# LARGE MODEL CONSTRUCTIONS FOR SECOND-ORDER ZF IN DEPENDENT TYPE THEORY

CPP 2018

#### Dominik Kirst and Gert Smolka

SAARLAND UNIVERSITY PROGRAMMING SYSTEMS LAB



| Introduction | Second-Order ZF in Type Theory | Model Constructions | Discussion |
|--------------|--------------------------------|---------------------|------------|
| ●00          | 000000                         | 00000               | 00         |
|              |                                |                     |            |

To avoid the logical antinomies, axiomatic set theory asserts the existence only of sets built up from specific operations:

$$\emptyset$$
,  $\{x, y\}$ ,  $\bigcup x$ ,  $\mathcal{P}x$ 

| Introduction | Second-Order ZF in Type Theory | Model Constructions | Discussion |
|--------------|--------------------------------|---------------------|------------|
| •00          | 000000                         | 00000               | 00         |
|              |                                |                     |            |

To avoid the logical antinomies, axiomatic set theory asserts the existence only of sets built up from specific operations:

$$\emptyset$$
,  $\{x, y\}$ ,  $\bigcup x$ ,  $\mathcal{P}x$ 

Two further operations have a higher-order character: **Separation:**  $\{y \in x \mid Py\}$  for a "definite property" *P* **Replacement:**  $\{z \mid \exists y \in x. Ryz\}$  for a "functional relation" *R* 

| Introduction | Second-Order ZF in Type Theory | Model Constructions | Discussion |
|--------------|--------------------------------|---------------------|------------|
| •00          | 000000                         | 00000               | 00         |
|              |                                |                     |            |

To avoid the logical antinomies, axiomatic set theory asserts the existence only of sets built up from specific operations:

$$\emptyset, \quad \{x, y\}, \quad \bigcup x, \quad \mathcal{P}x$$

Two further operations have a higher-order character: **Separation:**  $\{y \in x | Py\}$  for a "definite property" *P* **Replacement:**  $\{z | \exists y \in x. Ryz\}$  for a "functional relation" *R* 

Depending on the meta logic, they can be stated differently: **First-order**: *P* and *R* are formulas and the axioms are schematic **Second-order**: *P* and *R* are predicates and single axioms suffice

| Introduction | Second-Order ZF in Type Theory | Model Constructions | Discussion |
|--------------|--------------------------------|---------------------|------------|
| •00          | 000000                         | 00000               | 00         |
|              |                                |                     |            |

To avoid the logical antinomies, axiomatic set theory asserts the existence only of sets built up from specific operations:

$$\emptyset, \quad \{x, y\}, \quad \bigcup x, \quad \mathcal{P}x$$

Two further operations have a higher-order character: **Separation:**  $\{y \in x | Py\}$  for a "definite property" *P* **Replacement:**  $\{z | \exists y \in x. Ryz\}$  for a "functional relation" *R* 

Depending on the meta logic, they can be stated differently: **First-order**: *P* and *R* are formulas and the axioms are schematic **Second-order**: *P* and *R* are predicates and single axioms suffice

 $\implies$  Second-order ZF is quasi-categorical whereas ZF is not

| Introduction | Second-Order ZF in Type Theory | Model Constructions | Discussion |
|--------------|--------------------------------|---------------------|------------|
| ○●○          | 000000                         | 00000               | 00         |
|              |                                |                     |            |

# QUASI-CATEGORICITY

Previous paper: formalisation of Zermelo's embedding theorem for concrete second-order axiomatisation ZF:

"Any two models of **ZF** are either isomorphic or one embeds as an initial segment into the other."

- As a consequence, models of ZF only differ in their height, i.e. ordinality of nested Grothendieck universes
- Extended axiomatisations ZF<sub>n</sub> asserting exactly n universes are hence categorical

| Introduction | Second-Order ZF in Type Theory | Model Constructions | Discussion |
|--------------|--------------------------------|---------------------|------------|
| 000          | 000000                         | 00000               | 00         |
|              |                                |                     |            |

# QUASI-CATEGORICITY

Previous paper: formalisation of Zermelo's embedding theorem for concrete second-order axiomatisation ZF:

"Any two models of **ZF** are either isomorphic or one embeds as an initial segment into the other."

- As a consequence, models of ZF only differ in their height, i.e. ordinality of nested Grothendieck universes
- Extended axiomatisations ZF<sub>n</sub> asserting exactly n universes are hence categorical

Question: Do models of every  $ZF_n$  exist in Coq(+X)?

| Introduction | Second-Order ZF in Type Theory | Model Constructions | Discussion |
|--------------|--------------------------------|---------------------|------------|
| 000          | 000000                         | 00000               | 00         |
|              |                                |                     |            |

### TYPE-THEORETICAL MODELS

Aczel's sets-as-trees interpretation:

- Inductive type  $\mathcal{T}$  of well-founded trees
- Membership is implemented by children
- (Most) set operations can be implemented directly
- Intensional in that distinct trees of same structure exist

| Introduction | Second-Order ZF in Type Theory | Model Constructions | Discussion |
|--------------|--------------------------------|---------------------|------------|
| 000          | 000000                         | 00000               | 00         |
|              |                                |                     |            |

### TYPE-THEORETICAL MODELS

Aczel's sets-as-trees interpretation:

- Inductive type  $\mathcal{T}$  of well-founded trees
- Membership is implemented by children
- (Most) set operations can be implemented directly
- Intensional in that distinct trees of same structure exist

Assuming a strong quotient axiom for  $\mathcal{T}$  we obtain:

- Extensional models
- ► Large models: since Coq has a hierarchy of type levels, we can iteratively embed *T* into itself and obtain universes

 $\implies$  Models of all **ZF**<sub>*n*</sub>

| Introduction | Second-Order ZF in Type Theory | Model Constructions | Discussion |
|--------------|--------------------------------|---------------------|------------|
| 000          | 00000                          | 00000               | 00         |
|              |                                |                     |            |

### SET STRUCTURES

A set structure is a type  $\mathcal{M}$  coming with a binary relation  $\_ \in \_ : \mathcal{M} \to \mathcal{M} \to \mathsf{Prop}$  called membership.

| Introduction | Second-Order ZF in Type Theory | Model Constructions | Discussion |
|--------------|--------------------------------|---------------------|------------|
| 000          | 00000                          | 00000               | 00         |
|              |                                |                     | 1          |

### SET STRUCTURES

A set structure is a type  $\mathcal{M}$  coming with a binary relation  $\_ \in \_ : \mathcal{M} \to \mathcal{M} \to \mathsf{Prop}$  called membership.

- Inclusion  $x \subseteq y \coloneqq \forall z \in x. z \in y$
- Equivalence  $x \equiv y \coloneqq x \subseteq y \land y \subseteq x$
- Equivalence classes  $[x] \coloneqq \lambda y. x \equiv y$
- A set *x* is **transitive** if  $y \in x$  implies  $y \subseteq x$ .

| Introduction | Second-Order ZF in Type Theory | Model Constructions | Discussion |
|--------------|--------------------------------|---------------------|------------|
| 000          | 00000                          | 00000               | 00         |
|              |                                |                     |            |

### SET STRUCTURES

A set structure is a type  $\mathcal{M}$  coming with a binary relation  $\_ \in \_ : \mathcal{M} \to \mathcal{M} \to \mathsf{Prop}$  called membership.

- Inclusion  $x \subseteq y \coloneqq \forall z \in x. z \in y$
- Equivalence  $x \equiv y \coloneqq x \subseteq y \land y \subseteq x$
- Equivalence classes  $[x] \coloneqq \lambda y. x \equiv y$
- A set *x* is **transitive** if  $y \in x$  implies  $y \subseteq x$ .

We define the inductive class *WF* of **well-founded sets** by:

$$\frac{x \subseteq WF}{x \in WF}$$

The derived (strong!) induction principle is called  $\in$ -induction.

| Introduction | Second-Order ZF in Type Theory | Model Constructions | Discussion |
|--------------|--------------------------------|---------------------|------------|
| 000          | 00000                          | 00000               | 00         |
|              |                                |                     |            |

### **ZF-STRUCTURES**

A **ZF-structure** is a set structure  $\mathcal{M}$  together with constants

$$\begin{array}{ll} \emptyset: \mathcal{M} & \_ \cap \_ : (\mathcal{M} \to \mathsf{Prop}) \to \mathcal{M} \to \mathcal{M} \\ \{\_, \_\}: \mathcal{M} \to \mathcal{M} & \\ \bigcup: \mathcal{M} \to \mathcal{M} & \_@\_ : (\mathcal{M} \to \mathcal{M}) \to \mathcal{M} \to \mathcal{M} \\ \mathcal{P}: \mathcal{M} \to \mathcal{M} & \delta: (\mathcal{M} \to \mathsf{Prop}) \to \mathcal{M} \end{array}$$

for empty set, pairing, union, power set, separation, replacement, and description.

| Introduction<br>000 | Second-Order ZF in Type Theor<br>00●000    | y Model Constructions<br>00000                                          | Discussion<br>00            |
|---------------------|--------------------------------------------|-------------------------------------------------------------------------|-----------------------------|
| Extension           | NAL AXIOMATI                               | SATION <b>ZF</b>                                                        |                             |
| Extension           | ality: $x \equiv y \rightarrow x =$        | - <i>y</i>                                                              |                             |
| Foundatio           | on: $x \in WF$                             |                                                                         |                             |
| Infinity:           | $\exists \omega.  \forall x.  x \in u$     | $v \leftrightarrow \exists n : \mathbb{N}. x = \mathcal{P}^n \emptyset$ |                             |
| Emptines            | s: $x \not\in \emptyset$                   |                                                                         |                             |
| Pairing:            | $z \in \{x,y\} \leftrightarrow$            | $z = x \lor z = y$                                                      |                             |
| Union:              | $z \in \bigcup x \leftrightarrow \exists$  | $y \in x. z \in y$                                                      |                             |
| Power:              | $y \in \mathcal{P}x \leftrightarrow y$     | $\subseteq x$                                                           |                             |
| Separation          | $h: \qquad y \in P \cap x \leftrightarrow$ | $y \in x \land y \in P \qquad \forall P : \mathcal{M}$                  | $\rightarrow$ Prop          |
| Replacem            | ent: $z \in F@x \leftrightarrow \Xi$       | $\exists y \in x.  z = F  y \qquad \forall  F :  \mathcal{M}$           | $\to \mathcal{M}$           |
| Descriptio          | on: $(\exists ! x. x \in P)$               | $\to \delta P \in P \qquad \forall P : \mathcal{M}$                     | $\rightarrow \textbf{Prop}$ |

| ntroduction<br>000 | Second-Order ZF in Type Theory<br>000●00            | Model Constructions<br>00000                                             | Discussion<br>00                         |
|--------------------|-----------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------|
| [NTENSIO           | NAL AXIOMATISA                                      | ATION $\mathbf{ZF}_{\equiv}$                                             |                                          |
| Morphis            | m: $x \equiv x' \rightarrow x \in y$                | $y \to x' \in y$                                                         |                                          |
| Foundat            | ion: $x \in WF$                                     |                                                                          |                                          |
| Infinity:          | $\exists \omega.  \forall x.  x \in \omega  \cdot $ | $\Rightarrow \exists n : \mathbb{N}.  x \equiv \mathcal{P}^n  \emptyset$ |                                          |
| Emptine            | ss: $x \notin \emptyset$                            |                                                                          |                                          |
| Pairing:           | $z \in \{x, y\} \leftrightarrow z$                  | $z \equiv x \lor z \equiv y$                                             |                                          |
| Union:             | $z \in \bigcup x \leftrightarrow \exists y$         | $\in x. z \in y$                                                         |                                          |
| Power:             | $y \in \mathcal{P}x \leftrightarrow y \subseteq$    | x                                                                        |                                          |
| Separatio          | on: $y \in P \cap x \leftrightarrow y$              | $\in x \land y \in P \qquad \forall P : \mathcal{M}$                     | ≡→ Prop                                  |
| Replacer           | $ment:  z \in F@x \leftrightarrow \exists y$        | $f \in x. z \equiv F y \qquad \forall F : \mathcal{M}^{\perp}$           | $\stackrel{\mathbb{B}}{\to} \mathcal{M}$ |
| Descript           | ion: $(\exists x. P \approx [x]) -$                 | $   \rightarrow \delta P \in P \qquad \forall P : \mathcal{M}^{\perp} $  | <sup>≣</sup> → Prop                      |
| _                  | $Ppprox P' ightarrow \delta P$ =                    | $=\delta P' \qquad \forall P, P'$                                        |                                          |

|                   | OIL |
|-------------------|-----|
| 000 00000 0000 00 |     |

### GROTHENDIECK UNIVERSES

A transitive set *U* is a **universe** if it is closed under all set operations. That is, for all  $x, y \in U$ , classes  $P : \mathcal{M} \to \mathsf{Prop}$  and functions  $F : \mathcal{M} \to \mathcal{M}$  the following properties hold:

| $\emptyset \in U$ | $\mathcal{P}x \in U$             |
|-------------------|----------------------------------|
| $\{x,y\} \in U$   | $P \cap x \in U$                 |
| $\bigcup x \in U$ | $F@x \in U$ if $F@x \subseteq U$ |

| Introduction | Second-Order ZF in Type Theory | Model Constructions | Discussion |
|--------------|--------------------------------|---------------------|------------|
| 000          | 000000                         | 00000               | 00         |
|              |                                |                     |            |

### GROTHENDIECK UNIVERSES

A transitive set *U* is a **universe** if it is closed under all set operations. That is, for all  $x, y \in U$ , classes  $P : \mathcal{M} \to \mathsf{Prop}$  and functions  $F : \mathcal{M} \to \mathcal{M}$  the following properties hold:

| $\emptyset \in U$ | $\mathcal{P}x \in U$             |
|-------------------|----------------------------------|
| $\{x,y\} \in U$   | $P \cap x \in U$                 |
| $\bigcup x \in U$ | $F@x \in U$ if $F@x \subseteq U$ |

Axiomatisations extending ZF (i.e. ZF without Infinity):

- $\mathbf{ZF}_{\geq n}$  asserts at least *n* universes
- ► **ZF***<sup><i>n*</sup> asserts exactly *n* universes
- $\mathbf{ZF}_{\geq \omega}$  asserts infinitely many universes

| Introduction<br>000 | Second-Order ZF in Type Theory | Model Constructions | Discussion<br>00 |
|---------------------|--------------------------------|---------------------|------------------|
|                     |                                |                     |                  |

### RELATIONAL REPLACEMENT

Replacement for functional relations  $R : \mathcal{M} \to \mathcal{M} \to \mathsf{Prop}$ :

$$R@x := (\lambda y. \, \delta(R \, y))@(\mathsf{dom}(R) \cap x)$$
$$z \in R@x \leftrightarrow \exists y. \, y \in x \land R \, y \, z$$

| Introduction | Second-Order ZF in Type Theory | Model Constructions | Discussion |
|--------------|--------------------------------|---------------------|------------|
| 000          | 000000                         | 00000               | 00         |
|              |                                |                     |            |

### RELATIONAL REPLACEMENT

Replacement for functional relations  $R : \mathcal{M} \to \mathcal{M} \to \mathsf{Prop}$ :

$$R@x := (\lambda y. \, \delta(R \, y))@(\mathsf{dom}(R) \cap x)$$
$$z \in R@x \leftrightarrow \exists y. \, y \in x \land R \, y \, z$$

Many other set operations can be reconstructed:

$$\{x, y\} = (\lambda ab. (a = \emptyset \land b = x) \lor (a = \mathcal{P}\emptyset \land b = y))@\mathcal{P}(\mathcal{P}\emptyset)$$
  

$$P \cap x = (\lambda ab. a \in P \land a = b)@x$$
  

$$F@x = (\lambda ab. b = Fa)@x$$
  

$$\delta P = \bigcup ((\lambda ab. b \in P)@\mathcal{P}\emptyset) \text{ if there is a unique } x \in P$$

Hence a set *U* is a universe iff it is transitive, contains  $\emptyset$  and is closed under union, power and relational replacement.

| Introduction Seco | ond-Order ZF in Type Theory | Model Constructions | Discussion |
|-------------------|-----------------------------|---------------------|------------|
| 000 000           | 0000                        | ●0000               | 00         |

Define the inductive type  $\mathcal{T}$ : Type of well-founded trees with a term constructor  $\tau$ :  $\forall (A : \mathsf{Type}) (f : A \to \mathcal{T}) . \mathcal{T}$ 

| Introduction Second | I-Order ZF in Type Theory | Model Constructions | Discussion |
|---------------------|---------------------------|---------------------|------------|
| 000 00000           | 00                        | ●0000               | 00         |

Define the inductive type  $\mathcal{T}_i$ : Type<sub>*i*</sub> of well-founded trees with a term constructor  $\tau$ :  $\forall (A : Type_j) (f : A \rightarrow \mathcal{T}_i)$ .  $\mathcal{T}_i$  for j < i.

| Introduction Second | I-Order ZF in Type Theory | Model Constructions | Discussion |
|---------------------|---------------------------|---------------------|------------|
| 000 00000           | 00                        | ●0000               | 00         |

Define the inductive type  $\mathcal{T}$ : Type of well-founded trees with a term constructor  $\tau$ :  $\forall (A : \mathsf{Type}) (f : A \to \mathcal{T}) . \mathcal{T}$ 



| Introduction | Second-Order ZF in Type Theory | Model Constructions | Discussion |
|--------------|--------------------------------|---------------------|------------|
| 000          | 000000                         | ●0000               | 00         |

Define the inductive type  $\mathcal{T}$ : Type of well-founded trees with a term constructor  $\tau$ :  $\forall (A : \text{Type }) (f : A \rightarrow \mathcal{T}) . \mathcal{T}$ 



Tree equivalence is the binary inductive predicate defined by

$$\frac{\forall a: A. \exists b: B. f a \equiv_{\mathcal{T}} g b}{\tau A f \equiv_{\mathcal{T}} \tau B g} \quad \forall b: B. \exists a: A. f a \equiv_{\mathcal{T}} g b$$

and **tree membership** is defined by  $s \in \tau Af := \exists a : A. s \equiv_{\mathcal{T}} f a$ . This makes  $\mathcal{T}$  a set structure with  $s \equiv t$  iff  $s \equiv_{\mathcal{T}} t$ .

| Introduction | Second-Order ZF in Type Theory | Model Constructions | Discussion |
|--------------|--------------------------------|---------------------|------------|
| 000          | 000000                         | 0000                | 00         |
|              |                                |                     |            |

### Turn $\mathcal{T}$ into a ZF-structure without description by setting:

 $\emptyset \coloneqq \tau \perp \operatorname{elim}_{\perp}$ 

| Introduction | Second-Order ZF in Type Theory | Model Constructions | Discussion |
|--------------|--------------------------------|---------------------|------------|
| 000          | 000000                         | ○●○○○               | 00         |
|              |                                |                     |            |

### Turn $\mathcal{T}$ into a ZF-structure without description by setting:

 $\emptyset := \tau \perp \operatorname{elim}_{\perp}$ {*s*, *t*} :=  $\tau \mathbb{B} (\lambda b. \text{ if } b \text{ then } s \text{ else } t)$ 

| Introduction | Second-Order ZF in Type Theory | Model Constructions | Discussion |
|--------------|--------------------------------|---------------------|------------|
| 000          | 000000                         | ○●○○○               | 00         |
|              |                                |                     |            |

### Turn $\mathcal{T}$ into a ZF-structure without description by setting:

$$\begin{split} \emptyset &:= \tau \perp \operatorname{elim}_{\perp} \\ \{s,t\} &:= \tau \mathbb{B} \left( \lambda b. \text{ if } b \text{ then } s \text{ else } t \right) \\ \bigcup (\tau A f) &:= \tau \left( \Sigma a. p_1(f a) \right) \left( \lambda(a,b). p_2(f a) b \right) \end{split}$$

| Introduction | Second-Order ZF in Type Theory | Model Constructions | Discussion |
|--------------|--------------------------------|---------------------|------------|
| 000          | 000000                         | ○●○○○               | 00         |
|              |                                |                     |            |

$$\begin{split} \emptyset &\coloneqq \tau \perp \operatorname{elim}_{\perp} \\ \{s, t\} &\coloneqq \tau \, \mathbb{B} \left( \lambda b. \text{ if } b \text{ then } s \text{ else } t \right) \\ \bigcup (\tau A f) &\coloneqq \tau \left( \Sigma a. p_1(f a) \right) \left( \lambda(a, b). p_2(f a) b \right) \\ \mathcal{P}(\tau A f) &\coloneqq \tau \left( A \to \operatorname{\mathsf{Prop}} \right) \left( \lambda P. \tau \left( \Sigma a. a \in P \right) (f \circ \pi_1) \right) \end{split}$$

| Introduction | Second-Order ZF in Type Theory | Model Constructions | Discussion |
|--------------|--------------------------------|---------------------|------------|
| 000          | 000000                         | ○●○○○               | 00         |
|              |                                |                     |            |

$$\begin{split} \emptyset &\coloneqq \tau \perp \operatorname{elim}_{\perp} \\ \{s, t\} &\coloneqq \tau \, \mathbb{B} \left( \lambda b. \text{ if } b \text{ then } s \text{ else } t \right) \\ \bigcup (\tau A f) &\coloneqq \tau \left( \Sigma a. p_1(f a) \right) \left( \lambda(a, b). p_2(f a) b \right) \\ \mathcal{P}(\tau A f) &\coloneqq \tau \left( A \to \operatorname{Prop} \right) \left( \lambda P. \tau \left( \Sigma a. a \in P \right) (f \circ \pi_1) \right) \\ P \cap (\tau A f) &\coloneqq \tau \left( \Sigma a. (f a) \in P \right) (f \circ \pi_1) \end{split}$$

| Introduction | Second-Order ZF in Type Theory | Model Constructions | Discussion |
|--------------|--------------------------------|---------------------|------------|
| 000          | 000000                         | ○●○○○               | 00         |
|              |                                |                     |            |

$$\begin{split} \emptyset &\coloneqq \tau \perp \operatorname{elim}_{\perp} \\ \{s,t\} &\coloneqq \tau \ \mathbb{B} \ (\lambda b. \ \text{if} \ b \ \text{then} \ s \ \text{else} \ t) \\ \bigcup (\tau A f) &\coloneqq \tau \ (\Sigma \ a. \ p_1(f \ a)) \ (\lambda(a,b). \ p_2(f \ a) \ b) \\ \mathcal{P}(\tau A f) &\coloneqq \tau \ (A \to \operatorname{Prop}) \ (\lambda P. \ \tau \ (\Sigma \ a. \ a \in P) \ (f \circ \pi_1)) \\ P \cap \ (\tau A f) &\coloneqq \tau \ (\Sigma \ a. \ (f \ a) \in P) \ (f \circ \pi_1) \\ F@(\tau A f) &\coloneqq \tau \ A \ (\lambda a. \ F \ (f \ a)) \end{split}$$

| Introduction | Second-Order ZF in Type Theory | Model Constructions | Discussion |
|--------------|--------------------------------|---------------------|------------|
| 000          | 000000                         | 0000                | 00         |
|              |                                |                     |            |

$$\begin{split} \emptyset &\coloneqq \tau \perp \operatorname{elim}_{\perp} \\ \{s, t\} &\coloneqq \tau \, \mathbb{B} \, (\lambda b. \, \text{if } b \text{ then } s \text{ else } t) \\ \bigcup (\tau A f) &\coloneqq \tau \, (\Sigma \, a. \, p_1(f \, a)) \, (\lambda(a, b). \, p_2(f \, a) \, b) \\ \mathcal{P}(\tau A f) &\coloneqq \tau \, (A \to \operatorname{Prop}) \, (\lambda P. \, \tau \, (\Sigma \, a. \, a \in P) \, (f \circ \pi_1)) \\ P \cap \, (\tau A f) &\coloneqq \tau \, (\Sigma \, a. \, (f \, a) \in P) \, (f \circ \pi_1) \\ F@(\tau A f) &\coloneqq \tau \, A \, (\lambda a. \, F \, (f \, a)) \\ \omega &\coloneqq \tau \, \mathbb{N} \, (\lambda n. \, \mathcal{P}^n \, \emptyset) \end{split}$$

| Introduction | Second-Order ZF in Type Theory | Model Constructions | Discussion |
|--------------|--------------------------------|---------------------|------------|
| 000          | 000000                         | 0000                | 00         |
|              |                                |                     |            |

### Turn $\mathcal{T}$ into a ZF-structure without description by setting:

$$\begin{split} \emptyset &\coloneqq \tau \perp \operatorname{elim}_{\perp} \\ \{s, t\} &\coloneqq \tau \mathbb{B} \left( \lambda b. \text{ if } b \text{ then } s \text{ else } t \right) \\ \bigcup (\tau A f) &\coloneqq \tau \left( \Sigma a. p_1(f a) \right) \left( \lambda(a, b). p_2(f a) b \right) \\ \mathcal{P}(\tau A f) &\coloneqq \tau \left( A \to \operatorname{Prop} \right) \left( \lambda P. \tau \left( \Sigma a. a \in P \right) (f \circ \pi_1) \right) \\ P \cap (\tau A f) &\coloneqq \tau \left( \Sigma a. (f a) \in P \right) (f \circ \pi_1) \\ F @(\tau A f) &\coloneqq \tau A \left( \lambda a. F (f a) \right) \\ \omega &\coloneqq \tau \mathbb{N} \left( \lambda n. \mathcal{P}^n \emptyset \right) \end{split}$$

# Theorem $\mathcal{T}$ satisfies $\mathbf{ZF}_{\equiv}$ without Description.

| Introduction | Second-Order ZF in Type Theory | Model Constructions | Discussion |
|--------------|--------------------------------|---------------------|------------|
| 000          | 000000                         | 0000                | 00         |

Assume a description operator  $\delta : (\mathcal{T} \to \mathsf{Prop}) \to \mathcal{T}$  satisfying the intensional version of Description and proof irrelevance.

| Introduction | Second-Order ZF in Type Theory | Model Constructions | Discussion |
|--------------|--------------------------------|---------------------|------------|
| 000          | 000000                         | 0000                | 00         |

Assume a description operator  $\delta : (\mathcal{T} \to \mathsf{Prop}) \to \mathcal{T}$  satisfying the intensional version of Description and proof irrelevance.

Define a **normaliser**  $\gamma s \coloneqq \delta[s]$  with easy properties:

$$\gamma s \equiv s$$
  $s \equiv t \leftrightarrow \gamma s = \gamma t$   $\gamma(\gamma s) = \gamma s$ 

| Introduction | Second-Order ZF in Type Theory | Model Constructions | Discussion |
|--------------|--------------------------------|---------------------|------------|
| 000          | 000000                         | 00000               | 00         |

Assume a description operator  $\delta : (\mathcal{T} \to \mathsf{Prop}) \to \mathcal{T}$  satisfying the intensional version of Description and proof irrelevance.

Define a **normaliser**  $\gamma s := \delta[s]$  with easy properties:

$$\gamma s \equiv s$$
  $s \equiv t \leftrightarrow \gamma s = \gamma t$   $\gamma(\gamma s) = \gamma s$ 

Define the ZF-structure of **canonical representatives**  $S := (\Sigma s. \gamma s = s)$  with set operations lifted from T.

| Introduction | Second-Order ZF in Type Theory | Model Constructions | Discussion |
|--------------|--------------------------------|---------------------|------------|
| 000          | 000000                         | 00000               | 00         |

Assume a description operator  $\delta : (\mathcal{T} \to \mathsf{Prop}) \to \mathcal{T}$  satisfying the intensional version of Description and proof irrelevance.

Define a **normaliser**  $\gamma s := \delta[s]$  with easy properties:

$$\gamma s \equiv s$$
  $s \equiv t \leftrightarrow \gamma s = \gamma t$   $\gamma(\gamma s) = \gamma s$ 

Define the ZF-structure of **canonical representatives**  $S := (\Sigma s. \gamma s = s)$  with set operations lifted from T.

Theorem  $\mathcal{T}$  satisfies  $\mathbf{ZF}_{\equiv}$  and  $\mathcal{S}$  satisfies  $\mathbf{ZF}$ .

| Introduction | Second-Order ZF in Type Theory | Model Constructions | Discussion |
|--------------|--------------------------------|---------------------|------------|
| 000          | 000000                         | 00000               | 00         |
|              |                                |                     |            |

Intensional models M : Type<sub>j</sub> embed into  $T_i$  if j < i:

$$\iota x \coloneqq \tau \left( \Sigma y. y \in x \right) \left( \iota \circ \pi_1 \right)$$

#### Lemma

 $U_{\mathcal{M}} \coloneqq \tau \mathcal{M} \iota$  is a universe. Moreover, if  $\mathcal{M} \models \mathbf{ZF}_{\geq n}$  then  $U_{\mathcal{M}}$  contains *n* universes and it follows that  $S_i \models \mathbf{ZF}_{\geq n+1}$ .

| Introduction | Second-Order ZF in Type Theory | Model Constructions | Discussion |
|--------------|--------------------------------|---------------------|------------|
| 000          | 000000                         | 00000               | 00         |
|              |                                |                     |            |

Intensional models M : Type<sub>j</sub> embed into  $T_i$  if j < i:

$$\iota \, x \coloneqq \tau \, (\Sigma \, y. \, y \in x) \, (\iota \, \circ \pi_1)$$

#### Lemma

 $U_{\mathcal{M}} \coloneqq \tau \mathcal{M} \iota$  is a universe. Moreover, if  $\mathcal{M} \models \mathbf{ZF}_{\geq n}$  then  $U_{\mathcal{M}}$  contains *n* universes and it follows that  $S_i \models \mathbf{ZF}_{\geq n+1}$ .

Theorem (informal)  $\mathbf{ZF}_{\geq n}$  has a model for every n.

| Introduction | Second-Order ZF in Type Theory | Model Constructions | Discussion |
|--------------|--------------------------------|---------------------|------------|
| 000          | 000000                         | 00000               | 00         |
|              |                                |                     |            |

Intensional models M : Type<sub>j</sub> embed into  $T_i$  if j < i:

$$\iota \, x \coloneqq \tau \, (\Sigma \, y. \, y \in x) \, (\iota \, \circ \pi_1)$$

#### Lemma

 $U_{\mathcal{M}} \coloneqq \tau \mathcal{M} \iota$  is a universe. Moreover, if  $\mathcal{M} \models \mathbf{ZF}_{\geq n}$  then  $U_{\mathcal{M}}$  contains *n* universes and it follows that  $S_i \models \mathbf{ZF}_{\geq n+1}$ .

Theorem (informal)  $\mathbf{ZF}_{\geq n}$  has a model for every n.

Fact  $(\forall n : \mathbb{N} : \exists \mathcal{M} : \mathsf{Type}_i : \mathcal{M} \models \mathbf{ZF}_{\geq n})$ ?

| Introduction | Second-Order ZF in Type Theory | Model Constructions | Discussion |
|--------------|--------------------------------|---------------------|------------|
| 000          | 000000                         | 00000               | 00         |
|              |                                |                     |            |

Intensional models  $\mathcal{M}$  : Type<sub>*j*</sub> embed into  $\mathcal{T}_i$  if j < i:

$$\iota \, x \coloneqq \tau \, (\Sigma \, y. \, y \in x) \, (\iota \, \circ \pi_1)$$

#### Lemma

 $U_{\mathcal{M}} \coloneqq \tau \mathcal{M} \iota$  is a universe. Moreover, if  $\mathcal{M} \models \mathbf{ZF}_{\geq n}$  then  $U_{\mathcal{M}}$  contains *n* universes and it follows that  $S_i \models \mathbf{ZF}_{\geq n+1}$ .

Theorem (informal)  $\mathbf{ZF}_{\geq n}$  has a model for every n.

# Fact $(\forall n : \mathbb{N}. \exists \mathcal{M} : \mathsf{Type}_i. \mathcal{M} \models \mathbf{ZF}_{\geq n}) \rightarrow S_{i+1} \models \mathbf{ZF}_{\geq \omega}$

| Introduction | Second-Order ZF in Type Theory | Model Constructions | Discussion |
|--------------|--------------------------------|---------------------|------------|
| 000          | 000000                         | 00000               | 00         |
|              |                                |                     |            |

Intensional models  $\mathcal{M}$  : Type<sub>*j*</sub> embed into  $\mathcal{T}_i$  if j < i:

$$\iota \, x \coloneqq \tau \, (\Sigma \, y. \, y \in x) \, (\iota \, \circ \pi_1)$$

#### Lemma

 $U_{\mathcal{M}} \coloneqq \tau \mathcal{M} \iota$  is a universe. Moreover, if  $\mathcal{M} \models \mathbf{ZF}_{\geq n}$  then  $U_{\mathcal{M}}$  contains *n* universes and it follows that  $S_i \models \mathbf{ZF}_{\geq n+1}$ .

Theorem (informal)  $\mathbf{ZF}_{\geq n}$  has a model for every n.

### Fact $(\forall n : \mathbb{N} : \exists \mathcal{M} : \mathsf{Type}_i : \mathcal{M} \models \mathbf{ZF}_{\geq n}) \to \mathcal{S}_{i+1} \models \mathbf{ZF}_{\geq \omega}$

| Introduction<br>000 | Second-Order ZF in Type Theory<br>000000 | Model Constructions | Discussion<br>00 |
|---------------------|------------------------------------------|---------------------|------------------|
|                     |                                          |                     |                  |
|                     |                                          |                     |                  |

# LARGE MODELS: **ZF**<sub>n</sub>

Sharpen last result using further ingredients:

- **Excluded Middle:**  $\forall P$  : **Prop**.  $P \lor \neg P$
- Cumulative Hierarchy: well-ordered stratification
- **Truncation:** if  $\mathbf{ZF}_{\geq n}$  has a model so does  $\mathbf{ZF}_n$
- Embedding: any two models of ZF are either isomorphic or one is an initial segment of the other [Zermelo, 1930]
- **Categoricity:** any two models of **ZF**<sup>*n*</sup> are isomorphic

| Introduction | Second-Order ZF in Type Theory | Model Constructions | Discussion |
|--------------|--------------------------------|---------------------|------------|
| 000          | 000000                         | 00000               | 00         |
|              |                                |                     |            |

# LARGE MODELS: **ZF**<sub>n</sub>

Sharpen last result using further ingredients:

- **Excluded Middle:**  $\forall P$  : **Prop**.  $P \lor \neg P$
- Cumulative Hierarchy: well-ordered stratification
- **Truncation:** if  $\mathbf{ZF}_{\geq n}$  has a model so does  $\mathbf{ZF}_n$
- Embedding: any two models of ZF are either isomorphic or one is an initial segment of the other [Zermelo, 1930]
- **Categoricity:** any two models of **ZF**<sup>*n*</sup> are isomorphic

### Theorem (informal)

 $\mathbf{ZF}_n$  has a unique model (up to isomorphism) for every n.

### WHAT ELSE IS IN THE PAPER?

- General properties of membership embeddings
- Partial extensional models using weaker quotient axioms
- ► Least universe is the class of hereditarily finite sets (\*)
- ► Equivalence of **ZF** and **ZF**<sub>≥1</sub> (\*)
- ► Independence of Foundation over the rest of **ZF** (\*)
- (\*) Assuming Excluded Middle

# COQ FOR SET THEORY

- Axiomatic freedom enables independence proofs
- Type classes for structures and axiom systems
- ► Well-founded recursion immediate on type-level
- ► Universe polymorphism allows feasible model embedding
- ► Compact development (4250 loc: 1600 spec, 2650 proof)

www.ps.uni-saarland.de/extras/cpp18-sets/

### REFERENCES

Aczel, P. (1978).

The Type Theoretic Interpretation of Constructive Set Theory. Studies in Logic and the Foundations of Mathematics 96, 55-66.

#### Barras, B. (2010).

Sets in Coq, Coq in Sets. Journal of Formalized Reasoning 3, 29-48.

Kirst, D. and Smolka, G. (2017).

Categoricity Results for Second-Order ZF in Dependent Type Theory. In ITP 2017, Brasília, Brazil, September 26-29, 2017, (Ayala-Rincón, M. and Muñoz, C. A., eds), vol. 10499, of LNCS pp. 304-318, Springer.

Werner, B. (1997).

#### Sets in Types, Types in Sets.

In Theoretical Aspects of Computer Software pp. 530-546, Springer, Heidelberg.

#### Zermelo, E. (1930).

Über Grenzzahlen und Mengenbereiche: Neue Untersuchungen über die Grundlagen der Mengenlehre. Fundamenta Mathematicæ 16, 29-47.

### FUTURE WORK

- Formalisation of first-order set theory: Independence of choice and continuum hypothesis by embedding of first-order syntax
- Type-theoretic versions of cardinality results: Hartogs: for any type there is a larger well-ordered type Sierpinski: GCH implies AC

# DEVELOPMENT DETAILS

| File                          | Spec           | Proof |
|-------------------------------|----------------|-------|
| Prelims.v                     | 236            | 92    |
| Embeddings.v                  | 92             | 227   |
| Aczel.v                       | $1\bar{4}0^{}$ | 229   |
| <b>Quotient Constructions</b> | 244            | 377   |
| Large.v                       | 45             | 85    |
| Basics.v                      | $174^{$        | 295   |
| Uncountable.v                 | 26             | 32    |
| Stage.v                       | 99             | 256   |
| Infinity.v                    | 132            | 348   |
| Zermelo.v                     | 177            | 304   |
| Categoricity.v                | 15             | 30    |
| Truncation.v                  | 103            | 216   |
| Permutation.v                 | 108            | 168   |
| Total                         | 1591           | 2659  |

### OVERVIEW OF RESULTS

| Formal Statement                                                                                                                     | Axioms              |
|--------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| $\mathcal{T}_i \models \mathbf{ZF}_{\equiv}'$                                                                                        | none                |
| $\mathcal{S}'_i \models \mathbf{Z}$                                                                                                  | CE, PI <sub>1</sub> |
| $\mathcal{S}_i \models \mathbf{ZF}'$                                                                                                 | $CR, PI_2$          |
| $\mathcal{T}_i \models \mathbf{ZF}_{\equiv}$ and $\mathcal{S}_i \models \mathbf{ZF}$                                                 | $TD, PI_2$          |
| $\forall n : \mathbb{N}. \exists \mathcal{M}. \mathcal{M} \models \mathbf{ZF}_{>n}$                                                  | $TD, PI_2$          |
| $\mathcal{M} \models \mathbf{ZF} \to (\forall x.  x \in \overline{\Omega} \leftrightarrow x \in HF)$                                 | XM                  |
| $\mathcal{M} \models \mathbf{ZF}  ightarrow \mathcal{M} \models \mathbf{ZF}_{\geq 1}$                                                | XM                  |
| $\mathcal{M}\models \mathbf{ZF}_{\geq 1} \to \mathcal{M}\models \mathbf{ZF}$                                                         | none                |
| $(\exists \mathcal{M}.\mathcal{M} \models \mathbf{ZF}_{\geq n}) \rightarrow (\exists \mathcal{M}.\mathcal{M} \models \mathbf{ZF}_n)$ | XM                  |
| $\forall n : \mathbb{N}. \exists !\mathcal{M}. \mathcal{M} \models \mathbf{ZF}_n$                                                    | TD <i>,</i> XM      |
| $\mathcal{M}\models \mathbf{ZF}^* 	o \mathcal{M}_{\mathit{WF}}\models \mathbf{ZF}$                                                   | XM                  |
| $\mathcal{M} \models \textbf{ZF} \rightarrow \mathcal{M}_{(01)} \models \textbf{ZF}^* + \neg \textbf{Found}$                         | XM                  |

### HEREDITARILY FINITE SETS

The classes FI of finite sets and HF of hereditarily finite sets are

$$\frac{y \in FI}{\emptyset \in FI} \qquad \frac{y \in FI}{x.y \in FI} \qquad \qquad \frac{x \in FI \quad \forall y \in x. y \in HF}{x \in HF}$$

Set  $\Omega \coloneqq \bigcup \omega$ , then:

- $x \in \Omega$  iff  $x \in HF$
- $\Omega$  is least universe
- $\blacktriangleright \mathcal{M} \models \mathbf{ZF} \text{ iff } \mathcal{M} \models \mathbf{ZF}_{\geq 1}$

### INDEPENDENCE OF FOUNDATION

If  $\mathcal{M}$  is a model of **ZF** without Foundation, then  $\mathcal{M}_{WF} := (\Sigma x. x \in WF)$  induces a model of **ZF**.

If  $\mathcal{M}$  is a model of **ZF**, then every permutation  $F : \mathcal{M} \to \mathcal{M}$  induces a model  $\mathcal{M}_F$  of **ZF** without Foundation:

$$\begin{split} \emptyset_{\pi} &:= \pi^{-1} \, \emptyset & P \cap_{\pi} x := \pi^{-1} (P \cap (\pi \, x)) \\ \{x, y\}_{\pi} &:= \pi^{-1} (\{x, y\}) & F @_{\pi} x := \pi^{-1} (F @ (\pi \, x))) \\ & \bigcup_{\pi} x := \pi^{-1} (\bigcup (\pi @ (\pi \, x))) & \delta_{\pi} P := \delta P \\ & \mathcal{P}_{\pi} x := \pi^{-1} (\pi^{-1} @ (\mathcal{P}(\pi \, x))) & x \in_{\pi} y := x \in (\pi \, y) \end{split}$$

Any transposition  $F \coloneqq (x \{x\})$  yields a model  $\mathcal{M}_F$  with  $x \in_F x$ .