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Motivation

The universe of ZF sets is rich in structure but unrealizable...




Motivation

Stratify it into cumulative slices and stages which are all realizable!




Common Definition

We define the class V by transfinite recursion on ordinals:

Vo =P 0) Vi={J Va

aceO

» Hierarchy V,, inherits key properties from O (well-ordering)

» Definition depends on ordinal theory, transfinite recursion etc.

=- Appears late in a typical first-order presentation of ZF



Inductive Definition

We define the class Z by two (almost) disjoint inductive rules:

xX€EZ MCZ
P(x) e Z Umez

» Definition depends only on ZF axioms, no background needed

» Establishing key properties of Z is not trivial

= There is some work for a RIL...
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Goals

The three key properties of Z are:

1. Z is well-ordered by C
2. Z exhausts the (well-founded) sets

3. Z is (order-)isomorphic to the class O of ordinals

Once they have been established, we have:

» The isomorphy of Z and the V, hierarchy

> Inner models for (subtheories) of ZF



Related Work

During the RIL, two related papers were published:

» “Transfinite Constructions in Classical Type Theory”
by Gert Smolka, Steven Schafer and Christian Doczkal [1]

» General inductive towers on type level
» Well-ordering proof with few requirements

» “Axiomatic Set Theory in Type Theory” by Gert Smolka [2]

» Full presentation of O and Z in inductive shape
» Profound theory of well-orderings



Well-Orderings

Definitions

Let X be a type and < a binary relation on X.
> D(<) = {x| Fy.x < v}

> <is reflexive iff x <y = x<xAy <y

» <is antisymmetriciff x <y =>y<x=x=y
> <istransitiveiff x<y=y<z=x<z

» <islineariff x,y e D(<)=>x<yVy<x

We say < is a partial ordering iff < reflexive, antisymmetric and
transitive. A partial ordering that is linear is called a linear
ordering.



Well-Orderings

Definitions (ctd.)

Let X be a type and < a binary relation on X.
> E§ ={xep|Vyepx<y}
» Y5 ={p|pCD(K)AVxy.x<y=yecp=x€p}
> IR =y ly Sxax#y}
» <|p=XAxy.x<yAxeEpAy€Ep

We say < is a well-ordering iff < is a partial ordering and E% is
inhabited whenever p C D(<) is inhabited. Clearly, well-orderings
are linear and restrictions of well-orderings are well-orderings again.
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Well-Orderings

Similarities

Let <; be a relation on X and <, be a relation on Y.
A relation U from X to Y is:

» simulative iff Uxy = x' <y x=3y . UxXy Ny <oy

» a simulation iff D(U) C D(<1) and U is simulative

> a similarity iff U and U~ are functional simulations

» an isomorphism iff also D(U) = D(<1) and D(U™1) = D(<»)
Clearly, D(U) and D(U~1) are segments of the respective

orderings. Moreover, if U and V are similarities we have U C V or
V C U. Thus similarities are stable under union.
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Well-Orderings

Embedding Theorem

Let U be a similarity from X to Y.
We say U is maximal if D(U) D D(<1) or D(U™1) D D(<L5).

Theorem 1
Let <1 be a well-ordering on X and <, be a well-ordering on Y.
Then there exists a unique maximal similarity from X to Y.

= Given two well-orderings <3 and <5,
< is isomorphic to a section of <, or
<5 is isomorphic to a section of <j.
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Set Theory

Basic Set Theory

We assume:

[y

a type S of sets with a binary relation €.
2. sets to be extensional (x =y = x = y)

3. axioms for 0, {x, y},|Jx and P(x)
4

. replacement: z € R[x] iff there exists y € x such that Ry z
(and Ry is unique)

» A class p is realizable iff p = x for some set x.
> A set x is transitive (x € T) iff y C x for all y € x.
» A set x is well-founded (x € W) iff y € W for all y € x.
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Set Theory

Orderings on Sets

We say a relation < on S is realizable iff D(<) is realizable.
Moreover, < is complete iff Z; are realizable but < itself is not.

Lemma 2
Complete well-orderings are isomorphic.

We define the inclusion ordering of a class p with I, :=C|,.
Clearly, I, is a partial ordering and X¥ are realizable.
Thus I, is complete iff p is unrealizable.
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Set Theory

Tower Construction

Let f be a function from S to S. We define the tower T for f:

xeT MCT
fx)eT UMET

If fis increasing (x C f(x)), cumulative (x € f(x)) and preserves
transitivity and well-foundedness, all the following hold:

> /7 is a linear ordering.
» TCTand T CW.

» T is unrealizable.

> [ is a complete well-ordering.
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Set Theory

Generic Results

Consider f(x) == x UP(x). For x € T we have x C P(x).
Since P and f both preserve transitivity, we have Z = Tr.
= Goal 1 v

Moreover, consider g(x) = x U {x}. We define O := T,.
We can apply Lemma 2 for the complete well-orderings Iz and I».
= Goal 3 v/
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Set Theory

Goal 2

Theorem 3
Every well-founded set x € W is member of some y € Z.

We have two proofs (induction on x € W):

1. » Refine the statement to the least cumulative set y with x € y.
» The IH is that there exists such a set y’ for all x’ € x.
» Obtain y as the power set of the union of all y’ (replacement).
2. » The IH is that there exists y’ € Z with x’ € y’ for all x’ € x.

Hence there exists a least such y’ for all x’ € x (well-ordering)
Obtain y as the power set of the union of all y’ (replacement).

v

v

= Goal 2 v/
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Set Theory

On the Isomorphism of Z and O
In the first version of the above proof, we use a notable relation:

Rax:=a e O and x € Z is least with oo C x

As a first fact, we can consider two “recursion equations”:

1. Rax = R(aU{a}) (P(x))
2. xCO=R(Ux)URIxD)

Moreover, we have the following “partitioning” of subsets M of Z:
U M e M xor M C U M (by linearity of Z)

This implies that we have a & x whenever R « x.
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Set Theory

On the Isomorphism of Z and O (ctd.)

All the following hold:
1. R is total on O (by Theorem 3)

R is surjective on Z (by recursion equations)
R is functional (by extensionality)

R is injective (by partitioning)

R respects lp (by linearity of Ip)

ok wnN

R respects Iz (by linearity of /z)
= We have an explicit characterization of the isomorphism!

We even have a second one: Rax&aac OAx e ZNa=xN0O
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Conclusion

Conclusion

We conclude the RIL with the following remarks:

» Formalizing set theory in a rich type theory like CiC allows for
a concise presentation, elegant (and intuitive) proofs and an
interactive means for teaching.

» Especially exploring the cumulative hierarchy benefits from
inductive definitions whereby the link to the common
definition is kept visible (recursion equations).

» Lose ends are the search for “ordinal types”, a more
informative linearity proof and exploring Godel's constructible
universe in relation to V.
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Conclusion

Statistics

The RIL in numbers:

Workload: >180h
» Memo 1: embedding theorem (6 pages)

v

» Memo 2: cumulative hierarchy (2 pages...)
Development 1: embedding theorem (500 lines)

v

Development 2: cumulative hierarchy (1800 lines)

v

v

Tea: 150g Korean Seogwang Sencha
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Conclusion
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