
Analysing First-Order Logic in Constructive Type Theory

Dominik Kirst Dominik Wehr Yannick Forster

ANU Logic Seminar
December 16th/17th, 2021

computer science

saarland
university

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 1

What are we working on?∗

∗With members, students and collaborators of the Programming Systems Lab at Saarland University
D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 2

What are we working on?∗

Computability

∗With members, students and collaborators of the Programming Systems Lab at Saarland University
D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 2

What are we working on?∗

Computability Metamathematics

∗With members, students and collaborators of the Programming Systems Lab at Saarland University
D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 2

What are we working on?∗

Computability Metamathematics
First

Order

Logic

∗With members, students and collaborators of the Programming Systems Lab at Saarland University
D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 2

What are we working on?∗

Computability Metamathematics

Formalisation in Constructive Type Theory

First

Order

Logic

∗With members, students and collaborators of the Programming Systems Lab at Saarland University
D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 2

What are we working on?∗

Computability Metamathematics

Formalisation in Constructive Type Theory

Mechanisation in Coq

First

Order

Logic

∗With members, students and collaborators of the Programming Systems Lab at Saarland University
D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 2

What will this talk be about?

First-order logic:
Completeness: classical and intuitionistic first-order logic (Gödel, 1930; Henkin, 1949; Kripke, 1965)

Undecidability: Entscheidungsproblem and Trakhtenbrot’s theorem (Turing, 1938; Trakhtenbrot, 1950)

Incompleteness: Peano arithmetic and ZF set theory (Gödel, 1931; Tarski, 1953)

Constructive type theory:
CIC: Calculus of inductive constructions (Coquand, 1986; Paulin-Mohring, 1993)

Implementation in the Coq proof assistant (The Coq Development Team, 2021)

Synthetic computability (Richman, 1983; Bauer, 2006)

Constructive reverse mathematics (Ishihara, 2006; Diener, 2020)

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 3

What will this talk be about?

First-order logic:
Completeness: classical and intuitionistic first-order logic (Gödel, 1930; Henkin, 1949; Kripke, 1965)

Undecidability: Entscheidungsproblem and Trakhtenbrot’s theorem (Turing, 1938; Trakhtenbrot, 1950)

Incompleteness: Peano arithmetic and ZF set theory (Gödel, 1931; Tarski, 1953)

Constructive type theory:
CIC: Calculus of inductive constructions (Coquand, 1986; Paulin-Mohring, 1993)

Implementation in the Coq proof assistant (The Coq Development Team, 2021)

Synthetic computability (Richman, 1983; Bauer, 2006)

Constructive reverse mathematics (Ishihara, 2006; Diener, 2020)

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 3

Outline

1 First-Order Logic in Coq

2 Completeness

3 Constructive Reverse Mathematics

4 Undecidability: The Entscheidungsproblem

5 More Constructive Reverse Mathematics

6 Undecidability: Trakhtenbrot’s Theorem

7 Relativised Entscheidungsproblem and Incompleteness

8 Conclusion

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 4

First-Order Logic in Coq

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 5

Calculus of Inductive Constructions (CIC)

Features as implemented in Coq’s type theory:

Inductive types: 0, 1, B, N, lists L(X), vectors X n, ...
Simple and dependent type formers: X → Y , X × Y , X + Y , ∀x .F x , Σx .F x

Propositional universe P with logical connectives: ⊥, >, →, ∧, ∨, ∀, ∃

Specifics of the induced logic:
Higher-order: quantification over arbitrary functions and relations
Intuitionistic: does not prove the excluded middle (LEM), stating ∀P : P.P ∨ ¬P
Impredicative: ∀x : X .P x is in P for all P : X → P on arbitrary types X
Proof-irrelevant: no computational content extractable from ∨ and ∃

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 6

Calculus of Inductive Constructions (CIC)

Features as implemented in Coq’s type theory:
Inductive types: 0, 1, B, N, lists L(X), vectors X n, ...

Simple and dependent type formers: X → Y , X × Y , X + Y , ∀x .F x , Σx .F x

Propositional universe P with logical connectives: ⊥, >, →, ∧, ∨, ∀, ∃

Specifics of the induced logic:
Higher-order: quantification over arbitrary functions and relations
Intuitionistic: does not prove the excluded middle (LEM), stating ∀P : P.P ∨ ¬P
Impredicative: ∀x : X .P x is in P for all P : X → P on arbitrary types X
Proof-irrelevant: no computational content extractable from ∨ and ∃

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 6

Calculus of Inductive Constructions (CIC)

Features as implemented in Coq’s type theory:
Inductive types: 0, 1, B, N, lists L(X), vectors X n, ...
Simple and dependent type formers: X → Y , X × Y , X + Y , ∀x .F x , Σx .F x

Propositional universe P with logical connectives: ⊥, >, →, ∧, ∨, ∀, ∃

Specifics of the induced logic:
Higher-order: quantification over arbitrary functions and relations
Intuitionistic: does not prove the excluded middle (LEM), stating ∀P : P.P ∨ ¬P
Impredicative: ∀x : X .P x is in P for all P : X → P on arbitrary types X
Proof-irrelevant: no computational content extractable from ∨ and ∃

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 6

Calculus of Inductive Constructions (CIC)

Features as implemented in Coq’s type theory:
Inductive types: 0, 1, B, N, lists L(X), vectors X n, ...
Simple and dependent type formers: X → Y , X × Y , X + Y , ∀x .F x , Σx .F x

Propositional universe P with logical connectives: ⊥, >, →, ∧, ∨, ∀, ∃

Specifics of the induced logic:
Higher-order: quantification over arbitrary functions and relations
Intuitionistic: does not prove the excluded middle (LEM), stating ∀P : P.P ∨ ¬P
Impredicative: ∀x : X .P x is in P for all P : X → P on arbitrary types X
Proof-irrelevant: no computational content extractable from ∨ and ∃

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 6

Calculus of Inductive Constructions (CIC)

Features as implemented in Coq’s type theory:
Inductive types: 0, 1, B, N, lists L(X), vectors X n, ...
Simple and dependent type formers: X → Y , X × Y , X + Y , ∀x .F x , Σx .F x

Propositional universe P with logical connectives: ⊥, >, →, ∧, ∨, ∀, ∃

Specifics of the induced logic:

Higher-order: quantification over arbitrary functions and relations
Intuitionistic: does not prove the excluded middle (LEM), stating ∀P : P.P ∨ ¬P
Impredicative: ∀x : X .P x is in P for all P : X → P on arbitrary types X
Proof-irrelevant: no computational content extractable from ∨ and ∃

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 6

Calculus of Inductive Constructions (CIC)

Features as implemented in Coq’s type theory:
Inductive types: 0, 1, B, N, lists L(X), vectors X n, ...
Simple and dependent type formers: X → Y , X × Y , X + Y , ∀x .F x , Σx .F x

Propositional universe P with logical connectives: ⊥, >, →, ∧, ∨, ∀, ∃

Specifics of the induced logic:
Higher-order: quantification over arbitrary functions and relations

Intuitionistic: does not prove the excluded middle (LEM), stating ∀P : P.P ∨ ¬P
Impredicative: ∀x : X .P x is in P for all P : X → P on arbitrary types X
Proof-irrelevant: no computational content extractable from ∨ and ∃

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 6

Calculus of Inductive Constructions (CIC)

Features as implemented in Coq’s type theory:
Inductive types: 0, 1, B, N, lists L(X), vectors X n, ...
Simple and dependent type formers: X → Y , X × Y , X + Y , ∀x .F x , Σx .F x

Propositional universe P with logical connectives: ⊥, >, →, ∧, ∨, ∀, ∃

Specifics of the induced logic:
Higher-order: quantification over arbitrary functions and relations
Intuitionistic: does not prove the excluded middle (LEM), stating ∀P : P.P ∨ ¬P

Impredicative: ∀x : X .P x is in P for all P : X → P on arbitrary types X
Proof-irrelevant: no computational content extractable from ∨ and ∃

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 6

Calculus of Inductive Constructions (CIC)

Features as implemented in Coq’s type theory:
Inductive types: 0, 1, B, N, lists L(X), vectors X n, ...
Simple and dependent type formers: X → Y , X × Y , X + Y , ∀x .F x , Σx .F x

Propositional universe P with logical connectives: ⊥, >, →, ∧, ∨, ∀, ∃

Specifics of the induced logic:
Higher-order: quantification over arbitrary functions and relations
Intuitionistic: does not prove the excluded middle (LEM), stating ∀P : P.P ∨ ¬P
Impredicative: ∀x : X .P x is in P for all P : X → P on arbitrary types X

Proof-irrelevant: no computational content extractable from ∨ and ∃

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 6

Calculus of Inductive Constructions (CIC)

Features as implemented in Coq’s type theory:
Inductive types: 0, 1, B, N, lists L(X), vectors X n, ...
Simple and dependent type formers: X → Y , X × Y , X + Y , ∀x .F x , Σx .F x

Propositional universe P with logical connectives: ⊥, >, →, ∧, ∨, ∀, ∃

Specifics of the induced logic:
Higher-order: quantification over arbitrary functions and relations
Intuitionistic: does not prove the excluded middle (LEM), stating ∀P : P.P ∨ ¬P
Impredicative: ∀x : X .P x is in P for all P : X → P on arbitrary types X
Proof-irrelevant: no computational content extractable from ∨ and ∃

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 6

Representing Syntax

Given a signature Σ = (FΣ;PΣ), we represent terms and formulas by:

t : Term ::= x | f ~t (x : N, f : FΣ, ~t : Term|f |)

ϕ,ψ : Form ::= ⊥̇ | P ~t | ϕ �̇ψ | ∇̇ϕ (P : PΣ, ~t : Term|P|)

De Bruijn representation of binding: ∀x .∃y .P(x , y , z) 7→ ∀̇ ∃̇P(1, 0, 7)

Coq implementation:
Separate type classes for signature components FΣ and PΣ

Shared type class for operators �̇ and ∇̇, instances for full syntax and ∀,→-fragment
Type class flag for falsity symbol ⊥̇
Tactics for handling de Bruijn substitution

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 7

Representing Syntax

Given a signature Σ = (FΣ;PΣ), we represent terms and formulas by:

t : Term ::= x | f ~t (x : N, f : FΣ, ~t : Term|f |)

ϕ,ψ : Form ::= ⊥̇ | P ~t | ϕ �̇ψ | ∇̇ϕ (P : PΣ, ~t : Term|P|)

De Bruijn representation of binding: ∀x . ∃y .P(x , y , z) 7→ ∀̇ ∃̇P(1, 0, 7)

Coq implementation:
Separate type classes for signature components FΣ and PΣ

Shared type class for operators �̇ and ∇̇, instances for full syntax and ∀,→-fragment
Type class flag for falsity symbol ⊥̇
Tactics for handling de Bruijn substitution

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 7

Representing Syntax

Given a signature Σ = (FΣ;PΣ), we represent terms and formulas by:

t : Term ::= x | f ~t (x : N, f : FΣ, ~t : Term|f |)

ϕ,ψ : Form ::= ⊥̇ | P ~t | ϕ �̇ψ | ∇̇ϕ (P : PΣ, ~t : Term|P|)

De Bruijn representation of binding: ∀x . ∃y .P(x , y , z) 7→ ∀̇ ∃̇P(1, 0, 7)

Coq implementation:
Separate type classes for signature components FΣ and PΣ

Shared type class for operators �̇ and ∇̇, instances for full syntax and ∀,→-fragment
Type class flag for falsity symbol ⊥̇
Tactics for handling de Bruijn substitution

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 7

Representing Semantics

A modelM over a domain D is a pair of interpretation functions:

−M : ∀f : FΣ.D
|f | → D −M : ∀P : PΣ.D

|P| → P

For assignments ρ : N→ D define evaluation ρ̂ t and satisfactionM �ρ ϕ:

ρ̂ x := ρ x ρ̂ (f ~t) := fM (ρ̂ ~t)

M �ρ P ~t := PM (ρ̂ ~t) M �ρ ϕ �̇ψ := M �ρ ϕ �M �ρ ψ

M �ρ ⊥̇ := ⊥ M �ρ ∇̇ϕ := ∇a : D.M �a·ρ ϕ

Obtain derived notation for theories T : Form→ P likeM � T , and T � ϕ.

Coq implementation: type class for models, structurally recursive functions

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 8

Representing Semantics

A modelM over a domain D is a pair of interpretation functions:

−M : ∀f : FΣ.D
|f | → D −M : ∀P : PΣ.D

|P| → P

For assignments ρ : N→ D define evaluation ρ̂ t and satisfactionM �ρ ϕ:

ρ̂ x := ρ x ρ̂ (f ~t) := fM (ρ̂ ~t)

M �ρ P ~t := PM (ρ̂ ~t) M �ρ ϕ �̇ψ := M �ρ ϕ �M �ρ ψ

M �ρ ⊥̇ := ⊥ M �ρ ∇̇ϕ := ∇a : D.M �a·ρ ϕ

Obtain derived notation for theories T : Form→ P likeM � T , and T � ϕ.

Coq implementation: type class for models, structurally recursive functions

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 8

Representing Semantics

A modelM over a domain D is a pair of interpretation functions:

−M : ∀f : FΣ.D
|f | → D −M : ∀P : PΣ.D

|P| → P

For assignments ρ : N→ D define evaluation ρ̂ t and satisfactionM �ρ ϕ:

ρ̂ x := ρ x ρ̂ (f ~t) := fM (ρ̂ ~t)

M �ρ P ~t := PM (ρ̂ ~t) M �ρ ϕ �̇ψ := M �ρ ϕ �M �ρ ψ

M �ρ ⊥̇ := ⊥ M �ρ ∇̇ϕ := ∇a : D.M �a·ρ ϕ

Obtain derived notation for theories T : Form→ P likeM � T , and T � ϕ.

Coq implementation: type class for models, structurally recursive functions

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 8

Representing Deduction
Represented as inductive predicates of the form L(Form)→ Form→ P:

. . .

Γ ` ∀̇ϕ
Γ ` ϕ[t]

AE
Γ[+1] ` ϕ

Γ ` ∀̇ϕ
AI

. . .

Given Γ and ϕ one can compute a fresh variable x such that Γ[+1] ` ϕ iff Γ ` ϕ[x]

Switch between intuitionistic variant `i and classical `c via Γ `c ((ϕ→̇ψ)→̇ϕ)→̇ϕ

Natural generalisation to T ` ϕ by ∃Γ ⊆ T . Γ ` ϕ

Coq implementation: type class flag to indicate intuitionistic or classical variant

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 9

Representing Deduction
Represented as inductive predicates of the form L(Form)→ Form→ P:

. . .

Γ ` ∀̇ϕ
Γ ` ϕ[t]

AE
Γ[+1] ` ϕ

Γ ` ∀̇ϕ
AI

. . .

Given Γ and ϕ one can compute a fresh variable x such that Γ[+1] ` ϕ iff Γ ` ϕ[x]

Switch between intuitionistic variant `i and classical `c via Γ `c ((ϕ→̇ψ)→̇ϕ)→̇ϕ

Natural generalisation to T ` ϕ by ∃Γ ⊆ T . Γ ` ϕ

Coq implementation: type class flag to indicate intuitionistic or classical variant

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 9

Representing Deduction
Represented as inductive predicates of the form L(Form)→ Form→ P:

. . .

Γ ` ∀̇ϕ
Γ ` ϕ[t]

AE
Γ[+1] ` ϕ

Γ ` ∀̇ϕ
AI

. . .

Given Γ and ϕ one can compute a fresh variable x such that Γ[+1] ` ϕ iff Γ ` ϕ[x]

Switch between intuitionistic variant `i and classical `c via Γ `c ((ϕ→̇ψ)→̇ϕ)→̇ϕ

Natural generalisation to T ` ϕ by ∃Γ ⊆ T . Γ ` ϕ

Coq implementation: type class flag to indicate intuitionistic or classical variant

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 9

Representing Deduction
Represented as inductive predicates of the form L(Form)→ Form→ P:

. . .

Γ ` ∀̇ϕ
Γ ` ϕ[t]

AE
Γ[+1] ` ϕ

Γ ` ∀̇ϕ
AI

. . .

Given Γ and ϕ one can compute a fresh variable x such that Γ[+1] ` ϕ iff Γ ` ϕ[x]

Switch between intuitionistic variant `i and classical `c via Γ `c ((ϕ→̇ψ)→̇ϕ)→̇ϕ

Natural generalisation to T ` ϕ by ∃Γ ⊆ T . Γ ` ϕ

Coq implementation: type class flag to indicate intuitionistic or classical variant

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 9

Representing Deduction
Represented as inductive predicates of the form L(Form)→ Form→ P:

. . .

Γ ` ∀̇ϕ
Γ ` ϕ[t]

AE
Γ[+1] ` ϕ

Γ ` ∀̇ϕ
AI

. . .

Given Γ and ϕ one can compute a fresh variable x such that Γ[+1] ` ϕ iff Γ ` ϕ[x]

Switch between intuitionistic variant `i and classical `c via Γ `c ((ϕ→̇ψ)→̇ϕ)→̇ϕ

Natural generalisation to T ` ϕ by ∃Γ ⊆ T . Γ ` ϕ

Coq implementation: type class flag to indicate intuitionistic or classical variant

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 9

Curious Observations

Fact
The intuitionistic deduction system is sound for Tarski semantics, i.e. Γ `i ϕ implies Γ � ϕ.
For `c we either need to assume LEM or restrict to classical models validating `c .

Constructive reverse mathematics: in fact unrestricted soundness for `c implies LEM

Fact
For suitable signatures Σ = (FΣ;PΣ) one can construct functions

d : Form→ Form→ B such that ∀ϕψ.ϕ = ψ ↔ d ϕψ = tt,
e : N→ Form such that ∀ϕ. ` ϕ↔ ∃n. e n = ϕ.

Synthetic computability: equality on formulas is decidable (D) and provability is enumerable (E)

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 10

Curious Observations

Fact
The intuitionistic deduction system is sound for Tarski semantics, i.e. Γ `i ϕ implies Γ � ϕ.
For `c we either need to assume LEM or restrict to classical models validating `c .

Constructive reverse mathematics: in fact unrestricted soundness for `c implies LEM

Fact
For suitable signatures Σ = (FΣ;PΣ) one can construct functions

d : Form→ Form→ B such that ∀ϕψ.ϕ = ψ ↔ d ϕψ = tt,
e : N→ Form such that ∀ϕ. ` ϕ↔ ∃n. e n = ϕ.

Synthetic computability: equality on formulas is decidable (D) and provability is enumerable (E)

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 10

Curious Observations

Fact
The intuitionistic deduction system is sound for Tarski semantics, i.e. Γ `i ϕ implies Γ � ϕ.
For `c we either need to assume LEM or restrict to classical models validating `c .

Constructive reverse mathematics: in fact unrestricted soundness for `c implies LEM

Fact
For suitable signatures Σ = (FΣ;PΣ) one can construct functions

d : Form→ Form→ B such that ∀ϕψ.ϕ = ψ ↔ d ϕψ = tt,
e : N→ Form such that ∀ϕ. ` ϕ↔ ∃n. e n = ϕ.

Synthetic computability: equality on formulas is decidable (D) and provability is enumerable (E)

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 10

Curious Observations

Fact
The intuitionistic deduction system is sound for Tarski semantics, i.e. Γ `i ϕ implies Γ � ϕ.
For `c we either need to assume LEM or restrict to classical models validating `c .

Constructive reverse mathematics: in fact unrestricted soundness for `c implies LEM

Fact
For suitable signatures Σ = (FΣ;PΣ) one can construct functions

d : Form→ Form→ B such that ∀ϕψ.ϕ = ψ ↔ d ϕψ = tt,
e : N→ Form such that ∀ϕ. ` ϕ↔ ∃n. e n = ϕ.

Synthetic computability: equality on formulas is decidable (D) and provability is enumerable (E)

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 10

Curious Observations

Fact
The intuitionistic deduction system is sound for Tarski semantics, i.e. Γ `i ϕ implies Γ � ϕ.
For `c we either need to assume LEM or restrict to classical models validating `c .

Constructive reverse mathematics: in fact unrestricted soundness for `c implies LEM

Fact
For suitable signatures Σ = (FΣ;PΣ) one can construct functions

d : Form→ Form→ B such that ∀ϕψ.ϕ = ψ ↔ d ϕψ = tt,
e : N→ Form such that ∀ϕ. ` ϕ↔ ∃n. e n = ϕ.

Synthetic computability: equality on formulas is decidable (D) and provability is enumerable (E)

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 10

Completeness∗

∗F., K., and W. at LFCS’20.
D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 11

Completeness: Syntax fragments
A lot of our work is restricted to the fragment

t : Term ::= x | f t n : N, f : Σ

ϕ : Form∗ ::= ⊥̇ | P t | ϕ →̇ψ | ∀̇ϕ P : Σ

Definition
A modelM consists of a type X

...
an absurdity interpretation ⊥M : P.

Interpreting
M �ρ ⊥̇ :⇔ ⊥M

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 12

Completeness: Syntax fragments
A lot of our work is restricted to the fragment

t : Term ::= x | f t n : N, f : Σ

ϕ : Form∗ ::= ⊥̇ | P t | ϕ →̇ψ | ∀̇ϕ P : Σ

Definition
A modelM consists of a type X

...
an absurdity interpretation ⊥M : P.

Interpreting
M �ρ ⊥̇ :⇔ ⊥M

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 12

Tarski models: Classes of models

Definition
A modelM is called classical* if for all ρ and ϕ : Form∗

M �ρ ¬̇¬̇ϕ →̇ϕ

A modelM is called standard if ⊥M is contradictory.
A modelM is called exploding* (due to Veldman (1976)) if for all ρ and formulas ϕ : Form∗

M �ρ ⊥̇ →̇ϕ

Fact
Every standard model is exploding*. The converse need not hold.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 13

Tarski models: Classes of models

Definition
A modelM is called classical* if for all ρ and ϕ : Form∗

M �ρ ¬̇¬̇ϕ →̇ϕ

A modelM is called standard if ⊥M is contradictory.

A modelM is called exploding* (due to Veldman (1976)) if for all ρ and formulas ϕ : Form∗

M �ρ ⊥̇ →̇ϕ

Fact
Every standard model is exploding*. The converse need not hold.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 13

Tarski models: Classes of models

Definition
A modelM is called classical* if for all ρ and ϕ : Form∗

M �ρ ¬̇¬̇ϕ →̇ϕ

A modelM is called standard if ⊥M is contradictory.
A modelM is called exploding* (due to Veldman (1976)) if for all ρ and formulas ϕ : Form∗

M �ρ ⊥̇ →̇ϕ

Fact
Every standard model is exploding*. The converse need not hold.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 13

Tarski models: Classes of models

Definition
A modelM is called classical* if for all ρ and ϕ : Form∗

M �ρ ¬̇¬̇ϕ →̇ϕ

A modelM is called standard if ⊥M is contradictory.
A modelM is called exploding* (due to Veldman (1976)) if for all ρ and formulas ϕ : Form∗

M �ρ ⊥̇ →̇ϕ

Fact
Every standard model is exploding*. The converse need not hold.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 13

Tarski completeness: Model construction

Lemma
Pick a closed theory T . There exists a modelM, ρ such that:

If T ` ϕ thenM �ρ ϕ

IfM �ρ ⊥̇ then T ` ⊥̇

Proof.
Extend T into a theory Ω as follows:

1 Henkin axioms: Add all formulas ϕn(n) →̇ ∀̇ϕn

2 Lindenbaum: Add all formulas maintaining consistency
The term-model induced by Ω fulfills all desiderata.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 14

Tarski completeness: Model construction

Lemma
Pick a closed theory T . There exists a modelM, ρ such that:

If T ` ϕ thenM �ρ ϕ

IfM �ρ ⊥̇ then T ` ⊥̇

Proof.
Extend T into a theory Ω as follows:

1 Henkin axioms: Add all formulas ϕn(n) →̇ ∀̇ϕn

2 Lindenbaum: Add all formulas maintaining consistency
The term-model induced by Ω fulfills all desiderata.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 14

Tarski completeness: Model construction

Lemma
Pick a closed theory T . There exists a modelM, ρ such that:

If T ` ϕ thenM �ρ ϕ

IfM �ρ ⊥̇ then T ` ⊥̇

Proof.
Extend T into a theory Ω as follows:

1 Henkin axioms: Add all formulas ϕn(n) →̇ ∀̇ϕn

2 Lindenbaum: Add all formulas maintaining consistency
The term-model induced by Ω fulfills all desiderata.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 14

Tarski completeness: Model construction

Lemma
Pick a closed theory T . There exists a modelM, ρ such that:

If T ` ϕ thenM �ρ ϕ

IfM �ρ ⊥̇ then T ` ⊥̇

Proof.
Extend T into a theory Ω as follows:

1 Henkin axioms: Add all formulas ϕn(n) →̇ ∀̇ϕn

2 Lindenbaum: Add all formulas maintaining consistency

The term-model induced by Ω fulfills all desiderata.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 14

Tarski completeness: Model construction

Lemma
Pick a closed theory T . There exists a modelM, ρ such that:

If T ` ϕ thenM �ρ ϕ

IfM �ρ ⊥̇ then T ` ⊥̇

Proof.
Extend T into a theory Ω as follows:

1 Henkin axioms: Add all formulas ϕn(n) →̇ ∀̇ϕn

2 Lindenbaum: Add all formulas maintaining consistency
The term-model induced by Ω fulfills all desiderata.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 14

Tarski completeness: The standard case

Theorem
For closed T , ϕ we know T � ϕ entails ¬¬(T ` ϕ).

Fact

T � ϕ→ T ` ϕ iff ¬¬T ` ϕ→ T ` ϕ.

Corollary

∀T , ϕ. T � ϕ→ T ` ϕ is not provable in the CIC.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 15

Tarski completeness: The standard case
Theorem
For closed T , ϕ we know T � ϕ entails ¬¬(T ` ϕ).

Proof.

Suppose T 6` ϕ, meaning T ′ ..= T ∪ {¬̇ϕ} is consistent. Applying the lemma to T ′ yields
1 If T ∪ {¬̇ϕ} ` ϕ thenM �ρ ϕ

2 IfM �ρ ⊥̇ then T ∪ {¬̇ϕ} ` ⊥̇
Then

By (1)M, ρ is classical* and by (2)M, ρ is standard.
By (1) we haveM �ρ T and thusM �ρ ϕ.
But by (1) we also haveM �ρ ¬̇ϕ.

Fact

T � ϕ→ T ` ϕ iff ¬¬T ` ϕ→ T ` ϕ.

Corollary

∀T , ϕ. T � ϕ→ T ` ϕ is not provable in the CIC.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 15

Tarski completeness: The standard case
Theorem
For closed T , ϕ we know T � ϕ entails ¬¬(T ` ϕ).

Proof.
Suppose T 6` ϕ, meaning T ′ ..= T ∪ {¬̇ϕ} is consistent.

Applying the lemma to T ′ yields
1 If T ∪ {¬̇ϕ} ` ϕ thenM �ρ ϕ

2 IfM �ρ ⊥̇ then T ∪ {¬̇ϕ} ` ⊥̇
Then

By (1)M, ρ is classical* and by (2)M, ρ is standard.
By (1) we haveM �ρ T and thusM �ρ ϕ.
But by (1) we also haveM �ρ ¬̇ϕ.

Fact

T � ϕ→ T ` ϕ iff ¬¬T ` ϕ→ T ` ϕ.

Corollary

∀T , ϕ. T � ϕ→ T ` ϕ is not provable in the CIC.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 15

Tarski completeness: The standard case
Theorem
For closed T , ϕ we know T � ϕ entails ¬¬(T ` ϕ).

Proof.
Suppose T 6` ϕ, meaning T ′ ..= T ∪ {¬̇ϕ} is consistent. Applying the lemma to T ′ yields

1 If T ∪ {¬̇ϕ} ` ϕ thenM �ρ ϕ

2 IfM �ρ ⊥̇ then T ∪ {¬̇ϕ} ` ⊥̇

Then
By (1)M, ρ is classical* and by (2)M, ρ is standard.
By (1) we haveM �ρ T and thusM �ρ ϕ.
But by (1) we also haveM �ρ ¬̇ϕ.

Fact

T � ϕ→ T ` ϕ iff ¬¬T ` ϕ→ T ` ϕ.

Corollary

∀T , ϕ. T � ϕ→ T ` ϕ is not provable in the CIC.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 15

Tarski completeness: The standard case
Theorem
For closed T , ϕ we know T � ϕ entails ¬¬(T ` ϕ).

Proof.
Suppose T 6` ϕ, meaning T ′ ..= T ∪ {¬̇ϕ} is consistent. Applying the lemma to T ′ yields

1 If T ∪ {¬̇ϕ} ` ϕ thenM �ρ ϕ

2 IfM �ρ ⊥̇ then T ∪ {¬̇ϕ} ` ⊥̇
Then

By (1)M, ρ is classical* and by (2)M, ρ is standard.

By (1) we haveM �ρ T and thusM �ρ ϕ.
But by (1) we also haveM �ρ ¬̇ϕ.

Fact

T � ϕ→ T ` ϕ iff ¬¬T ` ϕ→ T ` ϕ.

Corollary

∀T , ϕ. T � ϕ→ T ` ϕ is not provable in the CIC.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 15

Tarski completeness: The standard case
Theorem
For closed T , ϕ we know T � ϕ entails ¬¬(T ` ϕ).

Proof.
Suppose T 6` ϕ, meaning T ′ ..= T ∪ {¬̇ϕ} is consistent. Applying the lemma to T ′ yields

1 If T ∪ {¬̇ϕ} ` ϕ thenM �ρ ϕ

2 IfM �ρ ⊥̇ then T ∪ {¬̇ϕ} ` ⊥̇
Then

By (1)M, ρ is classical* and by (2)M, ρ is standard.
By (1) we haveM �ρ T and thusM �ρ ϕ.

But by (1) we also haveM �ρ ¬̇ϕ.

Fact

T � ϕ→ T ` ϕ iff ¬¬T ` ϕ→ T ` ϕ.

Corollary

∀T , ϕ. T � ϕ→ T ` ϕ is not provable in the CIC.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 15

Tarski completeness: The standard case
Theorem
For closed T , ϕ we know T � ϕ entails ¬¬(T ` ϕ).

Proof.
Suppose T 6` ϕ, meaning T ′ ..= T ∪ {¬̇ϕ} is consistent. Applying the lemma to T ′ yields

1 If T ∪ {¬̇ϕ} ` ϕ thenM �ρ ϕ

2 IfM �ρ ⊥̇ then T ∪ {¬̇ϕ} ` ⊥̇
Then

By (1)M, ρ is classical* and by (2)M, ρ is standard.
By (1) we haveM �ρ T and thusM �ρ ϕ.
But by (1) we also haveM �ρ ¬̇ϕ.

Fact

T � ϕ→ T ` ϕ iff ¬¬T ` ϕ→ T ` ϕ.

Corollary

∀T , ϕ. T � ϕ→ T ` ϕ is not provable in the CIC.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 15

Tarski completeness: The standard case

Theorem
For closed T , ϕ we know T � ϕ entails ¬¬(T ` ϕ).

Fact

T � ϕ→ T ` ϕ iff ¬¬T ` ϕ→ T ` ϕ.

Corollary

∀T , ϕ. T � ϕ→ T ` ϕ is not provable in the CIC.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 15

Tarski completeness: The standard case

Theorem
For closed T , ϕ we know T � ϕ entails ¬¬(T ` ϕ).

Fact

T � ϕ→ T ` ϕ iff ¬¬T ` ϕ→ T ` ϕ.

Corollary

∀T , ϕ. T � ϕ→ T ` ϕ is not provable in the CIC.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 15

Tarski completeness: Examining the standard case∗

Theorem
For closed T , ϕ we know T � ϕ entails ¬¬(T ` ϕ).

Proof.
Suppose T 6` ϕ, meaning T ′ ..= T ∪ {¬̇ϕ} is consistent. Applying the lemma to T ′ yields

1 If T ∪ {¬̇ϕ} ` ϕ thenM �ρ ϕ

2 IfM �ρ ⊥̇ then T ∪ {¬̇ϕ} ` ⊥̇
Then

By (1)M, ρ is classical* and by (2)M, ρ is standard.
By (1) we haveM �ρ T and thusM �ρ ϕ.
But by (1) we also haveM �ρ ¬̇ϕ.

∗Following Herbelin and Ilik (2016)
D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 16

Tarski completeness: Examining the standard case∗

Theorem
For closed T , ϕ we know T � ϕ entails ¬¬(T ` ϕ).

Proof.
Suppose T 6` ϕ, meaning T ′ ..= T ∪ {¬̇ϕ} is consistent. Applying the lemma to T ′ yields

1 If T ∪ {¬̇ϕ} ` ϕ thenM �ρ ϕ

2 IfM �ρ ⊥̇ then T ∪ {¬̇ϕ} ` ⊥̇
Then

By (1)M, ρ is classical* and by (2)M, ρ is standard.
By (1) we haveM �ρ T and thusM �ρ ϕ.
But by (1) we also haveM �ρ ¬̇ϕ.

∗Following Herbelin and Ilik (2016)
D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 16

Tarski completeness: Examining the standard case∗

Theorem
For closed T , ϕ we know T � ϕ entails ¬¬(T ` ϕ).

Proof.
Suppose T 6` ϕ, meaning T ′ ..= T ∪ {¬̇ϕ} is consistent. Applying the lemma to T ′ yields

1 If T ∪ {¬̇ϕ} ` ϕ thenM �ρ ϕ

2 IfM �ρ ⊥̇ then T ∪ {¬̇ϕ} ` ⊥̇
Then

By (1)M, ρ is classical* and by (2) M, ρ is standard.
By (1) we haveM �ρ T and thusM �ρ ϕ.
But by (1) we also haveM �ρ ¬̇ϕ.

∗Following Herbelin and Ilik (2016)
D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 16

Tarski completeness: The exploding case
Theorem
For closed T , ϕ we know T �E ϕ entails T ` ϕ.

Proof.
Applying the lemma to T ′ ..= T ∪ {¬̇ϕ} yields

1 If T ∪ {¬̇ϕ} ` ϕ thenM �ρ ϕ

2 IfM �ρ ⊥̇ then T ∪ {¬̇ϕ} ` ⊥̇
Then

By (1)M, ρ is classical* andM, ρ exploding*.
By (1) we haveM �ρ T and thusM �ρ ϕ.
By (1) we also haveM �ρ ¬̇ϕ, meaning M �ρ ⊥̇.
By (2) this means T ∪ {¬̇ϕ} ` ⊥̇ and thus T ` ϕ.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 17

Kripke structures

Definition
A Kripke structure K consists of a preorder (W,≤), a domain D : T and

- for each f : Σ an interpretation f : D |f | → D

- for each P : Σ and w :W an interpretation Pw : D |P| → P
- for each world w :W an interpretation ⊥w : P

such that, if w ≤ v then
- ⊥w entails ⊥v

- Pw
~d entails Pv

~d for all ~d : D |P|

Note: Such models are only complete on the Form∗-fragment!

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 18

Kripke structures

Definition
A Kripke structure K consists of a preorder (W,≤), a domain D : T and

- for each f : Σ an interpretation f : D |f | → D

- for each P : Σ and w :W an interpretation Pw : D |P| → P
- for each world w :W an interpretation ⊥w : P

such that, if w ≤ v then
- ⊥w entails ⊥v

- Pw
~d entails Pv

~d for all ~d : D |P|

Note: Such models are only complete on the Form∗-fragment!

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 18

Kripke models: Semantics

Definition
Fix a Kripke structure K. For an assignment ρ : V → D we define

w ρ ⊥̇ :⇔ ⊥w

w ρ P ~t :⇔ Pw ~tρ

w ρ ∀̇ϕ :⇔ ∀d : D. w d ·ρ ϕ

w ρ ϕ →̇ψ :⇔ ∀w ≤ v . v ρ ϕ→ v ρ ψ

Fact
If w ≤ v then w ρ ϕ entails v ρ ϕ.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 19

Kripke models: Semantics

Definition
Fix a Kripke structure K. For an assignment ρ : V → D we define

w ρ ⊥̇ :⇔ ⊥w

w ρ P ~t :⇔ Pw ~tρ

w ρ ∀̇ϕ :⇔ ∀d : D. w d ·ρ ϕ

w ρ ϕ →̇ψ :⇔ ∀w ≤ v . v ρ ϕ→ v ρ ψ

Fact
If w ≤ v then w ρ ϕ entails v ρ ϕ.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 19

Kripke models: Semantics

Definition
Fix a Kripke structure K. For an assignment ρ : V → D we define

w ρ ⊥̇ :⇔ ⊥w

w ρ P ~t :⇔ Pw ~tρ

w ρ ∀̇ϕ :⇔ ∀d : D. w d ·ρ ϕ

w ρ ϕ →̇ψ :⇔ ∀w ≤ v . v ρ ϕ→ v ρ ψ

Fact
If w ≤ v then w ρ ϕ entails v ρ ϕ.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 19

Kripke models: Classes of models

Definition
A Kripke model K, ρ is called exploding if

w ρ ⊥̇ →̇ϕ for every w :W and ϕ.

A K, ρ is called standard if ⊥w → ⊥ for every w :W.

Definition
We write Γ e ϕ if for all exploding K , ρ and w :W

(∀ψ ∈ Γ. w ρ ψ)→ w ρ ϕ

We write Γ s ϕ if the analogous case holds for all standard K , ρ.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 20

Kripke models: Classes of models

Definition
A Kripke model K, ρ is called exploding if

w ρ ⊥̇ →̇ϕ for every w :W and ϕ.

A K, ρ is called standard if ⊥w → ⊥ for every w :W.

Definition
We write Γ e ϕ if for all exploding K , ρ and w :W

(∀ψ ∈ Γ. w ρ ψ)→ w ρ ϕ

We write Γ s ϕ if the analogous case holds for all standard K , ρ.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 20

Kripke models: Classes of models

Definition
A Kripke model K, ρ is called exploding if

w ρ ⊥̇ →̇ϕ for every w :W and ϕ.

A K, ρ is called standard if ⊥w → ⊥ for every w :W.

Definition
We write Γ e ϕ if for all exploding K , ρ and w :W

(∀ψ ∈ Γ. w ρ ψ)→ w ρ ϕ

We write Γ s ϕ if the analogous case holds for all standard K , ρ.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 20

LJT: Focused Sequents

→L
Γ⇒ ψ Γ; θ ⇒ ϕ

Γ;ψ →̇ θ ⇒ ϕ
∀L

Γ;ψ[t]⇒ ϕ

Γ; ∀̇ψ ⇒ ϕ

→R
Γ, ϕ⇒ ψ

Γ⇒ ϕ →̇ψ
∀R
↑Γ⇒ ϕ

Γ⇒ ∀̇ϕ

Ax
Γ;ϕ⇒ ϕ

Focus
Γ;ψ ⇒ ϕ ψ ∈ Γ

Γ⇒ ϕ
Exp

↑Γ⇒ ⊥̇
Γ⇒ ϕ

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 21

Kripke completeness: The exploding case∗

Definition
We define the universal structure U on the preorder (L(Form),⊆) and the domain Term, taking

PΓ~t ..= Γ⇒ P ~t ⊥Γ
..= Γ⇒ ⊥̇

Fact
U , σ is exploding but not standard.

Lemma
Over the structure U we have

1 Γ σ ϕ→ Γ⇒ ϕ[σ]

2 (∀ψ, Γ ⊆ ∆. ∆;ϕ[σ]⇒ ψ → ∆⇒ ψ)→ Γ σ ϕ

∗Following Herbelin and Lee (2009)
D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 22

Kripke completeness: The exploding case∗

Definition
We define the universal structure U on the preorder (L(Form),⊆) and the domain Term, taking

PΓ~t ..= Γ⇒ P ~t ⊥Γ
..= Γ⇒ ⊥̇

Fact
U , σ is exploding but not standard.

Lemma
Over the structure U we have

1 Γ σ ϕ→ Γ⇒ ϕ[σ]

2 (∀ψ, Γ ⊆ ∆. ∆;ϕ[σ]⇒ ψ → ∆⇒ ψ)→ Γ σ ϕ

∗Following Herbelin and Lee (2009)
D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 22

Kripke completeness: The exploding case∗

Definition
We define the universal structure U on the preorder (L(Form),⊆) and the domain Term, taking

PΓ~t ..= Γ⇒ P ~t ⊥Γ
..= Γ⇒ ⊥̇

Fact
U , σ is exploding but not standard.

Lemma
Over the structure U we have

1 Γ σ ϕ→ Γ⇒ ϕ[σ]

2 (∀ψ, Γ ⊆ ∆. ∆;ϕ[σ]⇒ ψ → ∆⇒ ψ)→ Γ σ ϕ

∗Following Herbelin and Lee (2009)
D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 22

Kripke completeness: The exploding case II
Lemma
Over the structure U we have

1 Γ σ ϕ→ Γ⇒ ϕ[σ]

2 (∀ψ, Γ ⊆ ∆. ∆;ϕ[σ]⇒ ψ → ∆⇒ ψ)→ Γ σ ϕ

Corollary

If Γ e ϕ then Γ⇒ ϕ.

Proof.
Work within the model U : We know ∆ σ Γ entails ∆ σ ϕ for any ∆.

Using (2) we conclude Γ id Γ

Per assumption thus Γ id ϕ and Γ⇒ ϕ by (1)

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 23

Kripke completeness: The exploding case II
Lemma
Over the structure U we have

1 Γ σ ϕ→ Γ⇒ ϕ[σ]

2 (∀ψ, Γ ⊆ ∆. ∆;ϕ[σ]⇒ ψ → ∆⇒ ψ)→ Γ σ ϕ

Corollary

If Γ e ϕ then Γ⇒ ϕ.

Proof.
Work within the model U : We know ∆ σ Γ entails ∆ σ ϕ for any ∆.

Using (2) we conclude Γ id Γ

Per assumption thus Γ id ϕ and Γ⇒ ϕ by (1)

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 23

Kripke completeness: The exploding case II
Lemma
Over the structure U we have

1 Γ σ ϕ→ Γ⇒ ϕ[σ]

2 (∀ψ, Γ ⊆ ∆. ∆;ϕ[σ]⇒ ψ → ∆⇒ ψ)→ Γ σ ϕ

Corollary

If Γ e ϕ then Γ⇒ ϕ.

Proof.
Work within the model U : We know ∆ σ Γ entails ∆ σ ϕ for any ∆.

Using (2) we conclude Γ id Γ

Per assumption thus Γ id ϕ and Γ⇒ ϕ by (1)

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 23

Kripke completeness: The exploding case II
Lemma
Over the structure U we have

1 Γ σ ϕ→ Γ⇒ ϕ[σ]

2 (∀ψ, Γ ⊆ ∆. ∆;ϕ[σ]⇒ ψ → ∆⇒ ψ)→ Γ σ ϕ

Corollary

If Γ e ϕ then Γ⇒ ϕ.

Proof.
Work within the model U : We know ∆ σ Γ entails ∆ σ ϕ for any ∆.

Using (2) we conclude Γ id Γ

Per assumption thus Γ id ϕ and Γ⇒ ϕ by (1)

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 23

Kripke completeness: The exploding case II
Lemma
Over the structure U we have

1 Γ σ ϕ→ Γ⇒ ϕ[σ]

2 (∀ψ, Γ ⊆ ∆. ∆;ϕ[σ]⇒ ψ → ∆⇒ ψ)→ Γ σ ϕ

Corollary

If Γ e ϕ then Γ⇒ ϕ.

Proof.
Work within the model U : We know ∆ σ Γ entails ∆ σ ϕ for any ∆.

Using (2) we conclude Γ id Γ

Per assumption thus Γ id ϕ and Γ⇒ ϕ by (1)

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 23

Kripke completeness: The standard case

Definition
We define the consistent structure C on the preorder (ΣΓ : L(Form). Γ 6⇒ ⊥̇,⊆) and the
domain Term, taking

PΓ~t ..= ¬¬(Γ⇒ P ~t) ⊥Γ
..= Γ⇒ ⊥̇

Fact
U , σ is a standard model.

Fact
Γ s ϕ→ Γ⇒ ϕ iff ¬¬(Γ ` ϕ)→ Γ ` ϕ.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 24

Kripke completeness: The standard case

Definition
We define the consistent structure C on the preorder (ΣΓ : L(Form). Γ 6⇒ ⊥̇,⊆) and the
domain Term, taking

PΓ~t ..= ¬¬(Γ⇒ P ~t) ⊥Γ
..= Γ⇒ ⊥̇

Fact
U , σ is a standard model.

Fact
Γ s ϕ→ Γ⇒ ϕ iff ¬¬(Γ ` ϕ)→ Γ ` ϕ.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 24

Kripke completeness: The standard case

Definition
We define the consistent structure C on the preorder (ΣΓ : L(Form). Γ 6⇒ ⊥̇,⊆) and the
domain Term, taking

PΓ~t ..= ¬¬(Γ⇒ P ~t) ⊥Γ
..= Γ⇒ ⊥̇

Fact
U , σ is a standard model.

Fact
Γ s ϕ→ Γ⇒ ϕ iff ¬¬(Γ ` ϕ)→ Γ ` ϕ.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 24

Completeness: Other semantics

The following semantics admit constructive completeness proofs wrt. the full syntax:
Heyting algebras wrt. intuitionistic FOL
Inuitionistic formal dialogues wrt. intuitionistic FOL
Classical formal dialogues wrt. classical FOL
Classical material dialogues wrt. classical FOL

Furthermore
Assuming the EM, we can obtain completeness for classical, standard Tarski models
Intuitionstic material dialogues are incomplete over CIC

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 25

Constructive Reverse Mathematics ∗

or: Find axioms equivalent to theorems.

∗F., K., and W. at LFCS’20.
D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 26

Constructive Reverse Mathematics ∗
or: Find axioms equivalent to theorems.

∗F., K., and W. at LFCS’20.
D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 26

Sufficient and necessary axioms for completeness

Is there a well-known axiom A with

A→ ∀Γϕ.Γ � ϕ→ Γ ` ϕ

A2 ↔ ∀T ϕ. ¬(T 6` ϕ)→ T ` ϕ

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 27

Sufficient and necessary axioms for completeness

Is there a well-known axiom A with

A↔ ∀Γϕ.Γ � ϕ→ Γ ` ϕ

A2 ↔ ∀T ϕ. ¬(T 6` ϕ)→ T ` ϕ

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 27

Sufficient and necessary axioms for completeness

Is there a well-known axiom A with

A↔ ∀Γϕ. ¬(Γ 6` ϕ)→ Γ ` ϕ

A2 ↔ ∀T ϕ. ¬(T 6` ϕ)→ T ` ϕ

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 27

Sufficient and necessary axioms for completeness

Are there well-known axioms A and A2 with

A↔ ∀Γϕ. ¬(Γ 6` ϕ)→ Γ ` ϕ

A2 ↔ ∀T ϕ. ¬(T 6` ϕ)→ T ` ϕ

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 27

Sufficient and necessary axioms for completeness

Is there a well-known axiom-scheme A with

A(P)↔ ∀T . PT → ¬(T 6` ϕ)→ T ` ϕ

A2 ↔ ∀T ϕ. ¬(T 6` ϕ)→ T ` ϕ

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 27

Slightly confusing literature review

Kreisel (1962): Use Markov’s principle MP (proof idea due to Gödel)

How to define MP?

MP

pr

:= ∀f : N→ B.f is primitive recursive→ ¬¬(∃n. fn = true)→ ∃n. fn = true

MP

L

:= ∀f : N→ B.f is recursive→ ¬¬(∃n. fn = true)→ ∃n. fn = true

MP

TT

:= ∀f : N→ B. ¬¬(∃n. fn = true)→ ∃n. fn = true

MP

E

:= ∀X . X is discrete→ ∀p : X → P. Ep → ∀x . ¬¬px → px

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 28

Slightly confusing literature review

Kreisel (1962): Use Markov’s principle MP (proof idea due to Gödel)
How to define MP?

MP

pr

:= ∀f : N→ B.f is primitive recursive→ ¬¬(∃n. fn = true)→ ∃n. fn = true

MP

L

:= ∀f : N→ B.f is recursive→ ¬¬(∃n. fn = true)→ ∃n. fn = true

MP

TT

:= ∀f : N→ B. ¬¬(∃n. fn = true)→ ∃n. fn = true

MP

E

:= ∀X . X is discrete→ ∀p : X → P. Ep → ∀x . ¬¬px → px

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 28

Slightly confusing literature review

Kreisel (1962): Use Markov’s principle MP (proof idea due to Gödel)
How to define MP?

MP

pr

:= ∀f : N→ B.f is primitive recursive→ ¬¬(∃n. fn = true)→ ∃n. fn = true

MP

L

:= ∀f : N→ B.f is recursive→ ¬¬(∃n. fn = true)→ ∃n. fn = true

MP

TT

:= ∀f : N→ B. ¬¬(∃n. fn = true)→ ∃n. fn = true

MP

E

:= ∀X . X is discrete→ ∀p : X → P. Ep → ∀x . ¬¬px → px

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 28

Slightly confusing literature review

Kreisel (1962): Use Markov’s principle MP (proof idea due to Gödel)
How to define MP?

MP

pr

:= ∀f : N→ B.f is primitive recursive→ ¬¬(∃n. fn = true)→ ∃n. fn = true

MP

L

:= ∀f : N→ B.f is recursive→ ¬¬(∃n. fn = true)→ ∃n. fn = true

MP

TT

:= ∀f : N→ B. ¬¬(∃n. fn = true)→ ∃n. fn = true

MP

E

:= ∀X . X is discrete→ ∀p : X → P. Ep → ∀x . ¬¬px → px

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 28

Slightly confusing literature review

Kreisel (1962): Use Markov’s principle MP (proof idea due to Gödel)
How to define MP?

MP

pr

:= ∀f : N→ B.f is primitive recursive→ ¬¬(∃n. fn = true)→ ∃n. fn = true

MP

L

:= ∀f : N→ B.f is recursive→ ¬¬(∃n. fn = true)→ ∃n. fn = true

MP

TT

:= ∀f : N→ B. ¬¬(∃n. fn = true)→ ∃n. fn = true

MP

E

:= ∀X . X is discrete→ ∀p : X → P. Ep → ∀x . ¬¬px → px

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 28

Slightly confusing literature review

Kreisel (1962): Use Markov’s principle MP (proof idea due to Gödel)
How to define MP?

MPpr := ∀f : N→ B.f is primitive recursive→ ¬¬(∃n. fn = true)→ ∃n. fn = true

MPL := ∀f : N→ B.f is recursive→ ¬¬(∃n. fn = true)→ ∃n. fn = true

MPTT := ∀f : N→ B. ¬¬(∃n. fn = true)→ ∃n. fn = true

MPE := ∀X . X is discrete→ ∀p : X → P. Ep → ∀x . ¬¬px → px

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 28

LEM

MPTT MPE

MPpr MPL

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 29

Constructive analysis of the completeness theorem

DNE(P : ∀X . (X → P)→ P) := ∀Xp. PXp → ∀x . ¬¬px → px

LEM↔ ∀T ϕ. ¬(T 6` ϕ)→ Γ ` ϕ

↔ DNE(λXp. >)

MP ↔ ∀T ϕ. ET → ¬(T 6` ϕ)→ T ` ϕ

↔ DNE(λXp. DX ∧ E p)

MPL ↔ ∀T ϕ. ELT → ¬(T 6` ϕ)→ T ` ϕ

↔ DNE(λXp. DLX ∧ ELp)

↔ ∀Γϕ. ¬(Γ 6` ϕ)→ Γ ` ϕ

↔ DNE(λXp. p = λs.∃t.s . t)

Theorem
Let p : X → P and q : Y → P. If p is stable and p � q then q is stable, where

∃f : X → Y . ∀x . px ↔ q(fx).

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 30

Constructive analysis of the completeness theorem

DNE(P : ∀X . (X → P)→ P) := ∀Xp. PXp → ∀x . ¬¬px → px

LEM↔ ∀T ϕ. ¬(T 6` ϕ)→ Γ ` ϕ ↔ DNE(λXp. >)

MP ↔ ∀T ϕ. ET → ¬(T 6` ϕ)→ T ` ϕ ↔ DNE(λXp. DX ∧ E p)

MPL ↔ ∀T ϕ. ELT → ¬(T 6` ϕ)→ T ` ϕ ↔ DNE(λXp. DLX ∧ ELp)

↔ ∀Γϕ. ¬(Γ 6` ϕ)→ Γ ` ϕ ↔ DNE(λXp. p = λs.∃t.s . t)

Theorem
Let p : X → P and q : Y → P. If p is stable and p � q then q is stable, where

∃f : X → Y . ∀x . px ↔ q(fx).

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 30

Constructive analysis of the completeness theorem

DNE(P : ∀X . (X → P)→ P) := ∀Xp. PXp → ∀x . ¬¬px → px

LEM↔ ∀T ϕ. ¬(T 6` ϕ)→ Γ ` ϕ ↔ DNE(λXp. >)

MP ↔ ∀T ϕ. ET → ¬(T 6` ϕ)→ T ` ϕ ↔ DNE(λXp. DX ∧ E p)

MPL ↔ ∀T ϕ. ELT → ¬(T 6` ϕ)→ T ` ϕ ↔ DNE(λXp. DLX ∧ ELp)

↔ ∀Γϕ. ¬(Γ 6` ϕ)→ Γ ` ϕ ↔ DNE(λXp. p = λs.∃t.s . t)

Theorem
Let p : X → P and q : Y → P. If p is stable and p � q then q is stable, where

∃f : X → Y . ∀x . px ↔ q(fx).

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 30

Undecidability: The Entscheidungsproblem∗

∗F., K., and Gert Smolka at CPP’19.
D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 31

General Idea

Conventional outline following Turing:
Encode Turing machine M as formula ϕM over custom signature
Verify that M halts if and only if ϕM holds in all models
Verify that M halts if and only if ϕM is provable in intuitionistic natural deduction
Verify that M halts if and only if ϕM is provable in classical natural deduction

We follow the simpler proof due to Floyd given by Manna (2003) based on PCP.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 32

General Idea

Conventional outline following Turing:
Encode Turing machine M as formula ϕM over custom signature
Verify that M halts if and only if ϕM holds in all models
Verify that M halts if and only if ϕM is provable in intuitionistic natural deduction
Verify that M halts if and only if ϕM is provable in classical natural deduction

We follow the simpler proof due to Floyd given by Manna (2003) based on PCP.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 32

The Post Correspondence Problem PCP∗

C2
LoC2018

xfor nf

d

FLo

F

d

ord

018inO
inOxf

FLo

F

C2
LoC2018

018inO
inOxf

xfor d

ord

FLoC2018inOxford

FLoC2018inOxford

Base type: L(LB× LB)
Definition: PCP(L) := ∃x : LB. L . (x , x)

(u, v) ∈ L

L . (u, v)

L . (x , y) (u, v) ∈ L

L . (x ++ u, y ++ v)

Theorem
The halting problem many-one reduces to PCP.

∗Post (1946); Forster et al. (2018)
D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 33

The Post Correspondence Problem PCP∗

C2
LoC2018

xfor nf

d

FLo

F

d

ord

018inO
inOxf

FLo

F

C2
LoC2018

018inO
inOxf

xfor d

ord

FLoC2018inOxford

FLoC2018inOxford

Base type: L(LB× LB)
Definition: PCP(L) := ∃x : LB. L . (x , x)

(u, v) ∈ L

L . (u, v)

L . (x , y) (u, v) ∈ L

L . (x ++ u, y ++ v)

Theorem
The halting problem many-one reduces to PCP.

∗Post (1946); Forster et al. (2018)
D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 33

The Post Correspondence Problem PCP∗

C2
LoC2018

xfor nf

d

FLo

F

d

ord

018inO
inOxf

FLo

F

C2
LoC2018

018inO
inOxf

xfor d

ord

FLoC2018inOxford

FLoC2018inOxford

Base type: L(LB× LB)
Definition: PCP(L) := ∃x : LB. L . (x , x)

(u, v) ∈ L

L . (u, v)

L . (x , y) (u, v) ∈ L

L . (x ++ u, y ++ v)

Theorem
The halting problem many-one reduces to PCP.

∗Post (1946); Forster et al. (2018)
D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 33

The Post Correspondence Problem PCP∗

C2
LoC2018

xfor nf

d

FLo

F

d

ord

018inO
inOxf

FLo

F

C2
LoC2018

018inO
inOxf

xfor d

ord

FLoC2018inOxford

FLoC2018inOxford

Base type: L(LB× LB)
Definition: PCP(L) := ∃x : LB. L . (x , x)

(u, v) ∈ L

L . (u, v)

L . (x , y) (u, v) ∈ L

L . (x ++ u, y ++ v)

Theorem
The halting problem many-one reduces to PCP.

∗Post (1946); Forster et al. (2018)
D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 33

The Post Correspondence Problem PCP∗

C2
LoC2018

xfor nf

d

FLo

F

d

ord

018inO
inOxf

FLo

F

C2
LoC2018

018inO
inOxf

xfor

d

ord

FLoC2018inOxford

FLoC2018inOxford

Base type: L(LB× LB)
Definition: PCP(L) := ∃x : LB. L . (x , x)

(u, v) ∈ L

L . (u, v)

L . (x , y) (u, v) ∈ L

L . (x ++ u, y ++ v)

Theorem
The halting problem many-one reduces to PCP.

∗Post (1946); Forster et al. (2018)
D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 33

The Post Correspondence Problem PCP∗

C2
LoC2018

xfor nf

d

FLo

F

d

ord

018inO
inOxf

FLo

F

C2
LoC2018

018inO
inOxf

xfor d

ord

FLoC2018inOxford

FLoC2018inOxford

Base type: L(LB× LB)
Definition: PCP(L) := ∃x : LB. L . (x , x)

(u, v) ∈ L

L . (u, v)

L . (x , y) (u, v) ∈ L

L . (x ++ u, y ++ v)

Theorem
The halting problem many-one reduces to PCP.

∗Post (1946); Forster et al. (2018)
D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 33

The Post Correspondence Problem PCP∗

C2
LoC2018

xfor nf

d

FLo

F

d

ord

018inO
inOxf

FLo

F

C2
LoC2018

018inO
inOxf

xfor d

ord

FLoC2018inOxford

FLoC2018inOxford

Base type: L(LB× LB)
Definition: PCP(L) := ∃x : LB. L . (x , x)

(u, v) ∈ L

L . (u, v)

L . (x , y) (u, v) ∈ L

L . (x ++ u, y ++ v)

Theorem
The halting problem many-one reduces to PCP.

∗Post (1946); Forster et al. (2018)
D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 33

The Post Correspondence Problem PCP∗

C2
LoC2018

xfor nf

d

FLo

F

d

ord

018inO
inOxf

FLo

F

C2
LoC2018

018inO
inOxf

xfor d

ord

FLoC2018inOxford

FLoC2018inOxford

Base type: L(LB× LB)
Definition: PCP(L) := ∃x : LB. L . (x , x)

(u, v) ∈ L

L . (u, v)

L . (x , y) (u, v) ∈ L

L . (x ++ u, y ++ v)

Theorem
The halting problem many-one reduces to PCP.

∗Post (1946); Forster et al. (2018)
D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 33

A Standard Model

Strings can be encoded as terms, e.g. tt ff ff tt = ftt (fff (fff (ftt (e)))).

The standard model B over the type L(B) of Boolean strings captures exactly the cards
derivable from a fixed stack S :

eB := [] QB := PCPS

f Bb s := b :: s PB s t := S . s/t.

Lemma
Let ρ : N→ L(B) be an environment for the standard model B.
Then ρ̂ s = s and B �ρ P τ1 τ2 ↔ S . ρ̂ τ1/ρ̂ τ2.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 34

A Standard Model

Strings can be encoded as terms, e.g. tt ff ff tt = ftt (fff (fff (ftt (e)))).

The standard model B over the type L(B) of Boolean strings captures exactly the cards
derivable from a fixed stack S :

eB := [] QB := PCPS

f Bb s := b :: s PB s t := S . s/t.

Lemma
Let ρ : N→ L(B) be an environment for the standard model B.
Then ρ̂ s = s and B �ρ P τ1 τ2 ↔ S . ρ̂ τ1/ρ̂ τ2.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 34

A Standard Model

Strings can be encoded as terms, e.g. tt ff ff tt = ftt (fff (fff (ftt (e)))).

The standard model B over the type L(B) of Boolean strings captures exactly the cards
derivable from a fixed stack S :

eB := [] QB := PCPS

f Bb s := b :: s PB s t := S . s/t.

Lemma
Let ρ : N→ L(B) be an environment for the standard model B.
Then ρ̂ s = s and B �ρ P τ1 τ2 ↔ S . ρ̂ τ1/ρ̂ τ2.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 34

The reduction
We express the constructors of S . s/t and PCP as formulas:

ϕ1 := [P s t | s/t ∈ S] ϕ2 := [∀̇xy .P x y→̇P (sx) (ty) | s/t ∈ S] ϕ3 := ∀̇x .P x x→̇Q

ϕS := ϕ1→̇ϕ2→̇ϕ3→̇Q

1 PCP S → ` ϕS

2 ` is sound for Tarski semantics w.r.t. all models
3 B � ϕS → PCP S

Theorem
PCP reduces to Tarski validity (w.r.t. all models) and intuitionistic provability.

Theorem
PCP reduces to Tarski satisfiability (w.r.t. any model).

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 35

The reduction
We express the constructors of S . s/t and PCP as formulas:

ϕ1 := [P s t | s/t ∈ S] ϕ2 := [∀̇xy .P x y→̇P (sx) (ty) | s/t ∈ S] ϕ3 := ∀̇x .P x x→̇Q

ϕS := ϕ1→̇ϕ2→̇ϕ3→̇Q

1 PCP S → ` ϕS

2 ` is sound for Tarski semantics w.r.t. all models
3 B � ϕS → PCP S

Theorem
PCP reduces to Tarski validity (w.r.t. all models) and intuitionistic provability.

Theorem
PCP reduces to Tarski satisfiability (w.r.t. any model).

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 35

Undecidability of Classical Provability

Soundness is not usable!

As a remedy, we define a Gödel-Gentzen-Friedman translation ϕQ of

formulas ϕ such that A `c ϕ implies AQ ` ϕQ .
1 ∀Γϕ. Γ ` ϕ→ Γ `c ϕ
2 B � ϕQ

S → B � ϕS

Theorem
PCPS iff `c ϕS , hence PCP reduces to classical provability.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 36

Undecidability of Classical Provability

Soundness is not usable! As a remedy, we define a Gödel-Gentzen-Friedman translation ϕQ of

formulas ϕ such that A `c ϕ implies AQ ` ϕQ .

1 ∀Γϕ. Γ ` ϕ→ Γ `c ϕ
2 B � ϕQ

S → B � ϕS

Theorem
PCPS iff `c ϕS , hence PCP reduces to classical provability.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 36

Undecidability of Classical Provability

Soundness is not usable! As a remedy, we define a Gödel-Gentzen-Friedman translation ϕQ of

formulas ϕ such that A `c ϕ implies AQ ` ϕQ .
1 ∀Γϕ. Γ ` ϕ→ Γ `c ϕ
2 B � ϕQ

S → B � ϕS

Theorem
PCPS iff `c ϕS , hence PCP reduces to classical provability.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 36

Recipe for undecidability proofs

1 The halting problem is undecidable.
2 The halting problem reduces to PCP.
3 The reduction function is computable.
4 PCP reduces to FOL.
5 The reduction function is computable.
6 Computable reductions transport undecidability.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 37

Recipe for undecidability proofs

1 The halting problem is undecidable.
2 The halting problem reduces to PCP.
3 The reduction function is computable.
4 PCP reduces to FOL.
5 The reduction function is computable.
6 Computable reductions transport undecidability.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 37

Important intermediate results with E. Heiter, D. Larchey-Wendling, F. Kunze, G. Smolka,
M. Wuttke, M. Roth at ITP ’18, CPP ’19, ITP ’19, POPL ’20, ITP ’21

Important intermediate results with E. Heiter, D. Larchey-Wendling, F. Kunze, G. Smolka,
M. Wuttke, M. Roth at ITP ’18, CPP ’19, ITP ’19, POPL ’20, ITP ’21

Synthetic Undecidability and the weak call-by-value λ-calculus L

Isolate the weak call-by-value λ-calculus as central model
Turing-complete model of computation with reasonable time and space measures
Extraction framework from fragment of Coq to L (F. and Fabian Kunze at ITP ’19) allows
relatively easy programming in L
Define undecidability as

U(p) := Dp → E(Halt)

We can prove usual undecidability by extracting reduction functions to L
We can develop synthetic computability theory based on axiom CTL stating that
∀f : N→ N.∃t. the L-term t computes f ∗

∗Kreisel (1965); Forster (2021, 2022)
D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 40

More Constructive Reverse Mathematics ∗

∗F., K., and W. in Journal of Logic and Computation.
D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 41

A very confusing literature review

1 Diener (2020) (in Bishop style constructive math):
Compactness is equivalent to Weak König’s Lemma for decidable trees WKLD
WKLD is equivalent to the fan theorem FAND

2 Simpson (1985) (in classical reverse mathematics, RCA0):
The model existence theorem is equivalent to WKL

3 Krivtsov (2015) (in Bishop style constructive math):
Completeness of intuitionistic FOL w.r.t. Kripke semantics is equivalent to FAND

The problem is countable/unique choice. Without countable/unique choice, total relations
N→ B→ P and functions N→ B are not the same objects
We then have (Berger et al. (2012))

WKL↔ LLPO ∧ Π0
1-ACN,B

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 42

Models matter
WKL := Every infinite binary tree has an infinite path

(a boolean function!)
A modelM is decidable if D(λPv . P̂v) (predicate interpretations are boolean functions).
A modelM is omniscient if D(λρϕ.M `ρ ϕ) (everything is a boolean function).

Theorem
The following are equivalent:

1 Completeness of T `c ϕ for omniscient/decidable models.

2 LEM and model existence for omniscient/decidable models.

3 LEM and compactness for omniscient/decidable models.

4 LEM and WKL.

5 Every predicate N→ P is decidable.

WKLD := Every decidable and infinite binary tree has an infinite path

Corollary

Compactness for decidable models implies WKLD.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 43

Models matter
WKL := Every infinite binary tree has an infinite path (a boolean function!)

A modelM is decidable if D(λPv . P̂v) (predicate interpretations are boolean functions).
A modelM is omniscient if D(λρϕ.M `ρ ϕ) (everything is a boolean function).

Theorem
The following are equivalent:

1 Completeness of T `c ϕ for omniscient/decidable models.

2 LEM and model existence for omniscient/decidable models.

3 LEM and compactness for omniscient/decidable models.

4 LEM and WKL.

5 Every predicate N→ P is decidable.

WKLD := Every decidable and infinite binary tree has an infinite path

Corollary

Compactness for decidable models implies WKLD.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 43

Models matter
WKL := Every infinite binary tree has an infinite path (a boolean function!)
A modelM is decidable if D(λPv . P̂v) (predicate interpretations are boolean functions).
A modelM is omniscient if D(λρϕ.M `ρ ϕ) (everything is a boolean function).

Theorem
The following are equivalent:

1 Completeness of T `c ϕ for omniscient/decidable models.

2 LEM and model existence for omniscient/decidable models.

3 LEM and compactness for omniscient/decidable models.

4 LEM and WKL.

5 Every predicate N→ P is decidable.

WKLD := Every decidable and infinite binary tree has an infinite path

Corollary

Compactness for decidable models implies WKLD.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 43

Models matter
WKL := Every infinite binary tree has an infinite path (a boolean function!)
A modelM is decidable if D(λPv . P̂v) (predicate interpretations are boolean functions).
A modelM is omniscient if D(λρϕ.M `ρ ϕ) (everything is a boolean function).

Theorem
The following are equivalent:

1 Completeness of T `c ϕ for omniscient/decidable models.

2 LEM and model existence for omniscient/decidable models.

3 LEM and compactness for omniscient/decidable models.

4 LEM and WKL.

5 Every predicate N→ P is decidable.

WKLD := Every decidable and infinite binary tree has an infinite path

Corollary

Compactness for decidable models implies WKLD.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 43

Models matter
WKL := Every infinite binary tree has an infinite path (a boolean function!)
A modelM is decidable if D(λPv . P̂v) (predicate interpretations are boolean functions).
A modelM is omniscient if D(λρϕ.M `ρ ϕ) (everything is a boolean function).

Theorem
The following are equivalent:

1 Completeness of T `c ϕ for omniscient/decidable models.

2 LEM and model existence for omniscient/decidable models.

3 LEM and compactness for omniscient/decidable models.

4 LEM and WKL.

5 Every predicate N→ P is decidable.

WKLD := Every decidable and infinite binary tree has an infinite path

Corollary

Compactness for decidable models implies WKLD.
D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 43

Open questions

What happens if we restrict to enumerable / finite theories?
Can we prove equivalences for WKLD?
Is there a uniform theorem with DNE(P) ∧WKLP?
What’s the status of Kripke completeness?

I Does WKL always play a role, or just for decidable models?
I If we add ∃ and ∨, does this change the necessary axioms?

WKLD ↔ ∀R : N→ B→ P. Π0
1R → (∀n.¬¬∃b.Rnb)→ ∃f : N→ B.∀n. R n (fn)

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 44

Undecidability: Trakhtenbrot’s Theorem∗

∗K. and Dominique Larchey-Wendling at IJCAR’20.
D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 45

General idea

Given a FOL formula ϕ, is ϕ finitely satisfiable?

Textbook proofs by dual reduction from the halting problem:∗

Encode Turing machine M as formula ϕM over custom signature
Verify that the models of ϕM correspond to the runs of M
Conclude that M halts if and only if ϕM has a finite model

Our mechanisation:
Illustrates that one can still use PCP for a simpler reduction
Signature minimisations are constructive for finite models

∗e.g. Libkin (2010); Börger et al. (1997)
D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 46

General idea

Given a FOL formula ϕ, is ϕ finitely satisfiable?

Textbook proofs by dual reduction from the halting problem:∗

Encode Turing machine M as formula ϕM over custom signature
Verify that the models of ϕM correspond to the runs of M
Conclude that M halts if and only if ϕM has a finite model

Our mechanisation:
Illustrates that one can still use PCP for a simpler reduction
Signature minimisations are constructive for finite models

∗e.g. Libkin (2010); Börger et al. (1997)
D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 46

Finiteness in Constructive Type Theory
Definition
A type X is finite if there exists a list lX with x ∈ lX for all x : X .

This seems to be a good compromise:
Easy to establish and work with
Does not enforce discreteness
Enough to get expected properties:

I Every strict order on a finite type is well-founded
I Every finite decidable equivalence relation admits a quotient on Fn

FSAT(Σ)ϕ if additionally D is finite and all PM are decidable

FSATEQ(Σ;≡)ϕ if x ≡M y ↔ x = y for all x , y : D (hence discrete)

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 47

Finiteness in Constructive Type Theory
Definition
A type X is finite if there exists a list lX with x ∈ lX for all x : X .

This seems to be a good compromise:

Easy to establish and work with
Does not enforce discreteness
Enough to get expected properties:

I Every strict order on a finite type is well-founded
I Every finite decidable equivalence relation admits a quotient on Fn

FSAT(Σ)ϕ if additionally D is finite and all PM are decidable

FSATEQ(Σ;≡)ϕ if x ≡M y ↔ x = y for all x , y : D (hence discrete)

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 47

Finiteness in Constructive Type Theory
Definition
A type X is finite if there exists a list lX with x ∈ lX for all x : X .

This seems to be a good compromise:
Easy to establish and work with

Does not enforce discreteness
Enough to get expected properties:

I Every strict order on a finite type is well-founded
I Every finite decidable equivalence relation admits a quotient on Fn

FSAT(Σ)ϕ if additionally D is finite and all PM are decidable

FSATEQ(Σ;≡)ϕ if x ≡M y ↔ x = y for all x , y : D (hence discrete)

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 47

Finiteness in Constructive Type Theory
Definition
A type X is finite if there exists a list lX with x ∈ lX for all x : X .

This seems to be a good compromise:
Easy to establish and work with
Does not enforce discreteness

Enough to get expected properties:
I Every strict order on a finite type is well-founded
I Every finite decidable equivalence relation admits a quotient on Fn

FSAT(Σ)ϕ if additionally D is finite and all PM are decidable

FSATEQ(Σ;≡)ϕ if x ≡M y ↔ x = y for all x , y : D (hence discrete)

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 47

Finiteness in Constructive Type Theory
Definition
A type X is finite if there exists a list lX with x ∈ lX for all x : X .

This seems to be a good compromise:
Easy to establish and work with
Does not enforce discreteness
Enough to get expected properties:

I Every strict order on a finite type is well-founded
I Every finite decidable equivalence relation admits a quotient on Fn

FSAT(Σ)ϕ if additionally D is finite and all PM are decidable

FSATEQ(Σ;≡)ϕ if x ≡M y ↔ x = y for all x , y : D (hence discrete)

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 47

Finiteness in Constructive Type Theory
Definition
A type X is finite if there exists a list lX with x ∈ lX for all x : X .

This seems to be a good compromise:
Easy to establish and work with
Does not enforce discreteness
Enough to get expected properties:

I Every strict order on a finite type is well-founded
I Every finite decidable equivalence relation admits a quotient on Fn

FSAT(Σ)ϕ if additionally D is finite and all PM are decidable

FSATEQ(Σ;≡)ϕ if x ≡M y ↔ x = y for all x , y : D (hence discrete)

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 47

Encoding the Post Correspondence Problem

We use the signature ΣBPCP := ({?0, e0, f 1tt , f 1ff }; {P2,≺2,≡2}):

Chains like fff(ftt(e)) represent strings while ? signals overflow

P concerns only defined values and ≺ is a strict ordering:

ϕP := ∀̇xy .P x y →̇ x 6≡ ? ∧̇ y 6≡ ?
ϕ≺ := (∀̇x . x 6≺ x) ∧̇ (∀̇xyz . x ≺ y →̇ y ≺ z →̇ x ≺ z)

Sanity checks on f regarding overflow, disjointness, and injectivity:

ϕf :=

 ftt ? ≡ ? ∧̇ fff ? ≡ ?

∀̇x . ftt x 6≡ e

∀̇x . fff x 6≡ e

 ∧̇
 ∀̇xy . ftt x 6≡ ? →̇ ftt x ≡ ftt y →̇ x ≡ y

∀̇xy . fff x 6≡ ? →̇ fff x ≡ fff y →̇ x ≡ y

∀̇xy . ftt x ≡ fff y →̇ ftt x ≡ ? ∧̇ fff y ≡ ?

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 48

Encoding the Post Correspondence Problem

We use the signature ΣBPCP := ({?0, e0, f 1tt , f 1ff }; {P2,≺2,≡2}):

Chains like fff(ftt(e)) represent strings while ? signals overflow

P concerns only defined values and ≺ is a strict ordering:

ϕP := ∀̇xy .P x y →̇ x 6≡ ? ∧̇ y 6≡ ?
ϕ≺ := (∀̇x . x 6≺ x) ∧̇ (∀̇xyz . x ≺ y →̇ y ≺ z →̇ x ≺ z)

Sanity checks on f regarding overflow, disjointness, and injectivity:

ϕf :=

 ftt ? ≡ ? ∧̇ fff ? ≡ ?

∀̇x . ftt x 6≡ e

∀̇x . fff x 6≡ e

 ∧̇
 ∀̇xy . ftt x 6≡ ? →̇ ftt x ≡ ftt y →̇ x ≡ y

∀̇xy . fff x 6≡ ? →̇ fff x ≡ fff y →̇ x ≡ y

∀̇xy . ftt x ≡ fff y →̇ ftt x ≡ ? ∧̇ fff y ≡ ?

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 48

Encoding the Post Correspondence Problem

We use the signature ΣBPCP := ({?0, e0, f 1tt , f 1ff }; {P2,≺2,≡2}):

Chains like fff(ftt(e)) represent strings while ? signals overflow

P concerns only defined values and ≺ is a strict ordering:

ϕP := ∀̇xy .P x y →̇ x 6≡ ? ∧̇ y 6≡ ?
ϕ≺ := (∀̇x . x 6≺ x) ∧̇ (∀̇xyz . x ≺ y →̇ y ≺ z →̇ x ≺ z)

Sanity checks on f regarding overflow, disjointness, and injectivity:

ϕf :=

 ftt ? ≡ ? ∧̇ fff ? ≡ ?

∀̇x . ftt x 6≡ e

∀̇x . fff x 6≡ e

 ∧̇
 ∀̇xy . ftt x 6≡ ? →̇ ftt x ≡ ftt y →̇ x ≡ y

∀̇xy . fff x 6≡ ? →̇ fff x ≡ fff y →̇ x ≡ y

∀̇xy . ftt x ≡ fff y →̇ ftt x ≡ ? ∧̇ fff y ≡ ?

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 48

Encoding the Post Correspondence Problem

We use the signature ΣBPCP := ({?0, e0, f 1tt , f 1ff }; {P2,≺2,≡2}):

Chains like fff(ftt(e)) represent strings while ? signals overflow

P concerns only defined values and ≺ is a strict ordering:

ϕP := ∀̇xy .P x y →̇ x 6≡ ? ∧̇ y 6≡ ?
ϕ≺ := (∀̇x . x 6≺ x) ∧̇ (∀̇xyz . x ≺ y →̇ y ≺ z →̇ x ≺ z)

Sanity checks on f regarding overflow, disjointness, and injectivity:

ϕf :=

 ftt ? ≡ ? ∧̇ fff ? ≡ ?

∀̇x . ftt x 6≡ e

∀̇x . fff x 6≡ e

 ∧̇
 ∀̇xy . ftt x 6≡ ? →̇ ftt x ≡ ftt y →̇ x ≡ y

∀̇xy . fff x 6≡ ? →̇ fff x ≡ fff y →̇ x ≡ y

∀̇xy . ftt x ≡ fff y →̇ ftt x ≡ ? ∧̇ fff y ≡ ?

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 48

Trakhtenbrot’s Theorem
Given an instance R of PCP, we construct a formula ϕR by:

ϕR := ϕP ∧̇ ϕ≺ ∧̇ ϕf ∧̇ ϕ. ∧̇ ∃̇x .P x x

Crucially, we enforce that P satisfies the inversion principle of R . (s, t):

ϕ. := ∀̇xy .P x y →̇
.∨

(s,t)∈R

∨̇
{
x ≡ s ∧̇ y ≡ t

∃̇uv .P u v ∧̇ x ≡ su ∧̇ y ≡ tv ∧̇ u/v ≺ x/y

Theorem
PCPR iff FSATEQ(ΣBPCP;≡)ϕR , hence PCP � FSATEQ(ΣBPCP;≡).

Proof.
If R has a solution of length n, then ϕR is satisfied by the model of strings of length bounded by n.
Conversely, ifM �ρ ϕR we can extract a solution of R from ϕ. by well-founded induction on ≺M

(which is applicable sinceM is finite).

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 49

Trakhtenbrot’s Theorem
Given an instance R of PCP, we construct a formula ϕR by:

ϕR := ϕP ∧̇ ϕ≺ ∧̇ ϕf ∧̇ ϕ. ∧̇ ∃̇x .P x x

Crucially, we enforce that P satisfies the inversion principle of R . (s, t):

ϕ. := ∀̇xy .P x y →̇
.∨

(s,t)∈R

∨̇
{
x ≡ s ∧̇ y ≡ t

∃̇uv .P u v ∧̇ x ≡ su ∧̇ y ≡ tv ∧̇ u/v ≺ x/y

Theorem
PCPR iff FSATEQ(ΣBPCP;≡)ϕR , hence PCP � FSATEQ(ΣBPCP;≡).

Proof.
If R has a solution of length n, then ϕR is satisfied by the model of strings of length bounded by n.
Conversely, ifM �ρ ϕR we can extract a solution of R from ϕ. by well-founded induction on ≺M

(which is applicable sinceM is finite).

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 49

Trakhtenbrot’s Theorem
Given an instance R of PCP, we construct a formula ϕR by:

ϕR := ϕP ∧̇ ϕ≺ ∧̇ ϕf ∧̇ ϕ. ∧̇ ∃̇x .P x x

Crucially, we enforce that P satisfies the inversion principle of R . (s, t):

ϕ. := ∀̇xy .P x y →̇
.∨

(s,t)∈R

∨̇
{
x ≡ s ∧̇ y ≡ t

∃̇uv .P u v ∧̇ x ≡ su ∧̇ y ≡ tv ∧̇ u/v ≺ x/y

Theorem
PCPR iff FSATEQ(ΣBPCP;≡)ϕR , hence PCP � FSATEQ(ΣBPCP;≡).

Proof.
If R has a solution of length n, then ϕR is satisfied by the model of strings of length bounded by n.
Conversely, ifM �ρ ϕR we can extract a solution of R from ϕ. by well-founded induction on ≺M

(which is applicable sinceM is finite).

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 49

Trakhtenbrot’s Theorem
Given an instance R of PCP, we construct a formula ϕR by:

ϕR := ϕP ∧̇ ϕ≺ ∧̇ ϕf ∧̇ ϕ. ∧̇ ∃̇x .P x x

Crucially, we enforce that P satisfies the inversion principle of R . (s, t):

ϕ. := ∀̇xy .P x y →̇
.∨

(s,t)∈R

∨̇
{
x ≡ s ∧̇ y ≡ t

∃̇uv .P u v ∧̇ x ≡ su ∧̇ y ≡ tv ∧̇ u/v ≺ x/y

Theorem
PCPR iff FSATEQ(ΣBPCP;≡)ϕR , hence PCP � FSATEQ(ΣBPCP;≡).

Proof.

If R has a solution of length n, then ϕR is satisfied by the model of strings of length bounded by n.
Conversely, ifM �ρ ϕR we can extract a solution of R from ϕ. by well-founded induction on ≺M

(which is applicable sinceM is finite).

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 49

Trakhtenbrot’s Theorem
Given an instance R of PCP, we construct a formula ϕR by:

ϕR := ϕP ∧̇ ϕ≺ ∧̇ ϕf ∧̇ ϕ. ∧̇ ∃̇x .P x x

Crucially, we enforce that P satisfies the inversion principle of R . (s, t):

ϕ. := ∀̇xy .P x y →̇
.∨

(s,t)∈R

∨̇
{
x ≡ s ∧̇ y ≡ t

∃̇uv .P u v ∧̇ x ≡ su ∧̇ y ≡ tv ∧̇ u/v ≺ x/y

Theorem
PCPR iff FSATEQ(ΣBPCP;≡)ϕR , hence PCP � FSATEQ(ΣBPCP;≡).

Proof.
If R has a solution of length n, then ϕR is satisfied by the model of strings of length bounded by n.

Conversely, ifM �ρ ϕR we can extract a solution of R from ϕ. by well-founded induction on ≺M

(which is applicable sinceM is finite).

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 49

Trakhtenbrot’s Theorem
Given an instance R of PCP, we construct a formula ϕR by:

ϕR := ϕP ∧̇ ϕ≺ ∧̇ ϕf ∧̇ ϕ. ∧̇ ∃̇x .P x x

Crucially, we enforce that P satisfies the inversion principle of R . (s, t):

ϕ. := ∀̇xy .P x y →̇
.∨

(s,t)∈R

∨̇
{
x ≡ s ∧̇ y ≡ t

∃̇uv .P u v ∧̇ x ≡ su ∧̇ y ≡ tv ∧̇ u/v ≺ x/y

Theorem
PCPR iff FSATEQ(ΣBPCP;≡)ϕR , hence PCP � FSATEQ(ΣBPCP;≡).

Proof.
If R has a solution of length n, then ϕR is satisfied by the model of strings of length bounded by n.
Conversely, ifM �ρ ϕR we can extract a solution of R from ϕ. by well-founded induction on ≺M

(which is applicable sinceM is finite).

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 49

Trakhtenbrot’s Theorem
Given an instance R of PCP, we construct a formula ϕR by:

ϕR := ϕP ∧̇ ϕ≺ ∧̇ ϕf ∧̇ ϕ. ∧̇ ∃̇x .P x x

Crucially, we enforce that P satisfies the inversion principle of R . (s, t):

ϕ. := ∀̇xy .P x y →̇
.∨

(s,t)∈R

∨̇
{
x ≡ s ∧̇ y ≡ t

∃̇uv .P u v ∧̇ x ≡ su ∧̇ y ≡ tv ∧̇ u/v ≺ x/y

Theorem
PCPR iff FSATEQ(ΣBPCP;≡)ϕR , hence PCP � FSATEQ(ΣBPCP;≡).

Proof.
If R has a solution of length n, then ϕR is satisfied by the model of strings of length bounded by n.
Conversely, ifM �ρ ϕR we can extract a solution of R from ϕ. by well-founded induction on ≺M

(which is applicable sinceM is finite).

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 49

Signature Transformations

Given a finite and discrete signature Σ with arities bounded by n, we have:

FSATEQ(Σ;≡) � FSAT(Σ) � FSAT(0;Pn+2) � FSAT(0;∈2)

First reduction: axiomatise that ≡ is a congruence for the symbols in Σ

Second reduction:
Encode k-ary functions as (k + 1)-ary relations
Align the relation arities to be constantly n + 1
Merge relations into a single (n + 2)-ary relation indexed by constants
Interpret constants with fresh variables

Caveat: intermediate reductions may rely on discrete models...

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 50

Signature Transformations

Given a finite and discrete signature Σ with arities bounded by n, we have:

FSATEQ(Σ;≡) � FSAT(Σ) � FSAT(0;Pn+2) � FSAT(0;∈2)

First reduction: axiomatise that ≡ is a congruence for the symbols in Σ

Second reduction:
Encode k-ary functions as (k + 1)-ary relations
Align the relation arities to be constantly n + 1
Merge relations into a single (n + 2)-ary relation indexed by constants
Interpret constants with fresh variables

Caveat: intermediate reductions may rely on discrete models...

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 50

Signature Transformations

Given a finite and discrete signature Σ with arities bounded by n, we have:

FSATEQ(Σ;≡) � FSAT(Σ) � FSAT(0;Pn+2) � FSAT(0;∈2)

First reduction: axiomatise that ≡ is a congruence for the symbols in Σ

Second reduction:
Encode k-ary functions as (k + 1)-ary relations
Align the relation arities to be constantly n + 1
Merge relations into a single (n + 2)-ary relation indexed by constants
Interpret constants with fresh variables

Caveat: intermediate reductions may rely on discrete models...

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 50

Signature Transformations

Given a finite and discrete signature Σ with arities bounded by n, we have:

FSATEQ(Σ;≡) � FSAT(Σ) � FSAT(0;Pn+2) � FSAT(0;∈2)

First reduction: axiomatise that ≡ is a congruence for the symbols in Σ

Second reduction:
Encode k-ary functions as (k + 1)-ary relations
Align the relation arities to be constantly n + 1
Merge relations into a single (n + 2)-ary relation indexed by constants
Interpret constants with fresh variables

Caveat: intermediate reductions may rely on discrete models...

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 50

Discrete Models

FSAT′(Σ)ϕ if FSAT(Σ)ϕ on a discrete model

Can every finite modelM be transformed to a discrete finite modelM′?
Idea: first-order indistinguishability x=̇y := ∀ϕρ.M �x ·ρ ϕ↔M �y ·ρ ϕ

Lemma
The relation x=̇y is a decidable congruence for the symbols in Σ.

Fact
FSAT′(Σ)ϕ iff FSAT(Σ)ϕ, hence in particular FSAT′(Σ)ϕ � FSAT(Σ)ϕ.

Proof.
IfM �ρ ϕ pickM′ to be the quotient ofM under x=̇y .

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 51

Discrete Models

FSAT′(Σ)ϕ if FSAT(Σ)ϕ on a discrete model

Can every finite modelM be transformed to a discrete finite modelM′?

Idea: first-order indistinguishability x=̇y := ∀ϕρ.M �x ·ρ ϕ↔M �y ·ρ ϕ

Lemma
The relation x=̇y is a decidable congruence for the symbols in Σ.

Fact
FSAT′(Σ)ϕ iff FSAT(Σ)ϕ, hence in particular FSAT′(Σ)ϕ � FSAT(Σ)ϕ.

Proof.
IfM �ρ ϕ pickM′ to be the quotient ofM under x=̇y .

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 51

Discrete Models

FSAT′(Σ)ϕ if FSAT(Σ)ϕ on a discrete model

Can every finite modelM be transformed to a discrete finite modelM′?
Idea: first-order indistinguishability x=̇y := ∀ϕρ.M �x ·ρ ϕ↔M �y ·ρ ϕ

Lemma
The relation x=̇y is a decidable congruence for the symbols in Σ.

Fact
FSAT′(Σ)ϕ iff FSAT(Σ)ϕ, hence in particular FSAT′(Σ)ϕ � FSAT(Σ)ϕ.

Proof.
IfM �ρ ϕ pickM′ to be the quotient ofM under x=̇y .

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 51

Discrete Models

FSAT′(Σ)ϕ if FSAT(Σ)ϕ on a discrete model

Can every finite modelM be transformed to a discrete finite modelM′?
Idea: first-order indistinguishability x=̇y := ∀ϕρ.M �x ·ρ ϕ↔M �y ·ρ ϕ

Lemma
The relation x=̇y is a decidable congruence for the symbols in Σ.

Fact
FSAT′(Σ)ϕ iff FSAT(Σ)ϕ, hence in particular FSAT′(Σ)ϕ � FSAT(Σ)ϕ.

Proof.
IfM �ρ ϕ pickM′ to be the quotient ofM under x=̇y .

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 51

Discrete Models

FSAT′(Σ)ϕ if FSAT(Σ)ϕ on a discrete model

Can every finite modelM be transformed to a discrete finite modelM′?
Idea: first-order indistinguishability x=̇y := ∀ϕρ.M �x ·ρ ϕ↔M �y ·ρ ϕ

Lemma
The relation x=̇y is a decidable congruence for the symbols in Σ.

Fact
FSAT′(Σ)ϕ iff FSAT(Σ)ϕ, hence in particular FSAT′(Σ)ϕ � FSAT(Σ)ϕ.

Proof.
IfM �ρ ϕ pickM′ to be the quotient ofM under x=̇y .

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 51

Discrete Models

FSAT′(Σ)ϕ if FSAT(Σ)ϕ on a discrete model

Can every finite modelM be transformed to a discrete finite modelM′?
Idea: first-order indistinguishability x=̇y := ∀ϕρ.M �x ·ρ ϕ↔M �y ·ρ ϕ

Lemma
The relation x=̇y is a decidable congruence for the symbols in Σ.

Fact
FSAT′(Σ)ϕ iff FSAT(Σ)ϕ, hence in particular FSAT′(Σ)ϕ � FSAT(Σ)ϕ.

Proof.
IfM �ρ ϕ pickM′ to be the quotient ofM under x=̇y .

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 51

Compressing Relations: FSAT(0;Pn) � FSAT(0;∈2)
Intuition: encode P x1 . . . xn as (x1, . . . , xn) ∈ p for a set p representing P

So let’s play set theory! For a set d representing the domain we define ϕ′∈:

(P x1 . . . xn)′∈ := “(x1, . . . , xn) ∈ p” (∀̇z . ϕ)′∈ := ∀̇z . z ∈ d →̇ (ϕ)′∈
(ϕ �̇ ψ)′∈ := (ϕ)′∈ �̇ (ψ)′∈ (∃̇z . ϕ)′∈ := ∃̇z . z ∈ d ∧̇ (ϕ)′∈

Then ϕ∈ is ϕ′∈ plus asserting ∈ to be extensional and d to be non-empty.

Fact
FSAT(0;Pn)ϕ iff FSAT(0;∈2)ϕ∈, hence FSAT(0;Pn) � FSAT(0;∈2).

Proof.
The hard direction is to construct a model of ϕ∈ given a modelM of ϕ. We employ a segment
of the model of hereditarily finite sets by Smolka and Stark (2016) large enough to
accommodateM.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 52

Compressing Relations: FSAT(0;Pn) � FSAT(0;∈2)
Intuition: encode P x1 . . . xn as (x1, . . . , xn) ∈ p for a set p representing P

So let’s play set theory!

For a set d representing the domain we define ϕ′∈:

(P x1 . . . xn)′∈ := “(x1, . . . , xn) ∈ p” (∀̇z . ϕ)′∈ := ∀̇z . z ∈ d →̇ (ϕ)′∈
(ϕ �̇ ψ)′∈ := (ϕ)′∈ �̇ (ψ)′∈ (∃̇z . ϕ)′∈ := ∃̇z . z ∈ d ∧̇ (ϕ)′∈

Then ϕ∈ is ϕ′∈ plus asserting ∈ to be extensional and d to be non-empty.

Fact
FSAT(0;Pn)ϕ iff FSAT(0;∈2)ϕ∈, hence FSAT(0;Pn) � FSAT(0;∈2).

Proof.
The hard direction is to construct a model of ϕ∈ given a modelM of ϕ. We employ a segment
of the model of hereditarily finite sets by Smolka and Stark (2016) large enough to
accommodateM.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 52

Compressing Relations: FSAT(0;Pn) � FSAT(0;∈2)
Intuition: encode P x1 . . . xn as (x1, . . . , xn) ∈ p for a set p representing P

So let’s play set theory! For a set d representing the domain we define ϕ′∈:

(P x1 . . . xn)′∈ := “(x1, . . . , xn) ∈ p” (∀̇z . ϕ)′∈ := ∀̇z . z ∈ d →̇ (ϕ)′∈
(ϕ �̇ ψ)′∈ := (ϕ)′∈ �̇ (ψ)′∈ (∃̇z . ϕ)′∈ := ∃̇z . z ∈ d ∧̇ (ϕ)′∈

Then ϕ∈ is ϕ′∈ plus asserting ∈ to be extensional and d to be non-empty.

Fact
FSAT(0;Pn)ϕ iff FSAT(0;∈2)ϕ∈, hence FSAT(0;Pn) � FSAT(0;∈2).

Proof.
The hard direction is to construct a model of ϕ∈ given a modelM of ϕ. We employ a segment
of the model of hereditarily finite sets by Smolka and Stark (2016) large enough to
accommodateM.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 52

Compressing Relations: FSAT(0;Pn) � FSAT(0;∈2)
Intuition: encode P x1 . . . xn as (x1, . . . , xn) ∈ p for a set p representing P

So let’s play set theory! For a set d representing the domain we define ϕ′∈:

(P x1 . . . xn)′∈ := “(x1, . . . , xn) ∈ p” (∀̇z . ϕ)′∈ := ∀̇z . z ∈ d →̇ (ϕ)′∈
(ϕ �̇ ψ)′∈ := (ϕ)′∈ �̇ (ψ)′∈ (∃̇z . ϕ)′∈ := ∃̇z . z ∈ d ∧̇ (ϕ)′∈

Then ϕ∈ is ϕ′∈ plus asserting ∈ to be extensional and d to be non-empty.

Fact
FSAT(0;Pn)ϕ iff FSAT(0;∈2)ϕ∈, hence FSAT(0;Pn) � FSAT(0;∈2).

Proof.
The hard direction is to construct a model of ϕ∈ given a modelM of ϕ. We employ a segment
of the model of hereditarily finite sets by Smolka and Stark (2016) large enough to
accommodateM.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 52

Compressing Relations: FSAT(0;Pn) � FSAT(0;∈2)
Intuition: encode P x1 . . . xn as (x1, . . . , xn) ∈ p for a set p representing P

So let’s play set theory! For a set d representing the domain we define ϕ′∈:

(P x1 . . . xn)′∈ := “(x1, . . . , xn) ∈ p” (∀̇z . ϕ)′∈ := ∀̇z . z ∈ d →̇ (ϕ)′∈
(ϕ �̇ ψ)′∈ := (ϕ)′∈ �̇ (ψ)′∈ (∃̇z . ϕ)′∈ := ∃̇z . z ∈ d ∧̇ (ϕ)′∈

Then ϕ∈ is ϕ′∈ plus asserting ∈ to be extensional and d to be non-empty.

Fact
FSAT(0;Pn)ϕ iff FSAT(0;∈2)ϕ∈, hence FSAT(0;Pn) � FSAT(0;∈2).

Proof.
The hard direction is to construct a model of ϕ∈ given a modelM of ϕ. We employ a segment
of the model of hereditarily finite sets by Smolka and Stark (2016) large enough to
accommodateM.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 52

Compressing Relations: FSAT(0;Pn) � FSAT(0;∈2)
Intuition: encode P x1 . . . xn as (x1, . . . , xn) ∈ p for a set p representing P

So let’s play set theory! For a set d representing the domain we define ϕ′∈:

(P x1 . . . xn)′∈ := “(x1, . . . , xn) ∈ p” (∀̇z . ϕ)′∈ := ∀̇z . z ∈ d →̇ (ϕ)′∈
(ϕ �̇ ψ)′∈ := (ϕ)′∈ �̇ (ψ)′∈ (∃̇z . ϕ)′∈ := ∃̇z . z ∈ d ∧̇ (ϕ)′∈

Then ϕ∈ is ϕ′∈ plus asserting ∈ to be extensional and d to be non-empty.

Fact
FSAT(0;Pn)ϕ iff FSAT(0;∈2)ϕ∈, hence FSAT(0;Pn) � FSAT(0;∈2).

Proof.
The hard direction is to construct a model of ϕ∈ given a modelM of ϕ. We employ a segment
of the model of hereditarily finite sets by Smolka and Stark (2016) large enough to
accommodateM.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 52

Full Signature Classification
Composing all signature transformations verified we obtain:

Theorem
If Σ contains either an at least binary relation or a unary relation together with an at least
binary function, then PCP reduces to FSAT(Σ).

On the other hand, FSAT for monadic signatures remains decidable:

Theorem
If Σ is discrete and has all arities bounded by 1 or if all relation symbols have arity 0, then
FSAT(Σ) is decidable.

In any case, since one can enumerate all finite models up to extensionality:

Fact
If Σ is discrete and enumerable, then FSAT(Σ) is enumerable.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 53

Full Signature Classification
Composing all signature transformations verified we obtain:

Theorem
If Σ contains either an at least binary relation or a unary relation together with an at least
binary function, then PCP reduces to FSAT(Σ).

On the other hand, FSAT for monadic signatures remains decidable:

Theorem
If Σ is discrete and has all arities bounded by 1 or if all relation symbols have arity 0, then
FSAT(Σ) is decidable.

In any case, since one can enumerate all finite models up to extensionality:

Fact
If Σ is discrete and enumerable, then FSAT(Σ) is enumerable.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 53

Full Signature Classification
Composing all signature transformations verified we obtain:

Theorem
If Σ contains either an at least binary relation or a unary relation together with an at least
binary function, then PCP reduces to FSAT(Σ).

On the other hand, FSAT for monadic signatures remains decidable:

Theorem
If Σ is discrete and has all arities bounded by 1 or if all relation symbols have arity 0, then
FSAT(Σ) is decidable.

In any case, since one can enumerate all finite models up to extensionality:

Fact
If Σ is discrete and enumerable, then FSAT(Σ) is enumerable.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 53

Relativised Entscheidungsproblem
and Incompleteness∗

∗K. and Marc Hermes at ITP’21.
D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 54

General Idea

Relativised Entscheidungsproblem: is a formula ϕ entailed by an axiomatisation A?

Strategy if A is strong enough to capture computation:
Encode Turing machine M as formula ϕM

Verify that M halts iff A � ϕM

Verify that M halts iff A ` ϕM (→ direction by hand)
Instead of TM use problems suitable to encode in A

Undecidability of A implies consistency and incompleteness:
Reducing a non-trivial problem P to A ` ϕ shows A consistent
Undecidability implies incompleteness for enumerable axiomatisations

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 55

General Idea

Relativised Entscheidungsproblem: is a formula ϕ entailed by an axiomatisation A?

Strategy if A is strong enough to capture computation:
Encode Turing machine M as formula ϕM

Verify that M halts iff A � ϕM

Verify that M halts iff A ` ϕM (→ direction by hand)
Instead of TM use problems suitable to encode in A

Undecidability of A implies consistency and incompleteness:
Reducing a non-trivial problem P to A ` ϕ shows A consistent
Undecidability implies incompleteness for enumerable axiomatisations

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 55

Connection of Undecidability to Consistency and Incompleteness

Fact (Consistency)

If p � A` and there is x with ¬p x then A 6` ⊥.

Proof.
Let f witness p � A`. Then A 6` f x by ¬p x and thus A 6` ⊥.

Fact (Synthetic Incompleteness)

If A is complete (∀ϕ.A ` ϕ ∨ A ` ¬ϕ) and consistent, then A` is decidable.

Proof.
A` is enumerable and, given completeness and consistency, also co-enumerable as then A 6` ϕ
iff A ` ¬ϕ. Classically, this is enough to deduce decidability, in our case we need to first
observe that A` is definite, i.e. that A ` ϕ ∨ A 6` ϕ.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 56

Connection of Undecidability to Consistency and Incompleteness

Fact (Consistency)

If p � A` and there is x with ¬p x then A 6` ⊥.

Proof.
Let f witness p � A`. Then A 6` f x by ¬p x and thus A 6` ⊥.

Fact (Synthetic Incompleteness)

If A is complete (∀ϕ.A ` ϕ ∨ A ` ¬ϕ) and consistent, then A` is decidable.

Proof.
A` is enumerable and, given completeness and consistency, also co-enumerable as then A 6` ϕ
iff A ` ¬ϕ. Classically, this is enough to deduce decidability, in our case we need to first
observe that A` is definite, i.e. that A ` ϕ ∨ A 6` ϕ.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 56

Connection of Undecidability to Consistency and Incompleteness

Fact (Consistency)

If p � A` and there is x with ¬p x then A 6` ⊥.

Proof.
Let f witness p � A`. Then A 6` f x by ¬p x and thus A 6` ⊥.

Fact (Synthetic Incompleteness)

If A is complete (∀ϕ.A ` ϕ ∨ A ` ¬ϕ) and consistent, then A` is decidable.

Proof.
A` is enumerable and, given completeness and consistency, also co-enumerable as then A 6` ϕ
iff A ` ¬ϕ. Classically, this is enough to deduce decidability, in our case we need to first
observe that A` is definite, i.e. that A ` ϕ ∨ A 6` ϕ.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 56

Connection of Undecidability to Consistency and Incompleteness

Fact (Consistency)

If p � A` and there is x with ¬p x then A 6` ⊥.

Proof.
Let f witness p � A`. Then A 6` f x by ¬p x and thus A 6` ⊥.

Fact (Synthetic Incompleteness)

If A is complete (∀ϕ.A ` ϕ ∨ A ` ¬ϕ) and consistent, then A` is decidable.

Proof.
A` is enumerable and, given completeness and consistency, also co-enumerable as then A 6` ϕ
iff A ` ¬ϕ.

Classically, this is enough to deduce decidability, in our case we need to first
observe that A` is definite, i.e. that A ` ϕ ∨ A 6` ϕ.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 56

Connection of Undecidability to Consistency and Incompleteness

Fact (Consistency)

If p � A` and there is x with ¬p x then A 6` ⊥.

Proof.
Let f witness p � A`. Then A 6` f x by ¬p x and thus A 6` ⊥.

Fact (Synthetic Incompleteness)

If A is complete (∀ϕ.A ` ϕ ∨ A ` ¬ϕ) and consistent, then A` is decidable.

Proof.
A` is enumerable and, given completeness and consistency, also co-enumerable as then A 6` ϕ
iff A ` ¬ϕ. Classically, this is enough to deduce decidability, in our case we need to first
observe that A` is definite, i.e. that A ` ϕ ∨ A 6` ϕ.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 56

Sketch for Peano Arithmetic
Use axiomatisation PA over standard signature (0, S,+, · ;≡).

Diophantine constraints (cf. Larchey-Wendling and Forster (2019)):
Instances are lists L of constraints xi = 1 | xi + xj = xk | xi · xj = xk
L is solvable if there is an evaluation η : N→ N solving all constraints

Theorem
L = [c1, . . . , ck] with maximal index xn is solvable iff PA � ∃nc1 ∧ · · · ∧ ck .

Proof.
If L has solution η instantiate the existential quantifiers with numerals η1, . . . , ηn. Then the
axioms of PA entail the constraints.
If PA � ∃nc1 ∧ · · · ∧ ck use the standard model N to extract solution η.

Fact
L = [c1, . . . , ck] with maximal index xn is solvable iff PA ` ∃nc1 ∧ · · · ∧ ck .

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 57

Sketch for Peano Arithmetic
Use axiomatisation PA over standard signature (0, S,+, · ;≡).
Diophantine constraints (cf. Larchey-Wendling and Forster (2019)):

Instances are lists L of constraints xi = 1 | xi + xj = xk | xi · xj = xk
L is solvable if there is an evaluation η : N→ N solving all constraints

Theorem
L = [c1, . . . , ck] with maximal index xn is solvable iff PA � ∃nc1 ∧ · · · ∧ ck .

Proof.
If L has solution η instantiate the existential quantifiers with numerals η1, . . . , ηn. Then the
axioms of PA entail the constraints.
If PA � ∃nc1 ∧ · · · ∧ ck use the standard model N to extract solution η.

Fact
L = [c1, . . . , ck] with maximal index xn is solvable iff PA ` ∃nc1 ∧ · · · ∧ ck .

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 57

Sketch for Peano Arithmetic
Use axiomatisation PA over standard signature (0, S,+, · ;≡).
Diophantine constraints (cf. Larchey-Wendling and Forster (2019)):

Instances are lists L of constraints xi = 1 | xi + xj = xk | xi · xj = xk
L is solvable if there is an evaluation η : N→ N solving all constraints

Theorem
L = [c1, . . . , ck] with maximal index xn is solvable iff PA � ∃nc1 ∧ · · · ∧ ck .

Proof.
If L has solution η instantiate the existential quantifiers with numerals η1, . . . , ηn. Then the
axioms of PA entail the constraints.
If PA � ∃nc1 ∧ · · · ∧ ck use the standard model N to extract solution η.

Fact
L = [c1, . . . , ck] with maximal index xn is solvable iff PA ` ∃nc1 ∧ · · · ∧ ck .

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 57

Sketch for Peano Arithmetic
Use axiomatisation PA over standard signature (0, S,+, · ;≡).
Diophantine constraints (cf. Larchey-Wendling and Forster (2019)):

Instances are lists L of constraints xi = 1 | xi + xj = xk | xi · xj = xk
L is solvable if there is an evaluation η : N→ N solving all constraints

Theorem
L = [c1, . . . , ck] with maximal index xn is solvable iff PA � ∃nc1 ∧ · · · ∧ ck .

Proof.
If L has solution η instantiate the existential quantifiers with numerals η1, . . . , ηn. Then the
axioms of PA entail the constraints.

If PA � ∃nc1 ∧ · · · ∧ ck use the standard model N to extract solution η.

Fact
L = [c1, . . . , ck] with maximal index xn is solvable iff PA ` ∃nc1 ∧ · · · ∧ ck .

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 57

Sketch for Peano Arithmetic
Use axiomatisation PA over standard signature (0, S,+, · ;≡).
Diophantine constraints (cf. Larchey-Wendling and Forster (2019)):

Instances are lists L of constraints xi = 1 | xi + xj = xk | xi · xj = xk
L is solvable if there is an evaluation η : N→ N solving all constraints

Theorem
L = [c1, . . . , ck] with maximal index xn is solvable iff PA � ∃nc1 ∧ · · · ∧ ck .

Proof.
If L has solution η instantiate the existential quantifiers with numerals η1, . . . , ηn. Then the
axioms of PA entail the constraints.
If PA � ∃nc1 ∧ · · · ∧ ck use the standard model N to extract solution η.

Fact
L = [c1, . . . , ck] with maximal index xn is solvable iff PA ` ∃nc1 ∧ · · · ∧ ck .

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 57

Sketch for Peano Arithmetic
Use axiomatisation PA over standard signature (0, S,+, · ;≡).
Diophantine constraints (cf. Larchey-Wendling and Forster (2019)):

Instances are lists L of constraints xi = 1 | xi + xj = xk | xi · xj = xk
L is solvable if there is an evaluation η : N→ N solving all constraints

Theorem
L = [c1, . . . , ck] with maximal index xn is solvable iff PA � ∃nc1 ∧ · · · ∧ ck .

Proof.
If L has solution η instantiate the existential quantifiers with numerals η1, . . . , ηn. Then the
axioms of PA entail the constraints.
If PA � ∃nc1 ∧ · · · ∧ ck use the standard model N to extract solution η.

Fact
L = [c1, . . . , ck] with maximal index xn is solvable iff PA ` ∃nc1 ∧ · · · ∧ ck .

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 57

Interlude: Models of ZF
Sets-as-trees interpretation (Aczel (1978)):

Type T of well-founded trees with constructor τ : ∀X . (X → T)→ T

Equality of trees s, t given by isomorphism s ≈ t

Membership defined by s ∈ τ X f := ∃x . s ≈ f x

Set operations implemented by tree operations:
I ∅ := τ ⊥ elim⊥
I {s, t} := τ B (λb. if b then s else t)
I ω := τ N (λn. n) where 0 := ∅ and S n := n ∪ {n}
I ...

Axioms needed in Coq:
EM to really interpret ZF instead of IZF
Replacement needs a type-theoretical choice axiom (Werner (1997))
Strong quotient axiom for (T ,≈) suffices (Kirst and Smolka (2019))
This yields a well-behaved model S: quotiented, standard numbers

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 58

Interlude: Models of ZF
Sets-as-trees interpretation (Aczel (1978)):

Type T of well-founded trees with constructor τ : ∀X . (X → T)→ T
Equality of trees s, t given by isomorphism s ≈ t

Membership defined by s ∈ τ X f := ∃x . s ≈ f x

Set operations implemented by tree operations:
I ∅ := τ ⊥ elim⊥
I {s, t} := τ B (λb. if b then s else t)
I ω := τ N (λn. n) where 0 := ∅ and S n := n ∪ {n}
I ...

Axioms needed in Coq:
EM to really interpret ZF instead of IZF
Replacement needs a type-theoretical choice axiom (Werner (1997))
Strong quotient axiom for (T ,≈) suffices (Kirst and Smolka (2019))
This yields a well-behaved model S: quotiented, standard numbers

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 58

Interlude: Models of ZF
Sets-as-trees interpretation (Aczel (1978)):

Type T of well-founded trees with constructor τ : ∀X . (X → T)→ T
Equality of trees s, t given by isomorphism s ≈ t

Membership defined by s ∈ τ X f := ∃x . s ≈ f x

Set operations implemented by tree operations:
I ∅ := τ ⊥ elim⊥
I {s, t} := τ B (λb. if b then s else t)
I ω := τ N (λn. n) where 0 := ∅ and S n := n ∪ {n}
I ...

Axioms needed in Coq:
EM to really interpret ZF instead of IZF
Replacement needs a type-theoretical choice axiom (Werner (1997))
Strong quotient axiom for (T ,≈) suffices (Kirst and Smolka (2019))
This yields a well-behaved model S: quotiented, standard numbers

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 58

Interlude: Models of ZF
Sets-as-trees interpretation (Aczel (1978)):

Type T of well-founded trees with constructor τ : ∀X . (X → T)→ T
Equality of trees s, t given by isomorphism s ≈ t

Membership defined by s ∈ τ X f := ∃x . s ≈ f x

Set operations implemented by tree operations:
I ∅ := τ ⊥ elim⊥

I {s, t} := τ B (λb. if b then s else t)
I ω := τ N (λn. n) where 0 := ∅ and S n := n ∪ {n}
I ...

Axioms needed in Coq:
EM to really interpret ZF instead of IZF
Replacement needs a type-theoretical choice axiom (Werner (1997))
Strong quotient axiom for (T ,≈) suffices (Kirst and Smolka (2019))
This yields a well-behaved model S: quotiented, standard numbers

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 58

Interlude: Models of ZF
Sets-as-trees interpretation (Aczel (1978)):

Type T of well-founded trees with constructor τ : ∀X . (X → T)→ T
Equality of trees s, t given by isomorphism s ≈ t

Membership defined by s ∈ τ X f := ∃x . s ≈ f x

Set operations implemented by tree operations:
I ∅ := τ ⊥ elim⊥
I {s, t} := τ B (λb. if b then s else t)

I ω := τ N (λn. n) where 0 := ∅ and S n := n ∪ {n}
I ...

Axioms needed in Coq:
EM to really interpret ZF instead of IZF
Replacement needs a type-theoretical choice axiom (Werner (1997))
Strong quotient axiom for (T ,≈) suffices (Kirst and Smolka (2019))
This yields a well-behaved model S: quotiented, standard numbers

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 58

Interlude: Models of ZF
Sets-as-trees interpretation (Aczel (1978)):

Type T of well-founded trees with constructor τ : ∀X . (X → T)→ T
Equality of trees s, t given by isomorphism s ≈ t

Membership defined by s ∈ τ X f := ∃x . s ≈ f x

Set operations implemented by tree operations:
I ∅ := τ ⊥ elim⊥
I {s, t} := τ B (λb. if b then s else t)
I ω := τ N (λn. n) where 0 := ∅ and S n := n ∪ {n}

I ...

Axioms needed in Coq:
EM to really interpret ZF instead of IZF
Replacement needs a type-theoretical choice axiom (Werner (1997))
Strong quotient axiom for (T ,≈) suffices (Kirst and Smolka (2019))
This yields a well-behaved model S: quotiented, standard numbers

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 58

Interlude: Models of ZF
Sets-as-trees interpretation (Aczel (1978)):

Type T of well-founded trees with constructor τ : ∀X . (X → T)→ T
Equality of trees s, t given by isomorphism s ≈ t

Membership defined by s ∈ τ X f := ∃x . s ≈ f x

Set operations implemented by tree operations:
I ∅ := τ ⊥ elim⊥
I {s, t} := τ B (λb. if b then s else t)
I ω := τ N (λn. n) where 0 := ∅ and S n := n ∪ {n}
I ...

Axioms needed in Coq:
EM to really interpret ZF instead of IZF
Replacement needs a type-theoretical choice axiom (Werner (1997))
Strong quotient axiom for (T ,≈) suffices (Kirst and Smolka (2019))
This yields a well-behaved model S: quotiented, standard numbers

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 58

Interlude: Models of ZF
Sets-as-trees interpretation (Aczel (1978)):

Type T of well-founded trees with constructor τ : ∀X . (X → T)→ T
Equality of trees s, t given by isomorphism s ≈ t

Membership defined by s ∈ τ X f := ∃x . s ≈ f x

Set operations implemented by tree operations:
I ∅ := τ ⊥ elim⊥
I {s, t} := τ B (λb. if b then s else t)
I ω := τ N (λn. n) where 0 := ∅ and S n := n ∪ {n}
I ...

Axioms needed in Coq:
EM to really interpret ZF instead of IZF
Replacement needs a type-theoretical choice axiom (Werner (1997))

Strong quotient axiom for (T ,≈) suffices (Kirst and Smolka (2019))
This yields a well-behaved model S: quotiented, standard numbers

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 58

Interlude: Models of ZF
Sets-as-trees interpretation (Aczel (1978)):

Type T of well-founded trees with constructor τ : ∀X . (X → T)→ T
Equality of trees s, t given by isomorphism s ≈ t

Membership defined by s ∈ τ X f := ∃x . s ≈ f x

Set operations implemented by tree operations:
I ∅ := τ ⊥ elim⊥
I {s, t} := τ B (λb. if b then s else t)
I ω := τ N (λn. n) where 0 := ∅ and S n := n ∪ {n}
I ...

Axioms needed in Coq:
EM to really interpret ZF instead of IZF
Replacement needs a type-theoretical choice axiom (Werner (1997))
Strong quotient axiom for (T ,≈) suffices (Kirst and Smolka (2019))

This yields a well-behaved model S: quotiented, standard numbers

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 58

Interlude: Models of ZF
Sets-as-trees interpretation (Aczel (1978)):

Type T of well-founded trees with constructor τ : ∀X . (X → T)→ T
Equality of trees s, t given by isomorphism s ≈ t

Membership defined by s ∈ τ X f := ∃x . s ≈ f x

Set operations implemented by tree operations:
I ∅ := τ ⊥ elim⊥
I {s, t} := τ B (λb. if b then s else t)
I ω := τ N (λn. n) where 0 := ∅ and S n := n ∪ {n}
I ...

Axioms needed in Coq:
EM to really interpret ZF instead of IZF
Replacement needs a type-theoretical choice axiom (Werner (1997))
Strong quotient axiom for (T ,≈) suffices (Kirst and Smolka (2019))
This yields a well-behaved model S: quotiented, standard numbers
D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 58

Sketch for ZF Set Theory
Use axiomatisation ZF over explicit signature (∅, {_,_},

⋃
,P, ω ;≡,∈).

Reduction from PCP:
Boolean encoding: tt = {∅} and ff = ∅
String encoding: tt ff ff tt = (tt, (ff, (tt, (ff, ∅))))
Stack encoding: S = {(s1, t1), . . . , (sk , tk)}
Combination encoding: S ++B :=

⋃
s/t∈S{(sx , ty) | (x , y) ∈ B}

f . n := (∅, S) ∈ f ∧ ∀(k,B) ∈ f . k ∈ n→ (k + 1,S ++B) ∈ f

ϕS := ∃f , n,B, x . n ∈ ω ∧ f . n ∧ (n,B) ∈ f ∧ (x , x) ∈ B

Theorem
PCPS iff ZF � ϕS and PCP S iff ZF ` ϕS .

Proof.
Direction → by proofs in ZF and ← relies on standard model S.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 59

Sketch for ZF Set Theory
Use axiomatisation ZF over explicit signature (∅, {_,_},

⋃
,P, ω ;≡,∈).

Reduction from PCP:
Boolean encoding: tt = {∅} and ff = ∅
String encoding: tt ff ff tt = (tt, (ff, (tt, (ff, ∅))))
Stack encoding: S = {(s1, t1), . . . , (sk , tk)}

Combination encoding: S ++B :=
⋃

s/t∈S{(sx , ty) | (x , y) ∈ B}
f . n := (∅, S) ∈ f ∧ ∀(k,B) ∈ f . k ∈ n→ (k + 1,S ++B) ∈ f

ϕS := ∃f , n,B, x . n ∈ ω ∧ f . n ∧ (n,B) ∈ f ∧ (x , x) ∈ B

Theorem
PCPS iff ZF � ϕS and PCP S iff ZF ` ϕS .

Proof.
Direction → by proofs in ZF and ← relies on standard model S.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 59

Sketch for ZF Set Theory
Use axiomatisation ZF over explicit signature (∅, {_,_},

⋃
,P, ω ;≡,∈).

Reduction from PCP:
Boolean encoding: tt = {∅} and ff = ∅
String encoding: tt ff ff tt = (tt, (ff, (tt, (ff, ∅))))
Stack encoding: S = {(s1, t1), . . . , (sk , tk)}
Combination encoding: S ++B :=

⋃
s/t∈S{(sx , ty) | (x , y) ∈ B}

f . n := (∅, S) ∈ f ∧ ∀(k,B) ∈ f . k ∈ n→ (k + 1,S ++B) ∈ f

ϕS := ∃f , n,B, x . n ∈ ω ∧ f . n ∧ (n,B) ∈ f ∧ (x , x) ∈ B

Theorem
PCPS iff ZF � ϕS and PCP S iff ZF ` ϕS .

Proof.
Direction → by proofs in ZF and ← relies on standard model S.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 59

Sketch for ZF Set Theory
Use axiomatisation ZF over explicit signature (∅, {_,_},

⋃
,P, ω ;≡,∈).

Reduction from PCP:
Boolean encoding: tt = {∅} and ff = ∅
String encoding: tt ff ff tt = (tt, (ff, (tt, (ff, ∅))))
Stack encoding: S = {(s1, t1), . . . , (sk , tk)}
Combination encoding: S ++B :=

⋃
s/t∈S{(sx , ty) | (x , y) ∈ B}

f . n := (∅, S) ∈ f ∧ ∀(k,B) ∈ f . k ∈ n→ (k + 1,S ++B) ∈ f

ϕS := ∃f , n,B, x . n ∈ ω ∧ f . n ∧ (n,B) ∈ f ∧ (x , x) ∈ B

Theorem
PCPS iff ZF � ϕS and PCP S iff ZF ` ϕS .

Proof.
Direction → by proofs in ZF and ← relies on standard model S.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 59

Sketch for ZF Set Theory
Use axiomatisation ZF over explicit signature (∅, {_,_},

⋃
,P, ω ;≡,∈).

Reduction from PCP:
Boolean encoding: tt = {∅} and ff = ∅
String encoding: tt ff ff tt = (tt, (ff, (tt, (ff, ∅))))
Stack encoding: S = {(s1, t1), . . . , (sk , tk)}
Combination encoding: S ++B :=

⋃
s/t∈S{(sx , ty) | (x , y) ∈ B}

f . n := (∅, S) ∈ f ∧ ∀(k,B) ∈ f . k ∈ n→ (k + 1,S ++B) ∈ f

ϕS := ∃f , n,B, x . n ∈ ω ∧ f . n ∧ (n,B) ∈ f ∧ (x , x) ∈ B

Theorem
PCPS iff ZF � ϕS and PCP S iff ZF ` ϕS .

Proof.
Direction → by proofs in ZF and ← relies on standard model S.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 59

Sketch for ZF Set Theory
Use axiomatisation ZF over explicit signature (∅, {_,_},

⋃
,P, ω ;≡,∈).

Reduction from PCP:
Boolean encoding: tt = {∅} and ff = ∅
String encoding: tt ff ff tt = (tt, (ff, (tt, (ff, ∅))))
Stack encoding: S = {(s1, t1), . . . , (sk , tk)}
Combination encoding: S ++B :=

⋃
s/t∈S{(sx , ty) | (x , y) ∈ B}

f . n := (∅, S) ∈ f ∧ ∀(k,B) ∈ f . k ∈ n→ (k + 1,S ++B) ∈ f

ϕS := ∃f , n,B, x . n ∈ ω ∧ f . n ∧ (n,B) ∈ f ∧ (x , x) ∈ B

Theorem
PCPS iff ZF � ϕS and PCP S iff ZF ` ϕS .

Proof.
Direction → by proofs in ZF and ← relies on standard model S.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 59

Sketch for ZF Set Theory
Use axiomatisation ZF over explicit signature (∅, {_,_},

⋃
,P, ω ;≡,∈).

Reduction from PCP:
Boolean encoding: tt = {∅} and ff = ∅
String encoding: tt ff ff tt = (tt, (ff, (tt, (ff, ∅))))
Stack encoding: S = {(s1, t1), . . . , (sk , tk)}
Combination encoding: S ++B :=

⋃
s/t∈S{(sx , ty) | (x , y) ∈ B}

f . n := (∅, S) ∈ f ∧ ∀(k,B) ∈ f . k ∈ n→ (k + 1,S ++B) ∈ f

ϕS := ∃f , n,B, x . n ∈ ω ∧ f . n ∧ (n,B) ∈ f ∧ (x , x) ∈ B

Theorem
PCPS iff ZF � ϕS and PCP S iff ZF ` ϕS .

Proof.
Direction → by proofs in ZF and ← relies on standard model S.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 59

Conclusion

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 60

Ongoing and Future Work

Undecidability and incompleteness of finitary set theories

Minimalistic undecidability proof for the binary signature

Undecidability and incompleteness of second-order logic

Constructive analysis of Tennenbaum’s theorem

Stronger incompleteness results (only using consistency, explicit Gödel sentence)

Constructive completeness of intuitionistic epistemic logic

Engineering: tool support, connect Coq developments

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 61

Take-Home Messages

Metamathematics: rewarding to revisit in formal setting

Mechanisation: feasible with right setup and suitable proof strategies

Synthetic computability: elegant formalism, shortcut to algorithmic results

Constructive type theory: ideal framework for (constructive) reverse mathematics

Thank You!

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 62

Take-Home Messages

Metamathematics: rewarding to revisit in formal setting

Mechanisation: feasible with right setup and suitable proof strategies

Synthetic computability: elegant formalism, shortcut to algorithmic results

Constructive type theory: ideal framework for (constructive) reverse mathematics

Thank You!

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 62

Bibliography I

Aczel, P. (1978). The type theoretic interpretation of constructive set theory. In Studies in Logic and the
Foundations of Mathematics, volume 96, pages 55–66. Elsevier.

Bauer, A. (2006). First steps in synthetic computability theory. Electronic Notes in Theoretical Computer
Science, 155:5 – 31. Proceedings of the 21st Annual Conference on Mathematical Foundations of
Programming Semantics (MFPS XXI).

Berger, J., Ishihara, H., and Schuster, P. (2012). The weak König lemma, Brouwer’s fan theorem, De Morgan’s
law, and dependent choice. Reports on Mathematical Logic, (47):63.

Börger, E., Grädel, E., and Gurevich, Y. (1997). The Classical Decision Problem. Perspectives in Mathematical
Logic. Springer-Verlag Berlin Heidelberg.

Coquand, T. (1986). The calculus of constructions. PhD thesis, INRIA.

Diener, H. (2020). Constructive Reverse Mathematics. arXiv:1804.05495 [math].

Forster, Y. (2021). Computability in Constructive Type Theory. PhD thesis, Saarland University.

Forster, Y. (2022). Parametric church’s thesis: Synthetic computability without choice. In Logical Foundations
of Computer Science: International Symposium, LFCS 2022, January 10-13, 2022.

Forster, Y., Heiter, E., and Smolka, G. (2018). Verification of PCP-related computational reductions in Coq. In
International Conference on Interactive Theorem Proving, pages 253–269. Springer.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 63

Bibliography II
Forster, Y., Kirst, D., and Smolka, G. (2019). On synthetic undecidability in coq, with an application to the

entscheidungsproblem. In Proceedings of the 8th ACM SIGPLAN International Conference on Certified
Programs and Proofs.

Forster, Y., Kirst, D., and Wehr, D. (2020a). Completeness Theorems for First-Order Logic Analysed in
Constructive Type Theory. In Symposium on Logical Foundations Of Computer Science, 2020, Deerfield
Beach, Florida, U.S.A.

Forster, Y., Kirst, D., and Wehr, D. (2021). Completeness theorems for first-order logic analysed in constructive
type theory (extended version). Journal of Logic and Computation, 31(1):112–151.

Forster, Y., Larchey-Wendling, D., Dudenhefner, A., Heiter, E., Kirst, D., Kunze, F., Smolka, G., Spies, S.,
Wehr, D., and Wuttke, M. (2020b). A Coq Library of Undecidable Problems. In CoqPL 2020, New Orleans,
LA, United States.

Gödel, K. (1931). Über formal unentscheidbare sätze der principia mathematica und verwandter systeme i.
Monatshefte für mathematik und physik, 38(1):173–198.

Gödel, K. (1930). Die Vollständigkeit der Axiome des logischen Funktionenkalküls. Monatshefte für Mathematik
und Physik, 37:349–360.

Henkin, L. (1949). The Completeness of the First-Order Functional Calculus. The Journal of Symbolic Logic,
14(3):159–166.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 64

Bibliography III

Herbelin, H. and Ilik, D. (2016). An analysis of the constructive content of Henkin’s proof of Gödel’s
completeness theorem. Draft.

Herbelin, H. and Lee, G. (2009). Forcing-based cut-elimination for Gentzen-style intuitionistic sequent calculus.
In International Workshop on Logic, Language, Information, and Computation, pages 209–217. Springer.

Ishihara, H. (2006). Reverse Mathematics in Bishop’s Constructive Mathematics. Philosophia Scientae, pages
43–59.

Kirst, D. and Hermes, M. (2021). Synthetic undecidability and incompleteness of first-order axiom systems in
coq. In 12th International Conference on Interactive Theorem Proving (ITP 2021). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik.

Kirst, D. and Larchey-Wendling, D. (2020). Trakhtenbrot’s theorem in coq. In International Joint Conference
on Automated Reasoning, pages 79–96. Springer.

Kirst, D. and Smolka, G. (2019). Categoricity results and large model constructions for second-order ZF in
dependent type theory. Journal of Automated Reasoning, 63(2):415–438.

Kreisel, G. (1962). On weak completeness of intuitionistic predicate logic. The Journal of Symbolic Logic,
27(2):139–158.

Kreisel, G. (1965). Mathematical logic. Lectures in modern mathematics, 3:95–195.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 65

Bibliography IV

Kripke, S. A. (1965). Semantical analysis of intuitionistic logic i. In Studies in Logic and the Foundations of
Mathematics, volume 40, pages 92–130. Elsevier.

Krivtsov, V. N. (2015). Semantical completeness of first-order predicate logic and the weak fan theorem. Studia
Logica, 103(3):623–638.

Larchey-Wendling, D. and Forster, Y. (2019). Hilbert’s Tenth Problem in Coq. In 4th International Conference
on Formal Structures for Computation and Deduction, volume 131 of LIPIcs, pages 27:1–27:20.

Libkin, L. (2010). Elements of Finite Model Theory. Springer Publishing Company, Incorporated, 1st edition.

Manna, Z. (2003). Mathematical theory of computation. Dover Publications, Inc.

Paulin-Mohring, C. (1993). Inductive definitions in the system coq rules and properties. In International
Conference on Typed Lambda Calculi and Applications, pages 328–345. Springer.

Post, E. L. (1946). A variant of a recursively unsolvable problem. Bulletin of the American Mathematical
Society, 52(4):264–268.

Richman, F. (1983). Church’s thesis without tears. The Journal of symbolic logic, 48(3):797–803.

Simpson, S. G. (1985). Reverse mathematics. In Proc. Symposia Pure Math, volume 42, pages 461–471.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 66

Bibliography V

Smolka, G. and Stark, K. (2016). Hereditarily Finite Sets in Constructive Type Theory. In Interactive Theorem
Proving - 7th International Conference, ITP 2016, Nancy, France, August 22-27, 2016, volume 9807 of
LNCS, pages 374–390. Springer.

Tarski, A. (1953). I: A general method in proofs of undecidability. In Tarski, A., editor, Undecidable Theories,
volume 13 of Studies in Logic and the Foundations of Mathematics, pages 1–34. Elsevier.

The Coq Development Team (2021). The coq proof assistant.

Trakhtenbrot, B. A. (1950). Impossibility of an algorithm for the decision problem in finite classes. Doklady
Akademii Nauk SSSR, 70(4):569–572.

Turing, A. M. (1938). On computable numbers, with an application to the entscheidungsproblem. a correction.
Proceedings of the London Mathematical Society, 2(1):544–546.

Veldman, W. (1976). An intuitiomstic completeness theorem for intuitionistic predicate logic 1. The Journal of
Symbolic Logic, 41(1):159–166.

Werner, B. (1997). Sets in types, types in sets. In International Symposium on Theoretical Aspects of
Computer Software, pages 530–546. Springer.

D. Kirst., D.Wehr, Y. Forster Analysing FOL in CTT December 16th/17th, 2021 67

	References

