
Oracle Computability and Turing
Reducibility in the Calculus of Inductive

Constructions

Yannick Forster1(B) , Dominik Kirst2,3 , and Niklas Mück3

1 Inria, LS2N, Université Nantes, Nantes, France
yannick.forster@inria.fr

2 Ben-Gurion University of the Negev, Beer-Sheva, Israel
kirst@cs.bgu.ac.il

3 Saarland University and MPI-SWS, Saarland Informatics Campus, Saarbrücken,
Germany

mueck@mpi-sws.org

Abstract. We develop synthetic notions of oracle computability and
Turing reducibility in the Calculus of Inductive Constructions (CIC),
the constructive type theory underlying the Coq proof assistant. As usual
in synthetic approaches, we employ a definition of oracle computations
based on meta-level functions rather than object-level models of compu-
tation, relying on the fact that in constructive systems such as CIC all
definable functions are computable by construction. Such an approach
lends itself well to machine-checked proofs, which we carry out in Coq.

There is a tension in finding a good synthetic rendering of the higher-
order notion of oracle computability. On the one hand, it has to be infor-
mative enough to prove central results, ensuring that all notions are
faithfully captured. On the other hand, it has to be restricted enough to
benefit from axioms for synthetic computability, which usually concern
first-order objects. Drawing inspiration from a definition by Andrej Bauer
based on continuous functions in the effective topos, we use a notion of
sequential continuity to characterise valid oracle computations.

As main technical results, we show that Turing reducibility forms an
upper semilattice, transports decidability, and is strictly more expressive
than truth-table reducibility, and prove that whenever both a predicate
p and its complement are semi-decidable relative to an oracle q, then p
Turing-reduces to q.

Keywords: Type theory · Logical foundations · Synthetic
computability theory · Coq proof assistant

Yannick Forster received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Skłodowska-Curie grant agreement No.
101024493. Dominik Kirst is supported by a Minerva Fellowship of the Minerva Stiftung
Gesellschaft fuer die Forschung mbH.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
C.-K. Hur (Ed.): APLAS 2023, LNCS 14405, pp. 155–181, 2023.
https://doi.org/10.1007/978-981-99-8311-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8311-7_8&domain=pdf
http://orcid.org/0000-0002-8676-9819
http://orcid.org/0000-0003-4126-6975
http://orcid.org/0009-0006-9622-0762
https://doi.org/10.1007/978-981-99-8311-7_8

156 Y. Forster, D. Kirst, and N. Mück

1 Introduction

In recent years, synthetic computability theory [1,2,5,37] has gained increas-
ing attention in the fields of constructive mathematics and interactive theorem
proving [10,12,16,24,39,40]. In contrast to the usual analytic approach based
on describing the functions considered computable by means of a model like
Turing machines, μ-recursive functions, or the λ-calculus, the synthetic app-
roach exploits that in a constructive setting no non-computable functions can
be defined in the first place, making a later description of the computable frag-
ment obsolete. This idea enables much more compact definitions and proofs, for
instance decidability of sets over N can be expressed by equivalence to functions
f :N→B without any further computability requirement regarding f , simplifying
a formal mathematical development.

Furthermore, synthetic computability is the only approach to computability
enabling a feasible mechanisation using a proof assistant. The general value of
machine-checking important foundational results, for instance to obtain a library
of mathematics and theoretical computer science, has become more appreciated
in more and more subcommunities, up to the point that some mechanisations
of results reach cutting edge research. However, even though machine-checked
mathematics has a long history, computability theory, and even more so relative
computability theory based on oracles, have not been tackled to a substantial
amount past basic results such as Rice’s theorem before the use of synthetic
computability. This is because there is a big amount of “invisible” mathematics [4]
that has to be made explicit in proof assistants, due to the use of the informal
Church Turing thesis on paper that cannot be formally replicated. Filling in
these missing details is infeasible, to the amount that textbook computability
theory based on models of computations and the informal Church Turing thesis
is not really formalisable to a reasonable extent.

The synthetic perspective remedies these issues and has been fruitfully used
to describe basic concepts in computability theory in proof assistants. The app-
roach is especially natural in constructive type theories such as the Calculus of
Inductive Constructions (CIC) [6,34] underlying the Coq proof assistant [41]:
as CIC embodies a dependently-typed functional programming language, every
definable function conveys its own executable implementation.

However, the synthetic characterisation of oracle computations in general
(i.e. algorithms relative to some potentially non-computable subroutine) and
Turing reductions in particular (i.e. decision procedures relative to some ora-
cle giving answer to a potentially non-decidable problem) has turned out to be
more complicated. First, a Turing reduction cannot naively be described by a
transformation of computable decision procedures N → B as this would rule
out the intended application to oracles for problems that can be proved unde-
cidable using usual axioms of synthetic computability such as Church’s thesis
(CT). Secondly, when instead characterising Turing reductions by transforma-
tions of possibly non-computable decision procedures represented as binary rela-
tions N → B → P, one has to ensure that computability is preserved in the
sense that computable oracles induce computable reductions in order to enable

Oracle Computability and Turing Reducibility in CIC 157

intended properties like the transport of (un-)decidability. Thirdly, to rule out
exotic reductions whose behaviour on non-computable oracles differs substan-
tially from their action on computable oracles, one needs to impose a form of
continuity.

The possible formulations of continuity of functionals on partial spaces such
as N → B → P are numerous: Bauer [3], who gave the first synthetic definition of
oracle computability we draw our inspiration from, employs the order-theoretic
variant of functionals preserving suprema in directed countable partial orders.
The first author of this paper [11] describes a reformulation in CIC in joint work
with the second author, using a modified variant of modulus continuity where
every terminating oracle computation provides classical information about the
information accessed from the oracle. We have suggested a more constructive
formulation of modulus continuity in past work [15] and established Post’s the-
orem connecting the arithmetical hierarchy with Turing degrees for this defini-
tion [22,30]. However, this proof assumes an enumeration of all (higher-order)
oracle computations defined via modulus continuity, which seems not to follow
from CT, therefore leaving the consistency status of the assumption unclear.

As a remedy to this situation, we propose an alternative synthetic characteri-
sation of oracle computability based on a stricter notion of sequential continuity,
loosely following van Oosten [33]. Concretely, a sequentially continuous function
with input type I and output type O with an oracle expecting questions of
type Q and giving answers of type A can be represented by a partial function
τ : I→A∗⇀Q + O, where τi can be seen as a (potentially infinite) tree. Con-
cretely, τi is a function that maps paths of type A∗ (i.e. edges are labeled by
elements of type A) to inner nodes labeled by Q and leafs labeled by O.

While this concept naturally describes the functionals considered computable
by emphasising the sequence of computation steps interleaved with oracle inter-
actions, it immediately yields the desired enumeration from CT by reducing
higher-order functionals on partial spaces to partial first-order functions.

In this paper we develop the theory of oracle computability as far as possible
without any axioms for synthetic computability: we show that Turing reducibility
forms an upper semilattice, transports decidability, and is strictly more expres-
sive than truth-table reducibility, and prove that whenever both a predicate p
and its complement are semi-decidable relative to an oracle q, then p Turing-
reduces to q.1 All results are mechanised in Coq, both to showcase the feasibility
of the synthetic approach and as base for future related mechanisation projects.

For easy accessibility, the Coq development2 is seamlessly integrated with
the text presentation: every formal statement in the PDF version of this paper
is hyperlinked with HTML documentation of the Coq code. To further improve

1 The non-relativised form of the latter statement also appears under the name of
“Post’s theorem” in the literature [42], not to be confused with the mentioned theo-
rem regarding the arithmetical hierarchy, see the explanation in Sect. 9.

2 https://github.com/uds-psl/coq-synthetic-computability/tree/code-paper-oracle-
computability.

https://github.com/uds-psl/coq-synthetic-computability/tree/code-paper-oracle-computability
https://github.com/uds-psl/coq-synthetic-computability/tree/code-paper-oracle-computability

158 Y. Forster, D. Kirst, and N. Mück

fluid readability, we introduce most concepts and notations in passing, but hyper-
link most definitions in the PDF with the glossary in Appendix A.

Contribution. We give a definition of synthetic oracle computability in con-
structive type theory and derive notions of Turing reducibility and relative
semi-decidability. We establish basic properties of all notions, most notably that
Turing reducibility forms an upper semi-lattice, transports decidability if and
only if Markov’s principle holds, and is strictly more general than truth-table
reducibility. We conclude by a proof of Post’s theorem relating decidability with
semi-decidability of a set and its complement.

Outline. We begin by introducing the central notion of synthetic oracle com-
putability in Sect. 2, employed in Sect. 3 to derive synthetic notions of Turing
reducibility and oracle semi-decidability. Before we discuss their respective prop-
erties (Sects. 6 and 7) and show that Turing reducibility is strictly weaker than
a previous synthetic rendering of truth-table reducibility (Sect. 8), we develop
the basic theory of synthetic oracle computations by establishing their closure
properties (Sect. 4) and by capturing their computational behaviour (Sect. 5).
Some of these closure properties rely on a rather technical alternative charac-
terisation of oracle computability described in Appendix B, which will also be
used to establish the main result relating oracle semi-decidability with Turing
reducibility discussed in Sect. 9. We conclude in Sect. 10 with remarks on the
Coq formalisation as well as future and related work.

2 Synthetic Oracle Computability

The central notion of this paper is the synthetic definition of oracle computabil-
ity. Historically, oracle computability was introduced as an extension of Turing
machines in Turing’s PhD thesis [43], but popularised by Post [35]. Various
analytic definitions of oracle computability exist, all having in common that
computations can ask questions and retrieve answers from an oracle.

For our synthetic definition, we specify concretely when a higher-order func-
tional F : (Q→A→P)→(I→O→P) is considered (oracle-)computable. Such a func-
tional takes as input a possibly non-total binary relation R:Q→A→P, an oracle
relating questions q:Q to answers a:A, and yields a computation relating inputs
i: I to outputs o:O. For special cases like Turing reductions, we will instantiate
Q, I := N and A,O := B. Note that we do not require oracles R to be determinis-
tic, but if they are, then so are the resulting relations FR (cf. Lemma 11).

We define oracle computability by observing that a terminating computation
with oracles has a sequential form: in any step of the sequence, the oracle compu-
tation can ask a question to the oracle, return an output, or diverge. Informally,
we can enforce such sequential behaviour by requiring that every terminating
computation FR i o can be described by (finite, possibly empty) lists qs:Q∗ and
as:A∗ such that from the input i the output o is eventually obtained after a
finite sequence of steps, during which the questions in qs are asked to the oracle

Oracle Computability and Turing Reducibility in CIC 159

one-by-one, yielding corresponding answers in as. This computational data can
be captured by a partial3 function of type I→A∗⇀Q + O, called the (compu-
tation) tree of F , that on some input and list of previous answers either returns
the next question to the oracle, returns the final output, or diverges.

So more formally, we call F : (Q→A→P)→(I→O→P) an (oracle-)computable
functional if there is a tree τ : I→A∗⇀Q + O such that

∀R i o. FR i o ↔ ∃qs as. τ i ; R �qs ; as ∧ τ i as � out o

with the interrogation relation σ;R � qs; as being defined inductively by

σ ; R �[] ; []
σ ; R �qs ; as σas � ask q Rqa

σ ; R �qs++[q] ; as++[a]

where A∗ is the type of lists over a, l++l′ is list concatenation, where we use the
suggestive shorthands ask q and out o for the respective injections into the sum
type Q + O, and where σ:A∗⇀Q + O denotes a tree at a fixed input i.

To provide some further intuition and visualise the usage of the word “tree”,
we discuss the following example functional in more detail:

F : (N → B → P) → (N → B → P)
FR i o := o = true ∧ ∀q < i.R q true

Intuitively, the functional can be computed by asking all questions q for q < i
to the oracle. If the oracle does not return any value, F does not return a value.
If the oracle returns false somewhere, F also does not return a value – i.e. runs
forever. If the oracle indeed returns true for all q < i, F returns true.

In the case of i = 3, this process may be depicted by

where the paths along labelled edges represent the possible answer lists as while
the nodes represent the corresponding actions of the computation: the paths
along inner nodes denote the question lists qs and the leafs the output behaviour.
Note that ret :X⇀X is the return of partial functions, turning a value into an
always defined partial value, while undef denotes the diverging partial value.
Formally, a tree τ :N→B

∗⇀N+ B computing F can be defined by

τ i as :=

⎧
⎪⎨

⎪⎩

undef if false ∈ as
ret (ask |as|) if false 	∈ as ∧ |as| < i

ret (out true) if false 	∈ as ∧ |as| ≥ i

3 There are many ways how semi-decidable partial values can be represented in CIC,
for instance via step-indexing. Since the actual implementation does not matter, we
abstract over any representation providing the necessary operations, see Appendix
A.

160 Y. Forster, D. Kirst, and N. Mück

where here and later on we use such function definitions by cases to represent
(computable) pattern matching.

As usual in synthetic mathematics, the definition of a functional F as being
computable if it can be described by a tree is implicitly relying on the fact that
all definable (partial) functions in CIC could also be shown computable in the
analytic sense. Describing oracle computations via trees in stages goes back to
Kleene [25], cf. also the book by Odifreddi [31]. Our definition can be seen as
a more explicit form of sequential continuity due to van Oosten [32,33], or as
a partial, extensional form of a dialogue tree due to Escardó [9]. Our definition
allows us to re-prove the theorem by Kleene [26] and Davis [7] that computable
functionals fulfill the more common definition of continuity with a modulus:

Lemma 1. Let F be a computable functional. If FR i o, then there exists a list
qs:Q∗, the so-called modulus of continuity, such that ∀q ∈ qs. ∃a. Rqa and for
all R′ with ∀q ∈ qs.∀a. Rqa ↔ R′qa we also have that FR′ i o.

Proof. Given FR i o and F computable by τ we have τi ; R �qs ; as and
τ i as � out o. It suffices to prove both ∀q ∈ qs. ∃a. Rqa and τi ; R′ �qs ; as
by induction on the given interrogation, which is trivial. ��

Nevertheless, our notion of computable functionals is strictly stronger than
modulus continuity as stated, while we are unaware of a proof relating it to a
version where the moduli are computed by a partial function.

Lemma 2. There are modulus-continuous functionals that are not computable.

Proof. Consider the functional F : (N→B→P)→(I→O→P) defined by

FRio := ∃q.R q true.

Clearly, F is modulus-continuous since from a terminating run FRio we obtain
q with R q true and therefore can choose qs := [q] as suitable modulus.

However, suppose τ : I → B
∗⇀N+ O were a tree for F , then given some

input i we can inspect the result of τ i [] because F R� i o holds for all i, o, and
the full oracle R� q a :=
. However, the result cannot be out o for any output
o, as this would yield FR⊥ for the empty oracle R⊥ q a := ⊥, violating the
definition of F . Thus τ i [] � ask q0, conveying an initial question q0 independent
of the input oracle. But then employing the oracle R0 defined by R0 q0 a := ⊥
and R0 q a :=
 for all q 	= q0 we certainly have F R0 i o by definition but no
interrogation τi ;R0 �qs ; as with τ i as � out o, as this would necessarily include
an answer a with R0 q0 a as first step, contradicting the construction of R0. ��

The advantage of using the stricter notion of sequential continuity over mod-
ulus continuity is that by their reduction to trees, computable functionals are
effectively turned into flat first-order functions on data types. Thus one directly
obtains an enumeration of all oracle computations, as needed in most advanced
scenarios, from an enumeration of first-order functions, which itself could be
obtained by assuming usual axioms for synthetic computability.

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#cont_to_cont
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#counterex

Oracle Computability and Turing Reducibility in CIC 161

3 Turing Reducibility and Oracle Semi-decidability

Using our synthetic notion of oracle computability, we can directly derive syn-
thetic formulations of two further central notions of computability theory: Turing
reducibility – capturing when a predicate is decidable relative to a given predicate
– and oracle semi-decidability – capturing when a predicate can be recognised
relative to a given predicate. To provide some intuition first, we recall that in the
synthetic setting a predicate p : X → P over some type X is decidable if there
is a function f :X→B such that ∀x. px ↔ fx = true, i.e. f acts as a decider of
p. This definition is standard in synthetic computability [1,16] and relies on the
fact that constructively definable functions f :X→B are computable.

To relativise the definition of a decider to an oracle, we first define the char-
acteristic relation p̂:X→B→P of a predicate p:X→P by

p̂ := λxb.

{
px if b = true

¬px if b = false.

Employing p̂, we can now equivalently characterise a decider f for p by requir-
ing that ∀xb. p̂xb ↔ fx = b. Relativising this exact pattern, we then define Tur-
ing reducibility of a predicate p:X→P to q:Y →P by a computable functional F
transporting the characteristic relation of q to the characteristic relation of p:

p �T q := ∃F. F is computable ∧ ∀xb. p̂xb ↔ F q̂xb

Note that while we do not need to annotate a decider f with a computability
condition because we consider all first-order functions of type N→N or N→B as
computable, a Turing reduction is not first-order, and thus needs to be enriched
with a tree to rule out unwanted behaviour. In fact, without this condition, we
would obtain p �T q for every p and q by simply setting F R := p̂.

Next, regarding semi-decidability, a possible non-relativised synthetic defini-
tion is to require a partial function f :X⇀1 such that ∀x. px ↔ fx � �, where 1
is the inductive unit type with singular element �. That is, the semi-decider f
terminates on elements of p and diverges on the complement p of p (cf. [11]).

Again relativising the same pattern, we say that p:X→P is (oracle-)semi-
decidable relative to q:Y →P if there is a computable functional F mapping
relations R:Y →B→P to relations of type X→1→P such that F q̂ accepts p:

Sq(p) := ∃F. F is computable ∧ ∀x. px ↔ F q̂x�

As in the case of Turing reductions, the computability condition of an oracle
semi-decider is crucial: without the restriction, we would obtain Sq(p) for every
p and q by setting F R x � := p x.

While we defer developing the theory of synthetic Turing reducibility and
oracle semi-decidability to later sections, we can already record here that the
fact that decidability implies semi-decidability also holds in relativised form:

Lemma 3. If p �T q then Sq(p) and Sq(p).

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.SemiDec.html#Turing_to_sdec

162 Y. Forster, D. Kirst, and N. Mück

Proof. Let F witnesses p �T q, then F ′ R x� := F R x true witnesses Sq(p). In
particular, if τ :X→B

∗⇀N+ B computes F , then τ ′:X→B
∗⇀N+ 1, constructed

by running τ and returning out � whenever τ returns out true, computes F ′. The
proof of Sq(p) is analogous, simply using false in place of true. ��

4 Closure Properties of Oracle Computations

In this section we collect some examples of computable functionals and show
how they can be composed, yielding a helpful abstraction for later computabil-
ity proofs without need for constructing concrete computation trees. Note that
the last statements of this section depend on a rather technical intermediate
construction using a more flexible form of interrogations. We refer to the Coq
code and to Appendix B, where we will also deliver the proofs left out.

First, we show that composition with a transformation of inputs preserves
computability and that all partial functions are computable, ignoring the input
oracle. The latter also implies that total, constant, and everywhere undefined
functions are computable.

Lemma 4. The following functionals mapping relations R:Q→A→P to rela-
tions of type I→O→P are computable:

1. λR i o. FR (gi) o for g: I→I ′ and computable F : (Q→A→P)→(I ′→O→P),
2. λR i o. fi � o given f : I⇀O,
3. λR i o. fi = o given f : I→O,
4. λR i o. o = v given v:O,
5. λR i o. ⊥.

Proof. For 1, let τ compute F and define τ ′ i l := τ (gi) l. For 2, define τ ′ i l :=
fi>>=λo. ret (out o), where >>= is the bind operation of partial functions. All
others follow by using (2). ��

Next, if Q = I and A = O, then the identity functional is computable:

Lemma 5. The functional mapping R:Q→A→P to R itself is computable.

Proof. Define

τ q l :=

{
ret (ask q) if l = []
ret (out a) if l = (q, a) :: l′.

��
Moreover, given two functionals and a boolean test on inputs, the process

calling either of the two depending on the test outcome is computable:

Lemma 6. Let F1 and F2 both map relations R:Q→A→P to relations of type
I→O→P and f : I→B. Then F mapping R to the following relation of type
I→O→P is computable:

λio.

{
F1 R i o if fi = true

F2 R i o if fi = false

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#computable_precompose
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#computable_id
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#computable_if

Oracle Computability and Turing Reducibility in CIC 163

Proof. Let τ1 and τ2 compute F1 and F2 respectively and define

τ i l :=

{
τ1 i l if fi = true

τ2 i l if fi = false.

��
Taken together, the previous three lemmas yield computability proofs for

functionals consisting of simple operations like calling functions, taking identi-
ties, and branching over conditionals. The next three lemmas extend to partial
binding, function composition, and linear search, so in total we obtain an abstrac-
tion layer accommodating computability proofs for the most common ingredients
of algorithms. As mentioned before, we just state the last three lemmas without
proof here and refer to the Coq development and Appendix B for full detail.

Lemma 7. Let F1 map relations R:Q→A→P to relations of type I→O′→P,
F2 map relations R:Q→A→P to relations of type (I × O′)→O→P, and both be
computable. Then F mapping R:Q→A→P to λio.∃o′:O′. F1 R i o′ ∧F2 R (i, o′) o
of type I→O→P is computable.

Lemma 8. Let F1 map relations R:Q→A→P to relations X→Y →P, F2 map
relations R:X→Y →P to relations I→O→P, and both be computable. Then F
mapping R:Q→A→P to λio. F2 (F1R) i o of type I→O→P is computable.

Lemma 9. The functional mapping R: (I × N)→B→P to the following relation
of type I→N→P is computable: λin R (i, n) true ∧ ∀m < n. R (i,m) false.

5 Computational Cores of Oracle Computations

In this section, we prove that if F maps R:Q→A→P to a relation I→O→P

and F is computable, then there is a higher-order function f : (Q⇀A)→(I⇀O)
such that for any r:Q⇀A with graph R, the graph of fr agrees with FR. This
means that every computable functional possesses an explicit computational
core, mapping (partially) computable input to (partially) computable output,
needed for instance to justify that decidability is transported backwards along
Turing reductions (Lemma 26).

In preparation, the following two lemmas state simple properties of interro-
gations regarding concatenation and determinacy. Given σ:A∗⇀Q + O and l:A∗

we write σ@l for the sub-tree of σ starting at path l, i.e. for the tree λl′. σ(l++l′).

Lemma 10. We have interrogations σ ;R �qs1 ; as1 and σ@as1 ;R �qs2 ; as2 if
and only if |qs2| = |as2| and σ ; R �qs1++qs2 ; as1++as2.

Lemma 11. Let R be functional and σ ;R �qs1 ; as1 as well as σ ;R �qs2 ; as2.
Then if |qs1| ≤ |qs2|, then qs1 is a prefix of qs2 and as1 is a prefix of as2.

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#computable_bind
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#computable_comp
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#computable_search
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#interrogation_app_iff
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#interrogation_output_det

164 Y. Forster, D. Kirst, and N. Mück

Now conveying the main idea, we first define an evaluation function δ σ f :
N⇀Q + O which evaluates σ:A∗⇀Q + O on f :Q⇀A for at most n questions.

δ σ f n := σ[]>>=λx.

⎧
⎪⎨

⎪⎩

ret (out o) if x = out o

ret (ask q) if x = ask q, n = 0
fq >>=λa. δ (σ@[a]) f n′ if x = ask q, n = S n′.

The intuition is that δ always reads the initial node of the tree σ by evaluat-
ing σ[]. If σ[] � out o, then δ returns this output. Otherwise, if σ[] � ask q and δ
has to evaluate no further questions (n = 0), it returns ask q. If δ has to evaluate
S n questions, it evaluates fq � a and recurses on the subtree of σ with answer a,
i.e. on σ@[a]. We first verify that δ composes with interrogations by induction
on the interrogation:

Lemma 12. If σ ; (λqa. fq � a)�qs ; as and δ(τ@as)fn � v then δτfn � v.

Conversely, every evaluation of δ yields a correct interrogation:

Lemma 13. If δ σ f n � out o then there are qs and as with |qs| ≤ n and
σ ; (λqa. fq � a)�qs ; as, and σ as � out o.

Proof. By induction on n, using Lemma 10. ��
Put together, a computable functional is fully captured by δ for oracles

described by partial functions:

Lemma 14. Given a functional F computed by τ we have that

F (λqa. fq � a)io ↔ ∃n. δ (τi) f n � out o.

This is enough preparation to describe the desired computational core of
computable functionals:

Theorem 15. If F maps R:Q→A→P to a relation I→O→P and F is com-
putable, then there is a partial function f : (Q⇀A)→I⇀O such that if R is com-
puted by a partial function r:Q⇀A, then FR is computed by fr.

Proof. Let F be computed by τ . We define fri to search for n such that δ (τi) f n
returns out o, and let it return this o. The claim then follows straightforwardly
by the previous lemma and Lemma 11. ��

6 Properties of Oracle Semi-decidability

In the following two sections we establish some standard properties of our syn-
thetic renderings of oracle semi-decidability and Turing reducibility, respectively.
All proofs are concise but precise, given that in the synthetic setting they just
amount to the essence of the computational manipulations often described just
informally for a concrete model of computation in the analytic approach to com-
putability employed e.g. in textbooks.

We first establish the connection to non-relative semi-decidability.

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#interrogation_plus
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#evalt_to_interrogation
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#interrogation_equiv_evalt
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#Turing_transports_computable

Oracle Computability and Turing Reducibility in CIC 165

Lemma 16. If p is semi-decidable, then Sq(p) for any q.

Proof. Let f :X⇀1 be a semi-decider for p. With Lemma 4 (2) the functional
mapping R to λxo. fx � o is computable, and it is easily shown to be a semi-
decider for p relative to q. ��
Lemma 17. If Sq(p) and q is decidable, then p is semi-decidable.

Proof. Let g decide q and let F be a semi-decider of p relative to q. Let f be the
function from Theorem 15 that transports computable functions along F . Now
f(λy. ret(gy)) is a semi-decider for p. ��

We next establish closure properties of oracle semi-decidability along reduc-
tions. First, we can replace the oracle by any other oracle it reduces to:

Lemma 18. If Sq(p) and q �T q′, then also Sq′(p).

Proof. Straightforward using Lemma 8. ��
Secondly, if we can semi-decide a predicate p relative to q, then also simpler

predicates should be semi-decidable relative to q. This however requires a stricter
notion of reduction, for instance many-one reductions that rule out complemen-
tation. As in [16], we say that p′ : X → P many-one reduces to p : Y → P if
there is a function f : X → Y embedding p′ into p:

p′ �m p := ∃f : X → Y. ∀x. p′x ↔ p(fx)

Now the sought after property can be stated as follows:

Lemma 19. If Sq(p) and p′ �m p, then also Sq(p′).

Proof. Straightforward using Lemma 4 (1,4) and Lemma 7. ��

7 Properties of Turing Reducibility

We continue with similarly standard properties of Turing reducibility. Again,
all proofs are concise but precise. As a preparation, we first note that Turing
reducibility can be characterised without the relational layer.

Lemma 20. p �T q if and only if there is τ such that for all x and b we have

p̂xb ↔ ∃qsas. τx ; q �qs ; as ∧ τ x as � out b.

Now to begin, we show that Turing reducibility is a preorder.

Theorem 21. Turing reducibility is reflexive and transitive.

Proof. Reflexivity follows directly by the identity functional being computable
via Lemma 4. Transitivity follows with Lemma 8. ��

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.SemiDec.html#semi_decidable_OracleSemiDecidable
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.SemiDec.html#OracleSemiDecidable_semi_decidable
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.SemiDec.html#Turing_transports_sdec
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.SemiDec.html#red_m_transports_sdec
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#Turing_reducible_without_rel
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#Turing_refl

166 Y. Forster, D. Kirst, and N. Mück

In fact, Turing reducibility is an upper semilattice:

Theorem 22. Let p:X→P and q:Y →P. Then there is a lowest upper bound
p + q:X + Y →P w.r.t. �T : Let (p + q)(inl x) := px and (p + q)(inr y) := qy.
then p+ q is the join of p and q w.r.t �T , i.e. p �T p+ q, q �T p+ q, and for all
r if p �T r and q �T r then p + q �T r.

Proof. The first two claims follow by Lemma 4 (1) and Lemma 5. For the third,
let F1 reduce p to r and be computed by τ1 and F2 reduce q to r computed by
τ2. Define

FR z o :=

{
F1R xo if z = inl x

F2R xo if z = inr y
τzl :=

{
τ1xl if z = inl x

τ2yl if z = inr y

τ computes F , and F reduces p + q to r. ��
We continue by establishing properties analogous to the ones concerning

oracle semi-decidability discussed in Sect. 6. First, analogously to Lemma 16,
the non-relativised notion of decidability implies Turing reducibility:

Lemma 23. If p and p are semi-decidable, then p�T q for any q. In particular,
if p is decidable, then p �T q for any q.

Proof. Let f semi-decide p and g semi-decide p. Define FR x b := p̂xb and let
τxl ignore l and find the least n such that either fxn = true or gxn = true and
then return out (fxn). ��

Secondly, Lemmas 18 and 19 correspond to the transitivity of Turing
reducibility, the latter relying on the fact that many-one reductions induce Tur-
ing reductions:

Lemma 24. If p �m q then p �T q.

Proof. Let f be the many-one reduction. Define FR x b := R (fx) b. ��
Thirdly, in connection to Lemma 17, we prove the more involved result that

Turing reducibility reflects decidability if and only if Markov’s principle holds.
Markov’s principle is an axiom in constructive mathematics stating that satisfi-
ability of functions N→B is stable under double negation, i.e.:

MP := ∀f :N→B. ¬¬(∃n. fn = true) → ∃n. fn = true

Concretely, MP will be needed as it corresponds to the termination of non-
diverging partial functions:

Lemma 25. MP if and only if ∀XY.∀f :X⇀Y .∀x.¬¬(∃y. fx � Y)→∃y. fx � Y .

Another ingredient is that total partial function X⇀Y induce functions X →
Y , as stated here for the specific case of deciders X → B:

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#Turing_upper_semi_lattice
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#bisemidecidable_Turing
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#red_m_impl_red_T

Oracle Computability and Turing Reducibility in CIC 167

Lemma 26. Let f :X⇀B and p:X→P. If ∀x. px ↔ fx � true and ∀x.∃b. fx � b,
then p is decidable, i.e. there is a function g:X→B such that ∀x. px ↔ gx = true.

Now assuming p �T q for q decidable, we can derive a non-diverging partial
decider for p, which is turned into a total partial decider with Lemma 25 and
then into an actual decider with Lemma 26:

Theorem 27. Given MP, if q is decidable and p�T q, then p is decidable.

Proof. Let F be the reduction relation and let f transport computability along
it as in Theorem 15. Let g decide q. It is straightforward that ∀xb. p̂xb ↔
f(λy.ret (gy))x � b (*). It suffices to prove that ∀x.∃b. f(λy.ret (gy))x � b to
obtain the claim from Lemma 26.

Using Lemma 25 and MP, given x it suffices to prove ¬¬∃b. f(λy.ret
(gy))x � b. Because the goal is negative and we can prove ¬¬(px ∨ ¬px), we
are allowed to do a case analysis on px. In both cases we can prove termination
using (*). ��

As hinted above, the previous theorem could be stated without MP by using
a notion of decidability via a non-diverging partial decider f :X⇀B, i.e. with
∀x.¬¬∃b. fx � b. However, in the stated form, it is in fact equivalent to MP:

Lemma 28. If p is decidable if there is decidable q with p�T q, then MP holds.

Proof. By [16, Theorem 2.20] it suffices to prove that whenever p:N→P and p
are semi-decidable, then also p is decidable, which follows by Lemma 23 and the
assumption for some choice of a decidable predicate q. ��

Lastly, we prove that using classical logic, predicates are Turing-equivalent
to their complement, providing evidence for the inherent classicality:

Lemma 29. For double-negation stable p, p�T p and p �T p.

Proof. Assume ∀x. ¬¬px → px. For both reductions, take FR x b := R x (¬Bb),
which is computable by Lemma 7, Lemma 5, and Lemma 4 (1,3). ��
Lemma 30. Let X be some type with x0:X. If p �T p for all p:X→P, then MP
implies the law of excluded middle (LEM := ∀P : P. P ∨ ¬P).

Proof. Assume MP, X with x0 : X, and that p �T p for all p : X → P. It suffices
to prove that for every proposition P we have ¬¬P → P . So assume ¬¬P .

By MP and Theorem 27, we have that whenever λx.¬P is decidable, then so
is λx. P . Now since ¬¬P holds, λx. false decides λx.¬P . Thus we have a decider
f for λx. P . A case analysis on fx0 yields either P and we are done – or ¬P ,
which is ruled out by ¬¬P . ��

The last lemma ensures that some amount of classical logic is necessary to
prove that Turing reducibility is closed under complements, since it is well-known
that MP does not imply LEM.

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#partial_decidable
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#transport_decidable
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#decidable_Turing_MP
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#Turing_red_compl
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#rev

168 Y. Forster, D. Kirst, and N. Mück

8 Turing Reducibility and Truth-Table Reducibility

As a further expectable property, we establish the well-known connection of
Turing reducibility to truth-table reducibility [35], namely that every truth-table
reduction induces a Turing reduction while the converse does not hold. Note that
the proofs in this section have a classical flavour where explicitly mentioned.

Intuitively, a truth-table reduction can be seen as a restricted form of a Turing
reduction: to reduce a predicate p:X→P to a predicate q:Y →P, on input x, it has
to compute a list of oracle queries of type Y ∗ and provide a truth-table mapping
the list of answers of the oracle for q to an output of the reduction. Consequently,
questions can not depend on answers of the oracle, and no non-termination is
permitted. See also the explanations by Rogers [38, §8.3] or Odifreddi [31, III.3].

Concretely, we use the synthetic definition of truth-table reducibility from
Forster and Jahn [13]. We model truth-tables as lists B

∗, but just work with a
boolean evaluation predicate l � T and refer to the Coq code for its definition.

p �tt q := ∃f :X→Y ∗×B
∗.∀x:X.∀l:B∗.Forall2 q̂ (π1(fx)) l → (px ↔ l � π2(fx))

where Forall2 lifts binary predicates to lists pointwise by conjunction.
We first show that truth-table reducibility implies Turing reducibility.

Theorem 31. If q is classical (i.e. ∀y. qy ∨ ¬qy), then p�tt q implies p �T q.

Proof. Let f be the truth-table reduction. Define F to map R:Y →B→P to

λxb. ∃l:B∗. Forall2 R (π1(fx)) l ∧ l � π2(fx))

which can be computed by the tree

τxl :=

{
ret (ask a) if π1(fx) at position |l| is a

ret (out (l � π2(fx))) otherwise.

The direction from right to left is straightforward. For the direction from left
to right, it suffices to prove the existence of l with Forall2 q̂ π1(fx) l, following
by induction on π1(fx), using the assumption that q is classical to construct l.
��

We now prove that the inclusion of truth-table reducibility in Turing
reducibility is strict. Forster and Jahn [13] introduce a hypersimple predi-
cate HI :N→P as the deficiency predicate of a strongly enumerable predicate
I:N→P [8]: Given an injective, strong enumerator EI of I (∀x. Ix↔∃n.EIn =
x), they set

HIx := ∃x0 > x. EIx0 < EIx.

They prove that I does not truth-table reduce to HI assuming axioms for
synthetic computability, and in particular that the halting problem fulfills the
preconditions for I. Thus, to separate truth-table from Turing reducibility, it

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#truthtable_Turing

Oracle Computability and Turing Reducibility in CIC 169

suffices to give a Turing reduction I �T HI (without having to assume axioms
for synthetic computability).

Algorithmically, one can decide Iz given a partial function f :N⇀B deciding
HI as follows: We search for x such that fx � false and EIx > z, i.e. ¬HIx. Such
an x does (not not) exists because the complement of HI is non-finite. Then Iz
holds if and only if z ∈ [EI0, . . . EI(x + 1)].

Formally, we first establish the classical existence of such x in the more
general situation of arbitrary non-finite predicates and injections.

Lemma 32. If p:X→P is non-finite and f :X→N is injective, then for z:N

¬¬∃x. px ∧ fx ≥ z ∧ ∀y. py → fy ≥ z → fx ≤ fy.

Next, we verify the resulting characterisation of I via list membership.

Lemma 33. If ¬HIx and EIx > z, then Iz ↔ [EI0, . . . , EI(x + 1)].

Put together, we can describe the desired Turing reduction.

Theorem 34. Assuming LEM, if I is strongly enumerable, then I �T HI .

Proof. We define F to map relations R to the relation

λzb. ∃x.R x false ∧ EIx > z ∧ (b = true ↔ z ∈ [EI0, . . . , EI(x + 1)])
∧ (∀x′ < x. (R x′ true ∨ (R x′ false ∧ EIx

′ ≤ z)))

which is straightforward to show computable.
Regarding F (ĤI)zb ↔ Îzb, the direction from left to right is immediate from

Lemma 33. For the direction from right to left, assume Îzb. Let x be obtained
for HI and EI from Lemma 32. Then x fulfils the claim by Lemma 33. ��

Since in this paper we do not assume axioms for synthetic computability that
imply I 	�tt HI , we keep the conclusion that truth-table reducibility is strictly
stronger than Turing reducibility implicit.

9 Post’s Theorem (PT)

There are various results (rightly) called “Post’s theorem” in the literature. Here,
we are concerned with the result that if both a predicate and its complement are
semi-decidable, the predicate is decidable. This theorem was proved by Post in
1944 [35], and is not to be confused with Post’s theorem relating the arithmetical
hierarchy and Turing jumps from 1948 [36]. We thus simply refer to the result
we consider as PT0, and use PT for its relativised version.

It is well-known that PT0 is equivalent to Markov’s principle [1,16,42]. We
here prove that the relativised version PT is fully constructive, and that in fact
the equivalence proof of MP and PT0 can be given using PT and the already
proven equivalence between MP and the statement that Turing reducibility trans-
ports decidability backwards given in Sect. 7.

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#non_finite_to_least
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#I_iff
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#red

170 Y. Forster, D. Kirst, and N. Mück

As an auxiliary notion, we introduce an equivalent but a priori more expres-
sive form of interrogations which maintains an internal state of the computation
and can “stall”, i.e. trees do not have to either ask a question or produce an out-
put, but can alternatively choose to just update the state. Such trees are of type
S → A∗⇀(S × Q?) + O, where Q? is the inductive option type with elements
None and Some q for q:Q.

A stalling tree is a partial function σ:S→A∗⇀(S × Q?) + O. We define a
stalling interrogation predicate σ ; R �qs ; as ; s � s′ inductively by:

σ ; R �[] ; [] ; s � s

σ ; R �qs ; as ; s � s′′ σ ; s′′ ; as � ask (s′,None)
σ ; R �qs ; as ; s � s′

σ ; R �qs ; as ; s � s′′ σ ; s′′ ; as � ask (s′,Some q) Rqa

σ ; R �qs++[q] ; as++[a] ; s � s′

The first and third rule are not significantly different from before, apart from
also threading a state s. The second rule allows the tree to stall by only updating
the state to s′, but without asking an actual question. Intuitively, we can turn
a stalling tree τ into a non-stalling one τ ′ by having τ ′ compute on input as
first all results of τ on all prefixes of as, starting from a call τ i s0 as for a given
initial state s0. We give this construction in full detail in Appendix B.

A functional F mapping R:Q→A→P to a relation of type I→O→P is com-
putable via stalling interrogations if there are a type S, an element s0:S, and a
function τ : I→S→A∗⇀(S × Q?) + O such that

∀R i o. FR i o ↔ ∃qs as s. τ i ; R �qs ; as ; s0 � s ∧ τ i s as � out o.

We prove that the two definitions of computability are equivalent in Appendix
B and immediately move on to the proof of PT.

Theorem 35. (PT) If Sq(p) and Sq(p), then p �T q.

Proof. Let p:X→P and q:Y →P as well as F1 and F2 be the functionals repre-
senting the semi-deciders, computed respectively by τ1 and τ2. The intuition is,
on input x and as, to execute τ1 x and τ2 x in parallel and ensure that both
their questions are asked. The interrogation can finish with true if τ1 x outputs
a value, and with false if τ2 x does.

There are two challenges in making this intuition formal as an oracle com-
putation: Only answers from as that τ1 and τ2 asked for have to be actually
passed to it, respectively, and both τ1 and τ2 need to be allowed to ask all of
their questions and eventually produce an output fairly, even though only one
of them ever will.

Using Lemma 20, we define the Turing reduction without providing the rela-
tional layer and instead directly construct a tree τ based on stalling interro-
gations with state type S := Y ? × N × (B × Y)∗. The first argument is used
to remember a question that needs to be asked next, arising from cases where
both τ1 and τ2 want to ask a question. The second argument is a step-index n

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.SemiDec.html#PT

Oracle Computability and Turing Reducibility in CIC 171

used to evaluate both τ1 and τ2 for n steps. The third argument records which
question was asked by τ1 and which by τ2. To then construct τ compactly, we
define helper functions getas1,2: (B × Y)∗→B

∗→Y ∗ which choose answers from
the second list according to the respective boolean in the first list.

We then define

τ(Some q, n, t)as := ret (ask (None, n, t++[(false, q)],Some q))

τ(None, n, t)as :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ret (out true) if x1 = Some (out o)

ret (out false) if x2 = Some (out o)

ret (ask (Some q′, S n, t++[(true, q)], Some q)) if x1 = Some (ask q)

and x2 = Some (ask q′)
ret (ask (None, S n, t++[(true, q)], Some q)) if x1 = Some (ask q)

ret (ask (None, S n, t++[(false, q)], Some q)) if x2 = Some (ask q)

ret (ask (None, S n, t,None)) otherwise

where x1 = ρn (τ1 x (getas1 t as)) and x2 = ρn (τ2 x (getas2 t as)), with ρ being a
step-indexed evaluation function for partial values.

This means that whenever τ1 returns an output, then true is returned and
whenever τ2 returns an output, then false is returned while no question is ever
missed and the interrogation stalls if n does not suffice to evaluate either τ1 or
τ2. The invariants to prove that this indeed yields the wanted Turing reduction
are technical but pose no major hurdles, we refer to the Coq code for details. ��
Corollary 36. The following are equivalent:

1. MP
2. Termination of partial functions is double negation stable.
3. Turing reducibility transports decidability backwards.
4. PT0

Proof. Implications (1) → (2) and (4) → (1) are well-known. We have already
proved implication (2) → (3). It suffices to prove (3) → (4), which is almost direct
using PT: Assume that for all X, Y , p:X→P, and q:Y →P we have that if q is
decidable and p �T q, then p is decidable. Let furthermore p and its complement
be semi-decidable. We prove that p is decidable. Clearly, it suffices to prove
that p �T q for a decidable predicate q (e.g. λn:N.
). Using PT, it suffices to
prove p and its complement semi-decidable in q, which in turn follows from the
assumption that they are semi-decidable and Lemma 16. ��

10 Discussion

Mechanisation in Coq. The Coq mechanisation accompanying this paper
closely follows the structure of the hyperlinked mathematical presentation and
spans roughly 2500 lines of code for the novel results, building on a library of
basic synthetic computability theory. It showcases the feasibility of mechanising
ongoing research with reasonable effort and illustrates the interpretation of syn-
thetic oracle computations as a natural notion available in dependently-typed

172 Y. Forster, D. Kirst, and N. Mück

programming languages. In fact, using Coq helped us a lot with finding the proofs
concerning constructive reverse mathematics (Lemmas 28 and 30 and Corollary
36) in the first place, where subtleties like double negations need to be tracked
over small changes in the definitions.

On top of the usual proof engineering, we used three notable mechanisation
techniques. First, we generalise over all possible implementations of partial func-
tions, so our code is guaranteed to just rely on the abstract interface described in
Appendix A. Secondly, we devised a custom tactic psimpl that simplifies goals
involving partial functions by strategically rewriting with the specifications of
the respective operations. Thirdly, to establish computability of composed func-
tionals, instead of constructing a complicated tree at once, we postpone the
construction with the use of existential variables and apply abstract lemmas
such as the ones described in Sect. 4 to obtain the trees step by step.

Related Work. Synthetic computability was introduced by Richman [37] and
popularised by Richman, Bridges, and Bauer [1–3,5]. In synthetic computability,
one assumes axioms such as CT (“Church’s thesis” [28,42]), postulating that all
functions are μ-recursive. CT is proved consistent for univalent type theory by
Swan and Uemura [39]. Since univalent type theory proves unique choice, using
it as the basis for computability theory renders CT inconsistent with already the
weak principle of omniscience [10], and consequently with the law of excluded
middle, precluding interesting results in constructive reverse mathematics.

Forster [12] identifies that working in CIC allows assuming CT and its con-
sequences even under the presence of the law of excluded middle. This approach
has been used to develop the theory of many-one and truth-table reducibil-
ity [13], to give a proof of the Myhill isomorphism theorem [14] and a more
general treatment of computational back-and-forth arguments [21], to show that
random numbers defined using Kolmogorov complexity form a simple set [17], to
analyse Tennenbaum’s theorem regarding its constructive content [20], to give
computational proofs of Gödel’s first incompleteness theorem [23,24], and to
develop an extensive Coq library of undecidability proofs [18].

The first synthetic definition of oracle computability is due to Bauer [3], based
on continuous functionals in the effective topos. The first author introduced
a classically equivalent definition in his PhD thesis [11] based on joint work
with the second author. Subsequently, we have adapted this definition into one
constructively equivalent to Bauer’s definition [15]. All these previous definitions
however have in common that it is unclear how to derive an enumeration of
all oracle computable functionals from CT as used in [22,30], because they do
not reduce higher-order functionals to first-order functions. Recently, Swan has
suggested a definition of oracle computability based on modalities in univalent
type theory [40].

Future Work. With the present paper, we lay the foundation for several
future investigations concerning synthetic oracle computability in the context of
axioms like CT, both by improving on related projects and by tackling new chal-
lenges. First, a rather simple test would be the Kleene-Post theorem [27], estab-
lishing incomparable Turing degrees as already approximated in [22], assuming

Oracle Computability and Turing Reducibility in CIC 173

an enumeration of all oracle computations of their setting. Similarly, we plan to
establish Post’s theorem [36], connecting the arithmetical hierarchy with Turing
degrees. An interesting challenge would be a synthetic proof of the Friedberg-
Muchnik theorem [19,29], solving Post’s problem [35] concerning the existence
of undecidable Turing degrees strictly below the halting problem.

Acknowledgements. We want to thank Felix Jahn, Gert Smolka, Dominique
Larchey-Wendling, and the participants of the TYPES ’22 conference for many fruit-
ful discussions about Turing reducibility, as well as Martin Baillon, Yann Leray, Assia
Mahboubi, Pierre-Marie Pédrot, and Matthieu Piquerez for discussions about notions
of continuity. The central inspiration to start working on Turing reducibility in type
theory is due to Andrej Bauer’s talk at the Wisconsin logic seminar in February 2021.

A Glossary of Definitions

We collect some basic notations and definitions:

– P is the (impredicative) universe of propositions.
– Natural numbers: n : N ::= 0 | S n
– Booleans: b : B ::= true | false
– Unit type: 1 ::= �
– Sum type: X + Y ::= inlx | inry (x : X, y : Y)
– Option type: o : X? ::= None | Some x (x : X)
– Lists: l : X∗ ::= [] | x :: l (x : X)

List operations. We often rely on concatenation of of two lists l1++l2:

[]++l2 := l2 (x :: l1)++l2 := x :: (l1++l2)

Also, we use an inductive predicate Forall2: (X→Y →P)→X∗→Y ∗→P

Forall2 p [] []
pxy Forall2 p l1 l2

Forall2 p (x :: l1) (y :: l2)

Characteristic Relation. The characteristic relation p̂:X→B→P of a predicate
p:X→P is introduced in Sect. 3 as

p̂ := λxb.

{
px if b = true

¬px if b = false.

Reducibility. �m is many-one reducibility, introduced in Sect. 6. �tt is truth-
table reducibility, introduced in Sect. 8. �T is Turing reducibility, introduced in
Sect. 3.

174 Y. Forster, D. Kirst, and N. Mück

Interrogations. The interrogation predicate σ ;R �qs ;as is introduced in Sect. 2.
It works on a tree σ:A∗→Q + O. We often also use trees taking an input, i.e.
τ : I→A∗→Q + O. Given σ, we denote the subtree starting at path l:A∗ with
σ@l := λl′. σ(l++l′).

Partial Functions. We use an abstract type of partial values over X, denoted
as PX, with evaluation relation � :PX→X→P. We set X⇀Y := X→PY and
use

– ret :X⇀X with ret x � x,
– >>=:PX→(X→PY)→PY with x>>= f � y ↔ ∃v. x � v ∧ fv � y,
– μ: (N→PB)→PN with μf � n ↔ fn � true ∧ ∀m < n. fm� false, and
– undef:PX with ∀v. undef 	 � v.

One can for instance implement PX as monotonic sequences f : N → X?,
i.e. with fn = Some x → ∀m ≥ n. fm = Some x and f � x := ∃n. fn = Some x.
For any implementation it is only crucial that the graph relation λxy.fx � y
for f :N⇀N is semi-decidable but cannot be proved decidable. Semi-decidability
induces a function ρ:PX→N→X?, which we write as ρnx with the properties
that x � v ↔ ∃n. ρnx = Some v and ρnx = Some v → ∀m ≥ n. ρmx = Some v.

B Extended Forms of Interrogations

B.1 Extended Interrogations with State

As an auxiliary notion, before introducing the stalling interrogations, we first
introduce extended interrogations with a state argument, but without stalling.
An extended tree is a function σ : S → A∗⇀(S × Q) + O. We define an inductive
extended interrogation predicate σ ; R �qs ; as ; s � s′ by:

σ ; R �[] ; [] ; s � s

σ ; R �qs ; as ; s � s′′ σ s′′ as � ask (s′, q) Rqa

σ ; R �qs++[q] ; as++[a] ; s � s′

A functional F mapping R:Q→A→P to a relation of type I→O→P is com-
putable via extended interrogations if there are a type S, an element s0 : S, and
a function τ : I→S→A∗⇀(S × Q) + O such that

∀R i o. FR i o ↔ ∃qs as s. τ i ; R �qs ; as ; s0 � s ∧ τ i s as � out o.

Note that we do not pass the question history to the function here, because
if necessary it can be part of the type S.

Lemma 37. Computable functionals are computable via extended interroga-
tions.

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.OracleComputability.html#eOracleComputable_equiv

Oracle Computability and Turing Reducibility in CIC 175

Proof. Let F be computable by τ . Set S to be any inhabited type with element
s0 and define

τ ′ i s l := τ i l >>=λx.

{
ret (ask (s, q)) if x = ask q

ret o if x = out o.
.

Then τ ′ computes F via extended interrogations. ��
Lemma 38. Functionals computable via extended interrogations are computable.

Proof. Let τ : I→S→A∗⇀(S × Q) + O compute F via extended interrogations.
Define τ ′:S→A∗→I→A∗⇀Q + O as

τ ′ s l i [] := τ i s l >>=

{
ret (ask q) if x = ask (e, q)
ret (out o) if x = out o,

τ ′ s l i (a :: as) := τ s l i>>=λx.

{
τ ′ s′ (l++[a]) i as if x = ask (s′, q)
ret (out o) if x = out o.

Then τ ′ s0 [] computes F . ��

B.2 Stalling Interrogations

We here give the left out proofs that stalling interrogations as described in Sect. 9
and interrogations are equivalent.

Lemma 39. Functionals computable via extended interrogations are computable
via stalling interrogations.

Proof. Let F be computable using a type S and element s0 by τ via extended
interrogations. We use the same type S and element s0 and define τ ′ to never
use stalling:

τ ′ i s l := τ i s l >>=λx.

{
ret (ask (s′,Some q)) if x = ask (s′, q)
ret (out o) if x = out o.

Then τ ′ computes F via stalling interrogations. ��
Lemma 40. Functionals computable via stalling interrogations are computable
via extended interrogations.

Proof. Take τ : I→S→A∗⇀(S × Q?) + O computing F via stalling interroga-
tions. We construct τ ′ i s as to iterate the function λs′. τ i s′ as of type
S⇀(S × Q?) + O. If ask (s′′,None) is returned, the iteration continues with s′′. If
ask (s,Some q) is returned, τ ′ i sas returns ask (s, q). If out o is returned, τ ′ i s as
returns out o as well.

We omit the technical details how to implement this iteration process using
unbounded search μ : (N⇀B)⇀N. ��

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.OracleComputability.html#eOracleComputable_equiv
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.OracleComputability.html#sOracleComputable_equiv
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.OracleComputability.html#sOracleComputable_equiv

176 Y. Forster, D. Kirst, and N. Mück

B.3 Proofs of Closure Properties

We here give the proofs that executing two computable functionals one after
the other, composing computable functionals, and performing an unbounded
search on a computable functional are all computable operations as stated in
Sect. 4. We explain the tree constructions, which are always the core of the argu-
ment. The verification of the trees are then tedious but relatively straightforward
inductions, we refer to the Coq code for full detail.

Proof (of Lemma 7). Let τ1 compute F1 maping relations R:Q→A→P to rela-
tions of type I→O′→P, and τ2 compute F2 mapping relations R:Q→A→P to
relations of type (I × O′)→O→P.

To compute the functional mapping an oracle R:Q→A→P to a computation
λio.∃o′:O′. F1 R i o′ ∧ F2 R (i, o′) o of type I→O→P we construct a stalling tree
with state type (O′ × N)? and starting state None. The intuition is that the state
s remains None as long as τ1 asks questions, and once an output o′ is produced
we save it and the number of questions that were asked until then in the state,
which remains unchanged after. Then, τ2 can ask questions, but since as contains
also answers to questions of τ1, we drop the first n before passing it to τ2.

Formally, the tree takes as arguments the input i, state s ans answer list as,
and returns
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ret (ask (None, Some q)) if s = None, τ1 i as � Some (ask q)

ret (ask (Some (o′, |as|),None)) if s = None, τ1 i as � Some (out o′)

ret (ask (Some (o′, n), Some q)) if s = Some (o′, n), τ2 (i, o′) (as ↑n) � Some (ask q)

ret (ask (Some (o′, n), Some q)) if s = Some (o′, n), τ2 (i, o′) (as ↑n) � Some (out o)

where as ↑n drops the first n elements of as. Note that formally, we use bind to
analyse the values of τ1 and τ2, but just write a case analysis on paper. ��
Proof (of Lemma 8). Let τ1 compute F1 mapping relations R:Q→A→P to rela-
tions X→Y →P, and τ1 compute F2 mapping relations R:X→Y →P to rela-
tions I→O→P. We construct a stalling tree τ computing a functional mapping
R:Q→A→P to λio. F2 (F1R) i o of type I→O→P.

Intuitively, we want to execute τ2. Whenever it asks a question x, we record
it and execute τ1 x to produce an answer. Since the answer list as at any point
will also contain answers of the oracle produces for any earlier question x′ of τ2,
we record furthermore how many questions were already asked to the oracle to
compute τ1x.

As state type, we thus use (X × Y)∗ × (X × N)?, where the first compo-
nent remembers questions and answers for τ2, and the second component indi-
cates whether we are currently executing τ2 (then it is None), or τ1, when it is
Some (x, n) to indicate that on answer list as we need to run τ1 x (as ↓n), where
as ↓n contains the last n elements of as. The initial state is ([],None).

Oracle Computability and Turing Reducibility in CIC 177

We define τ to take as arguments an input i, a state (t, z), and an answer
list as and return

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

out o if x = None, τ2 i (mapπ2 t) � out o

ask (t,Some (x, 0),None) if x = None, τ2 i (mapπ2 t) � ask x

ask (t,Some (x,S n),Some q) if x = Some (x, n), τ1 x (as ↑n) � ask q

ask (t++[(x, y)],None,None) if x = Some (x, n), τ1 x (as ↑n) � out y

Intuitively, when we are in the mode to execute τ2 and it returns an output,
we return the output. If it returns a question x, we change mode and stall. When
we are in the mode to execute τ1 to produce an answer for x, taking the last
n given answers into account and it asks a question q, we ask the question and
indicate that now one more answer needs to be taken into account. If it returns
an output y, we add the pair [(x, y)] to the question answer list for τ1, change
the mode back to execute τ2, and stall. ��
Proof (of Lemma 9). We define a tree τ computing the functional mapping
R: (I × N)→B→P to the following relation of type I→N→P: λin. R (i, n) true ∧
∀m < n. R (i,m) false.

τ i as :=

{
ret (out i) if as[i] = true

ret (ask (i, |as |)) if ∀j. as[j] = false

Note that a function find as computing the smallest i such that as at position i
is true, and else returning None is easy to implement.

Intuitively, we just ask all natural numbers as questions in order. On answer
list l with length n, this means we have asked [0, . . . , n − 1]. We check whether
for one of these the oracle returned true, and else ask n = |l|. ��

C Relation to Bauer’s Turing Reducibility

We show the equivalence of the modulus continuity as defined in Lemma 1 with
the order-theoretic characterisation used by Bauer [3]. The latter notion is more
sensible for functionals acting on functional relations, so we fix some

F : (Q � A) → (I � O)

where X � Y denotes the type of functional relations X → Y → P. To simplify
proofs and notation, we assume extensionality in the form that we impose R = R′

for all R,R′ : X � Y with Rxy ↔ R′xy for all x : X and y : Y .
To clarify potential confusion upfront, note that Bauer does not represent

oracles on N as (functional) relations but as pairs (X,Y) of disjoint sets with
X,Y : N → P, so his oracle computation operate on such pairs. However, since
such a pair (X,Y) gives rise to a functional relation R : N � B by setting
R nb := (X n ∧ b = true) ∨ (Y n ∧ b = false) and, conversely, R : N � B induces

178 Y. Forster, D. Kirst, and N. Mück

a pair (X,Y) via X n := R n true and Y n := R n false, Bauer’s oracle function-
als correspond to our specific case of functionals (N�B)→(N�B). He then
describes the computable behaviour of an oracle functional by imposing conti-
nuity and a computational core operating on disjoint pairs (X,Y) of enumerable
sets that the original oracle functional factors through, which in our chosen app-
roach correspond to the existence of computation trees. So while the overall
setup of our approach still fits to Bauer’s suggestion, we now show that our
notion of continuity is strictly stronger than his by showing the latter equivalent
to modulus continuity.

Informally, Bauer’s notion of continuity requires that F preserves suprema,
which given a non-empty directed set : (Q � A) → P of functional relations
requires that F (

⋃
R∈S R) =

⋃
R∈S F R, i.e. that the F applied to the union of S

should be the union of F applied to each R in S. Here directedness of S means
that for every R1, R2 ∈ S there is also R3 ∈ S with R1, R2 ⊆ R3, which ensures
that the functional relations included in S are compatible so that the union of
S is again a functional relation.

Lemma 41. If F is modulus-continuous, then it preserves suprema.

Proof. First, we observe that F is monotone, given that from F R i o we obtain
some modulus L : Q∗ that directly induces F R′ i o for every R′ with R ⊆ R′.

So now S be directed and non-empty, we show both inclusions separately.
First

⋃
R∈S F R ⊆ F (

⋃
R∈S R) follows directly from monotonicity, since if

F R i o for some R ∈ S we also have F (
⋃

R∈S R) i o given R ⊆ ⋃
R∈S R.

Finally assuming F (
⋃

R∈S R) i o, let L : Q∗ be a corresponding modulus, so
in particular L ⊆ dom(

⋃
R∈S R). Using directedness (and since S is non-empty),

by induction on L we can find RL ∈ S such that already L ⊆ dom(RL). But
then also F RL i o since L is a modulus and RL agrees with

⋃
R∈S R) on L. ��

Lemma 42. If F is preserves suprema, then it is modulous continuous.

Proof. Again, we first observe that F is monotone, given that for R ⊆ R′ the
(non-empty) set S := {R,R′} is directed and hence if F R i o we obtain F R′ i o
since R′ =

⋃
R∈S R.

Now assuming F R i o we want to find a corresponding modulus. Consider

S := {RL | L ⊆ dom(R)}

where RL q a := q ∈ L ∧ R q a, so S contains all terminating finite subrelations
of R. So by construction, we have R =

⋃
R∈S R and hence F (

⋃
R∈S R) i o, thus

since F preserves suprema we obtain L ⊆ dom(R) such that already F RL i o.
The remaining part of L being a modulus for F R i o follows from monotonicity.
��

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.OracleComputability.html#modulus_continuous_to_Bauer_continuous
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.OracleComputability.html#Bauer_continuous_to_continuous

Oracle Computability and Turing Reducibility in CIC 179

References

1. Bauer, A.: First steps in synthetic computability theory. Electron. Not. Theoret.
Comput. Sci. 155, 5–31 (2006). https://doi.org/10.1016/j.entcs.2005.11.049

2. Bauer, A.: On fixed-point theorems in synthetic computability. Tbilisi Math. J.
10(3), 167–181 (2017). https://doi.org/10.1515/tmj-2017-0107

3. Bauer, A.: Synthetic mathematics with an excursion into computability theory
(slide set). University of Wisconsin Logic seminar (2020). http://math.andrej.com/
asset/data/madison-synthetic-computability-talk.pdf

4. Bauer, A.: Formalizing invisible mathematics. In: Workshop on Machine Assisted
Proofs, Institute for Pure and Applied Mathematics (IPAM) at the University
of California in Los Angeles (UCLA), 13–17 February 2023 (2023). https://www.
youtube.com/watch?v=wZSvuCJBaFU

5. Bridges, D., Richman, F.: Varieties of Constructive Mathematics, vol. 97. Cam-
bridge University Press (1987). https://doi.org/10.1017/CBO9780511565663

6. Coquand, T., Huet, G.P.: The calculus of constructions. Inf. Comput. 76(2/3),
95–120 (1988). https://doi.org/10.1016/0890-5401(88)90005-3

7. Davis, M.D.: Computability and Unsolvability. McGraw-Hill Series in Information
Processing and Computers. McGraw-Hill (1958)

8. Dekker, J.C.E.: A theorem on hypersimple sets. Proc. Am. Math. Soc. 5, 791–796
(1954). https://doi.org/10.1090/S0002-9939-1954-0063995-6

9. Escardo, M.: Continuity of Gödel’s system T definable functionals via effectful
forcing. Electron. Not. Theoret. Comput. Sci. 298, 119–141 (2013). https://doi.
org/10.1016/j.entcs.2013.09.010

10. Forster, Y.: Church’s thesis and related axioms in Coq’s type theory. In: Baier,
C., Goubault-Larrecq, J. (eds.) 29th EACSL Annual Conference on Computer
Science Logic (CSL 2021). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 183, pp. 21:1–21:19. Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik, Dagstuhl, Germany (2021). https://doi.org/10.4230/LIPIcs.CSL.2021.21.
https://drops.dagstuhl.de/opus/volltexte/2021/13455

11. Forster, Y.: Computability in constructive type theory. Ph.D. thesis, Saarland Uni-
versity (2021). https://doi.org/10.22028/D291-35758

12. Forster, Y.: Parametric Church’s thesis: synthetic computability without choice. In:
Artemov, S., Nerode, A. (eds.) LFCS 2022. LNCS, vol. 13137, pp. 70–89. Springer,
Cham (2022). https://doi.org/10.1007/978-3-030-93100-1_6

13. Forster, Y., Jahn, F.: Constructive and synthetic reducibility degrees: post’s prob-
lem for many-one and truth-table reducibility in Coq. In: Klin, B., Pimentel, E.
(eds.) 31st EACSL Annual Conference on Computer Science Logic (CSL 2023).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 252, pp. 21:1–
21:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl, Germany
(2023). https://doi.org/10.4230/LIPIcs.CSL.2023.21. https://drops.dagstuhl.de/
opus/volltexte/2023/17482

14. Forster, Y., Jahn, F., Smolka, G.: A computational cantor-Bernstein and Myhill’s
isomorphism theorem in constructive type theory. In: CPP 2023–12th ACM SIG-
PLAN International Conference on Certified Programs and Proofs, pp. 1–8. ACM,
Boston, United States, January 2023. https://doi.org/10.1145/3573105.3575690.
https://inria.hal.science/hal-03891390

15. Forster, Y., Kirst, D.: Synthetic Turing reducibility in constructive type theory. In:
28th International Conference on Types for Proofs and Programs (TYPES 2022)
(2022). https://types22.inria.fr/files/2022/06/TYPES_2022_paper_64.pdf

https://doi.org/10.1016/j.entcs.2005.11.049
https://doi.org/10.1515/tmj-2017-0107
http://math.andrej.com/asset/data/madison-synthetic-computability-talk.pdf
http://math.andrej.com/asset/data/madison-synthetic-computability-talk.pdf
https://www.youtube.com/watch?v=wZSvuCJBaFU
https://www.youtube.com/watch?v=wZSvuCJBaFU
https://doi.org/10.1017/CBO9780511565663
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1090/S0002-9939-1954-0063995-6
https://doi.org/10.1016/j.entcs.2013.09.010
https://doi.org/10.1016/j.entcs.2013.09.010
https://doi.org/10.4230/LIPIcs.CSL.2021.21
https://drops.dagstuhl.de/opus/volltexte/2021/13455
https://doi.org/10.22028/D291-35758
https://doi.org/10.1007/978-3-030-93100-1_6
https://doi.org/10.4230/LIPIcs.CSL.2023.21
https://drops.dagstuhl.de/opus/volltexte/2023/17482
https://drops.dagstuhl.de/opus/volltexte/2023/17482
https://doi.org/10.1145/3573105.3575690
https://inria.hal.science/hal-03891390
https://types22.inria.fr/files/2022/06/TYPES_2022_paper_64.pdf

180 Y. Forster, D. Kirst, and N. Mück

16. Forster, Y., Kirst, D., Smolka, G.: On synthetic undecidability in Coq, with an
application to the Entscheidungsproblem. In: Proceedings of the 8th ACM SIG-
PLAN International Conference on Certified Programs and Proofs - CPP 2019.
ACM Press (2019). https://doi.org/10.1145/3293880.3294091. https://doi.org/10.
1145/3293880.3294091

17. Forster, Y., Kunze, F., Lauermann, N.: Synthetic kolmogorov complexity in Coq.
In: Andronick, J., de Moura, L. (eds.) 13th International Conference on Inter-
active Theorem Proving (ITP 2022). Leibniz International Proceedings in Infor-
matics (LIPIcs), vol. 237, pp. 12:1–12:19. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, Dagstuhl, Germany (2022). https://doi.org/10.4230/LIPIcs.ITP.2022.
12. https://drops.dagstuhl.de/opus/volltexte/2022/16721

18. Forster, Y., et al.: A Coq library of undecidable problems. In: The Sixth Inter-
national Workshop on Coq for Programming Languages (CoqPL 2020) (2020).
https://github.com/uds-psl/coq-library-undecidability

19. Friedberg, R.M.: Two recursively enumerable sets of incomparable degrees of
unsovlability (solution of Post’s problem), 1944. Proc. Nat. Acad. Sci. 43(2), 236–
238 (1957). https://doi.org/10.1073/pnas.43.2.236. https://doi.org/10.1073/pnas.
43.2.236

20. Hermes, M., Kirst, D.: An analysis of Tennenbaum’s theorem in constructive type
theory. In: Felty, A.P. (ed.) 7th International Conference on Formal Structures for
Computation and Deduction, FSCD 2022, 2–5 August 2022, Haifa, Israel. LIPIcs,
vol. 228, pp. 9:1–9:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022).
https://doi.org/10.4230/LIPIcs.FSCD.2022.9

21. Kirst, D.: Computational back-and-forth arguments in constructive type theory.
In: Andronick, J., de Moura, L. (eds.) 13th International Conference on Inter-
active Theorem Proving (ITP 2022). Leibniz International Proceedings in Infor-
matics (LIPIcs), vol. 237, pp. 22:1–22:12. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, Dagstuhl, Germany (2022). https://doi.org/10.4230/LIPIcs.ITP.2022.
22. https://drops.dagstuhl.de/opus/volltexte/2022/16731

22. Kirst, D., Forster, Y., Mück, N.: Synthetic versions of the kleene-post and
post’s theorem. In: 28th International Conference on Types for Proofs and
Programs (TYPES 2022) (2022). https://types22.inria.fr/files/2022/06/TYPES_
2022_paper_65.pdf

23. Kirst, D., Hermes, M.: Synthetic undecidability and incompleteness of first-order
axiom systems in Coq: extended version. J. Autom. Reason. 67(1), 13 (2023).
https://doi.org/10.1007/s10817-022-09647-x

24. Kirst, D., Peters, B.: Gödel’s theorem without tears - essential incompleteness
in synthetic computability. In: Klin, B., Pimentel, E. (eds.) 31st EACSL Annual
Conference on Computer Science Logic, CSL 2023, 13–16 February 2023, Warsaw,
Poland. LIPIcs, vol. 252, pp. 30:1–30:18. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2023). https://doi.org/10.4230/LIPIcs.CSL.2023.30

25. Kleene, S.C.: Recursive functionals and quantifiers of finite types I. Trans. Am.
Math. Soc. 91(1), 1 (1959). https://doi.org/10.2307/1993145. https://www.jstor.
org/stable/1993145?origin=crossref

26. Kleene, S.C.: Introduction to Metamathematics, vol. 483. Van Nostrand, New York
(1952)

27. Kleene, S.C., Post, E.L.: The upper semi-lattice of degrees of recursive unsolvabil-
ity. Ann. Math. 59(3), 379 (1954). https://doi.org/10.2307/1969708

28. Kreisel, G.: Mathematical logic. Lect. Mod. Math. 3, 95–195 (1965). https://doi.
org/10.2307/2315573

https://doi.org/10.1145/3293880.3294091
https://doi.org/10.1145/3293880.3294091
https://doi.org/10.1145/3293880.3294091
https://doi.org/10.4230/LIPIcs.ITP.2022.12
https://doi.org/10.4230/LIPIcs.ITP.2022.12
https://drops.dagstuhl.de/opus/volltexte/2022/16721
https://github.com/uds-psl/coq-library-undecidability
https://doi.org/10.1073/pnas.43.2.236
https://doi.org/10.1073/pnas.43.2.236
https://doi.org/10.1073/pnas.43.2.236
https://doi.org/10.4230/LIPIcs.FSCD.2022.9
https://doi.org/10.4230/LIPIcs.ITP.2022.22
https://doi.org/10.4230/LIPIcs.ITP.2022.22
https://drops.dagstuhl.de/opus/volltexte/2022/16731
https://types22.inria.fr/files/2022/06/TYPES_2022_paper_65.pdf
https://types22.inria.fr/files/2022/06/TYPES_2022_paper_65.pdf
https://doi.org/10.1007/s10817-022-09647-x
https://doi.org/10.4230/LIPIcs.CSL.2023.30
https://doi.org/10.2307/1993145
https://www.jstor.org/stable/1993145?origin=crossref
https://www.jstor.org/stable/1993145?origin=crossref
https://doi.org/10.2307/1969708
https://doi.org/10.2307/2315573
https://doi.org/10.2307/2315573

Oracle Computability and Turing Reducibility in CIC 181

29. Muchnik, A.A.: On strong and weak reducibility of algorithmic problems. Sibirskii
Matematicheskii Zhurnal 4(6), 1328–1341 (1963)

30. Mück, N.: The arithmetical hierarchy, oracle computability, and Post’s theorem in
synthetic computability. Bachelor’s thesis, Saarland University (2022). https://ps.
uni-saarland.de/~mueck/bachelor.php

31. Odifreddi, P.: Classical Recursion Theory: The Theory of Functions and Sets of
Natural Numbers. Elsevier (1992)

32. van Oosten, J.: A combinatory algebra for sequential functionals of finite type. In:
Models and Computability, pp. 389–406. Cambridge University Press, June 1999.
https://doi.org/10.1017/cbo9780511565670.019

33. van Oosten, J.: Partial combinatory algebras of functions. Notre Dame J. Formal
Logic 52(4), 431–448 (2011). https://doi.org/10.1215/00294527-1499381

34. Paulin-Mohring, C.: Inductive definitions in the system Coq rules and properties.
In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 328–345.
Springer, Heidelberg (1993). https://doi.org/10.1007/BFb0037116

35. Post, E.L.: Recursively enumerable sets of positive integers and their decision prob-
lems. Bull. Am. Math. Soc. 50(5), 284–316 (1944). https://doi.org/10.1090/S0002-
9904-1944-08111-1

36. Post, E.L.: Degrees of recursive unsolvability - preliminary report. Bull. Am. Math.
Soc. 54(7), 641–642 (1948)

37. Richman, F.: Church’s thesis without tears. J. Symbolic Logic 48(3), 797–803
(1983). https://doi.org/10.2307/2273473

38. Rogers, H.: Theory of Recursive Functions and Effective Computability (1987)
39. Swan, A., Uemura, T.: On Church’s thesis in cubical assemblies. arXiv preprint

arXiv:1905.03014 (2019)
40. Swan, A.W.: Oracle modalities. In: Second International Conference on Homotopy

Type Theory (HoTT 2023) (2023). https://hott.github.io/HoTT-2023/abstracts/
HoTT-2023_abstract_35.pdf

41. The Coq Development Team: The Coq proof assistant, June 2023. https://doi.org/
10.5281/zenodo.8161141

42. Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics. Studies in Logic
and the Foundations of Mathematics, vol. i, 26 (1988)

43. Turing, A.M.: Systems of logic based on ordinals. Proc. Lond. Math. Soc. 2(1),
161–228 (1939). https://doi.org/10.1112/plms/s2-45.1.161

https://ps.uni-saarland.de/~mueck/bachelor.php
https://ps.uni-saarland.de/~mueck/bachelor.php
https://doi.org/10.1017/cbo9780511565670.019
https://doi.org/10.1215/00294527-1499381
https://doi.org/10.1007/BFb0037116
https://doi.org/10.1090/S0002-9904-1944-08111-1
https://doi.org/10.1090/S0002-9904-1944-08111-1
https://doi.org/10.2307/2273473
http://arxiv.org/abs/1905.03014
https://hott.github.io/HoTT-2023/abstracts/HoTT-2023_abstract_35.pdf
https://hott.github.io/HoTT-2023/abstracts/HoTT-2023_abstract_35.pdf
https://doi.org/10.5281/zenodo.8161141
https://doi.org/10.5281/zenodo.8161141
https://doi.org/10.1112/plms/s2-45.1.161

	Oracle Computability and Turing Reducibility in the Calculus of Inductive Constructions
	1 Introduction
	2 Synthetic Oracle Computability
	3 Turing Reducibility and Oracle Semi-decidability
	4 Closure Properties of Oracle Computations
	5 Computational Cores of Oracle Computations
	6 Properties of Oracle Semi-decidability
	7 Properties of Turing Reducibility
	8 Turing Reducibility and Truth-Table Reducibility
	9 Post's Theorem (PT)
	10 Discussion
	A Glossary of Definitions
	B Extended Forms of Interrogations
	B.1 Extended Interrogations with State
	B.2 Stalling Interrogations
	B.3 Proofs of Closure Properties

	C Relation to Bauer's Turing Reducibility
	References

