(Sober Thoughts on) The Blurred Drinker Paradox¹

Dominik Kirst, Haoyi Zeng

CIRM Realizability Workshop April 9th, 2025

¹Forthcoming at LICS'25.

Dominik Kirst, Haoyi Zeng

Constructive Reverse Mathematics

Classical reverse mathematics studies classically detectable equivalences:

- Which theorems are equivalent to the axiom of choice or similar principles?
- Which theorems are equivalent to which comprehension principles?
- Many more, see Friedman (1976) and Simpson (2009)

Constructive reverse mathematics studies constructively detectable equivalences:

- Which theorems are equivalent to excluded middle (LEM) or weaker principles?
- Which theorems are equivalent to which specific formulation of the axiom of choice?
- Many more, see Ishihara (2006) and Diener (2018)

Characterises the computational content of analysed theorems

The Downwards Löwenheim-Skolem Theorem²

Definition (Elementary Submodels)

Given first-order models \mathcal{M} and \mathcal{N} , we call $h: \mathcal{M} \rightarrow \mathcal{N}$ an elementary embedding if

$$\forall \rho : \mathbb{N} \to \mathcal{M}. \, \forall \varphi. \, \mathcal{M} \vDash_{\rho} \varphi \leftrightarrow \mathcal{N} \vDash_{h \circ \rho} \varphi.$$

If such an elementary embedding h exists, we call \mathcal{M} an elementary submodel of \mathcal{N} .

Theorem (DLS)

Every model has a countable elementary submodel.

What is the constructive status of the DLS theorem?

²Löwenheim (1915); Skolem (1920)

Dominik Kirst, Haoyi Zeng

Classical Reverse Mathematics of DLS³

$$DC_A := \forall R : A \to A \to \mathbb{P}. tot(R) \to \exists f : \mathbb{N} \to A. \forall n. R (f n) (f (n + 1))$$
$$CC_A := \forall R : \mathbb{N} \to A \to \mathbb{P}. tot(R) \to \exists f : \mathbb{N} \to A. \forall n. R n (f n)$$

Theorem

The DLS theorem is equivalent to DC.

Sketch.

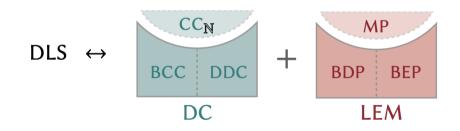
- To prove DLS from DC, arrange the iterative construction such that a single application of DC yields a path through all possible extensions that induces the resulting submodel.
- Starting with a total relation R : A→A→P, consider (A, R) a model. Applying DLS, obtain an elementary submodel (N, R') so in particular R' is still total. Apply CC_N to obtain a choice function for R' that is reflected back to A as a path through R.

³Boolos et al. (2002); Espíndola (2012); Karagila (2014)

Constructive Reverse Mathematics of DLS?

Over a base theory like the Calculus of Inductive Constructions of the Coq Proof Assistant:

- **1** Does the DLS theorem still follow from DC alone or is there some contribution of LEM?
- 2 Does the DLS theorem still imply DC or is there some contribution of CC?



Classical Argument

DLS using Henkin Environments

Definition (Henkin Environment)

Given a model \mathcal{M} , we call $\rho : \mathbb{N} \rightarrow \mathcal{M}$ a Henkin environment if for all φ :

$$\exists n. (\mathcal{M} \vDash_{\rho} \varphi[\rho n] \rightarrow \mathcal{M} \vDash_{\rho} \forall \varphi) \\ \exists n. (\mathcal{M} \vDash_{\rho} \exists \varphi \rightarrow \mathcal{M} \vDash_{\rho} \varphi[\rho n])$$

Lemma

Every model with a Henkin environment has a countable elementary submodel.

Proof.

Given \mathcal{M} and a Henkin environment ρ , we construct a countable elementary submodel \mathcal{N} with domain \mathbb{T} by $f^{\mathcal{N}} \vec{t} := f \vec{t}$ and $P^{\mathcal{N}} \vec{t} := P^{\mathcal{M}} (\hat{\rho} \vec{t})$. Then for the case $\forall \varphi$ and Henkin witness n:

$$\mathcal{N} \vDash \dot{\forall} \varphi \quad \Rightarrow \quad \forall t. \, \mathcal{N} \vDash \varphi[t] \quad \stackrel{\mathrm{IH}}{\Rightarrow} \quad \forall t. \, \mathcal{M} \vDash_{\rho} \varphi[\hat{\rho} \, t] \quad \Rightarrow \quad \mathcal{M} \vDash_{\rho} \varphi[\rho \, n] \quad \Rightarrow \quad \mathcal{M} \vDash_{\rho} \dot{\forall} \varphi$$

The Drinker Paradox

In every bar, one can identify a person such that, if they drink, then the whole bar drinks

$$DP_A := \forall P : A \rightarrow \mathbb{P}. \exists x. (P x \rightarrow \forall y. P y)$$
$$EP_A := \forall P : A \rightarrow \mathbb{P}. \exists x. ((\exists y. P y) \rightarrow P x)$$

Fact (contrasting Warren and Diener (2018))

DP and EP are equivalent to LEM.

Proof.

To derive LEM from DP, given $p : \mathbb{P}$ use DP for $A := \{b : \mathbb{B} \mid b = \text{false} \lor (p \lor \neg p)\}$ and $P : A \rightarrow \mathbb{P}$ defined by $P(\text{true}, _) := \neg p$ and $P(\text{false}, _) := \top$.

DLS assuming DC and LEM

Theorem

Assuming DC and LEM, the DLS theorem holds.

Proof.

Construct a Henkin environment in three steps:

- **1** Given some environment ρ , we know by DP and EP that, relative to ρ , Henkin witnesses for all formulas exist.
- 2 Applying CC we can simultaneously choose from these witnesses at once and therefore extend to some environment ρ' .
- This describes a total relation on environments, through which DC yields a path that can be merged into a single environment, and that then must be Henkin.

Reverse Analysis

Theorem

Assuming $CC_{\mathbb{N}}$, the DLS theorem implies DC.

Proof.

Following the outline from the beginning, using the assumption of $CC_{\mathbb{N}}$ to obtain a choice function in the countable elementary submodel.

So over $\mathsf{CC}_{\mathbb{N}}$ and LEM, the DLS theorem is equivalent to DC.

Refining the Use of LEM

Recap: DLS using Henkin Environments

Definition (Henkin Environment)

Given a model \mathcal{M} , we call $\rho : \mathbb{N} \rightarrow \mathcal{M}$ a Henkin environment if for all φ :

$$\exists n. (\mathcal{M} \vDash_{\rho} \varphi[\rho n] \rightarrow \mathcal{M} \vDash_{\rho} \forall \varphi) \\ \exists n. (\mathcal{M} \vDash_{\rho} \exists \varphi \rightarrow \mathcal{M} \vDash_{\rho} \varphi[\rho n])$$

Lemma

Every model with a Henkin environment has a countable elementary submodel.

Proof.

Given \mathcal{M} and a Henkin environment ρ , we construct a countable elementary submodel \mathcal{N} with domain \mathbb{T} by $f^{\mathcal{N}} \vec{t} := f \vec{t}$ and $P^{\mathcal{N}} \vec{t} := P^{\mathcal{M}} (\hat{\rho} \vec{t})$. Then for the case $\forall \varphi$ and Henkin witness n:

$$\mathcal{N} \vDash \dot{\forall} \varphi \quad \Rightarrow \quad \forall t. \, \mathcal{N} \vDash \varphi[t] \quad \stackrel{\mathrm{IH}}{\Rightarrow} \quad \forall t. \, \mathcal{M} \vDash_{\rho} \varphi[\hat{\rho} \, t] \quad \Rightarrow \quad \mathcal{M} \vDash_{\rho} \varphi[\rho \, n] \quad \Rightarrow \quad \mathcal{M} \vDash_{\rho} \dot{\forall} \varphi$$

DLS using Blurred Henkin Environments

Definition (Henkin Environment)

Given a model \mathcal{M} , we call $\rho : \mathbb{N} \rightarrow \mathcal{M}$ a blurred Henkin environment if or all φ :

$$(\forall n. \ \mathcal{M} \vDash_{\rho} \varphi[\rho \ n]) \rightarrow \mathcal{M} \vDash_{\rho} \forall \varphi \mathcal{M} \vDash_{\rho} \dot{\exists} \varphi \rightarrow (\exists n. \ \mathcal{M} \vDash_{\rho} \varphi[\rho \ n])$$

Lemma

Every model with a blurred Henkin environment has a countable elementary submodel.

Proof.

Given \mathcal{M} and a Henkin environment ρ , we construct a countable elementary submodel \mathcal{N} with domain \mathbb{T} by $f^{\mathcal{N}} \vec{t} := f \vec{t}$ and $P^{\mathcal{N}} \vec{t} := P^{\mathcal{M}} (\hat{\rho} \vec{t})$. Then for the case $\forall \varphi$ and Henkin witness n:

$$\mathcal{N} \vDash \dot{\forall} \varphi \quad \Rightarrow \quad \forall t. \, \mathcal{N} \vDash \varphi[t] \quad \stackrel{\mathrm{IH}}{\Rightarrow} \quad \forall t. \, \mathcal{M} \vDash_{\rho} \varphi[\hat{\rho} \, t] \quad \Rightarrow \quad \forall n. \, \mathcal{M} \vDash_{\rho} \varphi[\rho \, n] \quad \Rightarrow \quad \mathcal{M} \vDash_{\rho} \dot{\forall} \varphi$$

The Blurred Drinker Paradox (BDP)

In every bar, there is an at most countable group such that, if all of them drink, the the whole bar drinks

$$BDP_A := \forall P : A \rightarrow \mathbb{P}. \exists f : \mathbb{N} \rightarrow A. (\forall y. P (f y)) \rightarrow \forall x. P x$$
$$BEP_A := \forall P : A \rightarrow \mathbb{P}. \exists f : \mathbb{N} \rightarrow A. (\exists x. P x) \rightarrow \exists y. P (f y)$$

Fact

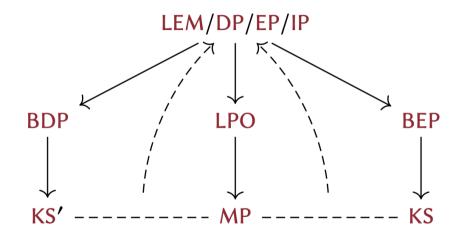
LEM decomposes into $BDP + DP_{\mathbb{N}}$ and even BDP + MP, similarly for BEP.

Proof.

The first decomposition is trivial. The latter follows since BDP implies Kripke's schema (KS) which is known to imply LEM in connection to MP.

Dominik Kirst, Haoyi Zeng

Classification of BDP



DLS assuming DC and BDP

Theorem

Assuming DC and BDP/BEP, the DLS theorem holds.

Proof.

Construct a blurred Henkin environment in three steps:

- **1** Given some environment ρ , we know by BDP/BEP that, relative to ρ , blurred Henkin witnesses for all formulas exist.
- 2 Applying CC we can simultaneously choose from these witnesses at once and therefore extend to some environment ρ' .
- 3 This describes a total relation on environments through which DC yields a path, that can be merged into a single environment, and that then must be blurred Henkin.

Reverse Analysis

Theorem

The DLS theorem implies BDP and BEP.

Proof.

Using the same pattern as in the previous analysis, basically DLS reduces BDP to the trivially provable $BDP_{\mathbb{N}}$, respectively BEP to the trivially provable $BEP_{\mathbb{N}}$.

So over $\mathsf{CC}_{\mathbb{N}},$ the DLS theorem decomposes into $\mathsf{DC}+\mathsf{BDP}+\mathsf{BEP}.$

Refining the Use of DC

Blurred Choice Axioms⁴

$$BCC_A := \forall R : \mathbb{N} \to A \to \mathbb{P}. tot(R) \to \exists f : \mathbb{N} \to A. \forall n. \exists m. R n (f m)$$
$$DDC_A := \forall R : A \to A \to \mathbb{P}. dir(R) \to \exists f : \mathbb{N} \to A. dir(R \circ f)$$

Lemma

CC decomposes into $BCC + CC_{\mathbb{N}}$ and DC decomposes into DDC + CC.

$$\mathsf{BDC}^2_A := \forall R : A^2 \rightarrow A \rightarrow \mathbb{P}. \operatorname{tot}(R) \rightarrow \exists f : \mathbb{N} \rightarrow A. \operatorname{tot}(R \circ f)$$

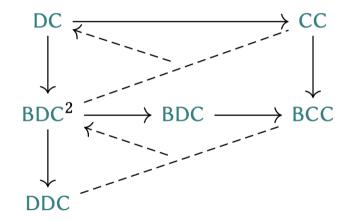
Lemma

BDC² decomposed into BCC + DDC, so DC decomposes into BDC² + CC_N.

The Blurred Drinker Paradox

⁴An instance of BCC was independently observed by CASTRO (2024).

Classification of Blurred Choice Axioms



DLS assuming BDC and BDP

Theorem

Assuming BDC² and BDP/BEP, the DLS theorem holds.

Proof.

Construct a blurred Henkin environment in three steps:

- **1** Given some environment ρ , we know by BDP/BEP that, relative to ρ , blurred Henkin witnesses for all formulas exist.
- 2 Applying BCC we can simultaneously choose from these witnesses at once and therefore extend to some environment ρ' .
- **3** This describes a directed relation on environments, through which DDC yields a path that can be merged into a single environment, and that then must be blurred Henkin.

Reverse Analysis

Theorem

The DLS theorem implies BDC² and therefore also BCC and DDC.

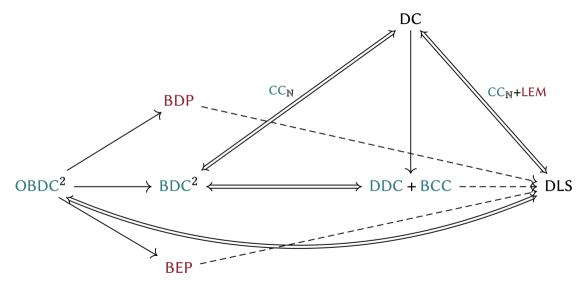
Proof.

Using the same pattern as in the previous analyses.

So the DLS theorem decomposes into $BDC^2 + BDP + BEP$.

Conclusion

Overview



Does any of this actually make sense?

Is it clear that BDP does not imply DP?

- At least we don't have BDP_A implying DP_A for the choice $A := \mathbb{N}$
- Is there a model satisfying all of BDP but not DP?

Is it clear that BCC does not imply CC?

- Again, at least we don't have BCC_A implying CC_A for the choice $A := \mathbb{N}$
- \blacksquare Seems like non-deterministic realisability satisfies BCC but refutes $\mathsf{CC}_{\mathbb{N}}$

How about DDC $\not\rightarrow$ BDC², DDC $\not\rightarrow$ BCC, BDP $\not\rightarrow$ BCC, BCC $\not\rightarrow$ BDP, etc.?

BDP as a Natural Hierarchy of Principles Below LEM

$$BDP_{A}^{B} := \forall P : A \rightarrow \mathbb{P}.\exists f : B \rightarrow A. (\forall y. P (f y)) \rightarrow \forall x. P x$$
$$BEP_{A}^{B} := \forall P : A \rightarrow \mathbb{P}.\exists f : B \rightarrow A. (\exists x. P x) \rightarrow \exists y. P (f y)$$

Fact

Both BDP^A_A and BEP^A_A are provable.
If BDP^B_A and BDP^C_B, then BDP^C_A.
If BEP^B_A and BEP^C_B, then BEP^C_A.
DP_A implies BDP^B_A and is equivalent to BDP¹_A.
EP_A implies BEP^B_A and is equivalent to BEP¹_A.
BDP^B_A is strictly weaker than DP_A but BDP^B still implies LEM.

Remaining Questions?

- Are the blurred principles weaker than the original?
- What happens with uncountable cardinalities?
 - ▶ Weaker forms of blurred drinker paradoxes, stronger forms of blurred choice principles
- What is the constructive status of the upwards Löwenheim-Skolem theorem?
 - Usual proof strategy uses compactness which is as non-constructive as completeness

Thank you!

Bibliography

- Boolos, G. S., Burgess, J. P., and Jeffrey, R. C. (2002). Computability and logic. Cambridge university press.
- CASTRO, F. (2024). The ramified analytic hierarchy in second-order logic. PhD thesis, Université Paris Cité.
- Diener, H. (2018). Constructive reverse mathematics: Habilitationsschrift. Universität Siegen.
- Espíndola, C. (2012). Löwenheim-skolem theorems and choice principles. Technical report.
- Friedman, H. M. (1976). Systems on second order arithmetic with restricted induction i, ii. J. Symb. Logic, 41:557–559.
- Ishihara, H. (2006). Reverse mathematics in bishop's constructive mathematics. *Philosophia Scientiæ. Travaux d'histoire et de philosophie des sciences*, (CS 6):43–59.
- Karagila, A. (2014). Downward löwenheim-skolem theorems and choice principles. Technical report.
- Löwenheim, L. (1915). Über möglichkeiten im relativkalkül. Mathematische Annalen, 76(4):447-470.
- Simpson, S. G. (2009). Subsystems of second order arithmetic, volume 1. Cambridge University Press.
- Skolem, T. (1920). Logisch-kombinatorische untersuchungen Über die erfüllbarkeit oder bewiesbarkeit mathematischer sätze nebst einem theorem Über dichte mengen. In Selected Works in Logic. Universitetsforlaget.
- Warren, L., Diener, H., and McKubre-Jordens, M. (2018). The drinker paradox and its dual. arXiv preprint arXiv:1805.06216.