An Introduction to Constructive Reverse Mathematics

Dominik Kirst

CHoCoLa Meeting ENS de Lyon, October 15th, 2024

Paper at LICS'24

Separating Markov's Principles

Liron Cohen

cliron@cs.bgu.ac.il Ben-Gurion University of the Negev Beer-Sheva, Israel

Yannick Forster

yannick.forster@inria.fr Inria Paris, France

Dominik Kirst

kirst@cs.bgu.ac.il Ben-Gurion University of the Negev Beer-Sheva, Israel

Bruno da Rocha Paiva

bmd202@student.bham.ac.uk University of Birmingham Birmingham, UK

Vincent Rahli

v.rahli@bham.ac.uk University of Birmingham Birmingham, UK

ABSTRACT

Markov's principle (MP) is an axiom in some varieties of constructive mathematics, stating that Σ_1^0 propositions (i.e. existential quantification over a decidable predicate on \mathbb{N}) are stable under double negation. However, there are various non-equivalent definitions of decidable predicates and thus Σ_1^0 in constructive foundations, leading to non-equivalent Markov's principles. While this fact is well-reported in the literature, it is often overlooked, leading to wrong claims in standard references and published papers.

In this paper, we clarify the status of three natural variants of MP in constructive mathematics, by giving respective equivalence proofs to different formulations of Post's theorem, to stability of termination of computations, to completeness of various proof

1 INTRODUCTION

Markov's Principle (MP) is a central principle in constructive mathematics, nowadays most commonly stated as follows [7, 8, 46]:

$$\forall f: \mathbb{N} \to \mathbb{B}. \ \neg \neg (\exists n. \ fn = \text{true}) \to \exists n. \ fn = \text{true}$$

It states that Σ_1^0 propositions, i.e. existential quantifications over decidable predicates, are stable under double negation. While not generally accepted in all flavours of constructive mathematics, it is a principle of the Russian school led by Markov [3, Ch. 3]. It also has a central status in constructive reverse mathematics [8, 20], where it is well-known to be equivalent to a multitude of principles spanning many areas of mathematics and theoretical computer science, going back to Gödel's insight that his completeness proof for first-order logic w.r.t. Tarski semantics requires MP.

Outline

- Constructive reverse mathematics
- 2 Markov's principle and its equivalents
- **3** Separating Markov's principles (informally)
- Separating Markov's principles (formally)
- 5 Ongoing work

Outline

- 1 Constructive reverse mathematics
- 2 Markov's principle and its equivalents
- **3** Separating Markov's principles (informally)
- Separating Markov's principles (formally)
- **5** Ongoing work

Classical reverse mathematics studies classically detectable equivalences:

- Which theorems are equivalent to the axiom of choice or similar principles?
- Which theorems are equivalent to which comprehension principles?
- Many more, see Friedman (1976) and Simpson (2009)

Classical reverse mathematics studies classically detectable equivalences:

- Which theorems are equivalent to the axiom of choice or similar principles?
- Which theorems are equivalent to which comprehension principles?
- Many more, see Friedman (1976) and Simpson (2009)

Constructive reverse mathematics studies constructively detectable equivalences:

- Which theorems are equivalent to excluded middle (LEM) or weaker principles?
- Which theorems are equivalent to which specific formulation of the axiom of choice?
- Many more, see Ishihara (2006) and Diener (2018)

Classical reverse mathematics studies classically detectable equivalences:

- Which theorems are equivalent to the axiom of choice or similar principles?
- Which theorems are equivalent to which comprehension principles?
- Many more, see Friedman (1976) and Simpson (2009)

Constructive reverse mathematics studies constructively detectable equivalences:

- Which theorems are equivalent to excluded middle (LEM) or weaker principles?
- Which theorems are equivalent to which specific formulation of the axiom of choice?
- Many more, see Ishihara (2006) and Diener (2018)

Characterises the computational content of analysed theorems

Fragments of the excluded middle:

LEM :=
$$\forall P : \mathbb{P}. P \lor \neg P$$

LPO := $\forall f : \mathbb{N} \to \mathbb{B}. (\exists n. f \ n = \text{true}) \lor (\forall n. f \ n = \text{false})$
MP := $\forall f : \mathbb{N} \to \mathbb{B}. \neg \neg (\exists n. f \ n = \text{true}) \to \exists n. f \ n = \text{true}$

Fragments of the excluded middle:

LEM :=
$$\forall P : \mathbb{P}. P \lor \neg P$$

LPO := $\forall f : \mathbb{N} \to \mathbb{B}. (\exists n. f \ n = \text{true}) \lor (\forall n. f \ n = \text{false})$
MP := $\forall f : \mathbb{N} \to \mathbb{B}. \neg \neg (\exists n. f \ n = \text{true}) \to \exists n. f \ n = \text{true}$

Fragments of the axioms of choice:

$$\begin{array}{lll} \mathsf{AC} &:= \ \forall AB. \forall R: A {\rightarrow} B {\rightarrow} \mathbb{P}. \ \mathsf{tot}(R) \rightarrow \exists f: A {\rightarrow} B. \forall x. \ R \times (f \times) \\ \mathsf{DC} &:= \ \forall A. \ \mathsf{inhab}(A) \rightarrow \forall R: A {\rightarrow} A {\rightarrow} \mathbb{P}. \ \mathsf{tot}(R) \rightarrow \exists f: \mathbb{N} {\rightarrow} A. \forall n. \ R \ (f \ n) \ (f \ (n+1)) \\ \mathsf{CC} &:= \ \forall A. \forall R: \mathbb{N} {\rightarrow} A {\rightarrow} \mathbb{P}. \ \mathsf{tot}(R) \rightarrow \exists f: \mathbb{N} {\rightarrow} A. \forall n. \ R \ n \ (f \ n) \end{array}$$

Fragments of the excluded middle:

```
LEM := \forall P : \mathbb{P}. \ P \lor \neg P

LPO := \forall f : \mathbb{N} \to \mathbb{B}. \ (\exists n. \ f \ n = \text{true}) \lor (\forall n. \ f \ n = \text{false})

MP := \forall f : \mathbb{N} \to \mathbb{B}. \ \neg \neg (\exists n. \ f \ n = \text{true}) \to \exists n. \ f \ n = \text{true}
```

Fragments of the axioms of choice:

AC :=
$$\forall AB. \forall R : A \rightarrow B \rightarrow \mathbb{P}. \operatorname{tot}(R) \rightarrow \exists f : A \rightarrow B. \forall x. R \times (f \times)$$

DC := $\forall A. \operatorname{inhab}(A) \rightarrow \forall R : A \rightarrow A \rightarrow \mathbb{P}. \operatorname{tot}(R) \rightarrow \exists f : \mathbb{N} \rightarrow A. \forall n. R (f n) (f (n + 1))$
CC := $\forall A. \forall R : \mathbb{N} \rightarrow A \rightarrow \mathbb{P}. \operatorname{tot}(R) \rightarrow \exists f : \mathbb{N} \rightarrow A. \forall n. R n (f n)$

To unveil fine distinctions, we use CIC as a modest base system

- LEM: Every non-empty set of numbers has a minimum
- LPO: Every sequence in a compact set has a convergent subsequence
- MP: Every bi-enumerable set of numbers is decidable

- LEM: Every non-empty set of numbers has a minimum
- LPO: Every sequence in a compact set has a convergent subsequence
- MP: Every bi-enumerable set of numbers is decidable
- AC: Every set can be well-ordered
- DC: Every partial order without infinite descending chains is well-founded
- CC: Every sequentially continuous real-valued function is continuous

- LEM: Every non-empty set of numbers has a minimum
- LPO: Every sequence in a compact set has a convergent subsequence
- MP: Every bi-enumerable set of numbers is decidable
- AC: Every set can be well-ordered
- DC: Every partial order without infinite descending chains is well-founded
- CC: Every sequentially continuous real-valued function is continuous

Often very subtle, we use Coq to systematically track dependencies

Classical foundations are usually blind for LEM and $CC_{\mathbb{N}}...$

Classical foundations are usually blind for LEM and $CC_{\mathbb{N}}...$

Theorem (Simpson (2009))

Completeness of first-order logic is equivalent to weak Kőnig's lemma.

Classical foundations are usually blind for LEM and $CC_{\mathbb{N}}...$

Theorem (Simpson (2009))

Completeness of first-order logic is equivalent to weak Kőnig's lemma.

■ Completeness is equivalent to weak fan theorem (Krivtsov, 2015)

Classical foundations are usually blind for LEM and $CC_{\mathbb{N}}...$

Theorem (Simpson (2009))

Completeness of first-order logic is equivalent to weak Kőnig's lemma.

- Completeness is equivalent to weak fan theorem (Krivtsov, 2015)
- Completeness requires MP (Kreisel, 1962)

Classical foundations are usually blind for LEM and $CC_{\mathbb{N}}$...

Theorem (Simpson (2009))

Completeness of first-order logic is equivalent to weak Kőnig's lemma.

- Completeness is equivalent to weak fan theorem (Krivtsov, 2015)
- Completeness requires MP (Kreisel, 1962)

Theorem (Boolos, Burgess, Jeffrey (2002))

The downward Löwenheim-Skolem theorem is equivalent to DC.

Classical foundations are usually blind for LEM and $CC_{\mathbb{N}}$...

Theorem (Simpson (2009))

Completeness of first-order logic is equivalent to weak Kőnig's lemma.

- Completeness is equivalent to weak fan theorem (Krivtsov, 2015)
- Completeness requires MP (Kreisel, 1962)

Theorem (Boolos, Burgess, Jeffrey (2002))

The downward Löwenheim-Skolem theorem is equivalent to DC.

■ Only "DC $-CC_N$ " is necessary but also "LEM-MP" (K. and Zeng 2024)

Outline

- Constructive reverse mathematics
- 2 Markov's principle and its equivalents
- **3** Separating Markov's principles (informally)
- Separating Markov's principles (formally)
- 5 Ongoing work

Features included in the Calculus of Inductive Constructions (CIC):

Features included in the Calculus of Inductive Constructions (CIC):

■ Inductive types: \mathbb{B} , \mathbb{N} , lists X^* , vectors X^n , ...

Features included in the Calculus of Inductive Constructions (CIC):

- Inductive types: \mathbb{B} , \mathbb{N} , lists X^* , vectors X^n , ...
- Standard type formers: $X \to Y$, $X \times Y$, X + Y, $\forall x. F x$, $\Sigma x. F x$

Features included in the Calculus of Inductive Constructions (CIC):

- Inductive types: \mathbb{B} , \mathbb{N} , lists X^* , vectors X^n , ...
- Standard type formers: $X \to Y$, $X \times Y$, X + Y, $\forall x. F x$, $\sum x. F x$
- Propositional universe \mathbb{P} with logical connectives: \rightarrow , \wedge , \vee , \forall , \exists

Features included in the Calculus of Inductive Constructions (CIC):

- Inductive types: \mathbb{B} , \mathbb{N} , lists X^* , vectors X^n , ...
- Standard type formers: $X \to Y$, $X \times Y$, X + Y, $\forall x. F x$, $\sum x. F x$
- Propositional universe \mathbb{P} with logical connectives: \rightarrow , \land , \lor , \forall , \exists

Features not included in CIC:

- Classical axioms that allow case distinctions of the form $P \vee \neg P$
- Choice principles turning total relations $R: X \to Y \to \mathbb{P}$ into functions $f: X \to Y$

Usual definitions in the prominent constructive type theories:

In CIC: $\exists x. px$

In HoTT: $||\Sigma x. px||$

In MLTT: $\Sigma x. px$

Usual definitions in the prominent constructive type theories:

```
In CIC: \exists x. px
```

In HoTT: $||\Sigma x. p x||$

In MLTT: $\sum x. px$

Ascendingly stronger induced choice principles:

 Δ_1 -AC in CIC: $\forall f: \mathbb{N} \to \mathbb{B}$. $(\exists n. f \ n = \mathsf{true}) \to \Sigma n. f \ n = \mathsf{true}$

UC in HoTT: $\forall AB. \forall R : A \rightarrow B \rightarrow \mathbb{P}. tot(R) \rightarrow fun(R) \rightarrow \exists f : A \rightarrow B. \forall x. Rx (fx)$

AC in MLTT: $\forall AB. \forall R : A \rightarrow B \rightarrow \mathbb{P}. tot(R) \rightarrow \exists f : A \rightarrow B. \forall x. R \times (f \times X)$

Usual definitions in the prominent constructive type theories:

In CIC: $\exists x. px$ In HoTT: $||\Sigma x. px||$

In MLTT: $\sum x. px$

Ascendingly stronger induced choice principles:

 Δ_1 -AC in CIC: $\forall f : \mathbb{N} \to \mathbb{B}$. $(\exists n. f \ n = \mathsf{true}) \to \Sigma n. f \ n = \mathsf{true}$

UC in HoTT: $\forall AB. \forall R : A \rightarrow B \rightarrow \mathbb{P}. tot(R) \rightarrow fun(R) \rightarrow \exists f : A \rightarrow B. \forall x. Rx (fx)$

AC in MLTT: $\forall AB. \forall R : A \rightarrow B \rightarrow \mathbb{P}. tot(R) \rightarrow \exists f : A \rightarrow B. \forall x. Rx (fx)$

The alternative $\neg\neg\Sigma x. px$ blocks any choice principles but trivialises MP...

$$\mathsf{MP}_{\mathbb{B}} := \forall f : \mathbb{N} {\rightarrow} \mathbb{B}.$$

$$\neg\neg(\exists n. \ f \ n = \mathsf{true}) \to \exists n. \ f \ n = \mathsf{true}$$

$$\begin{array}{lll} \mathsf{MP}_{\mathbb{P}} & := & \forall p : \mathbb{N} \rightarrow \mathbb{P}. \ (\forall n. \ p \ n \lor \neg p \ n) \rightarrow & \neg \neg (\exists n. \ p \ n) \rightarrow \exists n. \ p \ n \\ \mathsf{MP}_{\mathbb{B}} & := & \forall f : \mathbb{N} \rightarrow \mathbb{B}. & \neg \neg (\exists n. \ f \ n = \mathsf{true}) \rightarrow \exists n. \ f \ n = \mathsf{true} \end{array}$$

$$\begin{array}{lll} \mathsf{MP}_{\mathbb{P}} & := & \forall p : \mathbb{N} \rightarrow \mathbb{P}. \ (\forall n. \ p \ n \lor \neg p \ n) \rightarrow & \neg \neg (\exists n. \ p \ n) \rightarrow \exists n. \ p \ n \\ \\ \mathsf{MP}_{\mathbb{B}} & := & \forall f : \mathbb{N} \rightarrow \mathbb{B}. & \neg \neg (\exists n. \ f \ n = \mathsf{true}) \rightarrow \exists n. \ f \ n = \mathsf{true} \\ \\ \mathsf{MP}_{\mathsf{T}} & := & \forall f : \mathbb{N} \rightarrow \mathbb{B}. \ \mathsf{computable} \ f \rightarrow & \neg \neg (\exists n. \ f \ n = \mathsf{true}) \rightarrow \exists n. \ f \ n = \mathsf{true} \\ \end{array}$$

Stating Markov's Principles

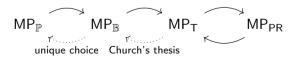
" Σ_1 propositions are stable under double negation"

$$\begin{array}{lll} \mathsf{MP}_{\mathbb{P}} &:= & \forall p : \mathbb{N} \rightarrow \mathbb{P}. \ (\forall n. \ p \ n \lor \neg p \ n) \rightarrow & \neg \neg (\exists n. \ p \ n) \rightarrow \exists n. \ p \ n \\ \mathsf{MP}_{\mathbb{B}} &:= & \forall f : \mathbb{N} \rightarrow \mathbb{B}. & \neg \neg (\exists n. \ f \ n = \mathsf{true}) \rightarrow \exists n. \ f \ n = \mathsf{true} \\ \mathsf{MP}_{\mathsf{T}} &:= & \forall f : \mathbb{N} \rightarrow \mathbb{B}. \ \mathsf{computable} \ f \rightarrow & \neg \neg (\exists n. \ f \ n = \mathsf{true}) \rightarrow \exists n. \ f \ n = \mathsf{true} \\ \mathsf{MP}_{\mathsf{PR}} &:= & \forall f : \mathbb{N} \rightarrow \mathbb{B}. \ \mathsf{primrec} \ f \rightarrow & \neg \neg (\exists n. \ f \ n = \mathsf{true}) \rightarrow \exists n. \ f \ n = \mathsf{true} \\ \end{array}$$

Stating Markov's Principles

" Σ_1 propositions are stable under double negation"

$$\begin{array}{lll} \mathsf{MP}_{\mathbb{P}} &:= & \forall p : \mathbb{N} \rightarrow \mathbb{P}. \ (\forall n. \ p \ n \lor \neg p \ n) \rightarrow & \neg \neg (\exists n. \ p \ n) \rightarrow \exists n. \ p \ n \\ \\ \mathsf{MP}_{\mathbb{B}} &:= & \forall f : \mathbb{N} \rightarrow \mathbb{B}. & \neg \neg (\exists n. \ f \ n = \mathsf{true}) \rightarrow \exists n. \ f \ n = \mathsf{true} \\ \\ \mathsf{MP}_{\mathsf{T}} &:= & \forall f : \mathbb{N} \rightarrow \mathbb{B}. \ \mathsf{computable} \ f \rightarrow & \neg \neg (\exists n. \ f \ n = \mathsf{true}) \rightarrow \exists n. \ f \ n = \mathsf{true} \\ \\ \mathsf{MP}_{\mathsf{PR}} &:= & \forall f : \mathbb{N} \rightarrow \mathbb{B}. \ \mathsf{primrec} \ f \rightarrow & \neg \neg (\exists n. \ f \ n = \mathsf{true}) \rightarrow \exists n. \ f \ n = \mathsf{true} \\ \end{array}$$



Confusion about Markov's Principles

Lots of false statements on Wikipedia and nLab

Confusion about Markov's Principles

Lots of false statements on Wikipedia and nLab, also (anonymous) experts can be wrong:

"MP_B states that a Turing machine that does not loop necessarily terminates"

Restating Markov's Principles

Restating Markov's Principles

Different underlying notions of decidability of predicates $p : \mathbb{N} \to \mathbb{P}$:

$$\begin{array}{lll} \mathbb{P}-\mathcal{D}(p) &:= & \forall n.\,p\,n\,\vee\,\neg p\,n\\ \mathbb{B}-\mathcal{D}(p) &:= & \exists f:\mathbb{N}\to\mathbb{B}. & \forall x.\,p\,x\leftrightarrow f\,x=\mathsf{true}\\ \mathsf{T}-\mathcal{D}(p) &:= & \exists f:\mathbb{N}\to\mathbb{B}.\,\mathsf{computable}\to & \forall x.\,p\,x\leftrightarrow f\,x=\mathsf{true}\\ \mathsf{PR}-\mathcal{D}(p) &:= & \exists f:\mathbb{N}\to\mathbb{B}.\,\mathsf{primrec}\to & \forall x.\,p\,x\leftrightarrow f\,x=\mathsf{true} \end{array}$$

Restating Markov's Principles

Different underlying notions of decidability of predicates $p : \mathbb{N} \to \mathbb{P}$:

$$\mathbb{P}-\mathcal{D}(p) := \forall n. \ p \ n \ \lor \neg p \ n$$

$$\mathbb{B}-\mathcal{D}(p) := \exists f : \mathbb{N} \to \mathbb{B}. \qquad \forall x. \ p \ x \leftrightarrow f \ x = \text{true}$$

$$\mathsf{T}-\mathcal{D}(p) := \exists f : \mathbb{N} \to \mathbb{B}. \text{ computable} \to \forall x. \ p \ x \leftrightarrow f \ x = \text{true}$$

$$\mathsf{PR}-\mathcal{D}(p) := \exists f : \mathbb{N} \to \mathbb{B}. \text{ primrec} \to \forall x. \ p \ x \leftrightarrow f \ x = \text{true}$$

Induced notions of $C-\Sigma_1$ propositions/predicates relative to $C-\mathcal{D}(p)$:

$$\begin{split} \mathsf{MP}_{\mathbb{P}} \;\; & \leftrightarrow \;\; \forall P : \mathbb{P}.\,\mathbb{P}{-}\Sigma_1(P) \to \neg \neg P \to P \\ \mathsf{MP}_{\mathbb{B}} \;\; & \leftrightarrow \;\; \forall P : \mathbb{P}.\,\mathbb{B}{-}\Sigma_1(P) \to \neg \neg P \to P \\ \mathsf{MP}_{\mathsf{T}} \;\; & \leftrightarrow \;\; \forall P : \mathbb{P}.\,\mathsf{T}{-}\Sigma_1(P) \to \neg \neg P \to P \\ \mathsf{MP}_{\mathsf{PR}} \;\; & \leftrightarrow \;\; \forall P : \mathbb{P}.\,\mathsf{PR}{-}\Sigma_1(P) \to \neg \neg P \to P \end{split}$$

Theorem

Assuming MP_C , if $C-\Sigma_1(p)$ and $C-\Sigma_1(\overline{p})$ then $C-\mathcal{D}(p)$.

Theorem

Assuming MP_C , if $C-\Sigma_1(p)$ and $C-\Sigma_1(\overline{p})$ then $C-\mathcal{D}(p)$.

Proof.

Theorem

Assuming MP_C, if $C-\Sigma_1(p)$ and $C-\Sigma_1(\overline{p})$ then $C-\mathcal{D}(p)$.

Proof.

First show $\mathbb{P}-\mathcal{D}(p)$ by applying MP_C to the constructively provable $\forall n. \neg \neg (p \ n \lor \neg p \ n)$.

Theorem

Assuming MP_C, if $C-\Sigma_1(p)$ and $C-\Sigma_1(\overline{p})$ then $C-\mathcal{D}(p)$.

Proof.

First show $\mathbb{P}-\mathcal{D}(p)$ by applying $\mathsf{MP}_{\mathcal{C}}$ to the constructively provable $\forall n. \neg \neg (p \ n \lor \neg p \ n)$. Then observe that $\mathbb{P}-\mathcal{D}(p)$ together with $C-\Sigma_1(p)$ and $C-\Sigma_1(\overline{p})$ implies $C-\mathcal{D}(p)$.

Theorem

Assuming MP_C, if $C-\Sigma_1(p)$ and $C-\Sigma_1(\overline{p})$ then $C-\mathcal{D}(p)$.

Proof.

First show $\mathbb{P}-\mathcal{D}(p)$ by applying MP_C to the constructively provable $\forall n. \neg \neg (p \ n \lor \neg p \ n)$. Then observe that $\mathbb{P}-\mathcal{D}(p)$ together with $C-\Sigma_1(p)$ and $C-\Sigma_1(\overline{p})$ implies $C-\mathcal{D}(p)$.

Fact

The converse holds.

Proof.

Theorem

Assuming MP_C, if $C-\Sigma_1(p)$ and $C-\Sigma_1(\overline{p})$ then $C-\mathcal{D}(p)$.

Proof.

First show $\mathbb{P}-\mathcal{D}(p)$ by applying MP_C to the constructively provable $\forall n. \neg \neg (p \ n \lor \neg p \ n)$. Then observe that $\mathbb{P}-\mathcal{D}(p)$ together with $C-\Sigma_1(p)$ and $C-\Sigma_1(\overline{p})$ implies $C-\mathcal{D}(p)$.

Fact

The converse holds.

Proof.

Assume $C-\Sigma_1(P)$ and $\neg\neg P$. For p n:=P observe that $C-\Sigma_1(p)$ and $C-\Sigma_1(\overline{p})$.

Theorem

Assuming MP_C, if $C-\Sigma_1(p)$ and $C-\Sigma_1(\overline{p})$ then $C-\mathcal{D}(p)$.

Proof.

First show $\mathbb{P}-\mathcal{D}(p)$ by applying $\mathsf{MP}_{\mathcal{C}}$ to the constructively provable $\forall n. \neg \neg (p \ n \lor \neg p \ n)$. Then observe that $\mathbb{P}-\mathcal{D}(p)$ together with $C-\Sigma_1(p)$ and $C-\Sigma_1(\overline{p})$ implies $C-\mathcal{D}(p)$.

Fact

The converse holds.

Proof.

Assume $C-\Sigma_1(P)$ and $\neg\neg P$. For $p\,n:=P$ observe that $C-\Sigma_1(p)$ and $C-\Sigma_1(\overline{p})$. By the assumption of Post's theorem, obtain $C-\mathcal{D}(p)$ and conclude P.

Theorem

Assuming MP_C , if $T \vDash \varphi$ for a $C - \Sigma_1$ theory, then $T \vdash \varphi$.

Theorem

Assuming MP_C , if $T \vDash \varphi$ for a $C - \Sigma_1$ theory, then $T \vdash \varphi$.

Proof.

Theorem

Assuming MP_C , if $T \vDash \varphi$ for a $C - \Sigma_1$ theory, then $T \vdash \varphi$.

Proof.

Observe that $T \vdash \varphi$ is $C - \Sigma_1$, so assuming MP_C and $T \vDash \varphi$ it is enough to show $\neg \neg (T \vdash \varphi)$.

Theorem

Assuming MP_C , if $T \vDash \varphi$ for a $C - \Sigma_1$ theory, then $T \vdash \varphi$.

Proof.

Observe that $T \vdash \varphi$ is $C - \Sigma_1$, so assuming MP_C and $T \vDash \varphi$ it is enough to show $\neg \neg (T \vdash \varphi)$. So on assumption of $T \not\vdash \varphi$, construct a model $M \vDash T$ with $M \vdash \varphi$, contradicting $T \vDash \varphi$. \square

Theorem

Assuming MP_C , if $T \vDash \varphi$ for a $C - \Sigma_1$ theory, then $T \vdash \varphi$.

Proof.

Observe that $T \vdash \varphi$ is $C - \Sigma_1$, so assuming MP_C and $T \vDash \varphi$ it is enough to show $\neg \neg (T \vdash \varphi)$. So on assumption of $T \not\vdash \varphi$, construct a model $M \vDash T$ with $M \vdash \varphi$, contradicting $T \vDash \varphi$. \square

Fact

The converse holds.

Theorem

Assuming MP_C , if $T \vDash \varphi$ for a $C-\Sigma_1$ theory, then $T \vdash \varphi$.

Proof.

Observe that $T \vdash \varphi$ is $C - \Sigma_1$, so assuming MP_C and $T \vDash \varphi$ it is enough to show $\neg \neg (T \vdash \varphi)$. So on assumption of $T \not\vdash \varphi$, construct a model $M \vDash T$ with $M \vdash \varphi$, contradicting $T \vDash \varphi$.

Fact

The converse holds.

Proof.

Theorem

Assuming MP_C , if $T \vDash \varphi$ for a $C - \Sigma_1$ theory, then $T \vdash \varphi$.

Proof.

Observe that $T \vdash \varphi$ is $C - \Sigma_1$, so assuming MP_C and $T \vDash \varphi$ it is enough to show $\neg \neg (T \vdash \varphi)$. So on assumption of $T \not\vdash \varphi$, construct a model $M \vDash T$ with $M \vdash \varphi$, contradicting $T \vDash \varphi$.

Fact

The converse holds.

Proof.

Assume $C-\Sigma_1(P)$ and $\neg\neg P$. For $T\,\psi:=P$ and $\varphi:=\bot$, observe that T is $C-\Sigma_1$ and $T\models\bot$.

Theorem

Assuming MP_C, if $T \models \varphi$ for a $C - \Sigma_1$ theory, then $T \vdash \varphi$.

Proof.

Observe that $T \vdash \varphi$ is $C - \Sigma_1$, so assuming MP_C and $T \vDash \varphi$ it is enough to show $\neg \neg (T \vdash \varphi)$. So on assumption of $T \not\vdash \varphi$, construct a model $M \vDash T$ with $M \vdash \varphi$, contradicting $T \vDash \varphi$. \square

Fact

The converse holds.

Proof.

Assume $C-\Sigma_1(P)$ and $\neg\neg P$. For $T\,\psi:=P$ and $\varphi:=\bot$, observe that T is $C-\Sigma_1$ and $T\models\bot$. By the assumption of completeness, obtain a deduction $T\vdash\bot$ and conclude P.

 $\mathsf{MP}_{\mathcal{C}}$ is equivalent to the following statements:

 MP_C is equivalent to the following statements:

■ For C-computable $R: \mathbb{N} \to \mathbb{N} \to \mathbb{P}$ we have that non-divergence implies termination, where R being C-computable simply means that R is $C - \Sigma_1$, and termination means $\exists y. R \times y$.

MP_C is equivalent to the following statements:

- For C-computable $R: \mathbb{N} \to \mathbb{N} \to \mathbb{P}$ we have that non-divergence implies termination, where R being C-computable simply means that R is $C \Sigma_1$, and termination means $\exists y. R \times y$.
- Every C-extended natural number $N: \mathbb{N} \to \mathbb{P}$ that is not infinite is actually finite, where N is a C-extended natural number if $C \mathcal{D}(N)$ and N is monotone, and finitude means $\exists n. N n$.

MP_C is equivalent to the following statements:

- For C-computable $R: \mathbb{N} \to \mathbb{N} \to \mathbb{P}$ we have that non-divergence implies termination, where R being C-computable simply means that R is $C \Sigma_1$, and termination means $\exists y. R \times y$.
- Every C-extended natural number $N: \mathbb{N} \to \mathbb{P}$ that is not infinite is actually finite, where N is a C-extended natural number if $C \mathcal{D}(N)$ and N is monotone, and finitude means $\exists n, N \in \mathbb{N}$.
- Every C-tree $\tau: \mathbb{B}^* \to \mathbb{P}$ that is not infinite is finite, where τ is a C-tree if $C-\mathcal{D}(N)$, $\tau\epsilon$, and τ I whenever $\tau II'$, finitude means $\exists n. \forall I. |I| \leq n \to \neg \tau I$.

Outline

- Constructive reverse mathematics
- 2 Markov's principle and its equivalents
- **3** Separating Markov's principles (informally)
- Separating Markov's principles (formally)
- 5 Ongoing work

There are (at least) two proof strategies to show MP independent:

There are (at least) two proof strategies to show MP independent:

- Construct models that satisfy the independence of premise (IP) but not LPO
 - Exploits that MP together with IP implies LPO
 - ▶ IP holds in modified function realizability of Kreisel (1958a)
 - ▶ IP holds in the exceptional type theory of Pédrot and Tabareau (2018)

There are (at least) two proof strategies to show MP independent:

- Construct models that satisfy the independence of premise (IP) but not LPO
 - ► Exploits that MP together with IP implies LPO
 - ▶ IP holds in modified function realizability of Kreisel (1958a)
 - ▶ IP holds in the exceptional type theory of Pédrot and Tabareau (2018)
- 2 Use Brouwer's free choice sequences to directly refute MP
 - ▶ Observed in another paper by Kreisel (1958b)
 - ▶ Also scales to constructive type theory (Coquand and Mannaa, 2016)
 - ▶ If done carefully, yields separation proof (Smorynski, 1973)

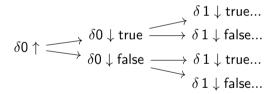
A (Boolean) choice sequence is a partial function $\delta : \mathbb{N} \to \mathbb{B}$ evolving over time:

■ If $\delta n \downarrow b$ at some point, then $\delta n \downarrow b$ at all later points

- If $\delta n \downarrow b$ at some point, then $\delta n \downarrow b$ at all later points
- For every n, eventually there will be b with $\delta n \downarrow b$

- If $\delta n \downarrow b$ at some point, then $\delta n \downarrow b$ at all later points
- For every n, eventually there will be b with $\delta n \downarrow b$
- Possible futures may branch

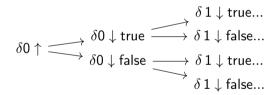
- If $\delta n \downarrow b$ at some point, then $\delta n \downarrow b$ at all later points
- For every n, eventually there will be b with $\delta n \downarrow b$
- Possible futures may branch



Choice Sequences

A (Boolean) choice sequence is a partial function $\delta : \mathbb{N} \to \mathbb{B}$ evolving over time:

- If $\delta n \downarrow b$ at some point, then $\delta n \downarrow b$ at all later points
- For every n, eventually there will be b with $\delta n \downarrow b$
- Possible futures may branch



Gives rise to an interpretation of intuitionistic logic

For functions with access to choice sequences:

 \blacksquare Assume MP would hold for a yet undetermined choice sequence δ

- \blacksquare Assume MP would hold for a yet undetermined choice sequence δ
- **2** That is, if $\neg(\forall n. \delta n \downarrow \text{ false})$ then $\exists n. \delta n \downarrow \text{ true}$

- lacktriangle Assume MP would hold for a yet undetermined choice sequence δ
- **2** That is, if $\neg(\forall n. \delta n \downarrow \text{false})$ then $\exists n. \delta n \downarrow \text{true}$
- **3** Indeed, $\neg(\forall n. \delta n \downarrow \text{ false})$ as there is a future where $\delta 42 \downarrow \text{ true}$

- 1 Assume MP would hold for a yet undetermined choice sequence δ
- **2** That is, if $\neg(\forall n. \delta n \downarrow \text{false})$ then $\exists n. \delta n \downarrow \text{true}$
- **3** Indeed, $\neg(\forall n. \delta n \downarrow \text{ false})$ as there is a future where $\delta 42 \downarrow \text{ true}$
- **4** However, $\exists n. \delta n$ ↓ true is contradictory when δn ↓ false evolves for all n

For functions f without access to choice sequences:

 \blacksquare Behaviour of f is independent of time progression

- \blacksquare Behaviour of f is independent of time progression

For functions f without access to choice sequences:

- \blacksquare Behaviour of f is independent of time progression

If we can control which functions have access to choice sequences, this allows us to separate versions of Markov's principle!

Outline

- Constructive reverse mathematics
- 2 Markov's principle and its equivalents
- **3** Separating Markov's principles (informally)
- 4 Separating Markov's principles (formally)
- 5 Ongoing work

Key Features of $\mathsf{TT}^\square_\mathcal{C}$ (Cohen and Rahli, 2022)

lacktriangle General framework for type theories modelled through an abstract modality \Box and parameterised by a type of time-progressing choice operators $\mathcal C$

- $lue{}$ General framework for type theories modelled through an abstract modality \Box and parameterised by a type of time-progressing choice operators $\mathcal C$
- Time progression: stateful computations that can evolve non-deterministically over time, worlds w form a poset with finite information

- $lue{}$ General framework for type theories modelled through an abstract modality \Box and parameterised by a type of time-progressing choice operators $\mathcal C$
- Time progression: stateful computations that can evolve non-deterministically over time, worlds w form a poset with finite information
- A syntactic type restriction $X \cap \text{pure}$: terms of type X not mentioning choice names

- $lue{}$ General framework for type theories modelled through an abstract modality \Box and parameterised by a type of time-progressing choice operators $\mathcal C$
- Time progression: stateful computations that can evolve non-deterministically over time, worlds w form a poset with finite information
- A syntactic type restriction $X \cap \text{pure}$: terms of type X not mentioning choice names
- lacktriangle We instantiate $\mathcal C$ with choice sequences and \Box with a Beth modality

Key Features of $\mathsf{TT}^\square_\mathcal{C}$ (Cohen and Rahli, 2022)

- $lue{}$ General framework for type theories modelled through an abstract modality \Box and parameterised by a type of time-progressing choice operators $\mathcal C$
- Time progression: stateful computations that can evolve non-deterministically over time, worlds w form a poset with finite information
- A syntactic type restriction $X \cap \text{pure}$: terms of type X not mentioning choice names
- lacktriangle We instantiate $\mathcal C$ with choice sequences and \square with a Beth modality
- Obtain the central forcing relation $w \Vdash P$

- lacktriangle General framework for type theories modelled through an abstract modality \Box and parameterised by a type of time-progressing choice operators $\mathcal C$
- Time progression: stateful computations that can evolve non-deterministically over time, worlds w form a poset with finite information
- A syntactic type restriction $X \cap \text{pure}$: terms of type X not mentioning choice names
- lacktriangle We instantiate $\mathcal C$ with choice sequences and \square with a Beth modality
- Obtain the central forcing relation $w \Vdash P$
- lacksquare For every w there is a fresh δ for which w has no information

- lacktriangle General framework for type theories modelled through an abstract modality \Box and parameterised by a type of time-progressing choice operators $\mathcal C$
- Time progression: stateful computations that can evolve non-deterministically over time, worlds w form a poset with finite information
- A syntactic type restriction $X \cap \text{pure}$: terms of type X not mentioning choice names
- lacktriangle We instantiate $\mathcal C$ with choice sequences and \square with a Beth modality
- Obtain the central forcing relation $w \Vdash P$
- lacktriangle For every w there is a fresh δ for which w has no information
- Pure computations do not depend on the world

- $lue{}$ General framework for type theories modelled through an abstract modality \Box and parameterised by a type of time-progressing choice operators $\mathcal C$
- Time progression: stateful computations that can evolve non-deterministically over time, worlds w form a poset with finite information
- A syntactic type restriction $X \cap \text{pure}$: terms of type X not mentioning choice names
- lacktriangle We instantiate $\mathcal C$ with choice sequences and \square with a Beth modality
- Obtain the central forcing relation $w \Vdash P$
- lacktriangle For every w there is a fresh δ for which w has no information
- Pure computations do not depend on the world
- Mechanised in Agda

Constructing Separating Models using $\mathsf{TT}^\square_\mathcal{C}$

Constructing Separating Models using $\mathsf{TT}^\square_\mathcal{C}$

Every instance of $TT_{\mathcal{C}}^{\square}$ interprets $CIC^* = MLTT + \mathbb{U} + ||\cdot||$, that is:

$$\mathsf{CIC}^* \vdash t : X \rightarrow \mathsf{TT}_{\mathcal{C}}^{\square} \vdash \llbracket t \rrbracket : \llbracket X \rrbracket$$

Constructing Separating Models using $\mathsf{TT}^\sqcup_\mathcal{C}$

Every instance of $TT_{\mathcal{C}}^{\square}$ interprets $CIC^* = MLTT + \mathbb{U} + ||\cdot||$, that is:

$$\mathsf{CIC}^* \vdash t : X \rightarrow \mathsf{TT}_{\mathcal{C}}^{\square} \vdash \llbracket t \rrbracket : \llbracket X \rrbracket$$

We construct two instances TT_1 and TT_2 such that:

Constructing Separating Models using $TT_{\mathcal{C}}^{\sqcup}$

Every instance of $\mathsf{TT}^\square_\mathcal{C}$ interprets $\mathsf{CIC}^* = \mathsf{MLTT} + \mathbb{U} + ||\cdot||$, that is:

$$\mathsf{CIC}^* \vdash t : X \rightarrow \mathsf{TT}_{\mathcal{C}}^{\square} \vdash \llbracket t \rrbracket : \llbracket X \rrbracket$$

We construct two instances TT_1 and TT_2 such that:

1 TT₁ \vdash MP_{PR} and TT₁ \vdash ¬MP_B, ruling out that CIC* \vdash MP_{PR} → MP_B

Constructing Separating Models using $\mathsf{TT}^\square_\mathcal{C}$

Every instance of $TT_{\mathcal{C}}^{\square}$ interprets $CIC^* = MLTT + \mathbb{U} + ||\cdot||$, that is:

$$\mathsf{CIC}^* \vdash t : X \rightarrow \mathsf{TT}_{\mathcal{C}}^{\square} \vdash \llbracket t \rrbracket : \llbracket X \rrbracket$$

We construct two instances TT_1 and TT_2 such that:

- \blacksquare TT₂ \vdash MP $_{\mathbb{B}}$ and TT₂ \vdash ¬MP $_{\mathbb{P}}$, ruling out that CIC* \vdash MP $_{\mathbb{B}} \to$ MP $_{\mathbb{P}}$

Instance TT_1 : choice sequences of type $\mathbb{N} \to \mathbb{B}$, first show $TT_1 \vdash \neg MP_{\mathbb{B}}$

world w

 $w \Vdash \neg \mathsf{MP}_{\mathbb{R}}$

Instance TT_1 : choice sequences of type $\mathbb{N} \to \mathbb{B}$, first show $TT_1 \vdash \neg MP_{\mathbb{B}}$

world w

$$\forall w' \geq w. \ w' \Vdash \mathsf{MP}_{\mathbb{B}}$$

Instance TT_1 : choice sequences of type $\mathbb{N} \to \mathbb{B}$, first show $TT_1 \vdash \neg MP_{\mathbb{B}}$

world w $w \Vdash \mathsf{MP}_{\mathbb{B}}$

Instance TT_1 : choice sequences of type $\mathbb{N} \to \mathbb{B}$, first show $TT_1 \vdash \neg MP_{\mathbb{B}}$

world w $w \Vdash \mathsf{MP}_{\mathbb{B}}$ δ fresh for w


```
world w
w \Vdash \mathsf{MP}_{\mathbb{B}}
\delta fresh for w
w \Vdash \neg(\forall n. \ \delta n = \mathsf{false}) \rightarrow \exists n. \ \delta n = \mathsf{true}
```



```
world w
w \Vdash \mathsf{MP}_{\mathbb{B}}
\delta fresh for w
w \Vdash \neg(\forall n. \ \delta n = \mathsf{false}) \rightarrow \exists n. \ \delta n = \mathsf{true}
```

$$w \Vdash \neg (\forall n. \ \delta n = \mathsf{false})$$

```
world w
w \Vdash \mathsf{MP}_{\mathbb{B}}
\delta fresh for w
w \vdash \neg (\forall n. \ \delta n = \mathsf{false}) \to \exists n. \ \delta n = \mathsf{true}
w \vdash \forall n. \ \delta n = \mathsf{false}
```



```
world w
w \Vdash \mathsf{MP}_{\mathbb{B}}
\delta fresh for w
w \vdash \neg(\forall n. \ \delta n = \mathsf{false}) \rightarrow \exists n. \ \delta n = \mathsf{true}
\forall w' \geq w.w' \vdash \delta n = \mathsf{false}
```



```
world w
w \Vdash \mathsf{MP}_{\mathbb{B}}
\delta fresh for w
w \Vdash \neg(\forall n. \ \delta n = \mathsf{false}) \to \exists n. \ \delta n = \mathsf{true}
\forall w' \geq w.w' \Vdash \delta \ 42 = \mathsf{false}
```



```
world w
w \Vdash \mathsf{MP}_{\mathbb{B}}
\delta fresh for w
w \Vdash \neg(\forall n. \ \delta n = \mathsf{false}) \to \exists n. \ \delta n = \mathsf{true}
\forall w' \geq w.w' \Vdash \delta \ 42 = \mathsf{false}
w' extending w with \delta \ 42 = \mathsf{true}
```


Instance TT_1 : choice sequences of type $\mathbb{N} \to \mathbb{B}$, first show $TT_1 \vdash \neg MP_{\mathbb{B}}$

```
w \Vdash \mathsf{MP}_{\mathbb{B}} \delta fresh for w w \Vdash \neg (\forall n. \ \delta n = \mathsf{false}) \to \exists n. \ \delta n = \mathsf{true} \forall w' \geq w.w' \Vdash \delta \ 42 = \mathsf{false} w' extending w with \delta \ 42 = \mathsf{true} w' \Vdash \delta \ 42 = \mathsf{false}
```

world w

```
world w
w \Vdash \mathsf{MP}_{\mathbb{B}}
\delta fresh for w
w \Vdash \neg(\forall n.\ \delta n = \mathsf{false}) \to \exists n.\ \delta n = \mathsf{true}
\forall w' \geq w.w' \Vdash \delta \, 42 = \mathsf{false}
w' extending w with \delta \, 42 = \mathsf{true}
w' \Vdash \delta \, 42 = \mathsf{false}
contradiction
```



```
world w
w \Vdash \mathsf{MP}_{\mathbb{B}}
\delta fresh for w
w \Vdash \neg(\forall n. \ \delta n = \mathsf{false}) \rightarrow \exists n. \ \delta n = \mathsf{true}
```

$$w \models \neg \exists n. \ \delta n = \text{true}$$

```
world w
w \Vdash \mathsf{MP}_{\mathbb{B}}
\delta fresh for w
w \Vdash \neg(\forall n. \ \delta n = \mathsf{false}) \to \exists n. \ \delta n = \mathsf{true}
w \vDash \exists n. \ \delta n = \mathsf{true}
```



```
world w
w \Vdash \mathsf{MP}_{\mathbb{B}}
\delta fresh for w
w \Vdash \neg(\forall n. \ \delta n = \mathsf{false}) \to \exists n. \ \delta n = \mathsf{true}
w \vDash \exists n. \ \delta n = \mathsf{true}
w_0 := w, \ w_{n+1} := w_n \cup \delta n := \mathsf{false} forms a Beth covering of w
```



```
world w
w \Vdash \mathsf{MP}_{\mathbb{B}}
\delta fresh for w
w \Vdash \neg(\forall n.\ \delta n = \mathsf{false}) \to \exists n.\ \delta n = \mathsf{true}
w \vDash \exists n.\ \delta n = \mathsf{true}
w_0 := w,\ w_{n+1} := w_n \cup \delta n := \mathsf{false} forms a Beth covering of w
w_i \vDash \delta n = \mathsf{true} for some i
```


Instance TT_1 : choice sequences of type $\mathbb{N} \to \mathbb{B}$, first show $TT_1 \vdash \neg MP_{\mathbb{B}}$

```
w \Vdash \mathsf{MP}_{\mathbb{B}}

\delta fresh for w

w \Vdash \neg (\forall n. \ \delta n = \mathsf{false}) \to \exists n. \ \delta n = \mathsf{true}

w \vDash \exists n. \ \delta n = \mathsf{true}

w_0 := w, \ w_{n+1} := w_n \cup \delta n := \mathsf{false} forms a Beth covering of w

w_i \vDash \delta n = \mathsf{true} for some i
```

contradiction

world w

To argue $TT_1 \vdash MP_{PR}$, the following rule is derivable:

$$\frac{w \Vdash \Gamma, n : \mathbb{N} \cap \mathsf{pure} \vdash ||P n||}{w \Vdash \Gamma \vdash \forall n : \mathbb{N}. ||P n||}$$

To argue $TT_1 \vdash MP_{PR}$, the following rule is derivable:

$$\frac{w \Vdash \Gamma, n : \mathbb{N} \cap \mathsf{pure} \vdash ||P n||}{w \Vdash \Gamma \vdash \forall n : \mathbb{N}. ||P n||}$$

Thus for any countable sequence of pure functions $e:(\mathbb{N}\to(\mathbb{N}\to\mathbb{B}))\cap \text{pure}$:

$$\forall w. \ w \Vdash \forall i : \mathbb{N}. \ \neg \neg || \Sigma n : \mathbb{N}. \ e_i \ n = \mathsf{true}|| \rightarrow || \Sigma n : \mathbb{N}. \ e_i \ n = \mathsf{true}||$$

To argue $TT_1 \vdash MP_{PR}$, the following rule is derivable:

$$\frac{w \Vdash \Gamma, n : \mathbb{N} \cap \mathsf{pure} \vdash ||P n||}{w \Vdash \Gamma \vdash \forall n : \mathbb{N}. ||P n||}$$

Thus for any countable sequence of pure functions $e:(\mathbb{N}\to(\mathbb{N}\to\mathbb{B}))\cap \text{pure}$:

$$\forall w. \ w \Vdash \forall i : \mathbb{N}. \ \neg \neg || \Sigma n : \mathbb{N}. \ e_i \ n = \mathsf{true}|| \rightarrow || \Sigma n : \mathbb{N}. \ e_i \ n = \mathsf{true}||$$

In particular, we can set $e_i i$ to be the *i*-th primitive recursive function:

 $\forall w. \ w \Vdash \mathsf{MP}_{\mathsf{PR}}$ and therefore $\mathsf{TT}_1 \vdash \mathsf{MP}_{\mathsf{PR}}$

Instance $TT_2\colon$ choice sequences of type $\mathbb{N}\to\mathbb{U}$, follow same outline

Instance TT_2 : choice sequences of type $\mathbb{N} \to \mathbb{U}$, follow same outline

1 Use \top : $\mathbb U$ in place of true : $\mathbb B$ and \bot : $\mathbb U$ in place of false : $\mathbb B$

Instance TT_2 : choice sequences of type $\mathbb{N} \to \mathbb{U}$, follow same outline

- **1** Use \top : $\mathbb U$ in place of true : $\mathbb B$ and \bot : $\mathbb U$ in place of false : $\mathbb B$
- 2 Show that predicates arising from choice sequences are logically decidable

Instance TT_2 : choice sequences of type $\mathbb{N} \to \mathbb{U}$, follow same outline

- **1** Use \top : $\mathbb U$ in place of true : $\mathbb B$ and \bot : $\mathbb U$ in place of false : $\mathbb B$
- 2 Show that predicates arising from choice sequences are logically decidable
- ${f 3}$ Exploit that ${\Bbb N} o {\Bbb B}$ is now pure

Instance TT_2 : choice sequences of type $\mathbb{N} \to \mathbb{U}$, follow same outline

- **1** Use $\top : \mathbb{U}$ in place of true : \mathbb{B} and $\bot : \mathbb{U}$ in place of false : \mathbb{B}
- 2 Show that predicates arising from choice sequences are logically decidable
- lacksquare Exploit that $\mathbb{N} o \mathbb{B}$ is now pure
- **4** Derive that $TT_2 \vdash MP_{\mathbb{B}}$ and $TT_2 \vdash \neg MP_{\mathbb{P}}$

Outline

- Constructive reverse mathematics
- 2 Markov's principle and its equivalents
- **3** Separating Markov's principles (informally)
- Separating Markov's principles (formally)
- 5 Ongoing work

Separating Limited Principles of Omniscience¹

" Σ_1 propositions are logically decidable"

¹da Rocha Paiva, Cohen, Forster, K., Rahli (2024)

Separating Limited Principles of Omniscience¹

" Σ_1 propositions are logically decidable"

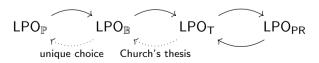
$$\mathsf{LPO}_{\mathbb{P}} := \forall p : \mathbb{N} \to \mathbb{P}. \, (\forall n. \, p \, n \, \vee \, \neg p \, n) \to (\exists n. \, p \, n) \, \vee \, \neg (\exists n. \, p \, n) \\ \mathsf{LPO}_{\mathbb{B}} := \forall f : \mathbb{N} \to \mathbb{B}. \quad (\exists n. \, f \, n = \mathsf{true}) \, \vee \, \neg (\exists n. \, f \, n = \mathsf{true}) \\ \mathsf{LPO}_{\mathsf{T}} := \forall f : \mathbb{N} \to \mathbb{B}. \, \mathsf{computable} \, f \to (\exists n. \, f \, n = \mathsf{true}) \, \vee \, \neg (\exists n. \, f \, n = \mathsf{true}) \\ \mathsf{LPO}_{\mathsf{PR}} := \forall f : \mathbb{N} \to \mathbb{B}. \, \mathsf{primrec} \, f \to (\exists n. \, f \, n = \mathsf{true}) \, \vee \, \neg (\exists n. \, f \, n = \mathsf{true})$$

¹da Rocha Paiva, Cohen, Forster, K., Rahli (2024)

Separating Limited Principles of Omniscience¹

" Σ_1 propositions are logically decidable"

$$\mathsf{LPO}_{\mathbb{P}} := \forall p : \mathbb{N} \to \mathbb{P}. \, (\forall n. \, p \, n \, \vee \neg p \, n) \to (\exists n. \, p \, n) \, \vee \neg (\exists n. \, p \, n) \\ \mathsf{LPO}_{\mathbb{B}} := \forall f : \mathbb{N} \to \mathbb{B}. \qquad (\exists n. \, f \, n = \mathsf{true}) \, \vee \neg (\exists n. \, f \, n = \mathsf{true}) \\ \mathsf{LPO}_{\mathsf{T}} := \forall f : \mathbb{N} \to \mathbb{B}. \, \mathsf{computable} \, f \to (\exists n. \, f \, n = \mathsf{true}) \, \vee \neg (\exists n. \, f \, n = \mathsf{true}) \\ \mathsf{LPO}_{\mathsf{PR}} := \forall f : \mathbb{N} \to \mathbb{B}. \, \mathsf{primrec} \, f \to (\exists n. \, f \, n = \mathsf{true}) \, \vee \neg (\exists n. \, f \, n = \mathsf{true})$$



¹da Rocha Paiva, Cohen, Forster, K., Rahli (2024)

Separating Arithmetical Fragments of LEM²

Represent the C-arithmetical hierarchy on predicates $p: \mathbb{N}^k \to \mathbb{P}$ inductively:

$$\frac{C-\mathcal{D}(p)}{\Sigma_0(p)} \quad \frac{C-\mathcal{D}(p)}{\Pi_0(p)} \quad \frac{\Pi_n(p)}{\Sigma_{n+1}(\lambda \vec{x}. \, \exists y. \, p \, (y :: \vec{x}))} \quad \frac{\Sigma_n(p)}{\Pi_{n+1}(\lambda \vec{x}. \, \forall y. \, p \, (y :: \vec{x}))}$$

²Akama, Berardi, Hayashi, Kohlenbach (2004)

Separating Arithmetical Fragments of LEM²

Represent the C-arithmetical hierarchy on predicates $p: \mathbb{N}^k \to \mathbb{P}$ inductively:

$$\frac{C - \mathcal{D}(p)}{\Sigma_0(p)} \quad \frac{C - \mathcal{D}(p)}{\Pi_0(p)} \quad \frac{\Pi_n(p)}{\Sigma_{n+1}(\lambda \vec{x}. \, \exists y. \, p \, (y :: \vec{x}))} \quad \frac{\Sigma_n(p)}{\Pi_{n+1}(\lambda \vec{x}. \, \forall y. \, p \, (y :: \vec{x}))}$$

Introduces hierarchy generalising MP_C and LPO_C :

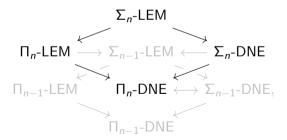
²Akama, Berardi, Hayashi, Kohlenbach (2004)

Separating Arithmetical Fragments of LEM²

Represent the C-arithmetical hierarchy on predicates $p: \mathbb{N}^k \to \mathbb{P}$ inductively:

$$\frac{C-\mathcal{D}(p)}{\Sigma_0(p)} \quad \frac{C-\mathcal{D}(p)}{\Pi_0(p)} \quad \frac{\Pi_n(p)}{\Sigma_{n+1}(\lambda \vec{x}. \, \exists y. \, p \, (y :: \vec{x}))} \quad \frac{\Sigma_n(p)}{\Pi_{n+1}(\lambda \vec{x}. \, \forall y. \, p \, (y :: \vec{x}))}$$

Introduces hierarchy generalising MP_C and LPO_C :



²Akama, Berardi, Hayashi, Kohlenbach (2004)

³Forster, K., Mück (2024)

Definition (Forster, K., Mück (2023))

An oracle computation is a functional $F:(Q \to A \to \mathbb{P}) \to I \to O \to \mathbb{P}$ captured by a computation tree $\tau: I \to A^* \to Q + O$ and its induced interrogation relation $\tau i; R \vdash qs; as$ as follows:

 $FRio \leftrightarrow \exists qs \ as. \ \tau i; R \vdash qs; as \land \tau \times as \triangleright \text{ out } o$

³Forster, K., Mück (2024)

Definition (Forster, K., Mück (2023))

An oracle computation is a functional $F:(Q \to A \to \mathbb{P}) \to I \to O \to \mathbb{P}$ captured by a computation tree $\tau: I \to A^* \to Q + O$ and its induced interrogation relation $\tau i; R \vdash qs; as$ as follows:

$$FRio \leftrightarrow \exists qs \ as. \ \tau i; R \vdash qs; as \land \tau \times as \triangleright \text{ out } o$$

$$P \preceq_{\mathcal{T}} Q := \text{there is an oracle computation } F: (\mathbb{N} \to \mathbb{B} \to \mathbb{P}) \to \mathbb{N} \to \mathbb{B} \to \mathbb{P} \text{ with } F Q = P$$

³Forster, K., Mück (2024)

Definition (Forster, K., Mück (2023))

An oracle computation is a functional $F:(Q \to A \to \mathbb{P}) \to I \to O \to \mathbb{P}$ captured by a computation tree $\tau: I \to A^* \to Q + O$ and its induced interrogation relation $\tau i; R \vdash qs; as$ as follows:

$$FRio \leftrightarrow \exists qs \ as. \ \tau i; R \vdash qs; as \land \tau \times as \triangleright \text{ out } o$$

$$P \leq_{\mathcal{T}} Q := \text{ there is an oracle computation } F: (\mathbb{N} \to \mathbb{B} \to \mathbb{P}) \to \mathbb{N} \to \mathbb{B} \to \mathbb{P} \text{ with } F Q = P$$

$$\mathcal{S}_Q(P) := ext{ there is an oracle computation } F: (\mathbb{N} o \mathbb{B} o \mathbb{P}) o \mathbb{N} o \mathbb{1} o \mathbb{P} ext{ with dom}(F|Q) = P$$

Definition (Forster, K., Mück (2023))

An oracle computation is a functional $F:(Q \to A \to \mathbb{P}) \to I \to O \to \mathbb{P}$ captured by a computation tree $\tau: I \to A^* \to Q + O$ and its induced interrogation relation $\tau i; R \vdash qs; as$ as follows:

$$FRio \leftrightarrow \exists qs \ as. \ \tau i; R \vdash qs; as \land \tau \times as \triangleright \text{out } o$$

$$P \leq_{\mathcal{T}} Q := \text{ there is an oracle computation } F: (\mathbb{N} \to \mathbb{B} \to \mathbb{P}) \to \mathbb{N} \to \mathbb{B} \to \mathbb{P} \text{ with } F Q = P$$

$$\mathcal{S}_Q(P) := ext{ there is an oracle computation } F: (\mathbb{N} o \mathbb{B} o \mathbb{P}) o \mathbb{N} o \mathbb{1} o \mathbb{P} ext{ with dom}(F|Q) = P$$

Lemma

Assuming Σ_n -LEM, if P is Σ_{n+1} and Q is Σ_n , then $S_Q(P)$.

³Forster, K., Mück (2024)

⁴Zeng, Forster, K., Nemoto (2024)

Definition (Shoenfield (1959) and Gold (1965))

 $P: X \to \mathbb{P}$ is limit-computable if there exists a function $f: X \to \mathbb{N} \to \mathbb{B}$ with

$$Px \leftrightarrow \exists n. \forall m > n. \ f(x, m) = \text{true} \quad \land \quad \neg Px \leftrightarrow \exists n. \forall m > n. \ f(x, m) = \text{false}.$$

⁴Zeng, Forster, K., Nemoto (2024)

Definition (Shoenfield (1959) and Gold (1965))

 $P: X \to \mathbb{P}$ is limit-computable if there exists a function $f: X \to \mathbb{N} \to \mathbb{B}$ with

$$Px \leftrightarrow \exists n. \forall m > n. \ f(x, m) = \text{true} \quad \land \quad \neg Px \leftrightarrow \exists n. \forall m > n. \ f(x, m) = \text{false}.$$

Lemma

Assuming LPO, if P is limit computable, then $P \leq_T H$.

⁴Zeng, Forster, K., Nemoto (2024)

Definition (Shoenfield (1959) and Gold (1965))

 $P: X \to \mathbb{P}$ is limit-computable if there exists a function $f: X \to \mathbb{N} \to \mathbb{B}$ with

$$Px \leftrightarrow \exists n. \forall m > n. \ f(x, m) = \text{true} \quad \land \quad \neg Px \leftrightarrow \exists n. \forall m > n. \ f(x, m) = \text{false}.$$

Lemma

Assuming LPO, if P is limit computable, then $P \leq_T H$.

Definition (Lerman and Soare (1980) and Post (1944))

 $P: X \to \mathbb{P}$ is low if $P' \preceq_T H$ and simple if it is co-infinite, semi-decidable, and for W_e being the e-th enumerable set we have $W_e \cap P \neq \emptyset$ whenever W_e is infinite.

⁴Zeng, Forster, K., Nemoto (2024)

Definition (Shoenfield (1959) and Gold (1965))

 $P: X \to \mathbb{P}$ is limit-computable if there exists a function $f: X \to \mathbb{N} \to \mathbb{B}$ with

$$Px \leftrightarrow \exists n. \forall m > n. \ f(x, m) = \text{true} \quad \land \quad \neg Px \leftrightarrow \exists n. \forall m > n. \ f(x, m) = \text{false}.$$

Lemma

Assuming LPO, if P is limit computable, then $P \leq_T H$.

Definition (Lerman and Soare (1980) and Post (1944))

 $P:X \to \mathbb{P}$ is low if $P' \preceq_T H$ and simple if it is co-infinite, semi-decidable, and for W_e being the e-th enumerable set we have $W_e \cap P \neq \emptyset$ whenever W_e is infinite.

Theorem

Assuming LPO, a low simple set exists.

⁴Zeng, Forster, K., Nemoto (2024)

- CIC is a great base system for constructive reverse mathematics
- $\mathsf{TT}^\square_\mathcal{C}$ is a great system for constructing separating models
- Coq and Agda are great systems to help you sleep well

- CIC is a great base system for constructive reverse mathematics
- $\mathsf{TT}^\square_\mathcal{C}$ is a great system for constructing separating models
- Coq and Agda are great systems to help you sleep well
- If you want to see more detail, have a look at our paper!
- Call for interns: extend MLTT à la Coq, synthetic realisability, constructive analyses...

- CIC is a great base system for constructive reverse mathematics
- lacktriangleright TT $_{\mathcal{C}}^{\square}$ is a great system for constructing separating models
- Coq and Agda are great systems to help you sleep well
- If you want to see more detail, have a look at our paper!
- Call for interns: extend MLTT à la Coq, synthetic realisability, constructive analyses...

Thank you!

Bibliography I

- Akama, Y., Berardi, S., Hayashi, S., and Kohlenbach, U. (2004). An arithmetical hierarchy of the law of excluded middle and related principles. In *Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004.*, pages 192–201. IEEE.
- Boolos, G. S., Burgess, J. P., and Jeffrey, R. C. (2002). Computability and logic. Cambridge university press.
- Cohen, L. and Rahli, V. (2022). Constructing unprejudiced extensional type theories with choices via modalities. In 7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022). Schloss-Dagstuhl-Leibniz Zentrum für Informatik.
- Coquand, T. and Mannaa, B. (2016). The independence of markov's principle in type theory. arXiv preprint arXiv:1602.04530.
- da Rocha Paiva, B., Cohen, L., Forster, Y., Kirst, D., and Rahli, V. (2024). Limited principles of omniscience in constructive type theory. In 30th International Conference on Types for Proofs and Programs TYPES 2024–Abstracts, page 23.
- Diener, H. (2018). Constructive reverse mathematics: Habilitationsschrift. Universität Siegen.
- Forster, Y., Kirst, D., and Mück, N. (2023). Oracle computability and turing reducibility in the calculus of inductive constructions. In *Asian Symposium on Programming Languages and Systems*. Springer.
- Forster, Y., Kirst, D., and Mück, N. (2024). The kleene-post and post's theorem in the calculus of inductive constructions. In 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).

Bibliography II

- Forster, Y., Kirst, D., and Smolka, G. (2019). On synthetic undecidability in Coq, with an application to the Entscheidungsproblem. In *Proceedings of the 8th ACM SIGPLAN International Conference on Certified Programs and Proofs*.
- Forster, Y., Kirst, D., and Wehr, D. (2021). Completeness theorems for first-order logic analysed in constructive type theory: Extended version. *Journal of Logic and Computation*, 31(1):112–151.
- Friedman, H. M. (1976). Systems on second order arithmetic with restricted induction i, ii. *J. Symb. Logic*, 41:557–559.
- Gold, E. M. (1965). Limiting recursion. The Journal of Symbolic Logic, 30(1):28-48.
- Ishihara, H. (2006). Reverse mathematics in bishop's constructive mathematics. *Philosophia Scientiæ. Travaux d'histoire et de philosophie des sciences*, (CS 6):43–59.
- Kirst, D. and Zeng, H. (2024). The blurred drinker paradox and blurred choice axioms for the downward löwenheim-skolem theorem. In 30th International Conference on Types for Proofs and Programs TYPES 2024–Abstracts, page 20.
- Kreisel, G. (1958a). The non-derivability of $\neg(x)a(x) \rightarrow (\exists x)\neg(ax)$, a(x) primitive recursive, in intuitionistic formal systems (abstract). *Jour. Symb. Logic*, 23(4):456–457.
- Kreisel, G. (1958b). A remark on free choice sequences and the topological completeness proofs. *The Journal of Symbolic Logic*, 23(4):369–388.

Bibliography III

- Kreisel, G. (1962). On weak completeness of intuitionistic predicate logic. *The Journal of Symbolic Logic*, 27(2):139–158.
- Krivtsov, V. N. (2015). Semantical completeness of first-order predicate logic and the weak fan theorem. *Studia Logica*, 103(3):623–638.
- Lerman, M. and Soare, R. (1980). *d*-simple sets, small sets, and degree classes. *Pacific Journal of Mathematics*, 87(1):135–155.
- Pédrot, P.-M. and Tabareau, N. (2018). Failure is not an option. In *European Symposium on Programming*, pages 245–271. Springer.
- Post, E. L. (1944). Recursively enumerable sets of positive integers and their decision problems. *bulletin of the American Mathematical Society*, 50(5):284–316.
- Shoenfield, J. R. (1959). On degrees of unsolvability. Annals of mathematics, 69(3):644-653.
- Simpson, S. G. (2009). Subsystems of second order arithmetic, volume 1. Cambridge University Press.
- Smorynski, C. A. (1973). Applications of kripke models. In *Number 344 in Lecture notes in mathematics*., pages 324–391. Springer.
- Zeng, H., Forster, Y., Kirst, D., and Nemoto, T. (2024). Post's problem in constructive mathematics. In *Continuity, Computability, Constructivity From Logic to Algorithms*.