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ABSTRACT

Markov’s principle (MP) is an axiom in some varieties of construc-
tive mathematics, stating that 2(1) propositions (i.e. existential quan-
tification over a decidable predicate on N) are stable under double
negation. However, there are various non-equivalent definitions
of decidable predicates and thus le) in constructive foundations,
leading to non-equivalent Markov’s principles. While this fact is
well-reported in the literature, it is often overlooked, leading to
wrong claims in standard references and published papers.

In this paper, we clarify the status of three natural variants of
MP in constructive mathematics, by giving respective equivalence
proofs to different formulations of Post’s theorem, to stability of
termination of computations, to completeness of various proof
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1 INTRODUCTION

Markov’s Principle (MP) is a central principle in constructive math-
ematics, nowadays most commonly stated as follows [7, 8, 46]:
Vf:N—= B. -=(3n. fn=true) = 3n. fn = true

It states that le) propositions, i.e. existential quantifications over
decidable predicates, are stable under double negation. While not
generally accepted in all flavours of constructive mathematics, it is
a principle of the Russian school led by Markov [3, Ch. 3]. It also
has a central status in constructive reverse mathematics [8, 20],
where it is well-known to be equivalent to a multitude of principles
spanning many areas of mathematics and theoretical computer
science, going back to Godel’s insight that his completeness proof
for first-order logic w.r.t. Tarski semantics requires MP.
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Constructive Reverse Mathematics

Classical reverse mathematics studies classically detectable equivalences:
m Which theorems are equivalent to the axiom of choice or similar principles?
m Which theorems are equivalent to which comprehension principles?
m Many more, see Friedman (1976) and Simpson (2009)
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Constructive Reverse Mathematics

Classical reverse mathematics studies classically detectable equivalences:
m Which theorems are equivalent to the axiom of choice or similar principles?
m Which theorems are equivalent to which comprehension principles?
m Many more, see Friedman (1976) and Simpson (2009)

Constructive reverse mathematics studies constructively detectable equivalences:
m Which theorems are equivalent to excluded middle (LEM) or weaker principles?
m Which theorems are equivalent to which specific formulation of the axiom of choice?
m Many more, see Ishihara (2006) and Diener (2018)

Characterises the computational content of analysed theorems
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Some Typical Principles
Fragments of the excluded middle:

LEM = VP:P.PV P
LPO := Vf:N—=B.(3n.f n=true) Vv (Vn.f n = false)
MP := Vf:N—B.-—(3n.f n=true) — In.f n = true
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Some Typical Principles
Fragments of the excluded middle:

LEM = VP:P.PV P
LPO := Vf:N—=B.(3n.f n=true) Vv (Vn.f n = false)
MP = Vf:N—B.-=(3n.f n=true) — 3n.f n = true

Fragments of the axioms of choice:

AC := VABVR: A—»B—P.tot(R) — 3f : A=B.Vx. Rx(f x)
DC := VA.inhab(A) = VR : A»A—P.tot(R) — 3f : N=>AVn. R(f n)(f (n+ 1))
CC := VAVR:N—=A-P.tot(R) — 3f : N=>AVn.Rn(f n)
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Some Typical Principles
Fragments of the excluded middle:

LEM = VP:P.PV P
LPO := Vf:N—=B.(3n.f n=true) Vv (Vn.f n = false)
MP = Vf:N—B.-=(3n.f n=true) — 3n.f n = true

Fragments of the axioms of choice:

AC := VABVR: A—»B—P.tot(R) — 3f : A=B.Vx. Rx(f x)
DC := VA.inhab(A) = VR : A»A—P.tot(R) — 3f : N=>AVn. R(f n)(f (n+ 1))
CC := VAVR:N—=A-P.tot(R) — 3f : N=>AVn.Rn(f n)

To unveil fine distinctions, we use CIC as a modest base system
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Some Typical Connections

m LEM: Every non-empty set of numbers has a minimum
m LPO: Every sequence in a compact set has a convergent subsequence

m MP: Every bi-enumerable set of numbers is decidable
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Some Typical Connections

LEM: Every non-empty set of numbers has a minimum

LPO: Every sequence in a compact set has a convergent subsequence
MP: Every bi-enumerable set of numbers is decidable

AC: Every set can be well-ordered

DC: Every partial order without infinite descending chains is well-founded

CC: Every sequentially continuous real-valued function is continuous

Often very subtle, we use Coq to systematically track dependencies
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Some Classically Invisible Surprises

Classical foundations are usually blind for LEM and CCy...
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Completeness of first-order logic is equivalent to weak Kénig's lemma.

m Completeness is equivalent to weak fan theorem (Krivtsov, 2015)

m Completeness requires MP (Kreisel, 1962)
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The downward Lowenheim-Skolem theorem is equivalent to DC.
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Some Classically Invisible Surprises

Classical foundations are usually blind for LEM and CCy...

Theorem (Simpson (2009))

Completeness of first-order logic is equivalent to weak Kénig's lemma.

m Completeness is equivalent to weak fan theorem (Krivtsov, 2015)

m Completeness requires MP (Kreisel, 1962)

Theorem (Boolos, Burgess, Jeffrey (2002))

The downward Lowenheim-Skolem theorem is equivalent to DC.

m Only "“DC—CCy" is necessary but also “LEM—MP” (K. and Zeng 2024)
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Base System: Constructive Type Theory

Features included in the Calculus of Inductive Constructions (CIC):
m Inductive types: B, N, lists X*, vectors X", ...
m Standard type formers: X = Y, X x Y, X+ Y, Vx. Fx, Zx.Fx

m Propositional universe P with logical connectives: —, A, V, V, 3

Features not included in CIC:
m Classical axioms that allow case distinctions of the form PV —P
m Choice principles turning total relations R : X — Y — P into functions f : X — Y
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Usual definitions in the prominent constructive type theories:

In CIC:  dx.px
In HoTT:  ||Zx. px]|
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Type-Theoretic Notions of Existence

Usual definitions in the prominent constructive type theories:

In CIC:  dx.px
In HoTT: ||Zx. px]|
In MLTT:  Xx.px

Ascendingly stronger induced choice principles:

A1-ACin CIC:  Vf:N — B.(3n.f n=true) — Xn.f n=true
UCin HoTT: VAB.YR:A—B—P.tot(R) — fun(R) — 3f : A»B.¥x. Rx (f x)
ACin MLTT: VABVR:A—B—P.tot(R) — 3f : A»B.Vx. Rx(f x)
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Type-Theoretic Notions of Existence

Usual definitions in the prominent constructive type theories:

In CIC:  dx.px
In HoTT: ||Zx. px]|
In MLTT:  Xx.px

Ascendingly stronger induced choice principles:

A1-ACin CIC:  Vf:N — B.(3n.f n=true) — Xn.f n=true
UCin HoTT: VAB.YR:A—B—P.tot(R) — fun(R) — 3f : A»B.¥x. Rx (f x)
ACin MLTT: VABVR:A—B—P.tot(R) — 3f : A»B.Vx. Rx(f x)

The alternative ==X x. p x blocks any choice principles but trivialises MP...
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“¥ 1 propositions are stable under double negation”
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Stating Markov's Principles

“Y 1 propositions are stable under double negation”

MPp := Vp:N—=P.(Vn.pnV -pn) — ——=(3n.pn) — 3n.pn

MPg = Vf:N—B. —=(3n. f n = true) — 3n. f n = true
MPt := Vf:N—B.computablef —  —=—=(3n.f n=true) — 3In. f n = true
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Stating Markov's Principles

MPp
MPB .
MPT .
MPPR =

“Y 1 propositions are stable under double negation”

Vp: N=P.(Vn.pnV -pn) —
Vf : N—B.

Vf : N—B. computable f —
Vf : N—B. primrec f —

—=(3n.pn) = 3n.pn

——(3n. f n=true) — 3In.f n = true
—=(3n. f n = true) — 3n. f n = true
—=(3n. f n = true) — 3n.f n = true
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Stating Markov's Principles

“Y 1 propositions are stable under double negation”

MPp := Vp:N—=P.(Vn.pnV -pn) — ——=(3n.pn) — 3n.pn
MPg = Vf:N—B. —=(3n. f n = true) — 3n. f n = true
MPt := Vf:N—B.computablef —  —=—=(3n.f n=true) — 3In. f n = true
MPpr := Vf : N—B. primrecf — —=(3n. f n = true) — 3n.f n = true
MPp MPg MPt MPpr
v i ¥ : <~ __~—

uniqué. choice  Church’s thesis
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Lots of false statements on Wikipedia and nLab
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Confusion about Markov's Principles

Lots of false statements on Wikipedia and nLab, also (anonymous) experts can be wrong:

"MPy states that a Turing machine that does not loop necessarily terminates”
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Restating Markov's Principles

Different underlying notions of decidability of predicates p : N — P:

P-D(p) := Vn.pnV —-pn

B—-D(p) := 3f :N—B. Vx.px <> f x = true

T—D(p) := 3If : N — B.computable - Vx.px <> f x = true
PR—D(p) := 3If : N — B. primrec — Vx.px < f x = true
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Restating Markov's Principles

Different underlying notions of decidability of predicates p : N — P:

P-D(p) := Vn.pnV —-pn

B—-D(p) := 3f :N—B. Vx.px <> f x = true

T—D(p) := 3If : N — B.computable - Vx.px <> f x = true
PR—D(p) := 3If : N — B. primrec — Vx.px < f x = true

Induced notions of C—X1 propositions/predicates relative to C—D(p):

MPp < VP :P.P—%1(P) — ~—P — P

MPg < VP :P.B—Xi(P) — =P — P

MPt < VP :P.T—%;(P) = ——P — P
MPpg <+ VP :P.PR—X;(P) = ——P — P
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Post's Theorem (cf. Forster, K., Smolka (2019))

Theorem
Assuming MP¢, if C—X1(p) and C—X1(p) then C—D(p).
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Theorem

Assuming MP¢, if C—X1(p) and C—X1(p) then C—D(p).

Proof.

First show P—D(p) by applying MP¢ to the constructively provable Vn.——(pnV —p n).

Then observe that P—D(p) together with C—X1(p) and C—X;(p) implies C—D(p). O
Fact

The converse holds.
Proof.
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Post's Theorem (cf. Forster, K., Smolka (2019))

Theorem

Assuming MP¢, if C—X1(p) and C—X1(p) then C—D(p).

Proof.

First show P—D(p) by applying MP¢ to the constructively provable Vn.——(pnV —p n).

Then observe that P—D(p) together with C—X1(p) and C—X;(p) implies C—D(p). O
Fact

The converse holds.
Proof.

Assume C—X1(P) and —=—P. For pn:= P observe that C—X;(p) and C—%1(p).
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Post's Theorem (cf. Forster, K., Smolka (2019))

Theorem

Assuming MP¢, if C—X1(p) and C—X1(p) then C—D(p).

Proof.

First show P—D(p) by applying MP¢ to the constructively provable Vn.——(pnV —p n).

Then observe that P—D(p) together with C—X1(p) and C—X;(p) implies C—D(p). O
Fact

The converse holds.

Proof.

Assume C—X1(P) and —=—P. For pn:= P observe that C—X;(p) and C—%1(p).

By the assumption of Post’s theorem, obtain C—D(p) and conclude P. Ol
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Completeness Theorems (cf. Forster, K., Wehr (2021))

Theorem
Assuming MP¢, if T E ¢ for a C—X; theory, then T F .
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Completeness Theorems (cf. Forster, K., Wehr (2021))

Theorem

Assuming MP¢, if T E ¢ for a C—X; theory, then T F .
Proof.

Observe that T ¢ is C—X 1, so assuming MP¢ and T E ¢ it is enough to show —=—(T F ¢).
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Theorem
Assuming MPc¢, if T E ¢ for a C—X1 theory, then T F .
Proof.

Observe that T ¢ is C—X 1, so assuming MP¢ and T E ¢ it is enough to show —=—(T F ¢).
So on assumption of T I/ ¢, construct a model M E T with M |- ¢, contradicting T F ¢. [J

Fact

The converse holds.
Proof.
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Completeness Theorems (cf. Forster, K., Wehr (2021))

Theorem
Assuming MPc¢, if T E ¢ for a C—X1 theory, then T F .
Proof.

Observe that T ¢ is C—X 1, so assuming MP¢ and T E ¢ it is enough to show —=—(T F ¢).
So on assumption of T I/ ¢, construct a model M E T with M |- ¢, contradicting T F ¢. [J

Fact

The converse holds.

Proof.
Assume C—%1(P) and =—P. For T := P and ¢ := L, observe that T is C—X; and T F L.
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Completeness Theorems (cf. Forster, K., Wehr (2021))

Theorem
Assuming MPc¢, if T E ¢ for a C—X1 theory, then T - ¢.
Proof.

Observe that T ¢ is C—X 1, so assuming MP¢ and T E ¢ it is enough to show —=—(T F ¢).
So on assumption of T I/ ¢, construct a model M E T with M |- ¢, contradicting T F ¢. [J

Fact

The converse holds.

Proof.

Assume C—%1(P) and =—P. For T := P and ¢ := L, observe that T is C—X; and T F L.
By the assumption of completeness, obtain a deduction T F L and conclude P. ]
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Other Equivalences

MP ¢ is equivalent to the following statements:
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Other Equivalences

MP ¢ is equivalent to the following statements:

m For C-computable R : N — N — P we have that non-divergence implies termination,
where R being C-computable simply means that R is C—X1,
and termination means Jy. Rx y.
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where N is a C-extended natural number if C—D(N) and N is monotone,
and finitude means dn. N n.
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MP ¢ is equivalent to the following statements:

m For C-computable R : N — N — P we have that non-divergence implies termination,
where R being C-computable simply means that R is C—X1,
and termination means Jy. Rx y.

m Every C-extended natural number N : N — P that is not infinite is actually finite,
where N is a C-extended natural number if C—D(N) and N is monotone,
and finitude means dn. N n.

m Every C-tree 7 : B* — P that is not infinite is finite,
where 7 is a C-tree if C—D(N), 7€, and 7/ whenever 7//,
finitude means 3n.VI.|/| < n— =7 1.
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Independence Proofs

There are (at least) two proof strategies to show MP independent:

Construct models that satisfy the independence of premise (IP) but not LPO

» Exploits that MP together with IP implies LPO
» IP holds in modified function realizability of Kreisel (1958a)
> IP holds in the exceptional type theory of Pédrot and Tabareau (2018)
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Independence Proofs

There are (at least) two proof strategies to show MP independent:

Construct models that satisfy the independence of premise (IP) but not LPO

» Exploits that MP together with IP implies LPO
» IP holds in modified function realizability of Kreisel (1958a)
> IP holds in the exceptional type theory of Pédrot and Tabareau (2018)

Use Brouwer's free choice sequences to directly refute MP

» Observed in another paper by Kreisel (1958b)
» Also scales to constructive type theory (Coquand and Mannaa, 2016)
» If done carefully, yields separation proof (Smorynski, 1973)
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Choice Sequences

A (Boolean) choice sequence is a partial function ¢ : N — B evolving over time:

Dominik Kirst Separating Markov's Principles



Choice Sequences

A (Boolean) choice sequence is a partial function ¢ : N — B evolving over time:

m If n | b at some point, then dn | b at all later points
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Choice Sequences

A (Boolean) choice sequence is a partial function ¢ : N — B evolving over time:
m If §n | b at some point, then dn | b at all later points
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A (Boolean) choice sequence is a partial function ¢ : N — B evolving over time:
m If n | b at some point, then dn | b at all later points
m For every n, eventually there will be b with dn | b
m Possible futures may branch

61 true...
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Choice Sequences

A (Boolean) choice sequence is a partial function ¢ : N — B evolving over time:
m If n | b at some point, then dn | b at all later points
m For every n, eventually there will be b with dn | b
m Possible futures may branch

61 true...
" N 60 | true —— 61 | false...

7 60| false — 81 true...

61| false...
Gives rise to an interpretation of intuitionistic logic
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For functions with access to choice sequences:
Assume MP would hold for a yet undetermined choice sequence ¢
That is, if =(Vn.dn | false) then In.dn | true

Indeed, —(Vn.dn | false) as there is a future where 642 | true
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Invalidating Markov's Principle

For functions with access to choice sequences:
Assume MP would hold for a yet undetermined choice sequence ¢
That is, if =(Vn.dn | false) then In.dn | true
Indeed, —(Vn.dn | false) as there is a future where 642 | true

However, dn.dn | true is contradictory when dn | false evolves for all n
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Validating Markov's Principle

For functions f without access to choice sequences:
Behaviour of f is independent of time progression

MP holds for f if it holds in the meta-theory

If we can control which functions have access to choice sequences,
this allows us to separate versions of Markov's principle!
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Key Features of TTZ (Cohen and Rahli, 2022)

m General framework for type theories modelled through an abstract modality (1 and
parameterised by a type of time-progressing choice operators C

m Time progression: stateful computations that can evolve non-deterministically over time,
worlds w form a poset with finite information

m A syntactic type restriction X N pure: terms of type X not mentioning choice names
m We instantiate C with choice sequences and [J with a Beth modality

m Obtain the central forcing relation w I+ P

m For every w there is a fresh § for which w has no information

m Pure computations do not depend on the world

m Mechanised in Agda
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Constructing Separating Models using TTE

Every instance of TT5 interprets CIC* = MLTT 4 U + || - ||, that is:

CIC*t: X — TTgH[t]:[X]

We construct two instances TT7 and TT5 such that:
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Constructing Separating Models using TTE

Every instance of TT5 interprets CIC* = MLTT 4 U + || - ||, that is:

CIC*t: X — TTgH[t]:[X]

We construct two instances TT; and T T such that:

TT1 F MPpgr and TT1 = =MPp, ruling out that CIC* - MPpgr — MPg
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Constructing Separating Models using TTCD

Every instance of TT5 interprets CIC* = MLTT 4 U + || - ||, that is:

CIC*t: X — TTgH[t]:[X]

We construct two instances TT; and T T such that:
TT1 F MPpg and TT1 = =MPg, ruling out that CIC* - MPpr — MPp
TTo + MPg and TT F =MPp, ruling out that CIC* - MPg — MPp
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Separating MPg from MPpg

Instance TTy: choice sequences of type N — B, first show TT; - -MPg

world w

w IF -MPp
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world w
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Instance TTy: choice sequences of type N — B, first show TT; - -MPg

world w

w IF MPg

d fresh for w

w Ik =(Vn. 6n = false) — 3n. dn = true
w IFVn. on = false
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Instance TTy: choice sequences of type N — B, first show TT; - -MPg

world w

w - MPpg

¢ fresh for w

w Ik =(Vn. 6n = false) — 3n. dn = true
vw' > w.w' IF §42 = false
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Separating MPg from MPpg

Instance TTy: choice sequences of type N — B, first show TT; - =MPp

world w

w I MPg

6 fresh for w

w Ik =(Vn. 6n = false) — 3n. dn = true
vYw' > w.w' I §42 = false

w’ extending w with § 42 = true

w! I 642 = false

contradiction
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Separating MPg from MPpg
Instance TTy: choice sequences of type N — B, first show TT; - -MPg

world w

w |- MPg

0 fresh for w

w IF =(Vn. 6n = false) — 3n. dn = true

w E —3n. dn = true
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Separating MPg from MPpg

Instance TTy: choice sequences of type N — B, first show TT; - =MPg

world w

w I MPg

o fresh for w

w Ik =(Vn. 6n = false) — Jn. dn = true
w E dn. dn = true

L
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Separating MPg from MPpg

Instance TTy: choice sequences of type N — B, first show TT; - =MPg

world w

w I MPg

o fresh for w

w Ik =(Vn. 6n = false) — Jn. dn = true
w E dn. dn = true

Wo i= W, Wpy1 := W, U dn = false forms a Beth covering of w
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Separating MPg from MPpg (ctd.)

To argue TT1 = MPpR, the following rule is derivable:

w kT, n:NMpuret ||Pnl|
wlFT FEVn:N.||Pnl

Thus for any countable sequence of pure functions e : (N — (N — B)) N pure:

Vw. wlF Vi N.==||Zn: N e n=true|| — |[|Xn: N. g n = true||
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Separating MPg from MPpg (ctd.)

To argue TT1 = MPpR, the following rule is derivable:

w kT, n:NMpuret ||Pnl|
wlFT FEVn:N.||Pnl

Thus for any countable sequence of pure functions e : (N — (N — B)) N pure:

Vw. wlF Vi N.==||Zn: N e n=true|| — |[|Xn: N. g n = true||

In particular, we can set e;i to be the i-th primitive recursive function:

Vw. w Il MPpgr and therefore TT1 F MPpgr

Dominik Kirst Separating Markov's Principles October 15th, 2024
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Instance TTy: choice sequences of type N — U, follow same outline
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Separating MPp from MPy

Instance TT5: choice sequences of type N — U, follow same outline
Use T : U in place of true : B and L : U in place of false : B

Show that predicates arising from choice sequences are logically decidable
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Separating MPp from MPy

Instance TT5: choice sequences of type N — U, follow same outline
Use T : U in place of true : B and L : U in place of false : B
Show that predicates arising from choice sequences are logically decidable
Exploit that N — B is now pure

Derive that TTo - MPg and TT, = =-MPp

Dominik Kirst Separating Markov's Principles October 15th, 2024 28
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Markov's principle and its equivalents
Separating Markov's principles (informally)
Separating Markov's principles (formally)

Ongoing work
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Separating Limited Principles of Omniscience

LPOP =
LPOB =

LPOT

LPOpr =

1

"Y1 propositions are logically decidable”

Vp:N—=P.(Vn.pnV —=pn) — (3n.pn)V —(3n.pn)

Vf:

vf
vf

N—B.
: N—B. computable f —
: N—B. primrec f —

'da Rocha Paiva, Cohen, Forster, K., Rahli (2024)
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Separating Limited Principles of Omniscience!

"Y1 propositions are logically decidable”

LPOp := Vp:N—=P.(Vn.pnV —pn) — (3n.pn)V =(3n.pn)

LPOg := Vf:N—B. (3n. f n=true) V =(3n. f n = true)
LPOt := Vf:N—B.computablef —  (3n.f n=true) V —(3n. f n = true)
LPOpr := Vf :N—B.primrecf — (3n.f n=true) V —(3n.f n = true)
~ FR ~
LPOp LPOp LPOT LPOpr
o oo K~

uniqu.é‘ choice  Church’s thesis

'da Rocha Paiva, Cohen, Forster, K., Rahli (2024)
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Separating Arithmetical Fragments of LEM?
Represent the C-arithmetical hierarchy on predicates p : N — P inductively:

C-D(p) C-D(p) Ma(p) 2n(p)
Zo(p) Mo(p)  Tnta(AX.Fy.p(y X)) Mapa(AX.Vy. p(y = X))

2Akama, Berardi, Hayashi, Kohlenbach (2004)
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Represent the C-arithmetical hierarchy on predicates p : N — P inductively:

C-D(p) C-D(p) Ma(p) 2n(p)
Zo(p) Mo(p)  Tnta(AX.Fy.p(y X)) Mapa(AX.Vy. p(y = X))

Introduces hierarchy generalising MP¢ and LPO¢:

> ,-LEM

MN,-LEM > ,-DNE

T~

M,-DNE

2Akama, Berardi, Hayashi, Kohlenbach (2004)
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Post's Hierarchy Theorem?

Definition (Forster, K., Miick (2023))

An oracle computation is a functional F:(Q—A—P)—/— O—P captured by a computation
tree 7: [ —-A*—Q + O and its induced interrogation relation 7/;R - gs;as as follows:

FRio < dgsas.Ti;R|F gs;as A Txaspout o

3Forster, K., Miick (2024)
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An oracle computation is a functional F:(Q—A—P)—/— O—P captured by a computation
tree 7: [ —-A*—Q + O and its induced interrogation relation 7/;R - gs;as as follows:

FRio < dgsas.Ti;R|F gs;as A Txaspout o

P <1 Q := there is an oracle computation F: (N—B—P)—>N—-B—P with FQ = P

Sq(P) := there is an oracle computation F: (N—B—P)—»N—1—P with dom(F Q) = P
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Post's Hierarchy Theorem?

Definition (Forster, K., Miick (2023))

An oracle computation is a functional F:(Q—A—P)—/—O—P captured by a computation
tree 7: I—-A*—Q + O and its induced interrogation relation 7i; R - gs;as as follows:

FRio < dgsas.Ti;R|F gs;as A Txaspout o

P <1 Q := there is an oracle computation F: (N—B—P)—>N—-B—P with FQ = P

Sq(P) := there is an oracle computation F: (N—B—P)—»N—1—P with dom(F Q) = P

Lemma

Assuming X ,-LEM, if P is 41 and Q is X, then So(P).
3Forster, K., Miick (2024)
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Post's Problem?*

Definition (Shoenfield (1959) and Gold (1965))

P : X — P is limit-computable if there exists a function f : X — N — B with

Px < 3dn¥m > n. f(x,m)=true A —Px « In¥Vm > n. f(x, m) = false.

*Zeng, Forster, K., Nemoto (2024)
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Definition (Shoenfield (1959) and Gold (1965))

P : X — P is limit-computable if there exists a function f : X — N — B with

Px < 3n¥m > n.f(x,m)=true A =Px < 3In¥m > n. f(x, m) = false.

Lemma
Assuming LPO, if P is limit computable, then P <1 H.

Definition (Lerman and Soare (1980) and Post (1944))

P:X — Pislow if P <+ H and simple if it is co-infinite, semi-decidable, and for W, being
the e-th enumerable set we have W, N P # () whenever W, is infinite.
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Post’s Problem*
Definition (Shoenfield (1959) and Gold (1965))

P : X — P is limit-computable if there exists a function f : X — N — B with

Px < 3n¥m > n.f(x,m)=true A =Px < 3In¥m > n. f(x, m) = false.

Lemma
Assuming LPO, if P is limit computable, then P <1 H.

Definition (Lerman and Soare (1980) and Post (1944))
P:X — Pislow if P <+ H and simple if it is co-infinite, semi-decidable, and for W, being
the e-th enumerable set we have W, N P # () whenever W, is infinite.
Theorem
Assuming LPO, a low simple set exists.
*Zeng, Forster, K., Nemoto (2024)
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m CIC is a great base system for constructive reverse mathematics
| TTE is a great system for constructing separating models

m Coq and Agda are great systems to help you sleep well
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Coqg and Agda are great systems to help you sleep well

If you want to see more detail, have a look at our paper!

Call for interns: extend MLTT a la Coq, synthetic realisability, constructive analyses...
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Some Take-Home Messages

CIC is a great base system for constructive reverse mathematics
TTE is a great system for constructing separating models

Coqg and Agda are great systems to help you sleep well

If you want to see more detail, have a look at our paper!

Call for interns: extend MLTT a la Coq, synthetic realisability, constructive analyses...

Thank you!
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