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Constructive Reverse Mathematics

Classical reverse mathematics studies classically detectable equivalences:

Which theorems are equivalent to the axiom of choice or similar principles?

Which theorems are equivalent to which comprehension principles?

Many more, see Friedman (1976) and Simpson (2009)

Constructive reverse mathematics studies constructively detectable equivalences:

Which theorems are equivalent to excluded middle (LEM) or weaker principles?

Which theorems are equivalent to which specific formulation of the axiom of choice?

Many more, see Ishihara (2006) and Diener (2018)

Characterises the computational content of analysed theorems
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Some Typical Principles

Fragments of the excluded middle:

LEM := ∀P : P.P ∨ ¬P
LPO := ∀f : N→B. (∃n. f n = true) ∨ (∀n. f n = false)

MP := ∀f : N→B.¬¬(∃n. f n = true)→ ∃n. f n = true

Fragments of the axioms of choice:

AC := ∀AB.∀R : A→B→P. tot(R)→ ∃f : A→B.∀x .R x (f x)

DC := ∀A. inhab(A)→ ∀R : A→A→P. tot(R)→ ∃f : N→A.∀n.R (f n) (f (n + 1))

CC := ∀A.∀R : N→A→P. tot(R)→ ∃f : N→A.∀n.R n (f n)

To unveil fine distinctions, we use CIC as a modest base system
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Some Typical Connections

LEM: Every non-empty set of numbers has a minimum

LPO: Every sequence in a compact set has a convergent subsequence

MP: Every bi-enumerable set of numbers is decidable

AC: Every set can be well-ordered

DC: Every partial order without infinite descending chains is well-founded

CC: Every sequentially continuous real-valued function is continuous

Often very subtle, we use Coq to systematically track dependencies
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Some Classically Invisible Surprises

Classical foundations are usually blind for LEM and CCN...

Theorem (Simpson (2009))

Completeness of first-order logic is equivalent to weak Kőnig’s lemma.

Completeness is equivalent to weak fan theorem (Krivtsov, 2015)

Completeness requires MP (Kreisel, 1962)

Theorem (Boolos, Burgess, Jeffrey (2002))

The downward Löwenheim-Skolem theorem is equivalent to DC.

Only “DC−CCN” is necessary but also “LEM−MP” (K. and Zeng 2024)
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Base System: Constructive Type Theory

Features included in the Calculus of Inductive Constructions (CIC):

Inductive types: B, N, lists X ∗, vectors X n, ...

Standard type formers: X → Y , X × Y , X + Y , ∀x .F x , Σx .F x

Propositional universe P with logical connectives: →, ∧, ∨, ∀, ∃

Features not included in CIC:

Classical axioms that allow case distinctions of the form P ∨ ¬P
Choice principles turning total relations R : X → Y → P into functions f : X → Y
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Type-Theoretic Notions of Existence

Usual definitions in the prominent constructive type theories:

In CIC: ∃x . p x
In HoTT: ||Σx . p x ||
In MLTT: Σx . p x

Ascendingly stronger induced choice principles:

∆1-AC in CIC: ∀f : N→ B. (∃n. f n = true)→ Σn. f n = true

UC in HoTT: ∀AB.∀R : A→B→P. tot(R)→ fun(R)→ ∃f : A→B.∀x .R x (f x)

AC in MLTT: ∀AB.∀R : A→B→P. tot(R)→ ∃f : A→B.∀x .R x (f x)

The alternative ¬¬Σx . p x blocks any choice principles but trivialises MP...
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Stating Markov’s Principles

“Σ1 propositions are stable under double negation”

MPP := ∀p : N→P. (∀n. p n ∨ ¬p n)→ ¬¬(∃n. p n)→ ∃n. p n
MPB := ∀f : N→B. ¬¬(∃n. f n = true)→ ∃n. f n = true

MPT := ∀f : N→B. computable f → ¬¬(∃n. f n = true)→ ∃n. f n = true

MPPR := ∀f : N→B. primrec f → ¬¬(∃n. f n = true)→ ∃n. f n = true

MPP MPB MPT MPPR

unique choice Church’s thesis
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Confusion about Markov’s Principles

Lots of false statements on Wikipedia and nLab

, also (anonymous) experts can be wrong:

”MPB states that a Turing machine that does not loop necessarily terminates”
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Restating Markov’s Principles

Different underlying notions of decidability of predicates p : N→ P:

P−D(p) := ∀n. p n ∨ ¬p n
B−D(p) := ∃f : N→ B. ∀x . p x ↔ f x = true

T−D(p) := ∃f : N→ B. computable→ ∀x . p x ↔ f x = true

PR−D(p) := ∃f : N→ B. primrec→ ∀x . p x ↔ f x = true

Induced notions of C−Σ1 propositions/predicates relative to C−D(p):

MPP ↔ ∀P : P.P−Σ1(P)→ ¬¬P → P

MPB ↔ ∀P : P.B−Σ1(P)→ ¬¬P → P

MPT ↔ ∀P : P.T−Σ1(P)→ ¬¬P → P

MPPR ↔ ∀P : P.PR−Σ1(P)→ ¬¬P → P
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Post’s Theorem (cf. Forster, K., Smolka (2019))

Theorem

Assuming MPC , if C−Σ1(p) and C−Σ1(p) then C−D(p).

Proof.

First show P−D(p) by applying MPC to the constructively provable ∀n.¬¬(p n ∨ ¬p n).
Then observe that P−D(p) together with C−Σ1(p) and C−Σ1(p) implies C−D(p).

Fact

The converse holds.

Proof.

Assume C−Σ1(P) and ¬¬P. For p n := P observe that C−Σ1(p) and C−Σ1(p).
By the assumption of Post’s theorem, obtain C−D(p) and conclude P.
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Completeness Theorems (cf. Forster, K., Wehr (2021))

Theorem

Assuming MPC , if T � ϕ for a C−Σ1 theory, then T ` ϕ.

Proof.

Observe that T ` ϕ is C−Σ1, so assuming MPC and T � ϕ it is enough to show ¬¬(T ` ϕ).
So on assumption of T 6` ϕ, construct a model M � T with M ` ϕ, contradicting T � ϕ.

Fact

The converse holds.

Proof.

Assume C−Σ1(P) and ¬¬P. For T ψ := P and ϕ := ⊥, observe that T is C−Σ1 and T � ⊥.
By the assumption of completeness, obtain a deduction T ` ⊥ and conclude P.
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Other Equivalences

MPC is equivalent to the following statements:

For C -computable R : N→ N→ P we have that non-divergence implies termination,
where R being C -computable simply means that R is C−Σ1,
and termination means ∃y .R x y .

Every C -extended natural number N : N→ P that is not infinite is actually finite,
where N is a C -extended natural number if C−D(N) and N is monotone,
and finitude means ∃n.N n.

Every C -tree τ : B∗ → P that is not infinite is finite,
where τ is a C -tree if C−D(N), τε, and τ l whenever τ ll ′,
finitude means ∃n.∀l . |l | ≤ n→ ¬τ l .
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Outline

1 Constructive reverse mathematics

2 Markov’s principle and its equivalents

3 Separating Markov’s principles (informally)

4 Separating Markov’s principles (formally)

5 Ongoing work
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Independence Proofs

There are (at least) two proof strategies to show MP independent:

1 Construct models that satisfy the independence of premise (IP) but not LPO
I Exploits that MP together with IP implies LPO
I IP holds in modified function realizability of Kreisel (1958a)
I IP holds in the exceptional type theory of Pédrot and Tabareau (2018)

2 Use Brouwer’s free choice sequences to directly refute MP
I Observed in another paper by Kreisel (1958b)
I Also scales to constructive type theory (Coquand and Mannaa, 2016)
I If done carefully, yields separation proof (Smorynski, 1973)
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2 Use Brouwer’s free choice sequences to directly refute MP
I Observed in another paper by Kreisel (1958b)
I Also scales to constructive type theory (Coquand and Mannaa, 2016)
I If done carefully, yields separation proof (Smorynski, 1973)

Dominik Kirst Separating Markov’s Principles October 15th, 2024 19



Independence Proofs

There are (at least) two proof strategies to show MP independent:

1 Construct models that satisfy the independence of premise (IP) but not LPO
I Exploits that MP together with IP implies LPO
I IP holds in modified function realizability of Kreisel (1958a)
I IP holds in the exceptional type theory of Pédrot and Tabareau (2018)
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Choice Sequences

A (Boolean) choice sequence is a partial function δ : N⇀ B evolving over time:

If δn ↓ b at some point, then δn ↓ b at all later points

For every n, eventually there will be b with δn ↓ b
Possible futures may branch

δ 1 ↓ true...

δ0 ↓ true δ 1 ↓ false...
δ0 ↑

δ0 ↓ false δ 1 ↓ true...

δ 1 ↓ false...

Gives rise to an interpretation of intuitionistic logic
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Invalidating Markov’s Principle

For functions with access to choice sequences:

1 Assume MP would hold for a yet undetermined choice sequence δ

2 That is, if ¬(∀n. δn ↓ false) then ∃n. δn ↓ true

3 Indeed, ¬(∀n. δn ↓ false) as there is a future where δ 42 ↓ true

4 However, ∃n. δn ↓ true is contradictory when δn ↓ false evolves for all n
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Validating Markov’s Principle

For functions f without access to choice sequences:

1 Behaviour of f is independent of time progression

2 MP holds for f if it holds in the meta-theory

If we can control which functions have access to choice sequences,
this allows us to separate versions of Markov’s principle!
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Key Features of TT�
C (Cohen and Rahli, 2022)

General framework for type theories modelled through an abstract modality � and
parameterised by a type of time-progressing choice operators C

Time progression: stateful computations that can evolve non-deterministically over time,
worlds w form a poset with finite information

A syntactic type restriction X ∩ pure: terms of type X not mentioning choice names

We instantiate C with choice sequences and � with a Beth modality

Obtain the central forcing relation w 
 P

For every w there is a fresh δ for which w has no information

Pure computations do not depend on the world

Mechanised in Agda
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Constructing Separating Models using TT�
C

Every instance of TT�
C interprets CIC∗ = MLTT + U + || · ||, that is:

CIC∗ ` t : X → TT�
C ` [[t]] : [[X ]]

We construct two instances TT1 and TT2 such that:

1 TT1 ` MPPR and TT1 ` ¬MPB, ruling out that CIC∗ ` MPPR → MPB

2 TT2 ` MPB and TT2 ` ¬MPP, ruling out that CIC∗ ` MPB → MPP
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Separating MPB from MPPR

Instance TT1: choice sequences of type N→ B, first show TT1 ` ¬MPB

world w

w 
 MPB
δ fresh for w
w 
 ¬(∀n. δn = false)→ ∃n. δn = true
∀w ′ ≥ w .w ′ 
 δ 42 = false
w ′ extending w with δ 42 = true
w ′ 
 δ 42 = false
contradiction

w 
 ¬MPB
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Separating MPB from MPPR (ctd.)

To argue TT1 ` MPPR, the following rule is derivable:

w 
 Γ, n : N ∩ pure ` ||P n||
w 
 Γ ` ∀n : N. ||P n||

Thus for any countable sequence of pure functions e : (N→ (N→ B)) ∩ pure:

∀w . w 
 ∀i : N. ¬¬||Σn : N. ei n = true|| → ||Σn : N. ei n = true||

In particular, we can set ei i to be the i-th primitive recursive function:

∀w . w 
 MPPR and therefore TT1 ` MPPR
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Separating MPP from MPB

Instance TT2: choice sequences of type N→ U, follow same outline

1 Use > : U in place of true : B and ⊥ : U in place of false : B

2 Show that predicates arising from choice sequences are logically decidable

3 Exploit that N→ B is now pure

4 Derive that TT2 ` MPB and TT2 ` ¬MPP
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Outline

1 Constructive reverse mathematics

2 Markov’s principle and its equivalents

3 Separating Markov’s principles (informally)

4 Separating Markov’s principles (formally)

5 Ongoing work
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Separating Limited Principles of Omniscience1

“Σ1 propositions are logically decidable”

LPOP := ∀p : N→P. (∀n. p n ∨ ¬p n)→ (∃n. p n) ∨ ¬(∃n. p n)

LPOB := ∀f : N→B. (∃n. f n = true) ∨ ¬(∃n. f n = true)

LPOT := ∀f : N→B. computable f → (∃n. f n = true) ∨ ¬(∃n. f n = true)

LPOPR := ∀f : N→B. primrec f → (∃n. f n = true) ∨ ¬(∃n. f n = true)

LPOP LPOB LPOT LPOPR

unique choice Church’s thesis

1da Rocha Paiva, Cohen, Forster, K., Rahli (2024)
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Separating Arithmetical Fragments of LEM2

Represent the C-arithmetical hierarchy on predicates p : Nk → P inductively:

C−D(p)

Σ0(p)

C−D(p)

Π0(p)

Πn(p)

Σn+1(λ~x .∃y . p (y :: ~x))

Σn(p)

Πn+1(λ~x . ∀y . p (y :: ~x))

Introduces hierarchy generalising MPC and LPOC :

Σn-LEM

Πn-LEM Σn−1-LEM Σn-DNE

Πn−1-LEM Πn-DNE Σn−1-DNE,

Πn−1-DNE

2Akama, Berardi, Hayashi, Kohlenbach (2004)
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Post’s Hierarchy Theorem3

Definition (Forster, K., Mück (2023))

An oracle computation is a functional F : (Q→A→P)→I→O→P captured by a computation
tree τ : I→A∗⇀Q + O and its induced interrogation relation τ i ;R ` qs ;as as follows:

F R i o ↔ ∃qs as. τ i ;R ` qs ;as ∧ τ x as . out o

P �T Q := there is an oracle computation F : (N→B→P)→N→B→P with F Q = P

SQ(P) := there is an oracle computation F : (N→B→P)→N→1→P with dom(F Q) = P

Lemma

Assuming Σn-LEM, if P is Σn+1 and Q is Σn, then SQ(P).

3Forster, K., Mück (2024)
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Post’s Problem4

Definition (Shoenfield (1959) and Gold (1965))

P : X → P is limit-computable if there exists a function f : X → N→ B with

Px ↔ ∃n.∀m > n. f (x ,m) = true ∧ ¬Px ↔ ∃n.∀m > n. f (x ,m) = false.

Lemma

Assuming LPO, if P is limit computable, then P �T H.

Definition (Lerman and Soare (1980) and Post (1944))

P : X → P is low if P ′ �T H and simple if it is co-infinite, semi-decidable, and for We being
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Some Take-Home Messages

CIC is a great base system for constructive reverse mathematics

TT�
C is a great system for constructing separating models

Coq and Agda are great systems to help you sleep well

If you want to see more detail, have a look at our paper!

Call for interns: extend MLTT à la Coq, synthetic realisability, constructive analyses...

Thank you!
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Call for interns: extend MLTT à la Coq, synthetic realisability, constructive analyses...

Thank you!

Dominik Kirst Separating Markov’s Principles October 15th, 2024 34



Bibliography I

Akama, Y., Berardi, S., Hayashi, S., and Kohlenbach, U. (2004). An arithmetical hierarchy of the law of
excluded middle and related principles. In Proceedings of the 19th Annual IEEE Symposium on Logic in
Computer Science, 2004., pages 192–201. IEEE.

Boolos, G. S., Burgess, J. P., and Jeffrey, R. C. (2002). Computability and logic. Cambridge university press.

Cohen, L. and Rahli, V. (2022). Constructing unprejudiced extensional type theories with choices via modalities.
In 7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022).
Schloss-Dagstuhl-Leibniz Zentrum für Informatik.

Coquand, T. and Mannaa, B. (2016). The independence of markov’s principle in type theory. arXiv preprint
arXiv:1602.04530.

da Rocha Paiva, B., Cohen, L., Forster, Y., Kirst, D., and Rahli, V. (2024). Limited principles of omniscience in
constructive type theory. In 30th International Conference on Types for Proofs and Programs TYPES
2024–Abstracts, page 23.

Diener, H. (2018). Constructive reverse mathematics: Habilitationsschrift. Universität Siegen.

Forster, Y., Kirst, D., and Mück, N. (2023). Oracle computability and turing reducibility in the calculus of
inductive constructions. In Asian Symposium on Programming Languages and Systems. Springer.

Forster, Y., Kirst, D., and Mück, N. (2024). The kleene-post and post’s theorem in the calculus of inductive
constructions. In 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).

Dominik Kirst Separating Markov’s Principles October 15th, 2024 35



Bibliography II

Forster, Y., Kirst, D., and Smolka, G. (2019). On synthetic undecidability in Coq, with an application to the
Entscheidungsproblem. In Proceedings of the 8th ACM SIGPLAN International Conference on Certified
Programs and Proofs.

Forster, Y., Kirst, D., and Wehr, D. (2021). Completeness theorems for first-order logic analysed in constructive
type theory: Extended version. Journal of Logic and Computation, 31(1):112–151.

Friedman, H. M. (1976). Systems on second order arithmetic with restricted induction i, ii. J. Symb. Logic,
41:557–559.

Gold, E. M. (1965). Limiting recursion. The Journal of Symbolic Logic, 30(1):28–48.

Ishihara, H. (2006). Reverse mathematics in bishop’s constructive mathematics. Philosophia Scientiæ. Travaux
d’histoire et de philosophie des sciences, (CS 6):43–59.

Kirst, D. and Zeng, H. (2024). The blurred drinker paradox and blurred choice axioms for the downward
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