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Introduction Second-Order ZF in Type Theory Model Constructions Discussion

SECOND-ORDER SET THEORY

To avoid the logical antinomies, axiomatic set theory asserts the
existence only of sets built up from specific operations:

∅, {x, y} ,
⋃

x, Px

Two further operations have a higher-order character:
Separation: { y ∈ x | P y } for a "definite property" P
Replacement: { z | ∃y ∈ x.R y z } for a "functional relation" R

Depending on the meta logic, they can be stated differently:
First-order: P and R are formulas and the axioms are schematic
Second-order: P and R are predicates and single axioms suffice

=⇒ Second-order ZF is quasi-categorical whereas ZF is not

2[Zermelo, 1930]



Introduction Second-Order ZF in Type Theory Model Constructions Discussion

SECOND-ORDER SET THEORY

To avoid the logical antinomies, axiomatic set theory asserts the
existence only of sets built up from specific operations:

∅, {x, y} ,
⋃

x, Px

Two further operations have a higher-order character:
Separation: { y ∈ x | P y } for a "definite property" P
Replacement: { z | ∃y ∈ x.R y z } for a "functional relation" R

Depending on the meta logic, they can be stated differently:
First-order: P and R are formulas and the axioms are schematic
Second-order: P and R are predicates and single axioms suffice

=⇒ Second-order ZF is quasi-categorical whereas ZF is not

2[Zermelo, 1930]



Introduction Second-Order ZF in Type Theory Model Constructions Discussion

SECOND-ORDER SET THEORY

To avoid the logical antinomies, axiomatic set theory asserts the
existence only of sets built up from specific operations:

∅, {x, y} ,
⋃

x, Px

Two further operations have a higher-order character:
Separation: { y ∈ x | P y } for a "definite property" P
Replacement: { z | ∃y ∈ x.R y z } for a "functional relation" R

Depending on the meta logic, they can be stated differently:
First-order: P and R are formulas and the axioms are schematic
Second-order: P and R are predicates and single axioms suffice

=⇒ Second-order ZF is quasi-categorical whereas ZF is not

2[Zermelo, 1930]



Introduction Second-Order ZF in Type Theory Model Constructions Discussion

SECOND-ORDER SET THEORY

To avoid the logical antinomies, axiomatic set theory asserts the
existence only of sets built up from specific operations:

∅, {x, y} ,
⋃

x, Px

Two further operations have a higher-order character:
Separation: { y ∈ x | P y } for a "definite property" P
Replacement: { z | ∃y ∈ x.R y z } for a "functional relation" R

Depending on the meta logic, they can be stated differently:
First-order: P and R are formulas and the axioms are schematic
Second-order: P and R are predicates and single axioms suffice

=⇒ Second-order ZF is quasi-categorical whereas ZF is not

2[Zermelo, 1930]



Introduction Second-Order ZF in Type Theory Model Constructions Discussion

QUASI-CATEGORICITY

I Previous paper: formalisation of Zermelo’s embedding
theorem for concrete second-order axiomatisation ZF:

"Any two models of ZF are either isomorphic or one embeds as
an initial segment into the other."

I As a consequence, models of ZF only differ in their height,
i.e. ordinality of nested Grothendieck universes

I Extended axiomatisations ZFn asserting exactly n
universes are hence categorical

Question: Do models of every ZFn exist in Coq(+X)?

3[Zermelo, 1930][Kirst and Smolka, 2017]
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TYPE-THEORETICAL MODELS

Aczel’s sets-as-trees interpretation:
I Inductive type T of well-founded trees
I Membership is implemented by children
I (Most) set operations can be implemented directly
I Intensional in that distinct trees of same structure exist

Assuming a strong quotient axiom for T we obtain:
I Extensional models
I Large models: since Coq has a hierarchy of type levels,

we can iteratively embed T into itself and obtain universes

=⇒Models of all ZFn

4[Aczel, 1978], [Werner, 1997], [Barras, 2010]
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SET STRUCTURES

A set structure is a typeM coming with a binary relation
_ ∈ _ :M→M→ Prop called membership.

I Inclusion x ⊆ y := ∀z ∈ x. z ∈ y
I Equivalence x ≡ y := x ⊆ y ∧ y ⊆ x
I Equivalence classes [x] := λy. x ≡ y
I A set x is transitive if y ∈ x implies y ⊆ x.

We define the inductive class WF of well-founded sets by:

x ⊆WF
x ∈WF

The derived (strong!) induction principle is called ∈-induction.

5
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ZF-STRUCTURES

A ZF-structure is a set structureM together with constants

∅ :M _ ∩ _ : (M→ Prop)→M→M
{_, _} :M→M→M⋃

:M→M _@_ : (M→M)→M→M
P :M→M δ : (M→ Prop)→M

for empty set, pairing, union, power set, separation,
replacement, and description.

6
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EXTENSIONAL AXIOMATISATION ZF

Extensionality: x ≡ y→ x = y
Foundation: x ∈WF
Infinity: ∃ω.∀x. x ∈ ω ↔ ∃n : N. x = Pn ∅

Emptiness: x 6∈ ∅
Pairing: z ∈ {x, y} ↔ z = x ∨ z = y
Union: z ∈

⋃
x↔ ∃y ∈ x. z ∈ y

Power: y ∈ Px↔ y ⊆ x

Separation: y ∈ P ∩ x↔ y ∈ x ∧ y ∈ P ∀P :M→ Prop
Replacement: z ∈ F@x↔ ∃y ∈ x. z = F y ∀F :M→M
Description: (∃!x. x ∈ P)→ δP ∈ P ∀P :M→ Prop

7
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INTENSIONAL AXIOMATISATION ZF≡

Morphism: x ≡ x′ → x ∈ y→ x′ ∈ y
Foundation: x ∈WF
Infinity: ∃ω.∀x. x ∈ ω ↔ ∃n : N. x ≡ Pn ∅

Emptiness: x 6∈ ∅
Pairing: z ∈ {x, y} ↔ z ≡ x ∨ z ≡ y
Union: z ∈

⋃
x↔ ∃y ∈ x. z ∈ y

Power: y ∈ Px↔ y ⊆ x

Separation: y ∈ P ∩ x↔ y ∈ x ∧ y ∈ P ∀P :M ≡→ Prop
Replacement: z ∈ F@x↔ ∃y ∈ x. z ≡ F y ∀F :M ≡→M
Description: (∃x.P ≈ [x])→ δP ∈ P ∀P :M ≡→ Prop

P ≈ P′ → δP = δP′ ∀P,P′

8
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GROTHENDIECK UNIVERSES

A transitive set U is a universe if it is closed under all set
operations. That is, for all x, y ∈ U, classes P :M→ Prop and
functions F :M→M the following properties hold:

∅ ∈ U Px ∈ U
{x, y} ∈ U P ∩ x ∈ U⋃

x ∈ U F@x ∈ U if F@x ⊆ U

Axiomatisations extending ZF (i.e. ZF without Infinity):
I ZF≥n asserts at least n universes
I ZFn asserts exactly n universes
I ZF≥ω asserts infinitely many universes

9
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RELATIONAL REPLACEMENT

Replacement for functional relations R :M→M→ Prop:

R@x := (λy. δ(R y))@(dom(R) ∩ x)

z ∈ R@x↔ ∃y. y ∈ x ∧ R y z

Many other set operations can be reconstructed:

{x, y} = (λab. (a = ∅ ∧ b = x) ∨ (a = P∅ ∧ b = y))@P(P∅)
P ∩ x = (λab. a ∈ P ∧ a = b)@x
F@x = (λab. b = F a)@x
δP =

⋃
((λab. b ∈ P)@P∅) if there is a unique x ∈ P

Hence a set U is a universe iff it is transitive, contains ∅ and is
closed under union, power and relational replacement.

10



Introduction Second-Order ZF in Type Theory Model Constructions Discussion

RELATIONAL REPLACEMENT

Replacement for functional relations R :M→M→ Prop:

R@x := (λy. δ(R y))@(dom(R) ∩ x)

z ∈ R@x↔ ∃y. y ∈ x ∧ R y z

Many other set operations can be reconstructed:

{x, y} = (λab. (a = ∅ ∧ b = x) ∨ (a = P∅ ∧ b = y))@P(P∅)
P ∩ x = (λab. a ∈ P ∧ a = b)@x
F@x = (λab. b = F a)@x
δP =

⋃
((λab. b ∈ P)@P∅) if there is a unique x ∈ P

Hence a set U is a universe iff it is transitive, contains ∅ and is
closed under union, power and relational replacement.

10



Introduction Second-Order ZF in Type Theory Model Constructions Discussion

ACZEL’S INTENSIONAL MODEL

Define the inductive type T

i

: Type

i

of well-founded trees with
a term constructor τ : ∀(A : Type

j

) (f : A→ T

i

). T

i for j < i.

τ A f =

•

f a . . . f a′

Tree equivalence is the binary inductive predicate defined by

∀a : A.∃b : B. f a ≡T g b ∀b : B.∃a : A. f a ≡T g b
τ A f ≡T τ B g

and tree membership is defined by s ∈ τ A f := ∃a : A. s ≡T f a.
This makes T a set structure with s ≡ t iff s ≡T t.

11[Aczel, 1978]
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ACZEL’S INTENSIONAL MODEL (CTD.)

Turn T into a ZF-structure without description by setting:

∅ := τ ⊥ elim⊥
{s, t} := τ B (λb. if b then s else t)⋃

(τ A f ) := τ (Σ a. p1(f a)) (λ(a, b). p2(f a) b)

P(τ A f ) := τ (A→ Prop) (λP. τ (Σ a. a ∈ P) (f ◦ π1))

P ∩ (τ A f ) := τ (Σ a. (f a) ∈ P) (f ◦ π1)

F@(τ A f ) := τ A (λa.F (f a))

ω := τ N (λn.Pn ∅)

Theorem
T satisfies ZF≡ without Description.

12[Aczel, 1978]
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AN EXTENSIONAL MODEL

Assume a description operator δ : (T → Prop)→ T satisfying
the intensional version of Description and proof irrelevance.

Define a normaliser γs := δ[s] with easy properties:

γs ≡ s s ≡ t↔ γs = γt γ(γs) = γs

Define the ZF-structure of canonical representatives
S := (Σ s. γs = s) with set operations lifted from T .

Theorem
T satisfies ZF≡ and S satisfies ZF.

13
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LARGE MODELS: ZF≥n

Intensional modelsM : Typej embed into Ti if j < i:

ι x := τ (Σ y. y ∈ x) (ι ◦ π1)

Lemma
UM := τM ι is a universe. Moreover, ifM |= ZF≥n then UM
contains n universes and it follows that Si |= ZF≥n+1.

Theorem (informal)
ZF≥n has a model for every n.

Fact

(∀n : N.∃M : Typei.M |= ZF≥n) ?→ Si+1 |= ZF≥ω �

14
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UM := τM ι is a universe. Moreover, ifM |= ZF≥n then UM
contains n universes and it follows that Si |= ZF≥n+1.

Theorem (informal)
ZF≥n has a model for every n.

Fact
(∀n : N. ∃M : Typei.M |= ZF≥n)

?

→ Si+1 |= ZF≥ω �
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LARGE MODELS: ZFn

Sharpen last result using further ingredients:
I Excluded Middle: ∀P : Prop.P ∨ ¬P
I Cumulative Hierarchy: well-ordered stratification
I Truncation: if ZF≥n has a model so does ZFn

I Embedding: any two models of ZF are either isomorphic
or one is an initial segment of the other [Zermelo, 1930]

I Categoricity: any two models of ZFn are isomorphic

Theorem (informal)
ZFn has a unique model (up to isomorphism) for every n.

15[Kirst and Smolka, 2017]
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WHAT ELSE IS IN THE PAPER?

I General properties of membership embeddings
I Partial extensional models using weaker quotient axioms
I Least universe is the class of hereditarily finite sets (∗)
I Equivalence of ZF and ZF≥1 (∗)
I Independence of Foundation over the rest of ZF (∗)

(∗) Assuming Excluded Middle
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COQ FOR SET THEORY

I Axiomatic freedom enables independence proofs
I Type classes for structures and axiom systems
I Well-founded recursion immediate on type-level
I Universe polymorphism allows feasible model embedding
I Compact development (4250 loc: 1600 spec, 2650 proof)

www.ps.uni-saarland.de/extras/cpp18-sets/

17
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FUTURE WORK

I Formalisation of first-order set theory:
Independence of choice and continuum hypothesis
by embedding of first-order syntax

I Type-theoretic versions of cardinality results:
Hartogs: for any type there is a larger well-ordered type
Sierpinski: GCH implies AC

19



DEVELOPMENT DETAILS

File Spec Proof
Prelims.v 236 92
Embeddings.v 92 227
Aczel.v 140 229
Quotient Constructions 244 377
Large.v 45 85
Basics.v 174 295
Uncountable.v 26 32
Stage.v 99 256
Infinity.v 132 348
Zermelo.v 177 304
Categoricity.v 15 30
Truncation.v 103 216
Permutation.v 108 168
Total 1591 2659
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OVERVIEW OF RESULTS

Formal Statement Axioms
Ti |= ZF′≡ none
S ′i |= Z CE, PI1
Si |= ZF′ CR, PI2
Ti |= ZF≡ and Si |= ZF TD, PI2
∀n : N.∃M.M |= ZF≥n TD, PI2
M |= ZF→ (∀x. x ∈ Ω↔ x ∈ HF) XM
M |= ZF→M |= ZF≥1 XM
M |= ZF≥1 →M |= ZF none
(∃M.M |= ZF≥n)→ (∃M.M |= ZFn) XM
∀n : N.∃!M.M |= ZFn TD, XM
M |= ZF∗ →MWF |= ZF XM
M |= ZF→M(0 1) |= ZF∗ + ¬Found XM

21



HEREDITARILY FINITE SETS

The classes FI of finite sets and HF of hereditarily finite sets are

∅ ∈ FI
y ∈ FI

x.y ∈ FI
x ∈ FI ∀y ∈ x. y ∈ HF

x ∈ HF

Set Ω :=
⋃
ω, then:

I x ∈ Ω iff x ∈ HF
I Ω is least universe
I M |= ZF iffM |= ZF≥1

22



INDEPENDENCE OF FOUNDATION

IfM is a model of ZF without Foundation, then
MWF := (Σx. x ∈WF) induces a model of ZF.

IfM is a model of ZF, then every permutation F :M→M
induces a modelMF of ZF without Foundation:

∅π := π−1 ∅ P ∩π x := π−1(P ∩ (π x))

{x, y}π := π−1({x, y}) F@πx := π−1(F@(π x))⋃
π x := π−1(

⋃
(π@(π x))) δπP := δP

Pπx := π−1(π−1@(P(π x))) x ∈π y := x ∈ (π y)

Any transposition F := (x {x}) yields a modelMF with x ∈F x.
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