, qi, ϕ) so there exist accept-
ing (qi, ϕ)-runs ρi on ni. Then by setting ρ(ε) := q and ρ(i · w) := ρi(w) we
obtain an accepting (q, ϕ)-run on akn1 . . . nk so we conclude akn1 . . . nk ∈
L(A, q, ϕ).
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• If we have νak.n ∈ L′(A, q, ϕ) by (LNu) we know that (q, νak) ⇒ (q′, l)
and, already applying IH, that n ∈ L(A, q′, ϕ′) where ϕ′ := ϕ[ak := l].
Hence there is an accepting (q′, ϕ′)-run ρ′ on n. Then set ρ(ε) := q and
ρ(1 · w) := ρ′(w). Now note that for every occurence of ak at address w in
the body of νak.n we have w  ε. It follows that ρ is an accepting (q, ϕ)
run on νak.n and thus νak.n ∈ L(A, q, ϕ).

We discuss some straight-forward examples of ν-tree automata. First, we define a
trivial automaton Awith a single state q and label l where ∆ contains all possible
transitions for a finite alphabet Σ. Then A clearly accepts all ν-trees with names
from Σ. Secondly, if we drop all type (I) rules it accepts exactly the closed ν-trees
whereas it accepts exactly the trees with all names unbound if we drop all type
(II) rules instead. Finally, if we drop all (III) rules the resulting language will
contain all pure trees with no nus.

More generally, our automaton model subsumes finite automata on words, non-
deterministic ranked tree automata on pure ranked trees and, rephrased for
arbitrary binders, nondeterministic dependency tree automata on alternating
binding trees. The first two are clear since words and ranked trees are special
forms of ranked ν-trees and the transitions of NFA and UTA are type (I) tran-
sitions of NTA. The latter holds since we effectively allow the same shapes of
transitions but have a more general definition of the input trees.

We now study some algorithmic properties of ν-tree automata. First, we will
describe procedures to obtain automata for union and intersection. Secondly, we
will establish decidability of acceptance and emptiness. The first part consists of
the following lemma:

Lemma 3.13. Languages of ν-tree automata are closed under boolean operations, that is:
(1) For all A1,A2, q1, q2, ϕ1, ϕ2 there exist A, q, ϕ with

L(A, q, ϕ) = L(A1, q1, ϕ1) ∪ L(A2, q2, ϕ2)

(2) For all A1,A2, q1, q2, ϕ1, ϕ2 there exist A, q, ϕ with

L(A, q, ϕ) = L(A1, q1, ϕ1) ∩ L(A2, q2, ϕ2)

Proof. We outline the constructions of the respective automata:

(1) This is a standard disjoint union construction. We first assume all compo-
nents ofA1 andA2 disjoint. Then we formA by the union of all respective
components. This again defines a ν-tree automaton and it is easy to see
that it accepts the union of both languages.

(2) This is a standard product construction. If we form the cartesian product
of states and, respectively, labels we can define a set of transition rules
simulating transitions in both automata at once. This defines a ν-tree
automaton that accepts the intersection of the given languages. The only
thing to consider is to make sure the automata are disjoint so the label
assignments do not clash.
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To date we do not have a construction for complementation but the literature
provides some confidence. First, it is a standard result that pure tree automata are
closed under complementation [CDG+07]. Secondly, in [HORT16] it was shown
that Stirling’s alternating dependency tree automata [Sti09] have complements.
This is a very similar model that only differs in the alternation. However, this
difference might already be enough to find an NTA-language with non-acceptable
complement.

Now considering our two standard decision problems, the restriction to finite
Σ and ∆ is crucial. Both algorithms basically try out all applicable transitions
blindly. Hence we do not claim at all that there are no faster procedures possible.
The proof for acceptance is simple as given a ν-tree n, a derivation must follow
the finite structure of n:

Lemma 3.14. Acceptance by ν-tree automata is decidable, that is, for any A, q, ϕ and n
there is an algorithm deciding n ∈ L(A, q, ϕ).

Proof. This is because in a derivation of n ∈ L(A, q, ϕ) only finitely many choices
of (LFCst), (LBCst) and (LNu) are applicable at any stage. Hence a decision
procedure trying out all combinations until it either finds a correct derivation or
runs out of options can be implemented.

The decidability of emptiness is a little more involved since given some state q0

and label assignment ϕ0 there is principally no bound on the size of the ν-trees
n ∈ L(A, q0, ϕ0). However, we show that it is possible to define an algorithm that
computes the smallest tree for every of the finitely many pairs (ϕ, q) that admit
an accepted tree at all.

Lemma 3.15. Emptiness of the language L(A, q0, ϕ0) of a ν-tree automaton is decidable.

Proof. Consider the following pseudo-code of a decision procedure:

t r e e s (ϕ, q ) :=⊥
changed := True

while changed :
changed := Fa l se

for ϕ ∈ Σ ⇀ L :

for (q, ak)⇒ (q1, . . . qk) ∈ ∆ with q 6∈ dom ( t r e e s (ϕ ) ) :
i f {q1, . . . qk} ⊆ dom ( t r e e s (ϕ ) ) and ak 6∈ dom(ϕ) :

t r e e s (ϕ, q ) :=ak ( t r e e s (ϕ, q1 ) ) ( t r e e s (ϕ, qk ) )
changed := True

for ((q, l), ak)⇒ (q1, . . . qk) ∈ ∆ with q 6∈ dom ( t r e e s (ϕ ) ) :
i f {q1, . . . qk} ⊆ dom ( t r e e s (ϕ ) ) and ϕ(ak) = l :

t r e e s (ϕ, q ) :=ak ( t r e e s (ϕ, q1 ) ) ( t r e e s (ϕ, qk ) )
changed := True
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for (q, νak)⇒ (q′, l) ∈ ∆ with q 6∈ dom ( t r e e s (ϕ ) ) :
i f q′ ∈ dom ( t r e e s (ϕ[ak := l] ) ) :

t r e e s (ϕ, q ) :=νak. ( t r e e s (ϕ[ak := l]), q′ )
changed := True

return t r e e s (ϕ0, q0 ) !=⊥

In words, we first initialise a partial function trees: (Σ ⇀ L) ⇀ Q ⇀ ν-Tree
that is supposed to store the first encountered ν-tree accepted for every pair
(ϕ, q). Then as long as new trees are generated, we run over all possible label
assignments ϕ and test all transitions whether they can be used to construct a
new tree from already existing ones. Once no new trees can be composed, the
algorithm terminates and looks up trees to determine whether there is some
n ∈ L(A, q0, ϕ0).

If we forget about the label assignments for a moment, the idea is straight-forward.
In the first iteration all trees consisting of a single leaf are constructed. Now say
we have two of these leaves b0 and c0 accepted from q1 and q2, respectively.
Then in the next iteration it is tested whether there is a transition of shape
(q, a2)⇒ (q1, q2). If so, the tree a2b0c0 is stored as a tree accepted from q. Once a
tree is obtained for a state q there is no need to find further ones since all trees
accepted from q equally allow for constructing more complex trees for other
states. Finally, considering label assignments again basically adds another loop
and some jumps in the table trees whenever binding occurs.

This procedure always terminates since all loops are bounded, note that the finite
domain of the partial function trees implicitly binds the while-loop. All trees
constructed are accepted by the automaton via the conditionals and eventually
all combinations are touched so no witnesses get missed.

Thus ranked ν-tree automata as defined in this section yield well-defined deci-
sion procedures for properties of ν-trees and, using the assigned denotational
semantics from Section 3.5 also for pure Σ-trees.



Chapter 4
Correspondence Proofs

In this chapter we bring together the two previous ones in presenting several
instances of the type system-automaton correspondence, that is, for each of the
discussed automaton models we show how to define intersection type systems
which characterise the programs that compute accepted input. Since much of
the correspondence is independent from the actual automaton model, we first
describe the general procedure in Section 4.1. Then the remaining chapter can
be seen as an evaluation of this schematic correspondence proof with respect to
generality. In the following three sections, we show it strong enough to provide a
unified treatment for all of finite word automata, unranked tree automata and
nominal word automata. However, rather exotic automaton models such as
our ranked ν-tree automata that rely on an extended term language constitute a
limitation of the general scheme and hence we have to work out an independent
proof. Before we study this final instance we fit in a brief comparison of ν-calculus,
λν-calculus and the smaller fragment we actually use in Section 4.5.

4.1 The General Scheme

We first discuss the properties of a slightly enriched lambda calculus with ad-
ditional constants that will play the role of word or tree constructors. We show
that all of subject reduction, subject expansion and weak normalisation are unaf-
fected. Then we outline how to establish a correspondence between a particular
automaton and a type system. We first define the extended term language:

Definition 4.1. For a set Σ, the set ΛΣ of terms with constants is generated by:

s, t ::= x | λx.s | st | a

The variables x still range over the countable set Var and the constants a range over Σ.

36
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Then we can extend ITLC to incorporate arbitrary typings for constants:

Definition 4.2. Let Σ be a set. A system Σ-ITLC of judgements Γ `Σ s : τ for terms
s ∈ ΛΣ and types τ ∈ IType given a binary relation P ⊆ Σ × IType consists of ITLC
together with the following constant rules induced by P :

P (a, τ)

Γ `Σ a : τ
(Cst)

Here a ∈ Σ and we may leave out the subscript in `Σ where possible and reasonable.

We prove every Σ-ITLC well-behaved by giving a translation of typings in Σ-ITLC
to pure ITLC. To this end consider the following definition:

Definition 4.3. Let Γ `Σ s : τ be a judgement in a Σ-ITLC. We denote s with all
constants a replaced by corresponding variables xa by s′. Moreover, for any a ∈ s we
denote by τa1 , . . . τ

a
ka

all types that are derived from instances of (Cst) during deriving
Γ `Σ s : τ . Then we set Γ′ := Γ ∪ {xa :

∧
τai | a ∈ s }.

This translation is easily shown correct in the following sense:

Fact 4.1. If Γ `Σ s : τ then Γ′ ` s′ : τ .

Proof. This is by an induction on the derivation of Γ `Σ s : τ , every occurrence
of (Cst) can be replaced by an application of (Var) in the extended context Γ′.

Now we can show the lemma that establishes the wished properties for any Σ:

Lemma 4.2. Any Σ-ITLC satisfies subject reduction, expansion and weak normalisation:
(1) if Γ `Σ s : τ and s→ t then Γ `Σ t : τ ,
(2) if Γ `Σ t : τ and s→ t then Γ `Σ s : τ and
(3) if Γ `Σ s : τ then s ∈WN.

Proof. We first show subject reduction, so suppose Γ `Σ s : τ and s → t. By
Fact 4.1 we know that Γ′ ` s′ : τ and it is trivial that we have a reduction s′ → t′

where t′ denotes t after the same replacement of constants with variables. Now
we can apply subject reduction of pure ITLC and hence obtain Γ′ ` t′ : τ . Then
by reversing the translation again we conclude Γ `Σ t : τ .
The proof for subject expansion is similar. For weak normalisation just suppose
Γ `Σ s : τ . Then Γ′ ` s′ : τ and hence s ∈ WN by weak normalisation of pure
ITLC (Theorem 2.9).

We can now outline the structure of any particular correspondence proof. First, fix
an automaton A of a certain model. This provides sets Σ and Q and a collection
of transitions. The alphabet Σ induces the set ΛΣ from Definition 4.1 and we
employ Q as base types for IType, denoted ITypeQ following Definition 2.6. Then
we say that s ∈ ΛΣ has a strong normal form n if s→∗ n and n is a well-formed
input word or tree for A. In this case we reuse the notation s ⇓ n and note that,
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since they contain no lambdas, strong normal forms are in particular β-normal.
The main objective is to define a Σ-ITLC where the instances of (Cst) capture the
transition relation of A. Then for this system, denoted A-ITLC, we prove the
correspondence of type system and automaton for strong normal forms together
with the property that base-typable normal forms must already be strong:

Lemma. The following two hold for A-ITLC:
(1) For a strong normal form n we have ` n : q iff n ∈ L(A, q).
(2) If n is β-normal and ` n : q then n is strongly normal.

Sketch. All claims follow from induction on the derivation of the respective assumption.

The exact proof of this correspondence lemma of course depends on the actual
automaton model. By contrast, the generalisation to any term of ΛΣ follows
immediately with the properties of the system Σ-ITLC:

Theorem. For any s ∈ ΛΣ we have `A s : q iff there is n with s ⇓ n and n ∈ L(A, q).

Proof. Suppose ` s : q, then by normalisation there is a β-normal form n with s→∗ n.
Then by subject reduction ` n : q and the two parts of the correspondence lemma imply
s ⇓ n and ultimately n ∈ L(A, q).
Conversely, if we assume s ⇓ n and n ∈ L(A, q) we have ` n : q by (1) of the
correspondence lemma and conclude ` s : q with subject expansion.

In the next three sections we study direct instances of this procedure for finite
word and tree automata as well as Bojanczyk’s nominal automata. The proof for
ranked ν-tree automata will be slightly more complex but it still follows a similar
structure.

4.2 Type Systems for Finite Word Automata

This first instance is nearly trivial and we just mention it to illustrate a correspon-
dence proof in the absence of any technical overhead. If we consider a particular
NFA A, we obtain sets Σ and Q that form the terms in ΛΣ and types in ITypeQ.
Then the strong normal forms are exactly the unary trees of shape a(b(. . . (c) . . . ))
for a, b, . . . , c ∈ Σ. We define the Σ-ITLC for A, abbreviated A-ITLC, by:

Definition 4.4. Let A be an NFA. The system A-ITLC of judgements Γ `A s : τ for
terms s ∈ ΛΣ and types τ ∈ ITypeQ consists of the rules of ITLC together with:

q
a→ q′ q′ ∈ F
Γ `A a : q

(F )
q

a→ q′

Γ `A a : q′ → q
(Cst)

As usual, we may leave out the subscript in `A where possible and reasonable.

The intuition is that a word is assigned a type q iff it is accepted by A starting in
state q. Hence, by rule (F) we can assign a type q to a single symbol a if there is
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a a-transition from q to a final state. Moreover, if there is any transition q a→ q′

we can type a with q′ → q since by prepending a we can transform a word being
accepted from q′ to a word being accepted from q.

By Lemma 4.2 we know that the Σ-ITLC for any NFAA is well-behaved, meaning
that it satisfies subject reduction, subject expansion and weak normalisation.
Hence, in order to establish the general correspondence of type system and
automaton it suffices to show the correspondence lemma:

Lemma 4.3. Let A be an NFA. Then the following two hold for A-ITLC:
(1) For a strong normal form n we have ` n : q iff n ∈ L(A, q).
(2) If n is β-normal and ` n : q then n is strongly normal, that is a Σ-word.

Proof. We establish (1) by natural induction on the length of the word n:

• Since the empty word ε is no actual term of ΛΣ, the base case is length 1.
Hence we want to show that ` a : q iff a ∈ L(A, q). The only rule justifying
` a : q is (F), so we know q

a→ q′ for some q′ ∈ F . This already shows
a ∈ L(A, q). Conversely, assuming a ∈ L(A, q) yields the necessary facts to
witness ` a : q.

• In the inductive case we want to show ` an : q iff an ∈ L(A, q) and may
assume by IH that ` n : q′ iff n ∈ L(A, q′) for any q′ ∈ Q. So suppose
` an : q. This is a function application and hence inverts to ` a : q′ → q and
` n : q′ for some q′ ∈ Q. Then by IH we have n ∈ L(A, q′) so there is qF ∈ F
with q′

n→ qF . But since ` a : q′ → q implies q a→ q′ by inverting (Cst)
we also have q an→ qF and hence an ∈ L(A, q). Conversely, if we assume
an ∈ L(A, q) we obtain q′ ∈ Q and qF ∈ F with q a→ q′

n→ qF which implies
` an : q employing the IH for n ∈ L(A, q′).

Now we show (2) by induction on the derivation of ` n : q:

• A derivation by (Var) is impossible since we consider the empty context.

• Likewise, a derivation by (Abs) is impossible since we consider a base type.

• So consider a derivation by (App), say we have ` n1n2 : q for both n1, n2

β-normal. By inversion we obtain ` n1 :
∧
τi → q and ` n2 : τi for

some τ1, . . . , τk. Since we assume n1n2 to be β-normal, the judgement
` n1 :

∧
τi → q cannot rely (Abs). The only other rule deriving a function

type is (Cst) so we have n1 = a and
∧
τi = q′ for some a ∈ Σ and q′ ∈ Q.

Then by the IH for ` n2 : q′ we know that n2 is a proper word and hence so
is n1n2 = an2.

• The rules (F) and (Cst) derive typings for trivial words.

Having established the correspondence for normal forms, the generalisation to
arbitrary terms is completely generic:

Corollary 4.4. For any NFA A we have `A s : q iff there is s ⇓ n with n ∈ L(A, q).

Proof. This is exactly as outlined in Section 4.1.
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We end this section with a remark concerning decision problems of the system
A-ITLC. As we have observed in Section 2.3, general typability, type checking
and type inhabitance are not decidable for ITLC and, given the mutual reduction
outlined in the proof of Lemma 4.2, so they are for any Σ-ITLC. However, if
we restrict to base types and strong normal forms typability and type checking
become decidable. Moreover, we can decide type inhabitance for base types with
arbitrary terms:

Lemma 4.5. For any NFA A, the system A-ITLC has decidable normal typability,
normal type checking and base type inhabitance, that is, there are algorithms that decide
(1) for a given strong normal form n ∈ ΛΣ whether there is a state q ∈ Q with ` n : q,
(2) for given n, q whether ` n : q and
(3) for given q whether there is s with ` s : q.

Proof. First note that, given only finitely many base types q ∈ Q there is a
straight-forward reduction of normal type checking to normal typability by just
testing ` n : q for all q ∈ Q. Now, normal type checking is decidable since by
Lemma 4.3 it is equivalent to the decidable acceptance problem of the NFA A.
Finally, recall that for given q there is an algorithm deciding whether there is n
with n ∈ L(A, q). If so, then by the correspondence lemma ` n : q. If not, there
is also no s ∈ ΛΣ with ` s : q since, by Corollary 4.4 it would reduce to a strong
normal form n witnessing n ∈ L(A, q).

4.3 Type Systems for Finite Tree Automata

We next study the correspondence for unranked tree automata. Note that all
other common automaton models on finite trees, in particular on ranked trees,
then can be considered special cases of this correspondence. The development
follows exactly the structure from the previous chapter, only the proof of the
correspondence lemma differs.

First consider some UTA A. As above this gives rise to the set ΛΣ of terms with
constants from the alphabet Σ and IType with base types from the state space Q.
The strong normal forms are the Σ-trees, note that these are exactly the lambda-
free terms from ΛΣ. Based on these components we can define a type system as
follows:

Definition 4.5. Let A be an UTA. The system A-ITLC of judgements Γ `A s : τ for
terms s ∈ ΛΣ and types τ ∈ ITypeQ consists of the rules of ITLC together with:

(L, a, q) ∈ δ q1 . . . qk ∈ L
Γ `A a : q1 → · · · → qk → q

(Cst)

As usual, we may leave out the subscript in `A where possible and reasonable.

Considering a symbol a ∈ Σ as a tree constructor we can provide intuition for
the rule above. Suppose there are trees n1, . . . , nk that are accepted from states
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q1, . . . , qk, respectively. Hence they can be assigned the respective states as types.
Then, provided there is a matching transition, the tree an1 . . . nk is accepted from
state q so it makes sense to assign a the type q1 → · · · → qk → q.

Again, the systems A-ITLC are well-behaved by Lemma 4.2. Hence, as for NFA
before, we only need to establish the correspondence lemma for UTA:

Lemma 4.6. Let A be an UTA. Then the following two hold for A-ITLC:
(1) For a strong normal form n we have ` n : q iff n ∈ L(A, q).
(2) If n is β-normal and ` n : q then n is strongly normal, that is a Σ-tree.

Proof. We show (1) by structural induction on n ∈ Σ-Tree:

• Suppose ` an1 . . . nk : q. This is a k-fold function application and since
(Cst) is the only rule that assigns a type to a the original judgement inverts
to ` a : q1 → · · · → qk → q and ` ni : qi for some q1, . . . qk ∈ Q. Further, the
typing of a witnesses a transition (L, a, q) ∈ δ with q1 . . . qk ∈ L. Moreover,
the IH for ` ni : qi yields ni ∈ L(A, qi) hence we can altogether apply the
rule (LCst) to establish n ∈ L(A, q).

• Conversely, if we start with n ∈ L(A, q) we can invert (LCst) and obtain a
transition (L, a, q) ∈ δ with q1 . . . qk ∈ L together with the guarantee that
ni ∈ L(A, qi). The latter is subject to the IH, yielding ` ni : qi and thus
` an1 . . . nk : q by applying (Cst) and (App).

Part (2) is again by induction on the derivation of ` n : q. As for NFA, the
cases (Var), (Abs) and (Cst) are either impossible or trivial. Hence, suppose we
are in the case (App), so assume ` nn′ : q. As before, since nn′ is β-normal n
cannot be a lambda. Hence we actually must have nn′ = (an1 . . . nk−1)nk for
a ∈ Σ and β-normal n1, . . . nk ∈ ΛΣ. Then the typing ` an1 . . . nk : q inverts to
` a : q1 → · · · → qk → q and ` ni : qi for some q1, . . . qk ∈ Q. By IH all ni are
strongly normal and hence we can conclude that so is an1 . . . nk = nn′.

Note that the proof of the first claim becomes very concise using the inductive
reformulation of L(A, q), all technical arguing about accepting runs is hidden.
The effect will be even more helpful in the proof for ranked ν-tree automata in
Section 4.6. Again, the general correspondence follows immediately:

Corollary 4.7. For any UTA A we have `A s : q iff there is s ⇓ n with n ∈ L(A, q).

Proof. This is again exactly as in Section 4.1.

Finally, since we know that acceptance and emptiness are decidable for UTA, we
have the same decidability results for the UTA systems as for the NFA systems:

Lemma 4.8. For any UTA A, the system A-ITLC has decidable normal typability,
normal type checking and base type inhabitance (cf. Lemma 4.5).

Proof. This is by the same justification as Lemma 4.5.
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4.4 Type Systems for Nominal Word Automata

Since nominal automata as introduced by Bojanczyk do not differ from classical
finite word automata from an operational perspective, the correspondence proof
for NNA is exactly the same as for NFA. We just give the key definitions and
statements for completeness, for the proofs we refer to Section 4.2. Note that in
this section, strong normal forms are again words over an alphabet Σ.

Definition 4.6. Let A be an NNA. The system A-ITLC of judgements Γ `A s : τ for
terms s ∈ ΛΣ and types τ ∈ ITypeQ consists of the rules of ITLC together with:

q
a→ q′ q′ ∈ F
Γ ` a : q

(F )
q

a→ q′

Γ ` a : q′ → q
(Cst)

As usual, we may leave out the subscript in `A where possible and reasonable.

Although this system looks the same as the one for NFA it differs substantially
in size. While the finite components of NFA only induce finitely many rules
of the form (F) and (Cst) there may be infinitely many such instances when
considering an NNA. That the NNA system still comes with the same decidability
results (Lemma 4.11) can be attributed to the fact that the typing relation is fully
equivariant, that is, if we have Γ `A s : τ then also π · Γ `A π · s : π · τ for all
π ∈ Perm(A) for the self-explanatory perm actions on contexts, terms and types.

Once again we refer to Lemma 4.2 to justify that the NNA systems are well-
behaved. Then we proceed as in the two instances before:

Lemma 4.9. Let A be an NNA. Then the following two hold for A-ITLC:
(1) For a strong normal form n we have ` n : q iff n ∈ L(A, q).
(2) If n is β-normal and ` n : q then n is strongly normal, that is a Σ-word.

Proof. This is the same as for NFA, so we just refer to Lemma 4.3.

The correspondence for arbitrary terms is established in the usual manner:

Corollary 4.10. For any NNA A we have `A s : q iff there is s ⇓ n with n ∈ L(A, q).

Proof. This is once again exactly as in Section 4.1.

Finally, since we have observed decidability of emptiness and acceptance of
NNA in Section 3.4, we can conclude the same results for A-ITLC as for the finite
automaton models from the previous sections:

Lemma 4.11. For any NNA A, the system A-ITLC has decidable normal typability,
normal type checking and base type inhabitance (cf. Lemma 4.5).

Proof. This is by the same justification as Lemma 4.5. The reduction from type
checking to typability still works given the decidability of orbit equivalence
together with the orbit-finiteness of Q.
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4.5 On ν-Calculus and λν-Calculus

Before we move on to our final instance of a correspondence proof, we give a
brief summary of Pitts’ and Stark’s ν-calculus [PS93] and the similar λν-calculus
[Ode94] by Odersky in order to introduce the class of programs that compute
ν-trees as input for ν-tree automata. This class will be the set ν-Term from Defini-
tion 4.7 and the corresponding notion of reduction is defined in Definition 4.8.
Both calculi address the theoretical treatment of bound names with local scopes
in (functional) programming languages. After a comparison of the two calculi
we clarify in which sense our work on ranked ν-trees is related.

Both ν-calculus and λν-calculus are based on a simply typed lambda calculus
with nus acting as binders for local names. Concretely, the term language is
defined as follows:

Definition 4.7. The set ν-Term is generated by the following grammar:

s, t ::= x | λx.s | st | a | νa.s

We have the variables x ranging over Var and the names a ranging over A.

In particular, ν-trees are β-normal ν-terms, so it makes sense to consider ν-Term
as programs computing ν-trees. Also note that ν-Term is actually just a fragment
of the terms used in the original calculi since both also contain boolean constants,
equality tests for names and pairs. We focus on this fragment since it will serve
as the base for our type system in the next section but we may use some of the
missing language features informally to point out differences between the two
original calculi.

The typing rules for ν-calculus and λν-calculus are the rules of STLC plus straight-
forward rules for the additional language components. In particular, for the
introduced names and nus they are:

Γ ` a : Nme
Γ ` s : τ

Γ ` νa.s : τ

Here Nme is a type constant in Type and we only consider simple types τ ∈ SType.

So the syntax of ν-calculus and λν-calculus is the same and we have to move
on to the respective semantics to unveil the actually quite different behaviour.
On the one hand, the keywords for understanding ν-calculus are “dynamically
allocated names” and “state-based evaluation”. Dynamically allocated means
that, when processing a ν-term as a program, every time a nu is encountered
a fresh name is generated. In fact, Pitts and Stark concretely mention the type
unitref of references to the unit object in ML as the domain of names. Then
the evaluation becomes state-based given that during computation a state of
currently active references is manipulated.
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Formally, this boils down to defining an operational semantics of the form
(S, s) ⇓ν (S′, v) where S is a collection of local names before execution of s and S′

is the final state after evaluating s to the value v. We write s ⇓ν (S′, v) whenever
the initial state S is empty. For instance, νa.a ⇓ν ({a} , a) is such an evaluation
where the final state {a} simply displays that when processing νa.a a new name
a was allocated. Another example that underlines the dynamic behaviour is
that (λx.x = x)(νa.a) ⇓ ({a} , true) whereas (νa.a) = (νa.a) ⇓ ({a, b} , false). The
former equality test evaluates to true since first the nu creates a new name a
which is then tested equal with itself. The latter evaluates to false since the two
nus create two distinct new names a and b. Thus ν-calculus does not satisfy
normal β-reduction.

Odersky’s λν-calculus, on the other hand, is a direct extension of β-reduction with
the “scope-intruding” rule νa.λx.s → λx.νa.s (and similar for pairs) together
with νa.b→ b for b 6= a. This yields a very different behaviour of the local names,
for instance the term νa.a fails to be reducible and in contrast to the example
above we have (λx.x = x)(νa.a) → (νa.a) = (νa.a) where the latter admits no
further reductions. However, it was shown in [LP11] that dynamically allocated
names can still be simulated within this system which admits a translation of
terms from ν-calculus to λν-calculus.

We end this rather conceptual discussion with a few remarks on our work on
ranked ν-trees. Our motivation is that we consider ν-terms as a set of programs
that compute ν-trees which in turn denote sets of A-trees. This purpose has
consequences for the applicable type system that actually marks our work very
different from the two original calculi. First, if we were to include the first typing
rule for names, most of the ν-trees would remain untypable since for trees like
a2b0b0 we need to assign a function type to a2. Secondly, the rule for nus does
not fit to automata that might change their state when processing a tree like νa.a.
Here we would like to assign the subtree a a type q if it is accepted from state q
but do not want to require the whole νa.a to be accepted from the same state q.
So even before mentioning intersection types, our type system will necessarily
differ substantially from the simple types assigned in ν-calculus and λν-calculus.

As we have seen in the previous sections, our type systems come with a well-
behaved notion of reduction and it is natural to require the same for the type
systems capturing NTA. Hence we employ an Odersky-style reduction that
extends the normal β-reduction by a rule for nus. Formally, we define:

Definition 4.8. We introduce the ν-reduction relation s→ν t by the rules

(λx.s)t→ν s[t/x] νa.λx.s→ν λx.νa.s

and the usual contextual closure for one-sided reduction and reduction under lambda.
Again, reflexive-transitive closure is usually denoted s→∗ν t and the smallest equivalence
relation closed under ν-reduction is usually called ν-conversion.
We will mostly leave out the subscript ν.
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Since we can simply push nus through lambdas it is clear that ν-reduction still
satisfies the Church-Rosser property stating that arbitrary reduction paths from
the same root can be unified again. Thus the extended relation is equally well-
behaved admitting in particular unique normal forms.

Note that we left out the second rule in λν-calculus that stated νa.b → b for
a 6= b. The reason is that, in order to match our use of names as tree constructors,
it would require generalisation to arbitrary ν-trees along the lines νa.n → n
if a 6∈ FN(n). However, this would be an unnecessary complication since we
consider programs that compute ν-trees and hence do not actually want to have
those trees reduce any further. In fact, employing such a rule would cause the
familiar incompatibility with subject conversion since νa.b and b are assigned
different types if the corresponding automaton changes its state during the run.

Now, having formalised a set of terms and a notion of reduction, we can finally
define type systems that capture the transitions of an NTA. As in the instances
before, this will follow the compositional style of automaton acceptance, provid-
ing one rule for every shape of transitions. To obtain a type system that is closed
under conversion as usual, this will require a push rule of the form

Γ `A λx.νa.s : σ → τ

Γ `A νa.λx.s : σ → τ

that allows for subject expansion. To see this, note that the base ITLC system
enriched with rules for the constructors of ν-trees does not at all provide typings
for terms of the form νa.λx.s. However, since we might face a reduction sequence
like (νa.λx.x)b→ (λx.νa.x)b→ νa.b where the ν-tree νa.b may well be accepted
from a state q we must require the type system to assign type q to the ν-term
(νa.λx.x)b as well. Hence the push rule. The formal definition of a type system
for an NTA and the correspondence proof are subject of the next section.

We end this section with a remark on the denotational semantics of ν-trees from
Section 3.5. As outlined in [Pit13], there are ways to define denotational semantics
for both ν-calculus and λν-calculus (cf. Sections 9.4 and 9.6). However, they differ
fundamentally from our denotation of subsets of A-trees in that they map types
to nominal sets and typed terms to elements of those sets. This is a semantics that
focuses on the meaning of programs whereas we are interested in the meaning of
the resulting trees themselves.

4.6 Type Systems for Ranked ν-Tree Automata

In this section we present the final type system-automaton correspondence for
NTA. So far we have seen that finite word and tree automata as well as the
already rather special nominal word automata have correspondences that are
direct instances of the general scheme from Section 4.1. However, given that they
are based on a richer set of terms, NTA do not fit to this unified treatment.
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Still, the structure of this section will be very similar to the previous instances
but there will be some subtleties that require careful discussion. In order to
incorporate the nus in ν-trees we base our type system on the terms in ν-Term
from Definition 4.7 and rely on ν-reduction from Definition 4.8. In fact, since
all NTA have their alphabet embedded into A, the corresponding systems share
their set of terms and only differ in the set of types and, obviously, instances of
constant rules. The strong normal forms are the well-formed input terms of NTA,
the ranked ν-trees. Then, for a given NTA we define the corresponding type
system as follows:

Definition 4.9. Let A be an NTA. The system A-ITLC of judgements Γ, ϕ `A s : τ for
terms s ∈ ν-Term and types τ ∈ ITypeQ consists of the rules of ITLC together with:

Γ, ϕ `A λx.νak.s : σ → τ

Γ, ϕ `A νak.λx.s : σ → τ
(Push)

(q, ak)⇒ (q1, . . . , qk) ak 6∈ dom(ϕ)

Γ, ϕ `A ak : q1 → · · · → qk → q
(FCst)

((q, l), ak)⇒ (q1, . . . , qk) ϕ(ak) = l

Γ, ϕ `A ak : q1 → · · · → qk → q
(BCst)

(q, νak)⇒ (q′, l) Γ, ϕ[ak := l] ` s : q′

Γ, ϕ `A νak.s : q
(Nu)

In all other rules of ITLC, the label assignment ϕ is just passed on without effect.
As usual, we may leave out the subscript in `A where possible and reasonable.

Note that, similar as in the inductive definition of acceptance from Section 3.6, we
need to consider typing judgements relative to label assignments ϕ to allow for
full compositionality. Then the rules are justified as follows. The (Push) rule is
actually independent from the automatonA and makes the system satisfy subject
expansion (cf. Section 4.5 for a discussion of this rule). The rules (FCst), (BCst)
and (Nu) capture the transitions of type (I), (II) and (III), respectively. The former
two work similar as the (CSt) rule for UTA, providing the correct function type
for a tree constructor ak. The latter captures the transition of an automaton from
a binder to its body. Note that, as outlined in the previous session, these rules
mark the type systems A-ITLC remarkably different from the simple type system
underlying ν-calculus and λν-calculus.

Also, since the systems A-ITLC for NTA are no pure instances of Σ-ITLC as
defined in Section 4.1, we cannot apply Lemma 4.2 directly in order to establish
the usual properties making the system well-behaved. However, given that
the additional (Push) rule was introduced exactly for the purpose of achieving
subject expansion as one of those properties, it remains easy to justify them for
the extended system:
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Lemma 4.12. Let A be an NTA. Then A-ITLC satisfies all of subject reduction, subject
expansion and weak normalisation.

Proof. We discuss the interesting cases for the three inductive proofs:

• For subject reduction, suppose there are s, t ∈ ν-Term with s → t and
Γ, ϕ ` s : τ . Then we show Γ, ϕ ` t : τ by induction on the derivation of
s→ t. The only non-standard case is where νa.λx.s→ λx.νa.s where the
assumed judgement has the form Γ, ϕ ` νa.λx.s : τ . Since (Push) is the
only rule that provides a type for such a term, we can invert the derivation
and obtain the wished Γ, ϕ ` λx.νa.s : τ .

• Similarly, for subject expansion we assume s→ t and Γ, ϕ ` t : τ . We show
the claim Γ, ϕ ` s : τ again by induction on s → t. All cases are standard
except for νa.λx.s→ λx.νa.s with the assumption Γ, ϕ ` λx.νa.s : τ . Here
we conclude the claim Γ, ϕ ` νa.λx.s : τ immediately by citing (Push).

• For weak normalisation, suppose we have a judgement Γ, ϕ ` s : τ . Then
we want to find a ν-normal form for s, that is n ∈ ν-Term with s →∗ν n
that admits no further reductions. Note that it suffices to find β-normal
forms since every β-normal form reduces to a ν-normal form by pushing
all remaining nus through the remaining lambdas. Now, in the cases where
the typing Γ, ϕ ` s : τ was not derived by (Push) we can consider it a pure
Σ-ITLC typing and hence, by Lemma 4.2 find a β-normal form n ∈ ν-Term
for s. If the derivation was Γ, ϕ ` νak.λx.s by Γ, ϕ ` λx.νa.s : τ and (Push)
the IH yields a ν-normal form for λx.νa.s. Then this is also a ν-normal form
for νak.λx.s given that νak.λx.s→ν λx.νa.s.

We proceed in the usual manner, so we first show the correspondence lemma:

Lemma 4.13. Let A be an NTA. Then the following two hold for A-ITLC:
(1) For a strong normal form n we have ϕ ` n : q iff n ∈ L(A, q, ϕ).
(2) If n is ν-normal and ϕ ` n : q then n is strongly normal, that is a ν-tree.

Proof. The first claim is by structural induction on n ∈ ν-Tree:

• Consider the ν-tree akn1 . . . nk and suppose akn1 . . . nk ∈ L(A, q, ϕ). De-
pending on whether or not ak ∈ dom(ϕ) this was derived by (LFCst) of
(LBCst). In either case we obtain ni ∈ (A, qi, ϕ) together with a witnessing
transition (q, ak)⇒ (q1, . . . , qk) if ak 6∈ dom(ϕ) and ((q, l), ak)⇒ (q1, . . . , qk)
if ϕ(ak) = l. Then by IH we have ϕ ` ni : qi which is enough information
to conclude ϕ ` akn1 . . . nk : q with (FCst) or respectively (BCst) together
with k applications of (App). The converse direction is similar.

• Now consider the tree νa.n ∈ ν-Tree. This time, suppose we have a judge-
ment ϕ ` νa.n : q. Note that this was not derived by (Push) since n
contains no lambdas. Hence we can invert (Nu) and obtain a transition
(q, νak) ⇒ (q′, l) and a judgement Γ, ϕ[ak := l] ` n : q′. Then by IH we
obtain n ∈ L(A, q′, ϕ[ak := l]) and thus directly conclude νa.n ∈ L(A, q, ϕ)
with (LNu). Again, the converse direction is similar.
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The second claim follows as usual by an analysis of the judgement ϕ ` n : q.
Directly excluded are the rules (Push), (Abs) and (Var) as the first two yield
function types and the third requires a non-empty context. On the other hand,
the nu case is immediate by induction and the constant cases for k = 0 are trivial.
Hence only (App) is left and the justification works as before. First, since n is in
particular β-normal the left-most operand of the application must be a constant
ak, so we have ϕ ` akn1 . . . nk : q. Then this can be inverted which yields base
typings ϕ ` ni : qi. By IH those ni are ν-trees, hence so is akn1 . . . nk.

Then we can conclude the general correspondence by the generic justification:

Corollary 4.14. For any NTA A it is ϕ `A s : q iff there is s ⇓ n with n ∈ L(A, q, ϕ).

Proof. This is similar as in Section 4.1, the assignment ϕ does not matter.

Finally, having established the decidability of acceptance and emptiness for NTA
in Section 3.6, we can conclude the same decidability results for the systems
A-ITLC as in the instances before:

Lemma 4.15. For any NTA A, the system A-ITLC has decidable normal typability,
normal type checking and base type inhabitance (cf. Lemma 4.5).

Proof. This is by the same justification as Lemma 4.5.



Chapter 5
Discussion

In the mathematical part of this thesis we presented intersection type systems,
studied a selection of automaton models and instantiated a generic correspon-
dence proof for type systems and automata. We will now conclude with some
conceptual remarks on proof strategies, design decisions and future work.

First, we would like to emphasize the benefits of the inductive (re)formulation of
automaton acceptance that we have studied for all discussed automaton models.
This was a crucial simplification when proving the correspondence lemmas for
unranked tree automata (Lemma 4.6) and ranked ν-tree automata (Lemma 4.13).
Moreover, being purely structural, our reformulations are arguably more intu-
itive than run-based definitions and hence constitute a preferable alternative. We
conjecture that compositional formulations that allow for elegant inductive rea-
soning are possible for most automaton models that run on finite structures. Also,
the compositional nature of acceptance only became observable when studying
automata in the context of type systems so this is the first of possibly further
fruitful results of examining type system-automaton correspondences in their
own right. Compositional definitions of acceptance for automata on infinite struc-
tures such as infinite trees can be obtained with coinduction or parity conditions.
In [KO09] Kobayashi and Ong introduced typing games as the corresponding
treatment on the side of type systems.

Next it is worth to spend a few words on the use of intersection types. Actually,
intersection types are not at all necessary in order to capture the transitions of
automata, all constant rules we have encountered in our instances construct
simple (function) types. In fact, on strong normal forms (well-formed automaton
input) STLC and ITLC agree. Thus, if embedding the constant rules into a
simple type system, we can still show that base-typable programs evaluate to
accepted input. Note that this uses subject reduction and normalisation of STLC.
However, the converse relies on subject expansion and hence fails for STLC. That

49



50 Chapter 5. Discussion

is, a program that has an accepted normal form is not guaranteed to be simply
typable. So from this perspective, the reason for using intersection types is the
higher amount of typable terms and hence the larger extent of the generalisation
of acceptance from actual automaton input to input-computing programs.

Another design decision was to present NTA as customized automata for the
acceptance of ν-trees. The alternative would be a more abstract definition of
binding tree automata which would be a general streamlining of Stirling’s non-
deterministic dependency tree automata. This was mentioned in Section 3.6.
We decided to only study the special case where the binders are nus since we
were interested in deciding properties of ν-trees. In an abstract model, further
languages with binders could be examined, in particular terms of λ-calculus
themselves or logical expressions with quantifiers. Furthermore, it is clear that
the non-determinism of NTA transitions can be extended to alternation, which
would yield an automaton model similar to Stirling’s alternating dependency
tree automata.

Finally, it should be clarified that the required distinct binders for ν-trees can be
relaxed in order to obtain a stronger automaton model. This was only included to
enable the completeness direction of the correctness of our denotational semantics
of ν-trees (Theorem 3.8). For instance, if we were to allow reuse of bound names
it would be [[a(νb.b)(νc.c)]] = [[a(νb.b)(νb.b)]] but a(νb.b)(νc.c) 6≈α a(νb.b)(νb.b).
This is a consequence of our notion of α-equivalence being parallel by employing
a simultaneous permutation of multiple names. Hence in this setting equality of
denotations would be strictly coarser than α-equivalence of bound names. How-
ever, allowing rebinding increases the expressiveness of NTA in the following
sense. Consider the set of ν-trees defined by n1 := a0 and nk+1 := νb1.b1nk for
all k ∈ N. It is easy to define an NTA that accepts this language and hence, by
including the semantics [[nk]] for all nk, denotes all linear A-trees with leaf a0 -
a reasonable property. This is not expressible without rebinding since defining
the ν-tree language would require infinitely many different names of rank 0 but
processing those exceeds the capabilities of finite collections of transitions. Here
both alternatives have their respective justifications and we just opted for the
restriction to allow for studying a strong semantical correctness theorem.

We end by outlining three possible directions of future work:

• Developing unranked ν-trees and unranked ν-tree automata. This is a
conservative generalisation since all ranked trees can obviously be consid-
ered unranked. In this framework we can study more natural result of
reduction of programs. More general, a theory of unranked dependency
automata can be imagined applicable to all types of binding languages. In
particular, this would allow for examining “automaton application” where
we are interested in finding an automaton that accepts trees of the form
s[t/x] if we have respective automata accepting λx.s and t. This would
make the representation of binding inside the automata explicit and enables
the notion of compositional properties.
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• Considering simply typed λY -terms as the base language. In a typed
lambda calculus with recursion operators at each type we can still express
a lot of programs that compute trees. However, this puts certain bounds on
finding types in derivations since the intersection types of an automaton
system need to refine the simple types of the programs. This might suffice
to make general type checking decidable. In general, it is worth exploring
how decidability results for automata can be obtained from decidability
results of the corresponding type systems. This would be the converse to
our treatment as we started with automaton models already known to be
decidable. Perhaps, exploiting the type system-automaton correspondences
in the other direction could be a fruitful impulse for the development of
automata theory. As a side effect, there is a notion of “order” considering
λY -terms capturing the complexity of the types involved. It will be inter-
esting to study the inherited notion of order for terms and automata and
define a hierarchy of complexity levels with perhaps different properties.

• Relating the work to the nominal type theory developed in [Che09]. Start-
ing with a nominal set of type variables, this theory develops a system in-
volving name abstraction and concretion both at type and term level. This
might be useful in order to rephrase the automaton system we developed
for nominal word automata. Exploiting all given symmetry along these
lines, we might be able to capture decidability of automaton problems from
the perspective of the type system.
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