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What will this talk be about?

First-order logic:
Completeness: classical and intuitionistic first-order logic (Gödel, 1930; Henkin, 1949; Kripke, 1965)

Undecidability: Entscheidungsproblem and Trakhtenbrot’s theorem (Turing, 1938; Trakhtenbrot, 1950)

Incompleteness: Peano arithmetic and ZF set theory (Gödel, 1931; Tarski, 1953)

Constructive type theory:
CIC: Calculus of inductive constructions (Coquand, 1986; Paulin-Mohring, 1993)

Implementation in the Coq proof assistant (The Coq Development Team, 2021)

Synthetic computability (Richman, 1983; Bauer, 2006)

Constructive reverse mathematics (Ishihara, 2006; Diener, 2020)
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First-Order Logic in Coq
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Calculus of Inductive Constructions (CIC)

Features as implemented in Coq’s type theory:

Inductive types: 0, 1, B, N, lists L(X ), vectors X n, ...
Simple and dependent type formers: X → Y , X × Y , X + Y , ∀x .F x , Σx .F x

Propositional universe P with logical connectives: ⊥, >, →, ∧, ∨, ∀, ∃

Specifics of the induced logic:
Higher-order: quantification over arbitrary functions and relations
Intuitionistic: does not prove the excluded middle (LEM), stating ∀P : P.P ∨ ¬P
Impredicative: ∀x : X .P x is in P for all P : X → P on arbitrary types X
Proof-irrelevant: no computational content extractable from ∨ and ∃
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Representing Syntax

Given a signature Σ = (FΣ;PΣ), we represent terms and formulas by:

t : Term ::= x | f ~t (x : N, f : FΣ, ~t : Term|f | )

ϕ,ψ : Form ::= ⊥̇ | P ~t | ϕ �̇ψ | ∇̇ϕ (P : PΣ, ~t : Term|P| )

De Bruijn representation of binding: ∀x .∃y .P(x , y , z) 7→ ∀̇ ∃̇P(1, 0, 7)

Coq implementation:
Separate type classes for signature components FΣ and PΣ

Shared type class for operators �̇ and ∇̇, instances for full syntax and ∀,→-fragment
Type class flag for falsity symbol ⊥̇
Tactics for handling de Bruijn substitution
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Representing Semantics

A modelM over a domain D is a pair of interpretation functions:

−M : ∀f : FΣ.D
|f | → D −M : ∀P : PΣ.D

|P| → P

For assignments ρ : N→ D define evaluation ρ̂ t and satisfactionM �ρ ϕ:

ρ̂ x := ρ x ρ̂ (f ~t ) := fM (ρ̂ ~t )

M �ρ P ~t := PM (ρ̂ ~t ) M �ρ ϕ �̇ψ := M �ρ ϕ �M �ρ ψ

M �ρ ⊥̇ := ⊥ M �ρ ∇̇ϕ := ∇a : D.M �a·ρ ϕ

Obtain derived notation for theories T : Form→ P likeM � T , and T � ϕ.

Coq implementation: type class for models, structurally recursive functions
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Representing Deduction
Represented as inductive predicates of the form L(Form)→ Form→ P:

. . .

Γ ` ∀̇ϕ
Γ ` ϕ[t]

AE
Γ[+1] ` ϕ

Γ ` ∀̇ϕ
AI

. . .

Given Γ and ϕ one can compute a fresh variable x such that Γ[+1] ` ϕ iff Γ ` ϕ[x ]

Switch between intuitionistic variant `i and classical `c via Γ `c ((ϕ→̇ψ)→̇ϕ)→̇ϕ

Natural generalisation to T ` ϕ by ∃Γ ⊆ T . Γ ` ϕ

Coq implementation: type class flag to indicate intuitionistic or classical variant
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Curious Observations

Fact
The intuitionistic deduction system is sound for Tarski semantics, i.e. Γ `i ϕ implies Γ � ϕ.
For `c we either need to assume LEM or restrict to classical models validating `c .

Constructive reverse mathematics: in fact unrestricted soundness for `c implies LEM

Fact
For suitable signatures Σ = (FΣ;PΣ) one can construct functions

d : Form→ Form→ B such that ∀ϕψ.ϕ = ψ ↔ d ϕψ = tt,
e : N→ Form such that ∀ϕ. ` ϕ↔ ∃n. e n = ϕ.

Synthetic computability: equality on formulas is decidable (D) and provability is enumerable (E)
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Completeness∗

∗F., K., and W. at LFCS’20.
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Completeness: Syntax fragments
A lot of our work is restricted to the fragment

t : Term ::= x | f t n : N, f : Σ

ϕ : Form∗ ::= ⊥̇ | P t | ϕ →̇ψ | ∀̇ϕ P : Σ

Definition
A modelM consists of a type X

...
an absurdity interpretation ⊥M : P.

Interpreting
M �ρ ⊥̇ :⇔ ⊥M
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Tarski models: Classes of models

Definition
A modelM is called classical* if for all ρ and ϕ : Form∗

M �ρ ¬̇¬̇ϕ →̇ϕ

A modelM is called standard if ⊥M is contradictory.
A modelM is called exploding* (due to Veldman (1976)) if for all ρ and formulas ϕ : Form∗

M �ρ ⊥̇ →̇ϕ

Fact
Every standard model is exploding*. The converse need not hold.
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Fact
Every standard model is exploding*. The converse need not hold.
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Tarski completeness: Model construction

Lemma
Pick a closed theory T . There exists a modelM, ρ such that:

If T ` ϕ thenM �ρ ϕ

IfM �ρ ⊥̇ then T ` ⊥̇

Proof.
Extend T into a theory Ω as follows:

1 Henkin axioms: Add all formulas ϕn(n) →̇ ∀̇ϕn

2 Lindenbaum: Add all formulas maintaining consistency
The term-model induced by Ω fulfills all desiderata.
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Tarski completeness: The standard case

Theorem
For closed T , ϕ we know T � ϕ entails ¬¬(T ` ϕ).

Fact

T � ϕ→ T ` ϕ iff ¬¬T ` ϕ→ T ` ϕ.

Corollary

∀T , ϕ. T � ϕ→ T ` ϕ is not provable in the CIC.
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Suppose T 6` ϕ, meaning T ′ ..= T ∪ {¬̇ϕ} is consistent. Applying the lemma to T ′ yields
1 If T ∪ {¬̇ϕ} ` ϕ thenM �ρ ϕ

2 IfM �ρ ⊥̇ then T ∪ {¬̇ϕ} ` ⊥̇
Then
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Tarski completeness: Examining the standard case∗

Theorem
For closed T , ϕ we know T � ϕ entails ¬¬(T ` ϕ).

Proof.
Suppose T 6` ϕ, meaning T ′ ..= T ∪ {¬̇ϕ} is consistent. Applying the lemma to T ′ yields

1 If T ∪ {¬̇ϕ} ` ϕ thenM �ρ ϕ

2 IfM �ρ ⊥̇ then T ∪ {¬̇ϕ} ` ⊥̇
Then

By (1)M, ρ is classical* and by (2)M, ρ is standard.
By (1) we haveM �ρ T and thusM �ρ ϕ.
But by (1) we also haveM �ρ ¬̇ϕ.

∗Following Herbelin and Ilik (2016)
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Tarski completeness: The exploding case
Theorem
For closed T , ϕ we know T �E ϕ entails T ` ϕ.

Proof.
Applying the lemma to T ′ ..= T ∪ {¬̇ϕ} yields

1 If T ∪ {¬̇ϕ} ` ϕ thenM �ρ ϕ

2 IfM �ρ ⊥̇ then T ∪ {¬̇ϕ} ` ⊥̇
Then

By (1)M, ρ is classical* andM, ρ exploding*.
By (1) we haveM �ρ T and thusM �ρ ϕ.
By (1) we also haveM �ρ ¬̇ϕ, meaning M �ρ ⊥̇.
By (2) this means T ∪ {¬̇ϕ} ` ⊥̇ and thus T ` ϕ.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 17



Kripke structures

Definition
A Kripke structure K consists of a preorder (W,≤), a domain D : T and

- for each f : Σ an interpretation f : D |f | → D

- for each P : Σ and w :W an interpretation Pw : D |P| → P
- for each world w :W an interpretation ⊥w : P

such that, if w ≤ v then
- ⊥w entails ⊥v

- Pw
~d entails Pv

~d for all ~d : D |P|

Note: Such models are only complete on the Form∗-fragment!
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Kripke structures

Definition
A Kripke structure K consists of a preorder (W,≤), a domain D : T and

- for each f : Σ an interpretation f : D |f | → D

- for each P : Σ and w :W an interpretation Pw : D |P| → P
- for each world w :W an interpretation ⊥w : P

such that, if w ≤ v then
- ⊥w entails ⊥v

- Pw
~d entails Pv

~d for all ~d : D |P|

Note: Such models are only complete on the Form∗-fragment!

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 18



Kripke models: Semantics

Definition
Fix a Kripke structure K. For an assignment ρ : V → D we define

w 
ρ ⊥̇ :⇔ ⊥w

w 
ρ P ~t :⇔ Pw ~tρ

w 
ρ ∀̇ϕ :⇔ ∀d : D. w 
d ·ρ ϕ

w 
ρ ϕ →̇ψ :⇔ ∀w ≤ v . v 
ρ ϕ→ v 
ρ ψ

Fact
If w ≤ v then w 
ρ ϕ entails v 
ρ ϕ.
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Kripke models: Classes of models

Definition
A Kripke model K, ρ is called exploding if

w 
ρ ⊥̇ →̇ϕ for every w :W and ϕ.

A K, ρ is called standard if ⊥w → ⊥ for every w :W.

Definition
We write Γ 
e ϕ if for all exploding K , ρ and w :W

(∀ψ ∈ Γ. w 
ρ ψ)→ w 
ρ ϕ

We write Γ 
s ϕ if the analogous case holds for all standard K , ρ.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 20
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LJT: Focused Sequents

→L
Γ⇒ ψ Γ; θ ⇒ ϕ

Γ;ψ →̇ θ ⇒ ϕ
∀L

Γ;ψ[t]⇒ ϕ

Γ; ∀̇ψ ⇒ ϕ

→R
Γ, ϕ⇒ ψ

Γ⇒ ϕ →̇ψ
∀R
↑Γ⇒ ϕ

Γ⇒ ∀̇ϕ

Ax
Γ;ϕ⇒ ϕ

Focus
Γ;ψ ⇒ ϕ ψ ∈ Γ

Γ⇒ ϕ
Exp

↑Γ⇒ ⊥̇
Γ⇒ ϕ

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 21



Kripke completeness: The exploding case∗

Definition
We define the universal structure U on the preorder (L(Form),⊆) and the domain Term, taking

PΓ~t ..= Γ⇒ P ~t ⊥Γ
..= Γ⇒ ⊥̇

Fact
U , σ is exploding but not standard.

Lemma
Over the structure U we have

1 Γ 
σ ϕ→ Γ⇒ ϕ[σ]

2 (∀ψ, Γ ⊆ ∆. ∆;ϕ[σ]⇒ ψ → ∆⇒ ψ)→ Γ 
σ ϕ

∗Following Herbelin and Lee (2009)
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Kripke completeness: The exploding case II
Lemma
Over the structure U we have

1 Γ 
σ ϕ→ Γ⇒ ϕ[σ]

2 (∀ψ, Γ ⊆ ∆. ∆;ϕ[σ]⇒ ψ → ∆⇒ ψ)→ Γ 
σ ϕ

Corollary

If Γ 
e ϕ then Γ⇒ ϕ.

Proof.
Work within the model U : We know ∆ 
σ Γ entails ∆ 
σ ϕ for any ∆.

Using (2) we conclude Γ 
id Γ

Per assumption thus Γ 
id ϕ and Γ⇒ ϕ by (1)
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Kripke completeness: The standard case

Definition
We define the consistent structure C on the preorder (ΣΓ : L(Form). Γ 6⇒ ⊥̇,⊆) and the
domain Term, taking

PΓ~t ..= ¬¬(Γ⇒ P ~t) ⊥Γ
..= Γ⇒ ⊥̇

Fact
U , σ is a standard model.

Fact
Γ 
s ϕ→ Γ⇒ ϕ iff ¬¬(Γ ` ϕ)→ Γ ` ϕ.
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Completeness: Other semantics

The following semantics admit constructive completeness proofs wrt. the full syntax:
Heyting algebras wrt. intuitionistic FOL
Inuitionistic formal dialogues wrt. intuitionistic FOL
Classical formal dialogues wrt. classical FOL
Classical material dialogues wrt. classical FOL

Furthermore
Assuming the EM, we can obtain completeness for classical, standard Tarski models
Intuitionstic material dialogues are incomplete over CIC
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Constructive Reverse Mathematics ∗

or: Find axioms equivalent to theorems.

∗F., K., and W. at LFCS’20.
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Sufficient and necessary axioms for completeness

Is there a well-known axiom A with

A→ ∀Γϕ.Γ � ϕ→ Γ ` ϕ

A2 ↔ ∀T ϕ. ¬(T 6` ϕ)→ T ` ϕ
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Sufficient and necessary axioms for completeness

Is there a well-known axiom-scheme A with

A(P)↔ ∀T . PT → ¬(T 6` ϕ)→ T ` ϕ

A2 ↔ ∀T ϕ. ¬(T 6` ϕ)→ T ` ϕ
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Slightly confusing literature review

Kreisel (1962): Use Markov’s principle MP (proof idea due to Gödel)

How to define MP?

MP

pr

:= ∀f : N→ B.f is primitive recursive→ ¬¬(∃n. fn = true)→ ∃n. fn = true

MP

L

:= ∀f : N→ B.f is recursive→ ¬¬(∃n. fn = true)→ ∃n. fn = true

MP

TT

:= ∀f : N→ B. ¬¬(∃n. fn = true)→ ∃n. fn = true

MP

E

:= ∀X . X is discrete→ ∀p : X → P. Ep → ∀x . ¬¬px → px
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Slightly confusing literature review

Kreisel (1962): Use Markov’s principle MP (proof idea due to Gödel)
How to define MP?

MPpr := ∀f : N→ B.f is primitive recursive→ ¬¬(∃n. fn = true)→ ∃n. fn = true

MPL := ∀f : N→ B.f is recursive→ ¬¬(∃n. fn = true)→ ∃n. fn = true

MPTT := ∀f : N→ B. ¬¬(∃n. fn = true)→ ∃n. fn = true

MPE := ∀X . X is discrete→ ∀p : X → P. Ep → ∀x . ¬¬px → px
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LEM

MPTT MPE

MPpr MPL
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Constructive analysis of the completeness theorem

DNE(P : ∀X . (X → P)→ P) := ∀Xp. PXp → ∀x . ¬¬px → px

LEM↔ ∀T ϕ. ¬(T 6` ϕ)→ Γ ` ϕ

↔ DNE(λXp. >)

MP ↔ ∀T ϕ. ET → ¬(T 6` ϕ)→ T ` ϕ

↔ DNE(λXp. DX ∧ E p)

MPL ↔ ∀T ϕ. ELT → ¬(T 6` ϕ)→ T ` ϕ

↔ DNE(λXp. DLX ∧ ELp)

↔ ∀Γϕ. ¬(Γ 6` ϕ)→ Γ ` ϕ

↔ DNE(λXp. p = λs.∃t.s . t)

Theorem
Let p : X → P and q : Y → P. If p is stable and p � q then q is stable, where

∃f : X → Y . ∀x . px ↔ q(fx).
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Undecidability: The Entscheidungsproblem∗

∗F., K., and Gert Smolka at CPP’19.
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General Idea

Conventional outline following Turing:
Encode Turing machine M as formula ϕM over custom signature
Verify that M halts if and only if ϕM holds in all models
Verify that M halts if and only if ϕM is provable in intuitionistic natural deduction
Verify that M halts if and only if ϕM is provable in classical natural deduction

We follow the simpler proof due to Floyd given by Manna (2003) based on PCP.
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The Post Correspondence Problem PCP∗

C2
LoC2018

xfor nf

d

FLo

F

d

ord

018inO
inOxf

FLo

F

C2
LoC2018

018inO
inOxf

xfor d

ord

FLoC2018inOxford

FLoC2018inOxford

Base type: L(LB× LB)
Definition: PCP(L) := ∃x : LB. L . (x , x)

(u, v) ∈ L

L . (u, v)

L . (x , y) (u, v) ∈ L

L . (x ++ u, y ++ v)

Theorem
The halting problem many-one reduces to PCP.

∗Post (1946); Forster et al. (2018)
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A Standard Model

Strings can be encoded as terms, e.g. tt ff ff tt = ftt (fff (fff (ftt (e)))).

The standard model B over the type L(B) of Boolean strings captures exactly the cards
derivable from a fixed stack S :

eB := [] QB := PCPS

f Bb s := b :: s PB s t := S . s/t.

Lemma
Let ρ : N→ L(B) be an environment for the standard model B.
Then ρ̂ s = s and B �ρ P τ1 τ2 ↔ S . ρ̂ τ1/ρ̂ τ2.
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The reduction
We express the constructors of S . s/t and PCP as formulas:

ϕ1 := [P s t | s/t ∈ S ] ϕ2 := [ ∀̇xy .P x y→̇P (sx) (ty) | s/t ∈ S ] ϕ3 := ∀̇x .P x x→̇Q

ϕS := ϕ1→̇ϕ2→̇ϕ3→̇Q

1 PCP S → ` ϕS

2 ` is sound for Tarski semantics w.r.t. all models
3 B � ϕS → PCP S

Theorem
PCP reduces to Tarski validity (w.r.t. all models) and intuitionistic provability.

Theorem
PCP reduces to Tarski satisfiability (w.r.t. any model).
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Undecidability of Classical Provability

Soundness is not usable!

As a remedy, we define a Gödel-Gentzen-Friedman translation ϕQ of

formulas ϕ such that A `c ϕ implies AQ ` ϕQ .
1 ∀Γϕ. Γ ` ϕ→ Γ `c ϕ
2 B � ϕQ

S → B � ϕS

Theorem
PCPS iff `c ϕS , hence PCP reduces to classical provability.
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Recipe for undecidability proofs

1 The halting problem is undecidable.
2 The halting problem reduces to PCP.
3 The reduction function is computable.
4 PCP reduces to FOL.
5 The reduction function is computable.
6 Computable reductions transport undecidability.
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Synthetic Undecidability and the weak call-by-value λ-calculus L

Isolate the weak call-by-value λ-calculus as central model
Turing-complete model of computation with reasonable time and space measures
Extraction framework from fragment of Coq to L (F. and Fabian Kunze at ITP ’19) allows
relatively easy programming in L
Define undecidability as

U(p) := Dp → E(Halt)

We can prove usual undecidability by extracting reduction functions to L
We can develop synthetic computability theory based on axiom CTL stating that
∀f : N→ N.∃t. the L-term t computes f ∗

∗Kreisel (1965); Forster (2021, 2022)
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More Constructive Reverse Mathematics ∗

∗F., K., and W. in Journal of Logic and Computation.
D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 41



A very confusing literature review

1 Diener (2020) (in Bishop style constructive math):
Compactness is equivalent to Weak König’s Lemma for decidable trees WKLD
WKLD is equivalent to the fan theorem FAND

2 Simpson (1985) (in classical reverse mathematics, RCA0):
The model existence theorem is equivalent to WKL

3 Krivtsov (2015) (in Bishop style constructive math):
Completeness of intuitionistic FOL w.r.t. Kripke semantics is equivalent to FAND

The problem is countable/unique choice. Without countable/unique choice, total relations
N→ B→ P and functions N→ B are not the same objects
We then have (Berger et al. (2012))

WKL↔ LLPO ∧ Π0
1-ACN,B
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Models matter
WKL := Every infinite binary tree has an infinite path

(a boolean function!)
A modelM is decidable if D(λPv . P̂v) (predicate interpretations are boolean functions).
A modelM is omniscient if D(λρϕ.M `ρ ϕ) (everything is a boolean function).

Theorem
The following are equivalent:

1 Completeness of T `c ϕ for omniscient/decidable models.

2 LEM and model existence for omniscient/decidable models.

3 LEM and compactness for omniscient/decidable models.

4 LEM and WKL.

5 Every predicate N→ P is decidable.
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Open questions

What happens if we restrict to enumerable / finite theories?
Can we prove equivalences for WKLD?
Is there a uniform theorem with DNE(P) ∧WKLP?
What’s the status of Kripke completeness?

I Does WKL always play a role, or just for decidable models?
I If we add ∃ and ∨, does this change the necessary axioms?

WKLD ↔ ∀R : N→ B→ P. Π0
1R → (∀n.¬¬∃b.Rnb)→ ∃f : N→ B.∀n. R n (fn)
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Undecidability: Trakhtenbrot’s Theorem∗

∗K. and Dominique Larchey-Wendling at IJCAR’20.
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General idea

Given a FOL formula ϕ, is ϕ finitely satisfiable?

Textbook proofs by dual reduction from the halting problem:∗

Encode Turing machine M as formula ϕM over custom signature
Verify that the models of ϕM correspond to the runs of M
Conclude that M halts if and only if ϕM has a finite model

Our mechanisation:
Illustrates that one can still use PCP for a simpler reduction
Signature minimisations are constructive for finite models

∗e.g. Libkin (2010); Börger et al. (1997)
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Finiteness in Constructive Type Theory
Definition
A type X is finite if there exists a list lX with x ∈ lX for all x : X .

This seems to be a good compromise:
Easy to establish and work with
Does not enforce discreteness
Enough to get expected properties:

I Every strict order on a finite type is well-founded
I Every finite decidable equivalence relation admits a quotient on Fn

FSAT(Σ)ϕ if additionally D is finite and all PM are decidable

FSATEQ(Σ;≡)ϕ if x ≡M y ↔ x = y for all x , y : D (hence discrete)

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 47



Finiteness in Constructive Type Theory
Definition
A type X is finite if there exists a list lX with x ∈ lX for all x : X .

This seems to be a good compromise:

Easy to establish and work with
Does not enforce discreteness
Enough to get expected properties:

I Every strict order on a finite type is well-founded
I Every finite decidable equivalence relation admits a quotient on Fn

FSAT(Σ)ϕ if additionally D is finite and all PM are decidable

FSATEQ(Σ;≡)ϕ if x ≡M y ↔ x = y for all x , y : D (hence discrete)

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 47



Finiteness in Constructive Type Theory
Definition
A type X is finite if there exists a list lX with x ∈ lX for all x : X .

This seems to be a good compromise:
Easy to establish and work with

Does not enforce discreteness
Enough to get expected properties:

I Every strict order on a finite type is well-founded
I Every finite decidable equivalence relation admits a quotient on Fn

FSAT(Σ)ϕ if additionally D is finite and all PM are decidable

FSATEQ(Σ;≡)ϕ if x ≡M y ↔ x = y for all x , y : D (hence discrete)

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 47



Finiteness in Constructive Type Theory
Definition
A type X is finite if there exists a list lX with x ∈ lX for all x : X .

This seems to be a good compromise:
Easy to establish and work with
Does not enforce discreteness

Enough to get expected properties:
I Every strict order on a finite type is well-founded
I Every finite decidable equivalence relation admits a quotient on Fn

FSAT(Σ)ϕ if additionally D is finite and all PM are decidable

FSATEQ(Σ;≡)ϕ if x ≡M y ↔ x = y for all x , y : D (hence discrete)

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 47



Finiteness in Constructive Type Theory
Definition
A type X is finite if there exists a list lX with x ∈ lX for all x : X .

This seems to be a good compromise:
Easy to establish and work with
Does not enforce discreteness
Enough to get expected properties:

I Every strict order on a finite type is well-founded
I Every finite decidable equivalence relation admits a quotient on Fn

FSAT(Σ)ϕ if additionally D is finite and all PM are decidable

FSATEQ(Σ;≡)ϕ if x ≡M y ↔ x = y for all x , y : D (hence discrete)

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 47



Finiteness in Constructive Type Theory
Definition
A type X is finite if there exists a list lX with x ∈ lX for all x : X .

This seems to be a good compromise:
Easy to establish and work with
Does not enforce discreteness
Enough to get expected properties:

I Every strict order on a finite type is well-founded
I Every finite decidable equivalence relation admits a quotient on Fn

FSAT(Σ)ϕ if additionally D is finite and all PM are decidable

FSATEQ(Σ;≡)ϕ if x ≡M y ↔ x = y for all x , y : D (hence discrete)

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 47



Encoding the Post Correspondence Problem

We use the signature ΣBPCP := ({?0, e0, f 1tt , f 1ff }; {P2,≺2,≡2}):

Chains like fff(ftt(e)) represent strings while ? signals overflow

P concerns only defined values and ≺ is a strict ordering:

ϕP := ∀̇xy .P x y →̇ x 6≡ ? ∧̇ y 6≡ ?
ϕ≺ := (∀̇x . x 6≺ x) ∧̇ (∀̇xyz . x ≺ y →̇ y ≺ z →̇ x ≺ z)

Sanity checks on f regarding overflow, disjointness, and injectivity:

ϕf :=

 ftt ? ≡ ? ∧̇ fff ? ≡ ?

∀̇x . ftt x 6≡ e

∀̇x . fff x 6≡ e

 ∧̇
 ∀̇xy . ftt x 6≡ ? →̇ ftt x ≡ ftt y →̇ x ≡ y

∀̇xy . fff x 6≡ ? →̇ fff x ≡ fff y →̇ x ≡ y

∀̇xy . ftt x ≡ fff y →̇ ftt x ≡ ? ∧̇ fff y ≡ ?


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Trakhtenbrot’s Theorem
Given an instance R of PCP, we construct a formula ϕR by:

ϕR := ϕP ∧̇ ϕ≺ ∧̇ ϕf ∧̇ ϕ. ∧̇ ∃̇x .P x x

Crucially, we enforce that P satisfies the inversion principle of R . (s, t):

ϕ. := ∀̇xy .P x y →̇
.∨

(s,t)∈R

∨̇
{
x ≡ s ∧̇ y ≡ t

∃̇uv .P u v ∧̇ x ≡ su ∧̇ y ≡ tv ∧̇ u/v ≺ x/y

Theorem
PCPR iff FSATEQ(ΣBPCP;≡)ϕR , hence PCP � FSATEQ(ΣBPCP;≡).

Proof.
If R has a solution of length n, then ϕR is satisfied by the model of strings of length bounded by n.
Conversely, ifM �ρ ϕR we can extract a solution of R from ϕ. by well-founded induction on ≺M

(which is applicable sinceM is finite).
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Signature Transformations

Given a finite and discrete signature Σ with arities bounded by n, we have:

FSATEQ(Σ;≡) � FSAT(Σ) � FSAT(0;Pn+2) � FSAT(0;∈2)

First reduction: axiomatise that ≡ is a congruence for the symbols in Σ

Second reduction:
Encode k-ary functions as (k + 1)-ary relations
Align the relation arities to be constantly n + 1
Merge relations into a single (n + 2)-ary relation indexed by constants
Interpret constants with fresh variables

Caveat: intermediate reductions may rely on discrete models...
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Discrete Models

FSAT′(Σ)ϕ if FSAT(Σ)ϕ on a discrete model

Can every finite modelM be transformed to a discrete finite modelM′?
Idea: first-order indistinguishability x=̇y := ∀ϕρ.M �x ·ρ ϕ↔M �y ·ρ ϕ

Lemma
The relation x=̇y is a decidable congruence for the symbols in Σ.

Fact
FSAT′(Σ)ϕ iff FSAT(Σ)ϕ, hence in particular FSAT′(Σ)ϕ � FSAT(Σ)ϕ.

Proof.
IfM �ρ ϕ pickM′ to be the quotient ofM under x=̇y .
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Compressing Relations: FSAT(0;Pn) � FSAT(0;∈2)
Intuition: encode P x1 . . . xn as (x1, . . . , xn) ∈ p for a set p representing P

So let’s play set theory! For a set d representing the domain we define ϕ′∈:

(P x1 . . . xn)′∈ := “(x1, . . . , xn) ∈ p” (∀̇z . ϕ)′∈ := ∀̇z . z ∈ d →̇ (ϕ)′∈
(ϕ �̇ ψ)′∈ := (ϕ)′∈ �̇ (ψ)′∈ (∃̇z . ϕ)′∈ := ∃̇z . z ∈ d ∧̇ (ϕ)′∈

Then ϕ∈ is ϕ′∈ plus asserting ∈ to be extensional and d to be non-empty.

Fact
FSAT(0;Pn)ϕ iff FSAT(0;∈2)ϕ∈, hence FSAT(0;Pn) � FSAT(0;∈2).

Proof.
The hard direction is to construct a model of ϕ∈ given a modelM of ϕ. We employ a segment
of the model of hereditarily finite sets by Smolka and Stark (2016) large enough to
accommodateM.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 52



Compressing Relations: FSAT(0;Pn) � FSAT(0;∈2)
Intuition: encode P x1 . . . xn as (x1, . . . , xn) ∈ p for a set p representing P

So let’s play set theory!

For a set d representing the domain we define ϕ′∈:

(P x1 . . . xn)′∈ := “(x1, . . . , xn) ∈ p” (∀̇z . ϕ)′∈ := ∀̇z . z ∈ d →̇ (ϕ)′∈
(ϕ �̇ ψ)′∈ := (ϕ)′∈ �̇ (ψ)′∈ (∃̇z . ϕ)′∈ := ∃̇z . z ∈ d ∧̇ (ϕ)′∈

Then ϕ∈ is ϕ′∈ plus asserting ∈ to be extensional and d to be non-empty.

Fact
FSAT(0;Pn)ϕ iff FSAT(0;∈2)ϕ∈, hence FSAT(0;Pn) � FSAT(0;∈2).

Proof.
The hard direction is to construct a model of ϕ∈ given a modelM of ϕ. We employ a segment
of the model of hereditarily finite sets by Smolka and Stark (2016) large enough to
accommodateM.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 52



Compressing Relations: FSAT(0;Pn) � FSAT(0;∈2)
Intuition: encode P x1 . . . xn as (x1, . . . , xn) ∈ p for a set p representing P

So let’s play set theory! For a set d representing the domain we define ϕ′∈:

(P x1 . . . xn)′∈ := “(x1, . . . , xn) ∈ p” (∀̇z . ϕ)′∈ := ∀̇z . z ∈ d →̇ (ϕ)′∈
(ϕ �̇ ψ)′∈ := (ϕ)′∈ �̇ (ψ)′∈ (∃̇z . ϕ)′∈ := ∃̇z . z ∈ d ∧̇ (ϕ)′∈

Then ϕ∈ is ϕ′∈ plus asserting ∈ to be extensional and d to be non-empty.

Fact
FSAT(0;Pn)ϕ iff FSAT(0;∈2)ϕ∈, hence FSAT(0;Pn) � FSAT(0;∈2).

Proof.
The hard direction is to construct a model of ϕ∈ given a modelM of ϕ. We employ a segment
of the model of hereditarily finite sets by Smolka and Stark (2016) large enough to
accommodateM.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 52



Compressing Relations: FSAT(0;Pn) � FSAT(0;∈2)
Intuition: encode P x1 . . . xn as (x1, . . . , xn) ∈ p for a set p representing P

So let’s play set theory! For a set d representing the domain we define ϕ′∈:

(P x1 . . . xn)′∈ := “(x1, . . . , xn) ∈ p” (∀̇z . ϕ)′∈ := ∀̇z . z ∈ d →̇ (ϕ)′∈
(ϕ �̇ ψ)′∈ := (ϕ)′∈ �̇ (ψ)′∈ (∃̇z . ϕ)′∈ := ∃̇z . z ∈ d ∧̇ (ϕ)′∈

Then ϕ∈ is ϕ′∈ plus asserting ∈ to be extensional and d to be non-empty.

Fact
FSAT(0;Pn)ϕ iff FSAT(0;∈2)ϕ∈, hence FSAT(0;Pn) � FSAT(0;∈2).

Proof.
The hard direction is to construct a model of ϕ∈ given a modelM of ϕ. We employ a segment
of the model of hereditarily finite sets by Smolka and Stark (2016) large enough to
accommodateM.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 52



Compressing Relations: FSAT(0;Pn) � FSAT(0;∈2)
Intuition: encode P x1 . . . xn as (x1, . . . , xn) ∈ p for a set p representing P

So let’s play set theory! For a set d representing the domain we define ϕ′∈:

(P x1 . . . xn)′∈ := “(x1, . . . , xn) ∈ p” (∀̇z . ϕ)′∈ := ∀̇z . z ∈ d →̇ (ϕ)′∈
(ϕ �̇ ψ)′∈ := (ϕ)′∈ �̇ (ψ)′∈ (∃̇z . ϕ)′∈ := ∃̇z . z ∈ d ∧̇ (ϕ)′∈

Then ϕ∈ is ϕ′∈ plus asserting ∈ to be extensional and d to be non-empty.

Fact
FSAT(0;Pn)ϕ iff FSAT(0;∈2)ϕ∈, hence FSAT(0;Pn) � FSAT(0;∈2).

Proof.
The hard direction is to construct a model of ϕ∈ given a modelM of ϕ. We employ a segment
of the model of hereditarily finite sets by Smolka and Stark (2016) large enough to
accommodateM.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 52



Compressing Relations: FSAT(0;Pn) � FSAT(0;∈2)
Intuition: encode P x1 . . . xn as (x1, . . . , xn) ∈ p for a set p representing P

So let’s play set theory! For a set d representing the domain we define ϕ′∈:

(P x1 . . . xn)′∈ := “(x1, . . . , xn) ∈ p” (∀̇z . ϕ)′∈ := ∀̇z . z ∈ d →̇ (ϕ)′∈
(ϕ �̇ ψ)′∈ := (ϕ)′∈ �̇ (ψ)′∈ (∃̇z . ϕ)′∈ := ∃̇z . z ∈ d ∧̇ (ϕ)′∈

Then ϕ∈ is ϕ′∈ plus asserting ∈ to be extensional and d to be non-empty.

Fact
FSAT(0;Pn)ϕ iff FSAT(0;∈2)ϕ∈, hence FSAT(0;Pn) � FSAT(0;∈2).

Proof.
The hard direction is to construct a model of ϕ∈ given a modelM of ϕ. We employ a segment
of the model of hereditarily finite sets by Smolka and Stark (2016) large enough to
accommodateM.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 52



Full Signature Classification
Composing all signature transformations verified we obtain:

Theorem
If Σ contains either an at least binary relation or a unary relation together with an at least
binary function, then PCP reduces to FSAT(Σ).

On the other hand, FSAT for monadic signatures remains decidable:

Theorem
If Σ is discrete and has all arities bounded by 1 or if all relation symbols have arity 0, then
FSAT(Σ) is decidable.

In any case, since one can enumerate all finite models up to extensionality:

Fact
If Σ is discrete and enumerable, then FSAT(Σ) is enumerable.
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Relativised Entscheidungsproblem
and Incompleteness∗

∗K. and Marc Hermes at ITP’21.
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General Idea

Relativised Entscheidungsproblem: is a formula ϕ entailed by an axiomatisation A?

Strategy if A is strong enough to capture computation:
Encode Turing machine M as formula ϕM

Verify that M halts iff A � ϕM

Verify that M halts iff A ` ϕM (→ direction by hand)
Instead of TM use problems suitable to encode in A

Undecidability of A implies consistency and incompleteness:
Reducing a non-trivial problem P to A ` ϕ shows A consistent
Undecidability implies incompleteness for enumerable axiomatisations
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Connection of Undecidability to Consistency and Incompleteness

Fact (Consistency)

If p � A` and there is x with ¬p x then A 6` ⊥.

Proof.
Let f witness p � A`. Then A 6` f x by ¬p x and thus A 6` ⊥.

Fact (Synthetic Incompleteness)

If A is complete (∀ϕ.A ` ϕ ∨ A ` ¬ϕ) and consistent, then A` is decidable.

Proof.
A` is enumerable and, given completeness and consistency, also co-enumerable as then A 6` ϕ
iff A ` ¬ϕ. Classically, this is enough to deduce decidability, in our case we need to first
observe that A` is definite, i.e. that A ` ϕ ∨ A 6` ϕ.
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Sketch for Peano Arithmetic
Use axiomatisation PA over standard signature (0, S,+, · ;≡).

Diophantine constraints (cf. Larchey-Wendling and Forster (2019)):
Instances are lists L of constraints xi = 1 | xi + xj = xk | xi · xj = xk
L is solvable if there is an evaluation η : N→ N solving all constraints

Theorem
L = [c1, . . . , ck ] with maximal index xn is solvable iff PA � ∃nc1 ∧ · · · ∧ ck .

Proof.
If L has solution η instantiate the existential quantifiers with numerals η1, . . . , ηn. Then the
axioms of PA entail the constraints.
If PA � ∃nc1 ∧ · · · ∧ ck use the standard model N to extract solution η.

Fact
L = [c1, . . . , ck ] with maximal index xn is solvable iff PA ` ∃nc1 ∧ · · · ∧ ck .
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Interlude: Models of ZF
Sets-as-trees interpretation (Aczel (1978)):

Type T of well-founded trees with constructor τ : ∀X . (X → T )→ T

Equality of trees s, t given by isomorphism s ≈ t

Membership defined by s ∈ τ X f := ∃x . s ≈ f x

Set operations implemented by tree operations:
I ∅ := τ ⊥ elim⊥
I {s, t} := τ B (λb. if b then s else t)
I ω := τ N (λn. n) where 0 := ∅ and S n := n ∪ {n}
I ...

Axioms needed in Coq:
EM to really interpret ZF instead of IZF
Replacement needs a type-theoretical choice axiom (Werner (1997))
Strong quotient axiom for (T ,≈) suffices (Kirst and Smolka (2019))
This yields a well-behaved model S: quotiented, standard numbers
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Sketch for ZF Set Theory
Use axiomatisation ZF over explicit signature (∅, {_,_},

⋃
,P, ω ;≡,∈).

Reduction from PCP:
Boolean encoding: tt = {∅} and ff = ∅
String encoding: tt ff ff tt = (tt, (ff, (tt, (ff, ∅))))
Stack encoding: S = {(s1, t1), . . . , (sk , tk)}
Combination encoding: S ++B :=

⋃
s/t∈S{(sx , ty) | (x , y) ∈ B}

f . n := (∅, S) ∈ f ∧ ∀(k,B) ∈ f . k ∈ n→ (k + 1,S ++B) ∈ f

ϕS := ∃f , n,B, x . n ∈ ω ∧ f . n ∧ (n,B) ∈ f ∧ (x , x) ∈ B

Theorem
PCPS iff ZF � ϕS and PCP S iff ZF ` ϕS .

Proof.
Direction → by proofs in ZF and ← relies on standard model S.
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Conclusion
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Ongoing and Future Work

Undecidability and incompleteness of finitary set theories

Minimalistic undecidability proof for the binary signature

Undecidability and incompleteness of second-order logic

Constructive analysis of Tennenbaum’s theorem

Stronger incompleteness results (only using consistency, explicit Gödel sentence)

Constructive completeness of intuitionistic epistemic logic

Engineering: tool support, connect Coq developments
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Take-Home Messages

Metamathematics: rewarding to revisit in formal setting

Mechanisation: feasible with right setup and suitable proof strategies

Synthetic computability: elegant formalism, shortcut to algorithmic results

Constructive type theory: ideal framework for (constructive) reverse mathematics

Thank You!
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