Mechanised Constructive Reverse Mathematics: Soundness and Completeness of Bi-Intuitionistic Logic

Ian Shillito and Dominik Kirst

ALC 2023
November 8th
Bi-Intuitionistic Logic

Extends intuitionistic logic with exclusion, a dual to implication:

\[w \models \varphi \rightarrow \psi \ := \ \forall w' \geq w. \ w' \models \varphi \rightarrow w' \models \psi \]

\[w \models \varphi \rightarrow \neg \psi \ := \ \exists w' \leq w. \ w' \models \varphi \land w' \not\models \psi \]

\[w \models \varphi \neg \psi \ := \ \neg (\forall w' \leq w. \ w' \models \varphi \rightarrow w' \models \psi) \]

Corresponds to extending proof calculi with axioms for exclusion, e.g.

\[\psi \lor (\top \rightarrow \psi) \]

capturing the case distinction \(w \models \varphi \lor \neg (\forall w' \leq w. \ w' \models \varphi) \).
A Case for Computer Mechanisation

- Semantics introduced by Grzegorczyk (1964)
- Henkin-style completeness proof by Klemke (1971)
- Extensive investigation by Rauszer (1980)
- Rauszer’s completeness proofs fixed for the propositional case by Goré and Shillito (2020)
- Goré and Shillito’s results mechanised in the Coq proof assistant by Shillito (2023)

Soundness and completeness are guaranteed to be correct!
Constructive Reverse Mathematics1

In foundations like constructive type theory, many sub-classical distinctions become visible:

- **Excluded Middle (LEM)** := $\forall P : \mathbb{P}. \; P \lor \neg P$
- **Weak Excluded Middle (WLEM)** := $\forall P : \mathbb{P}. \; \neg P \lor \neg \neg P$
- **Double Negation Shift (DNS)** := $\forall p : \mathbb{N} \rightarrow \mathbb{P}. (\forall n. \neg \neg p n) \rightarrow \neg \neg (\forall n. p n)$
- **Markov’s Principle (MP)** := $\forall f : \mathbb{N} \rightarrow \mathbb{B}. \; \neg \neg (\exists n. f n = \text{true}) \rightarrow \exists n. f n = \text{true}$

Some classically valid theorems are actually equivalent to constructively weaker principles...

Correct theorems can still be analysed regarding their logical strength!

1Ishihara (2006); Diener (2018)
Constructive Reverse Mathematics of Completeness Theorems

Does $\mathcal{T} \models \varphi$ imply $\mathcal{T} \vdash \varphi$ constructively?

Current situation in the literature on first-order logic:

- Completeness equivalent to Boolean Prime Ideal Theorem (Henkin, 1954)
- Completeness requires Markov’s Principle (Kreisel, 1962)
- Completeness equivalent to Weak König’s Lemma (Simpson, 2009)
- Completeness equivalent to Weak Fan Theorem (Krivtsov, 2015)
- Completeness holds fully constructively (Krivine, 1996)
- Systematic investigation is work in progress (Herbelin and Kirst, 2023)
Classical Outline for (Bi-)Intuitionistic Propositional Logic

Employing prime theories \((\varphi \lor \psi \in \mathcal{T} \rightarrow \varphi \in \mathcal{T} \lor \varphi \in \mathcal{T})\):

- Lindenbaum Extension: if \(\mathcal{T} \not\vdash \varphi\) then there is prime \(\mathcal{T}'\) with \(\mathcal{T}' \not\vdash \varphi\)

- Universal Model \(\mathcal{U}\): consistent prime theories related by inclusion

- Truth Lemma for \(\mathcal{T}\) in \(\mathcal{U}\): \(\varphi \in \mathcal{T} \iff \mathcal{T} \vDash \varphi\)

- Model Existence: if \(\mathcal{T} \not\vdash \varphi\) then there is \(\mathcal{M}\) with \(\mathcal{M} \vDash \mathcal{T}\) and \(\mathcal{M} \not\vDash \varphi\)

- Quasi-Completeness: if \(\mathcal{T} \vDash \varphi\) then \(\neg\neg(\mathcal{T} \vdash \varphi)\)

- Completeness: if \(\mathcal{T} \vDash \varphi\) then \(\mathcal{T} \vdash \varphi\)
Constructive Completeness Proof???

For \mathcal{T} quasi-prime ($\varphi \lor \psi \in \mathcal{T} \rightarrow \neg
\neg(\varphi \in \mathcal{T} \lor \varphi \in \mathcal{T})$):

- Lindenbaum Extension: if $\mathcal{T} \not\models \varphi$ then there is quasi-prime \mathcal{T}' with $\mathcal{T}' \not\models \varphi$

- Universal Model: consistent quasi-prime theories related by inclusion

- Truth Lemma: fails immediately

- Model Existence: fails

- Quasi-Completeness: fails

- Completeness: needs MP/LEM depending on theory complexity and syntax fragment
Constructive Completeness Proof?

For \mathcal{T} quasi-prime ($\varphi \lor \psi \in \mathcal{T} \rightarrow \neg\neg(\varphi \in \mathcal{T} \lor \psi \in \mathcal{T})$) and stable ($\neg\neg(\varphi \in \mathcal{T}) \rightarrow \varphi \in \mathcal{T}$):

- **Lindenbaum Extension**: if $\mathcal{T} \not\models \varphi$ then there is stable quasi-prime \mathcal{T}' with $\mathcal{T}' \not\models \varphi$

- **Universal Model**: consistent stable quasi-prime theories related by inclusion

- **Truth Lemma**: fails for disjunction

- **Model Existence**: fails

- **Quasi-Completeness**: fails

- **Completeness**: needs MP/LEM depending on theory complexity and syntax fragment
The Issue with Disjunction

Truth Lemma case for disjunctions $\varphi \lor \psi$:

$$\varphi \lor \psi \in \mathcal{T} \iff \mathcal{T} \models \varphi \lor \psi$$

$$\overset{\text{def}}{\iff} \mathcal{T} \models \varphi \lor \mathcal{T} \models \psi$$

$$\overset{\text{IH}}{\iff} \varphi \in \mathcal{T} \lor \psi \in \mathcal{T}$$

- So we really need prime theories to interpret disjunctions
- Primeness from Lindenbaum Extension is constructive no-go
Model Existence via WLEM

Weak law of excluded middle WLEM \(\equiv \forall P : \mathbb{P}. \neg P \lor \neg \neg P \)

Lemma

Assuming WLEM, every stable quasi-prime theory is prime.

Proof.

Assume \(\varphi \lor \psi \in \mathcal{T} \). Using WLEM, decide whether \(\neg(\varphi \in \mathcal{T}) \) or \(\neg \neg(\varphi \in \mathcal{T}) \). In the latter case, conclude \(\varphi \in \mathcal{T} \) directly by stability. In the former case, derive \(\psi \in \mathcal{T} \) using stability, since assuming \(\neg(\psi \in \mathcal{T}) \) on top of \(\neg(\varphi \in \mathcal{T}) \) contradicts quasi-primeness for \(\varphi \lor \psi \in \mathcal{T} \). \(\square \)

Classical proof outline works again up to Model Existence and Quasi-Completeness!
Backwards Analysis

Which logical principles are really necessary for the intermediate statements?

Fact

Model Existence implies WLEM.

Proof.

Given P, use model existence on $T := \{x_0 \lor \neg x_0\} \cup \{x_0 \mid P\} \cup \{\neg x_0 \mid \neg P\}$. We have $T \not\models \bot$ so if $M \models T$, then either $M \models x_0$ or $M \models \neg x_0$, so either $\neg \neg P$ or $\neg P$, respectively. \qed

Fact

Quasi-Completeness implies the following principle: $\forall p : \mathbb{N} \rightarrow \mathbb{P}. \neg \neg (\forall n. \neg p\ n \lor \neg \neg p\ n)$

Proof.

Using similar tricks for $T := \{x_n \lor \neg x_n\} \cup \{x_n \mid p\ n\} \cup \{\neg x_n \mid \neg p\ n\}$. \qed

Since Quasi-Completeness also follows from DNS, there is no hope it is equivalent to WLEM...
Weak Excluded-Middle Shift\(^2\)

\[
\text{WLEMS} := \forall p : \mathbb{N} \rightarrow \mathbb{P}. \left(\forall n. \neg \neg (\neg p \lor \neg \neg p) \right) \rightarrow \neg \neg (\forall n. \neg p \lor \neg \neg p) \\
\equiv \forall pq : \mathbb{N} \rightarrow \mathbb{P}. \left(\forall n. \neg \neg (\neg p \lor \neg q) \right) \rightarrow \neg \neg (\forall n. \neg p \lor \neg q)
\]

Lemma

Assuming WLEMS, every stable quasi-prime theory is not not prime.

Proof.

Assume \(\mathcal{T} \) not prime and derive a contradiction. Given the negative goal, from WLEMS we obtain \(\forall \varphi. \neg (\varphi \in \mathcal{T}) \lor \neg \neg (\varphi \in \mathcal{T}) \). This yields exactly the instances of WLEM needed to derive that \(\mathcal{T} \) is prime, contradiction. \(\square \)

Already this lemma turns out to be enough for Quasi-Completeness!

\(^2\)Mentioned in systematic study by Umezawa (1959) but absent from the literature otherwise
Quasi-Completeness via WLEMS

Refined proof outline using WLEMS:

- **Lindenbaum Extension**: if $\mathcal{T} \not\vdash \varphi$ then there is stable not not prime \mathcal{T}' with $\mathcal{T}' \not\vdash \varphi$

- **Universal Model** \mathcal{U}: consistent stable prime theories related by inclusion

- **Truth Lemma for** \mathcal{T} in \mathcal{U}: $\varphi \in \mathcal{T} \iff \mathcal{T} \models \varphi$

- **Quasi Model Existence**: if $\mathcal{T} \not\models \varphi$ then there not not is \mathcal{M} with $\mathcal{M} \models \mathcal{T}$ and $\mathcal{M} \not\models \varphi$

- **Quasi-Completeness**: if $\mathcal{T} \models \varphi$ then $\neg \neg (\mathcal{T} \models \varphi)$

- **Completeness**: needs MP/LEM depending on theory complexity and syntax fragment
Consequences and Open Questions

Consequences:

- WLEM and Model Existence are equivalent
- WLEMS, Quasi Model Existence, and Quasi-Completeness are equivalent
- WLEMS and MP together imply completeness for enumerable contexts

Open questions:

- What restriction of WLEMS is sufficient for enumerable contexts?
- What is the relation of WLEMS to the fan theorem?
- What is the constructive status of the traditional semantics of bi-intuitionistic logic?
- What observations transport to first-order bi-intuitionistic logic (or other logics)?
Bibliography I

Working Towards an Explanation

There are multiple dimensions at play:

- Syntax fragment (e.g., propositional, minimal, negative, full)
- Complexity of the context (e.g., finite, decidable, enumerable, arbitrary)
- Cardinality of the signature (e.g., countable, uncountable)
- Representation of the semantics (e.g., Boolean, decidable, propositional)

Ongoing systematic investigation using Coq:

- Started by Herbelin and Ilik (2016) and Forster, Kirst, and Wehr (2021)
- New observations by Hagemeier and Kirst (2022) and Kirst (2022)
- Comprehensive overview of current landscape by Herbelin (2022)
- Today: syntactic disjunction, arbitrary contexts, countable signature, prop. semantics
The Case of Soundness

Some axioms of like $\psi \lor (\top \rightarrow \psi)$ are only valid in models behaving classically:

decidable models \subseteq stable models \subseteq axiomatic models

Lemma

Soundness holds for every model satisfying the (critical) axioms.

Corollary

Assuming LEM, soundness holds for all models.

Fact

Soundness for all models implies LEM.

Proof.

For a proposition P consider the single-world model with $w \models x_0$ iff P. By assuming soundness, we have $w \models x_0 \lor (\top \rightarrow x_0)$ which is equivalent to $P \lor \neg P$. \[\square\]
Quasi-Completeness via DNS

Assuming double-negation shift DNS := ∀X. ∀p : X → P. (∀x. ¬¬p x) → ¬¬(∀x. p x):

- **Lindenbaum Extension**: if \(T \not\vdash \varphi \) then there is stable quasi-prime \(T' \) with \(T' \not\vdash \varphi \)
- **Universal Model** \(U \): consistent stable quasi-prime theories related by inclusion
- **Pseudo Truth Lemma** for \(T \) in \(U \): \(\varphi \in T \iff \neg\neg(T \vdash \varphi) \)
- **Pseudo Model Existence**: if \(T \not\vdash \varphi \) then there is \(M \) with \(\neg\neg(M \vdash T) \) and \(M \not\vdash \varphi \)
- **Quasi-Completeness**: if \(T \vdash \varphi \) then \(\neg\neg(T \vdash \varphi) \) (also since DNS \(\leftrightarrow \neg\neg\text{LEM} \))
- **Completeness**: needs MP/LEM depending on theory complexity and syntax fragment