# Inductive Characterization of the Cumulative Hierarchy

Dominik Kirst Advisor: Gert Smolka Programming Systems Lab

May 31, 2015

# Outline

Motivation

Well-Orderings

Set Theory

Conclusion

| Motivation | Well-Orderings | Set Theory | Conclusion |
|------------|----------------|------------|------------|
|            |                |            |            |
| Motivation |                |            |            |

The universe of ZF sets is rich in structure but unrealizable...



| Motivation | Well-Orderings | Set Theory | Conclusion |
|------------|----------------|------------|------------|
|            |                |            |            |
| Motivation |                |            |            |

Stratify it into cumulative slices and stages which are all realizable!



## Common Definition

We define the class  ${\mathcal V}$  by transfinite recursion on ordinals:

$$\mathcal{V}_lpha\coloneqq\mathcal{P}^{\,lpha}(\emptyset)\qquad \mathcal{V}\coloneqqigcup_{lpha\in\mathcal{O}}\mathcal{V}_lpha$$

- Hierarchy  $\mathcal{V}_{\alpha}$  inherits key properties from  $\mathcal{O}$  (well-ordering)
- Definition depends on ordinal theory, transfinite recursion etc.
  - $\Rightarrow$  Appears late in a typical first-order presentation of ZF

# Inductive Definition

We define the class  $\mathcal{Z}$  by two (almost) disjoint inductive rules:

$$\frac{x \in \mathcal{Z}}{\mathcal{P}(x) \in \mathcal{Z}} \qquad \qquad \frac{M \subseteq \mathcal{Z}}{\bigcup M \in \mathcal{Z}}$$

- Definition depends only on ZF axioms, no background needed
- Establishing key properties of  $\mathcal{Z}$  is not trivial

 $\Rightarrow$  There is some work for a RIL...

# Goals

The three key properties of  $\mathcal Z$  are:

- 1.  $\mathcal{Z}$  is well-ordered by  $\subseteq$
- 2.  $\mathcal{Z}$  exhausts the (well-founded) sets
- 3.  $\mathcal Z$  is (order-)isomorphic to the class  $\mathcal O$  of ordinals

Once they have been established, we have:

- The isomorphy of  $\mathcal Z$  and the  $\mathcal V_{\alpha}$  hierarchy
- Inner models for (subtheories) of ZF

# Related Work

During the RIL, two related papers were published:

- "Transfinite Constructions in Classical Type Theory" by Gert Smolka, Steven Schäfer and Christian Doczkal [1]
  - General inductive towers on type level
  - Well-ordering proof with few requirements
- "Axiomatic Set Theory in Type Theory" by Gert Smolka [2]
  - $\blacktriangleright$  Full presentation of  ${\mathcal O}$  and  ${\mathcal Z}$  in inductive shape
  - Profound theory of well-orderings

# Definitions

Let X be a type and  $\leq$  a binary relation on X.

$$\blacktriangleright \mathcal{D}(\leq) := \{x \mid \exists y. x \leq y\}$$

- $\leq$  is *reflexive* iff  $x \leq y \Rightarrow x \leq x \land y \leq y$
- $\leq$  is antisymmetric iff  $x \leq y \Rightarrow y \leq x \Rightarrow x = y$
- $\leq$  is *transitive* iff  $x \leq y \Rightarrow y \leq z \Rightarrow x \leq z$
- $\leq$  is *linear* iff  $x, y \in \mathcal{D}(\leq) \Rightarrow x \leq y \lor y \leq x$

We say  $\leq$  is a *partial ordering* iff  $\leq$  reflexive, antisymmetric and transitive. A partial ordering that is linear is called a *linear* ordering.

Set Theory

# Definitions (ctd.)

Let X be a type and  $\leq$  a binary relation on X.

We say  $\leq$  is a *well-ordering* iff  $\leq$  is a partial ordering and  $\mathcal{L}_{p}^{\leq}$  is inhabited whenever  $p \subseteq \mathcal{D}(\leq)$  is inhabited. Clearly, well-orderings are linear and restrictions of well-orderings are well-orderings again.

# Similarities

Let  $\leq_1$  be a relation on X and  $\leq_2$  be a relation on Y. A relation U from X to Y is:

- simulative iff  $U x y \Rightarrow x' \leq_1 x \Rightarrow \exists y'. U x' y' \land y' \leq_2 y$
- ▶ a simulation iff  $\mathcal{D}(U) \subseteq \mathcal{D}(\leq_1)$  and U is simulative
- a similarity iff U and  $U^{-1}$  are functional simulations

▶ an isomorphism iff also  $\mathcal{D}(U) \equiv \mathcal{D}(\leq_1)$  and  $\mathcal{D}(U^{-1}) \equiv \mathcal{D}(\leq_2)$ Clearly, D(U) and  $D(U^{-1})$  are segments of the respective orderings. Moreover, if U and V are similarities we have  $U \subseteq V$  or  $V \subseteq U$ . Thus similarities are stable under union.

# Embedding Theorem

Let U be a similarity from X to Y. We say U is maximal if  $\mathcal{D}(U) \supseteq \mathcal{D}(\leq_1)$  or  $\mathcal{D}(U^{-1}) \supseteq \mathcal{D}(\leq_2)$ .

Theorem 1 Let  $\leq_1$  be a well-ordering on X and  $\leq_2$  be a well-ordering on Y. Then there exists a unique maximal similarity from X to Y.

 $\begin{array}{l} \Rightarrow \mbox{ Given two well-orderings } \leq_1 \mbox{ and } \leq_2, \\ \leq_1 \mbox{ is isomorphic to a section of } \leq_2 \mbox{ or } \\ \leq_2 \mbox{ is isomorphic to a section of } \leq_1. \end{array}$ 

# Basic Set Theory

We assume:

- 1. a type  $\mathcal{S}$  of sets with a binary relation  $\in$ .
- 2. sets to be extensional  $(x \equiv y \Rightarrow x = y)$
- 3. axioms for  $\emptyset, \{x, y\}, \bigcup x$  and  $\mathcal{P}(x)$
- 4. replacement:  $z \in R[x]$  iff there exists  $y \in x$  such that R y z(and R y is unique)
- A class p is realizable iff  $p \equiv x$  for some set x.
- A set x is *transitive*  $(x \in \mathcal{T})$  iff  $y \subseteq x$  for all  $y \in x$ .
- A set x is well-founded  $(x \in W)$  iff  $y \in W$  for all  $y \in x$ .

# Orderings on Sets

We say a relation  $\leq$  on S is *realizable* iff  $\mathcal{D}(\leq)$  is realizable. Moreover,  $\leq$  is *complete* iff  $\Sigma_x^{\leq}$  are realizable but  $\leq$  itself is not.

#### Lemma 2 Complete well-orderings are isomorphic.

We define the *inclusion ordering* of a class p with  $I_p := \subseteq |_p$ . Clearly,  $I_p$  is a partial ordering and  $\sum_{x}^{p}$  are realizable. Thus  $I_p$  is complete iff p is unrealizable.

## Tower Construction

Let f be a function from S to S. We define the tower T for f:

$$\frac{x \in T}{f(x) \in T} \qquad \qquad \frac{M \subseteq T}{\bigcup M \in T}$$

If f is increasing  $(x \subseteq f(x))$ , cumulative  $(x \in f(x))$  and preserves transitivity and well-foundedness, all the following hold:

- I<sub>T</sub> is a linear ordering.
- $T \subseteq T$  and  $T \subseteq W$ .
- T is unrealizable.
- *I<sub>T</sub>* is a complete well-ordering.

Set Theory

## Generic Results

Consider  $f(x) := x \cup \mathcal{P}(x)$ . For  $x \in \mathcal{T}$  we have  $x \subseteq \mathcal{P}(x)$ . Since  $\mathcal{P}$  and f both preserve transitivity, we have  $\mathcal{Z} \equiv T_f$ .  $\Rightarrow$  Goal 1  $\checkmark$ 

Moreover, consider  $g(x) := x \cup \{x\}$ . We define  $\mathcal{O} := T_g$ . We can apply Lemma 2 for the complete well-orderings  $I_{\mathcal{Z}}$  and  $I_{\mathcal{O}}$ .  $\Rightarrow$  Goal 3  $\checkmark$ 

# Goal 2

#### Theorem 3

Every well-founded set  $x \in W$  is member of some  $y \in \mathcal{Z}$ .

We have two proofs (induction on  $x \in W$ ):

- 1. • Refine the statement to the least cumulative set y with  $x \in y$ .
  - The IH is that there exists such a set y' for all  $x' \in x$ .
  - Obtain y as the power set of the union of all y' (replacement).
- 2. The IH is that there exists  $y' \in \mathcal{Z}$  with  $x' \in y'$  for all  $x' \in x$ .
  - Hence there exists a least such y' for all  $x' \in x$  (well-ordering)
  - Obtain y as the power set of the union of all y' (replacement).

$$\Rightarrow$$
 Goal 2 🗸

# On the Isomorphism of ${\mathcal Z}$ and ${\mathcal O}$

In the first version of the above proof, we use a notable relation:

$$R \, lpha \, x \coloneqq lpha \in \mathcal{O}$$
 and  $x \in \mathcal{Z}$  is least with  $lpha \subseteq x$ 

As a first fact, we can consider two "recursion equations":

1. 
$$R \alpha x \Rightarrow R(\alpha \cup \{\alpha\})(\mathcal{P}(x))$$
  
2.  $x \subseteq \mathcal{O} \Rightarrow R(\bigcup x)(\bigcup R[x])$ 

Moreover, we have the following "partitioning" of subsets M of  $\mathcal{Z}$ :

$$\bigcup M \in M \text{ xor } M \subseteq \bigcup M \text{ (by linearity of } \mathcal{Z})$$

This implies that we have  $\alpha \notin x$  whenever  $R \alpha x$ .

# On the Isomorphism of $\mathcal{Z}$ and $\mathcal{O}$ (ctd.)

All the following hold:

- 1. R is total on  $\mathcal{O}$  (by Theorem 3)
- 2. R is surjective on  $\mathcal{Z}$  (by recursion equations)
- 3. R is functional (by extensionality)
- 4. *R* is injective (by partitioning)
- 5. *R* respects  $I_{\mathcal{O}}$  (by linearity of  $I_{\mathcal{O}}$ )
- 6. *R* respects  $I_{\mathcal{Z}}$  (by linearity of  $I_{\mathcal{Z}}$ )
- $\Rightarrow$  We have an explicit characterization of the isomorphism!

We even have a second one:  $R \alpha x \Leftrightarrow \alpha \in \mathcal{O} \land x \in \mathcal{Z} \land \alpha = x \cap \mathcal{O}$ 

# Conclusion

We conclude the RIL with the following remarks:

- Formalizing set theory in a rich type theory like CiC allows for a concise presentation, elegant (and intuitive) proofs and an interactive means for teaching.
- Especially exploring the cumulative hierarchy benefits from inductive definitions whereby the link to the common definition is kept visible (recursion equations).
- Lose ends are the search for "ordinal types", a more informative linearity proof and exploring Gödel's constructible universe in relation to V.

# Statistics

The RIL in numbers:

- Workload: >180h
- Memo 1: embedding theorem (6 pages)
- Memo 2: cumulative hierarchy (2 pages...)
- Development 1: embedding theorem (500 lines)
- Development 2: cumulative hierarchy (1800 lines)
- Tea: 150g Korean Seogwang Sencha

### References

Gert Smolka, Steven Schäfer, and Christian Doczkal. Transfinite constructions in classical type theory. https://www.ps.uni-saarland.de/extras/itp15.

#### Gert Smolka.

Axiomatic set theory in type theory. https://www.ps.uni-saarland.de/extras/types15.

- Karel Hrbacek and Thomas Jech. Introduction to Set Theory. Marcel Dekker Inc, 3rd edition, 1999.
  - Keith J. Devlin.

Fundamentals of Contemporary Set Theory. Springer, 1st edition, 1979.