
The Generalised Continuum Hypothesis
Implies the Axiom of Choice in Coq

Dominik Kirst and Felix Rech

Certified Programs and Proofs
January 17-19, 2021

computer science

saarland
university

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 1

http://www.cs.uni-saarland.de/
https://www.loria.fr/en/

Sierpiński’s Theorem∗

Generalised Continuum Hypothesis (GCH):
There are no cardinalities between an infinite set and its power set.

⇓

Axiom of Choice (AC):
Every total relation contains the graph of a function.

∗Sierpiński (1947), Specker (1990)
D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 2

Sierpiński’s Theorem∗

Generalised Continuum Hypothesis (GCH):
There are no cardinalities between an infinite set and its power set.

∀XY . |N| ≤ |X | → |X | ≤ |Y | ≤ |P(X)| → |Y | ≤ |X | ∨ |P(X)| ≤ |Y |

⇓

Axiom of Choice (AC):
Every total relation contains the graph of a function.

∗Sierpiński (1947), Specker (1990)
D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 2

Sierpiński’s Theorem∗

Generalised Continuum Hypothesis (GCH):
There are no cardinalities between an infinite set and its power set.

∀XY . |N| ≤ |X | → |X | ≤ |Y | ≤ |P(X)| → |Y | ≤ |X | ∨ |P(X)| ≤ |Y |

⇓

Axiom of Choice (AC):
Every total relation contains the graph of a function.

∗Sierpiński (1947), Specker (1990)
D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 2

Sierpiński’s Theorem∗

Generalised Continuum Hypothesis (GCH):
There are no cardinalities between an infinite set and its power set.

∀XY . |N| ≤ |X | → |X | ≤ |Y | ≤ |P(X)| → |Y | ≤ |X | ∨ |P(X)| ≤ |Y |

⇓

Axiom of Choice (AC):
Every total relation contains the graph of a function.

∗Sierpiński (1947), Specker (1990)
D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 2

Sierpiński’s Theorem∗

Generalised Continuum Hypothesis (GCH):
There are no cardinalities between an infinite set and its power set.

∀XY . |N| ≤ |X | → |X | ≤ |Y | ≤ |P(X)| → |Y | ≤ |X | ∨ |P(X)| ≤ |Y |

⇓

Axiom of Choice (AC):
Every total relation contains the graph of a function.

∗Sierpiński (1947), Specker (1990)
D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 2

Sierpiński’s Theorem∗

Generalised Continuum Hypothesis (GCH):
There are no cardinalities between an infinite set and its power set.

∀XY . |N| ≤ |X | → |X | ≤ |Y | ≤ |P(X)| → |Y | ≤ |X | ∨ |P(X)| ≤ |Y |

⇓

Axiom of Choice (AC):
Every total relation contains the graph of a function.

∗Sierpiński (1947), Specker (1990)
D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 2

Sierpiński’s Theorem∗

Generalised Continuum Hypothesis (GCH):
There are no cardinalities between an infinite set and its power set.

∀XY . |N| ≤ |X | → |X | ≤ |Y | ≤ |P(X)| → |Y | ≤ |X | ∨ |P(X)| ≤ |Y |

⇓

Axiom of Choice (AC):
Every total relation contains the graph of a function.

∀R. (∀x . ∃y .Rxy)→ ∃f . ∀x .Rx(fx)

∗Sierpiński (1947), Specker (1990)
D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 2

Sierpiński’s Theorem - Outline∗

1 Instead of AC, show the equivalent well-ordering theorem (WO)

2 To well-order X it suffices to find well-ordered Y with |X | ≤ |Y |

3 Enough to only well-order infinite X since always |X | ≤ |N ∪ X |

4 Central construction: Hartogs number ℵ(X)

I Large well-order: |ℵ(X)| 6≤ |X |
I Controlled height: |ℵ(X)| ≤ |Pk(X)| for some k

5 Use GCH to iteratively squeeze in ℵ(X) and obtain |X | ≤ |ℵ(X)|

∗Gillman (2002), Smullyan and Fitting (2010)
D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 3

Sierpiński’s Theorem - Outline∗

1 Instead of AC, show the equivalent well-ordering theorem (WO)

2 To well-order X it suffices to find well-ordered Y with |X | ≤ |Y |

3 Enough to only well-order infinite X since always |X | ≤ |N ∪ X |

4 Central construction: Hartogs number ℵ(X)

I Large well-order: |ℵ(X)| 6≤ |X |
I Controlled height: |ℵ(X)| ≤ |Pk(X)| for some k

5 Use GCH to iteratively squeeze in ℵ(X) and obtain |X | ≤ |ℵ(X)|

∗Gillman (2002), Smullyan and Fitting (2010)
D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 3

Sierpiński’s Theorem - Outline∗

1 Instead of AC, show the equivalent well-ordering theorem (WO)

2 To well-order X it suffices to find well-ordered Y with |X | ≤ |Y |

3 Enough to only well-order infinite X since always |X | ≤ |N ∪ X |

4 Central construction: Hartogs number ℵ(X)

I Large well-order: |ℵ(X)| 6≤ |X |
I Controlled height: |ℵ(X)| ≤ |Pk(X)| for some k

5 Use GCH to iteratively squeeze in ℵ(X) and obtain |X | ≤ |ℵ(X)|

∗Gillman (2002), Smullyan and Fitting (2010)
D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 3

Sierpiński’s Theorem - Outline∗

1 Instead of AC, show the equivalent well-ordering theorem (WO)

2 To well-order X it suffices to find well-ordered Y with |X | ≤ |Y |

3 Enough to only well-order infinite X since always |X | ≤ |N ∪ X |

4 Central construction: Hartogs number ℵ(X)

I Large well-order: |ℵ(X)| 6≤ |X |
I Controlled height: |ℵ(X)| ≤ |Pk(X)| for some k

5 Use GCH to iteratively squeeze in ℵ(X) and obtain |X | ≤ |ℵ(X)|

∗Gillman (2002), Smullyan and Fitting (2010)
D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 3

Sierpiński’s Theorem - Outline∗

1 Instead of AC, show the equivalent well-ordering theorem (WO)

2 To well-order X it suffices to find well-ordered Y with |X | ≤ |Y |

3 Enough to only well-order infinite X since always |X | ≤ |N ∪ X |

4 Central construction: Hartogs number ℵ(X)

I Large well-order: |ℵ(X)| 6≤ |X |

I Controlled height: |ℵ(X)| ≤ |Pk(X)| for some k

5 Use GCH to iteratively squeeze in ℵ(X) and obtain |X | ≤ |ℵ(X)|

∗Gillman (2002), Smullyan and Fitting (2010)
D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 3

Sierpiński’s Theorem - Outline∗

1 Instead of AC, show the equivalent well-ordering theorem (WO)

2 To well-order X it suffices to find well-ordered Y with |X | ≤ |Y |

3 Enough to only well-order infinite X since always |X | ≤ |N ∪ X |

4 Central construction: Hartogs number ℵ(X)

I Large well-order: |ℵ(X)| 6≤ |X |
I Controlled height: |ℵ(X)| ≤ |Pk(X)| for some k

5 Use GCH to iteratively squeeze in ℵ(X) and obtain |X | ≤ |ℵ(X)|

∗Gillman (2002), Smullyan and Fitting (2010)
D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 3

Sierpiński’s Theorem - Outline∗

1 Instead of AC, show the equivalent well-ordering theorem (WO)

2 To well-order X it suffices to find well-ordered Y with |X | ≤ |Y |

3 Enough to only well-order infinite X since always |X | ≤ |N ∪ X |

4 Central construction: Hartogs number ℵ(X)

I Large well-order: |ℵ(X)| 6≤ |X |
I Controlled height: |ℵ(X)| ≤ |Pk(X)| for some k

5 Use GCH to iteratively squeeze in ℵ(X) and obtain |X | ≤ |ℵ(X)|

∗Gillman (2002), Smullyan and Fitting (2010)
D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 3

Goal: Mechanisation in Coq

Proof outline surprisingly abstract, only need to find formal notions of:

Power sets

Numbers

Relations

Functions

Cardinality

Orderings

An expressive type theory like Coq’s type theory allows two strategies:

1 Axiomatise some variant of set theory

2 Use Coq itself to represent the necessary notions

Why are both variants interesting?

1 Many renderings of axiomatic set theory in type theory

2 Insights about type theory itself

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 4

Goal: Mechanisation in Coq

Proof outline surprisingly abstract, only need to find formal notions of:

Power sets

Numbers

Relations

Functions

Cardinality

Orderings

An expressive type theory like Coq’s type theory allows two strategies:

1 Axiomatise some variant of set theory

2 Use Coq itself to represent the necessary notions

Why are both variants interesting?

1 Many renderings of axiomatic set theory in type theory

2 Insights about type theory itself

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 4

Goal: Mechanisation in Coq

Proof outline surprisingly abstract, only need to find formal notions of:

Power sets

Numbers

Relations

Functions

Cardinality

Orderings

An expressive type theory like Coq’s type theory allows two strategies:

1 Axiomatise some variant of set theory

2 Use Coq itself to represent the necessary notions

Why are both variants interesting?

1 Many renderings of axiomatic set theory in type theory

2 Insights about type theory itself

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 4

Goal: Mechanisation in Coq

Proof outline surprisingly abstract, only need to find formal notions of:

Power sets

Numbers

Relations

Functions

Cardinality

Orderings

An expressive type theory like Coq’s type theory allows two strategies:

1 Axiomatise some variant of set theory

2 Use Coq itself to represent the necessary notions

Why are both variants interesting?

1 Many renderings of axiomatic set theory in type theory

2 Insights about type theory itself

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 4

Goal: Mechanisation in Coq

Proof outline surprisingly abstract, only need to find formal notions of:

Power sets

Numbers

Relations

Functions

Cardinality

Orderings

An expressive type theory like Coq’s type theory allows two strategies:

1 Axiomatise some variant of set theory

2 Use Coq itself to represent the necessary notions

Why are both variants interesting?

1 Many renderings of axiomatic set theory in type theory

2 Insights about type theory itself

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 4

Goal: Mechanisation in Coq

Proof outline surprisingly abstract, only need to find formal notions of:

Power sets

Numbers

Relations

Functions

Cardinality

Orderings

An expressive type theory like Coq’s type theory allows two strategies:

1 Axiomatise some variant of set theory

2 Use Coq itself to represent the necessary notions

Why are both variants interesting?

1 Many renderings of axiomatic set theory in type theory

2 Insights about type theory itself

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 4

Goal: Mechanisation in Coq

Proof outline surprisingly abstract, only need to find formal notions of:

Power sets

Numbers

Relations

Functions

Cardinality

Orderings

An expressive type theory like Coq’s type theory allows two strategies:

1 Axiomatise some variant of set theory

2 Use Coq itself to represent the necessary notions

Why are both variants interesting?

1 Many renderings of axiomatic set theory in type theory

2 Insights about type theory itself

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 4

Goal: Mechanisation in Coq

Proof outline surprisingly abstract, only need to find formal notions of:

Power sets

Numbers

Relations

Functions

Cardinality

Orderings

An expressive type theory like Coq’s type theory allows two strategies:

1 Axiomatise some variant of set theory

2 Use Coq itself to represent the necessary notions

Why are both variants interesting?

1 Many renderings of axiomatic set theory in type theory

2 Insights about type theory itself

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 4

Variant 1: First-Order vs. Higher-Order ZF

Common setting: work in model S : T providing set-theoretic structure

∈ : S → S → P
⋃

: S → S ∅ : S
{ , } : S → S → S P : S → S ω : S

First-order ZF adds replacement for first-order relations:

{x | ∃z ∈ y . ϕ(z , x)} (ϕ a functional first-order formula)

Higher-order ZF admits replacement for all relations:

{x | ∃z ∈ y .R z x} (R a functional relation S → S → P)

Convenient to work with by reusing meta-level structure

Streamlined infinity and foundation axioms (Kirst and Smolka (2018))

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 5

Variant 1: First-Order vs. Higher-Order ZF

Common setting: work in model S : T providing set-theoretic structure

∈ : S → S → P
⋃

: S → S ∅ : S
{ , } : S → S → S P : S → S ω : S

First-order ZF adds replacement for first-order relations:

{x | ∃z ∈ y . ϕ(z , x)} (ϕ a functional first-order formula)

Higher-order ZF admits replacement for all relations:

{x | ∃z ∈ y .R z x} (R a functional relation S → S → P)

Convenient to work with by reusing meta-level structure

Streamlined infinity and foundation axioms (Kirst and Smolka (2018))

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 5

Variant 1: First-Order vs. Higher-Order ZF

Common setting: work in model S : T providing set-theoretic structure

∈ : S → S → P
⋃

: S → S ∅ : S
{ , } : S → S → S P : S → S ω : S

First-order ZF adds replacement for first-order relations:

{x | ∃z ∈ y . ϕ(z , x)} (ϕ a functional first-order formula)

Higher-order ZF admits replacement for all relations:

{x | ∃z ∈ y .R z x} (R a functional relation S → S → P)

Convenient to work with by reusing meta-level structure

Streamlined infinity and foundation axioms (Kirst and Smolka (2018))

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 5

Variant 1: First-Order vs. Higher-Order ZF

Common setting: work in model S : T providing set-theoretic structure

∈ : S → S → P
⋃

: S → S ∅ : S
{ , } : S → S → S P : S → S ω : S

First-order ZF adds replacement for first-order relations:

{x | ∃z ∈ y . ϕ(z , x)} (ϕ a functional first-order formula)

Higher-order ZF admits replacement for all relations:

{x | ∃z ∈ y .R z x} (R a functional relation S → S → P)

Convenient to work with by reusing meta-level structure

Streamlined infinity and foundation axioms (Kirst and Smolka (2018))

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 5

Variant 1: First-Order vs. Higher-Order ZF

Common setting: work in model S : T providing set-theoretic structure

∈ : S → S → P
⋃

: S → S ∅ : S
{ , } : S → S → S P : S → S ω : S

First-order ZF adds replacement for first-order relations:

{x | ∃z ∈ y . ϕ(z , x)} (ϕ a functional first-order formula)

Higher-order ZF admits replacement for all relations:

{x | ∃z ∈ y .R z x} (R a functional relation S → S → P)

Convenient to work with by reusing meta-level structure

Streamlined infinity and foundation axioms (Kirst and Smolka (2018))

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 5

Variant 2: Synthetic Set Theory

Some abstract set-theoretic results apply to dependent type theories, e.g.
the equivalence of WO and AC (cf. Ilik (2006); Smolka et al. (2015))

Coq’s type theory with impredicative universe P of propositions:

Type of predicates X → P represents the power set of X

Anonymous propositional existence (∃x .P x) : P available

Propositional cardinality comparisons: existence of injective functions

Consistent with unique choice (UC) hard-wired in set theory

Represent GCH and AC in Coq by the following propositions:

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 6

Variant 2: Synthetic Set Theory

Some abstract set-theoretic results apply to dependent type theories, e.g.
the equivalence of WO and AC (cf. Ilik (2006); Smolka et al. (2015))

Coq’s type theory with impredicative universe P of propositions:

Type of predicates X → P represents the power set of X

Anonymous propositional existence (∃x .P x) : P available

Propositional cardinality comparisons: existence of injective functions

Consistent with unique choice (UC) hard-wired in set theory

Represent GCH and AC in Coq by the following propositions:

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 6

Variant 2: Synthetic Set Theory

Some abstract set-theoretic results apply to dependent type theories, e.g.
the equivalence of WO and AC (cf. Ilik (2006); Smolka et al. (2015))

Coq’s type theory with impredicative universe P of propositions:

Type of predicates X → P represents the power set of X

Anonymous propositional existence (∃x .P x) : P available

Propositional cardinality comparisons: existence of injective functions

Consistent with unique choice (UC) hard-wired in set theory

Represent GCH and AC in Coq by the following propositions:

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 6

Variant 2: Synthetic Set Theory

Some abstract set-theoretic results apply to dependent type theories, e.g.
the equivalence of WO and AC (cf. Ilik (2006); Smolka et al. (2015))

Coq’s type theory with impredicative universe P of propositions:

Type of predicates X → P represents the power set of X

Anonymous propositional existence (∃x .P x) : P available

Propositional cardinality comparisons: existence of injective functions

Consistent with unique choice (UC) hard-wired in set theory

Represent GCH and AC in Coq by the following propositions:

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 6

Variant 2: Synthetic Set Theory

Some abstract set-theoretic results apply to dependent type theories, e.g.
the equivalence of WO and AC (cf. Ilik (2006); Smolka et al. (2015))

Coq’s type theory with impredicative universe P of propositions:

Type of predicates X → P represents the power set of X

Anonymous propositional existence (∃x .P x) : P available

Propositional cardinality comparisons: existence of injective functions

Consistent with unique choice (UC) hard-wired in set theory

Represent GCH and AC in Coq by the following propositions:

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 6

Variant 2: Synthetic Set Theory

Some abstract set-theoretic results apply to dependent type theories, e.g.
the equivalence of WO and AC (cf. Ilik (2006); Smolka et al. (2015))

Coq’s type theory with impredicative universe P of propositions:

Type of predicates X → P represents the power set of X

Anonymous propositional existence (∃x .P x) : P available

Propositional cardinality comparisons: existence of injective functions

Consistent with unique choice (UC) hard-wired in set theory

Represent GCH and AC in Coq by the following propositions:

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 6

Variant 2: Synthetic Set Theory

Some abstract set-theoretic results apply to dependent type theories, e.g.
the equivalence of WO and AC (cf. Ilik (2006); Smolka et al. (2015))

Coq’s type theory with impredicative universe P of propositions:

Type of predicates X → P represents the power set of X

Anonymous propositional existence (∃x .P x) : P available

Propositional cardinality comparisons: existence of injective functions

Consistent with unique choice (UC) hard-wired in set theory

Represent GCH and AC in Coq by the following propositions:

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 6

Variant 2: Synthetic Set Theory

Some abstract set-theoretic results apply to dependent type theories, e.g.
the equivalence of WO and AC (cf. Ilik (2006); Smolka et al. (2015))

Coq’s type theory with impredicative universe P of propositions:

Type of predicates X → P represents the power set of X

Anonymous propositional existence (∃x .P x) : P available

Propositional cardinality comparisons: existence of injective functions

Consistent with unique choice (UC) hard-wired in set theory

Represent GCH and AC in Coq by the following propositions:

∀XY . |N| ≤ |X | ≤ |Y | ≤ |P(X)| → |Y | ≤ |X | ∨ |P(X)| ≤ |Y |

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 6

Variant 2: Synthetic Set Theory

Some abstract set-theoretic results apply to dependent type theories, e.g.
the equivalence of WO and AC (cf. Ilik (2006); Smolka et al. (2015))

Coq’s type theory with impredicative universe P of propositions:

Type of predicates X → P represents the power set of X

Anonymous propositional existence (∃x .P x) : P available

Propositional cardinality comparisons: existence of injective functions

Consistent with unique choice (UC) hard-wired in set theory

Represent GCH and AC in Coq by the following propositions:

∀XY . |N| ≤ |X | ≤ |Y | ≤ |P(X)| → |Y | ≤ |X | ∨ |P(X)| ≤ |Y |

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 6

Variant 2: Synthetic Set Theory

Some abstract set-theoretic results apply to dependent type theories, e.g.
the equivalence of WO and AC (cf. Ilik (2006); Smolka et al. (2015))

Coq’s type theory with impredicative universe P of propositions:

Type of predicates X → P represents the power set of X

Anonymous propositional existence (∃x .P x) : P available

Propositional cardinality comparisons: existence of injective functions

Consistent with unique choice (UC) hard-wired in set theory

Represent GCH and AC in Coq by the following propositions:

∀XY : T. |N| ≤ |X | ≤ |Y | ≤ |X → P| → |Y | ≤ |X | ∨ |X → P| ≤ |Y |

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 6

Variant 2: Synthetic Set Theory
Some abstract set-theoretic results apply to dependent type theories, e.g.
the equivalence of WO and AC (cf. Ilik (2006); Smolka et al. (2015))

Coq’s type theory with impredicative universe P of propositions:

Type of predicates X → P represents the power set of X

Anonymous propositional existence (∃x .P x) : P available

Propositional cardinality comparisons: existence of injective functions

Consistent with unique choice (UC) hard-wired in set theory

Represent GCH and AC in Coq by the following propositions:

∀XY : T. |N| ≤ |X | ≤ |Y | ≤ |X → P| → |Y | ≤ |X | ∨ |X → P| ≤ |Y |

∀R. (∀x . ∃y .Rxy)→ ∃f .∀x .Rx(fx)

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 6

Variant 2: Synthetic Set Theory
Some abstract set-theoretic results apply to dependent type theories, e.g.
the equivalence of WO and AC (cf. Ilik (2006); Smolka et al. (2015))

Coq’s type theory with impredicative universe P of propositions:

Type of predicates X → P represents the power set of X

Anonymous propositional existence (∃x .P x) : P available

Propositional cardinality comparisons: existence of injective functions

Consistent with unique choice (UC) hard-wired in set theory

Represent GCH and AC in Coq by the following propositions:

∀XY : T. |N| ≤ |X | ≤ |Y | ≤ |X → P| → |Y | ≤ |X | ∨ |X → P| ≤ |Y |

∀R. (∀x . ∃y .Rxy)→ ∃f . ∀x .Rx(fx)

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 6

Variant 2: Synthetic Set Theory
Some abstract set-theoretic results apply to dependent type theories, e.g.
the equivalence of WO and AC (cf. Ilik (2006); Smolka et al. (2015))

Coq’s type theory with impredicative universe P of propositions:

Type of predicates X → P represents the power set of X

Anonymous propositional existence (∃x .P x) : P available

Propositional cardinality comparisons: existence of injective functions

Consistent with unique choice (UC) hard-wired in set theory

Represent GCH and AC in Coq by the following propositions:

∀XY : T. |N| ≤ |X | ≤ |Y | ≤ |X → P| → |Y | ≤ |X | ∨ |X → P| ≤ |Y |

∀XY : T.∀(R : X → Y → P). (∀x .∃y .Rxy)→ ∃(f : X → Y).∀x .Rx(fx)

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 6

Three Levels of Set Theory in Coq

First-Order ZF Higher-Order ZF Type Theory

Power sets P(A) X → P

Numbers ω - N

Relations P(A× B) both coincide X → Y → P

Functions {f ⊆ A× B | . . . } - X → Y

Cardinality ∃f ⊆ A× B . . . ∃f : X → Y . . .

Orderings ∃R ⊆ A× A . . . ∃R : X → X → P . . .

Rephrasing Quine: ”Higher-order ZF is type theory in sheep’s clothing.”

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 7

Three Levels of Set Theory in Coq

First-Order ZF Higher-Order ZF Type Theory

Power sets P(A) X → P

Numbers ω - N

Relations P(A× B) both coincide X → Y → P

Functions {f ⊆ A× B | . . . } - X → Y

Cardinality ∃f ⊆ A× B . . . ∃f : X → Y . . .

Orderings ∃R ⊆ A× A . . . ∃R : X → X → P . . .

Rephrasing Quine: ”Higher-order ZF is type theory in sheep’s clothing.”

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 7

Summary of our Paper

Sierpiński’s theorem already mechanised in Metamath by Carneiro (2015)
based on a library of first-order ZF, we synthesise 3 alternatives in Coq:

Coq∗ mechanisation based on higher-order ZF (2700loc)

Adaptation to Coq∗ itself assuming unique choice (1400loc)

Variant without unique choice (300loc on top)

Coq as a proof-assistant well-suited:

Axiomatic freedom (classical logic, extensionality)

Helpful features (type classes, setoid rewriting, auto rewriting)

https://www.ps.uni-saarland.de/extras/sierpinski

∗extended with functional and propositional extensionality as well as excluded middle
D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 8

https://www.ps.uni-saarland.de/extras/sierpinski

Summary of our Paper

Sierpiński’s theorem already mechanised in Metamath by Carneiro (2015)
based on a library of first-order ZF, we synthesise 3 alternatives in Coq:

Coq∗ mechanisation based on higher-order ZF (2700loc)

Adaptation to Coq∗ itself assuming unique choice (1400loc)

Variant without unique choice (300loc on top)

Coq as a proof-assistant well-suited:

Axiomatic freedom (classical logic, extensionality)

Helpful features (type classes, setoid rewriting, auto rewriting)

https://www.ps.uni-saarland.de/extras/sierpinski

∗extended with functional and propositional extensionality as well as excluded middle
D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 8

https://www.ps.uni-saarland.de/extras/sierpinski

Summary of our Paper

Sierpiński’s theorem already mechanised in Metamath by Carneiro (2015)
based on a library of first-order ZF, we synthesise 3 alternatives in Coq:

Coq∗ mechanisation based on higher-order ZF (2700loc)

Adaptation to Coq∗ itself assuming unique choice (1400loc)

Variant without unique choice (300loc on top)

Coq as a proof-assistant well-suited:

Axiomatic freedom (classical logic, extensionality)

Helpful features (type classes, setoid rewriting, auto rewriting)

https://www.ps.uni-saarland.de/extras/sierpinski

∗extended with functional and propositional extensionality as well as excluded middle
D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 8

https://www.ps.uni-saarland.de/extras/sierpinski

First Half in
Higher-Order ZF

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 9

Higher-Order ZF Set Theory

Work in a model (S,∈, { , },
⋃
,P, ∅, ω).

Replace three of the usual first-order axioms by stronger versions:

∀A.WF∈ A (Foundation)

∀x . x ∈ ω ↔ ∃n : N. x = σn(∅) (Infinity)

λy .∃x ∈ A.R x y is a set for all functional R (Replacement)

Higher-order replacement yields a unique choice operator:

δ : ∀p : S → P. (∃!A. pA)→ ΣA. pA

δp :=
⋃
{y | ∃x ∈ P(∅). py}

Collapses total functional relations and functions on S as expected!

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 10

Higher-Order ZF Set Theory

Work in a model (S,∈, { , },
⋃
,P, ∅, ω).

Replace three of the usual first-order axioms by stronger versions:

∀A.WF∈ A (Foundation)

∀x . x ∈ ω ↔ ∃n : N. x = σn(∅) (Infinity)

λy .∃x ∈ A.R x y is a set for all functional R (Replacement)

Higher-order replacement yields a unique choice operator:

δ : ∀p : S → P. (∃!A. pA)→ ΣA. pA

δp :=
⋃
{y | ∃x ∈ P(∅). py}

Collapses total functional relations and functions on S as expected!

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 10

Higher-Order ZF Set Theory

Work in a model (S,∈, { , },
⋃
,P, ∅, ω).

Replace three of the usual first-order axioms by stronger versions:

∀A.WF∈ A (Foundation)

∀x . x ∈ ω ↔ ∃n : N. x = σn(∅) (Infinity)

λy .∃x ∈ A.R x y is a set for all functional R (Replacement)

Higher-order replacement yields a unique choice operator:

δ : ∀p : S → P. (∃!A. pA)→ ΣA. pA

δp :=
⋃
{y | ∃x ∈ P(∅). py}

Collapses total functional relations and functions on S as expected!

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 10

Higher-Order ZF Set Theory

Work in a model (S,∈, { , },
⋃
,P, ∅, ω).

Replace three of the usual first-order axioms by stronger versions:

∀A.WF∈ A (Foundation)

∀x . x ∈ ω ↔ ∃n : N. x = σn(∅) (Infinity)

λy .∃x ∈ A.R x y is a set for all functional R (Replacement)

Higher-order replacement yields a unique choice operator:

δ : ∀p : S → P. (∃!A. pA)→ ΣA. pA

δp :=
⋃
{y | ∃x ∈ P(∅). py}

Collapses total functional relations and functions on S as expected!

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 10

Higher-Order ZF Set Theory

Work in a model (S,∈, { , },
⋃
,P, ∅, ω).

Replace three of the usual first-order axioms by stronger versions:

∀A.WF∈ A (Foundation)

∀x . x ∈ ω ↔ ∃n : N. x = σn(∅) (Infinity)

λy .∃x ∈ A.R x y is a set for all functional R (Replacement)

Higher-order replacement yields a unique choice operator:

δ : ∀p : S → P. (∃!A. pA)→ ΣA. pA

δp :=
⋃
{y | ∃x ∈ P(∅). py}

Collapses total functional relations and functions on S as expected!

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 10

Higher-Order ZF Set Theory

Work in a model (S,∈, { , },
⋃
,P, ∅, ω).

Replace three of the usual first-order axioms by stronger versions:

∀A.WF∈ A (Foundation)

∀x . x ∈ ω ↔ ∃n : N. x = σn(∅) (Infinity)

λy .∃x ∈ A.R x y is a set for all functional R (Replacement)

Higher-order replacement yields a unique choice operator:

δ : ∀p : S → P. (∃!A. pA)→ ΣA. pA

δp :=
⋃
{y | ∃x ∈ P(∅). py}

Collapses total functional relations and functions on S as expected!

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 10

Inductive Ordinals∗

Definition

A set x is transitive if every element is a subset (z ∈ y ∈ x → z ∈ x).

The class O : S → P of ordinals can be defined inductively by a single rule:

α ⊆ O transitiveα
α ∈ O

Equivalently, one can characterise O with 3 rules unveiling constructors:

∅ ∈ O
α ∈ O

σ(α) ∈ O
λ ⊆ O (

⋃
λ ⊆ λ)⋃

λ ∈ O

By simple induction on O, one obtains the desired ordering properties:

Fact

Every ordinal is well-ordered by ∈ and order-isomorphic ordinals are equal.

∗Gert Smolka (2016); Smullyan and Fitting (2010)
D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 11

Inductive Ordinals∗

Definition

A set x is transitive if every element is a subset (z ∈ y ∈ x → z ∈ x).

The class O : S → P of ordinals can be defined inductively by a single rule:

α ⊆ O transitiveα
α ∈ O

Equivalently, one can characterise O with 3 rules unveiling constructors:

∅ ∈ O
α ∈ O

σ(α) ∈ O
λ ⊆ O (

⋃
λ ⊆ λ)⋃

λ ∈ O

By simple induction on O, one obtains the desired ordering properties:

Fact

Every ordinal is well-ordered by ∈ and order-isomorphic ordinals are equal.

∗Gert Smolka (2016); Smullyan and Fitting (2010)
D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 11

Inductive Ordinals∗

Definition

A set x is transitive if every element is a subset (z ∈ y ∈ x → z ∈ x).

The class O : S → P of ordinals can be defined inductively by a single rule:

α ⊆ O transitiveα
α ∈ O

Equivalently, one can characterise O with 3 rules unveiling constructors:

∅ ∈ O
α ∈ O

σ(α) ∈ O
λ ⊆ O (

⋃
λ ⊆ λ)⋃

λ ∈ O

By simple induction on O, one obtains the desired ordering properties:

Fact

Every ordinal is well-ordered by ∈ and order-isomorphic ordinals are equal.

∗Gert Smolka (2016); Smullyan and Fitting (2010)
D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 11

Inductive Ordinals∗

Definition

A set x is transitive if every element is a subset (z ∈ y ∈ x → z ∈ x).

The class O : S → P of ordinals can be defined inductively by a single rule:

α ⊆ O transitiveα
α ∈ O

Equivalently, one can characterise O with 3 rules unveiling constructors:

∅ ∈ O
α ∈ O

σ(α) ∈ O
λ ⊆ O (

⋃
λ ⊆ λ)⋃

λ ∈ O

By simple induction on O, one obtains the desired ordering properties:

Fact

Every ordinal is well-ordered by ∈ and order-isomorphic ordinals are equal.

∗Gert Smolka (2016); Smullyan and Fitting (2010)
D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 11

Constructing Large Ordinals: |ℵ(A)| 6≤ |A|

Definition

The Hartogs number of a set A is the class ℵ(A) := λα ∈ O. |α| ≤ |A|.

Theorem

The Hartogs number ℵ(A) of A satisfies the following properties:

1 |ℵ(A)| ≤ |P6(A)| 2 ℵ(A) ∈ O 3 |ℵ(A)| 6≤ |A|

Proof.

1 By representing ordinals |α| ≤ |A| as well-ordered subsets of A.

2 Straightforward by definition of ordinals.

3 Straightforward by definition of ℵ(A).

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 12

Constructing Large Ordinals: |ℵ(A)| 6≤ |A|

Definition

The Hartogs number of a set A is the class ℵ(A) := λα ∈ O. |α| ≤ |A|.

Theorem

The Hartogs number ℵ(A) of A satisfies the following properties:

1 |ℵ(A)| ≤ |P6(A)| 2 ℵ(A) ∈ O 3 |ℵ(A)| 6≤ |A|

Proof.

1 By representing ordinals |α| ≤ |A| as well-ordered subsets of A.

2 Straightforward by definition of ordinals.

3 Straightforward by definition of ℵ(A).

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 12

Constructing Large Ordinals: |ℵ(A)| 6≤ |A|

Definition

The Hartogs number of a set A is the class ℵ(A) := λα ∈ O. |α| ≤ |A|.

Theorem

The Hartogs number ℵ(A) of A satisfies the following properties:

1 |ℵ(A)| ≤ |P6(A)| 2 ℵ(A) ∈ O 3 |ℵ(A)| 6≤ |A|

Proof.

1 By representing ordinals |α| ≤ |A| as well-ordered subsets of A.

2 Straightforward by definition of ordinals.

3 Straightforward by definition of ℵ(A).

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 12

Constructing Large Ordinals: |ℵ(A)| 6≤ |A|

Definition

The Hartogs number of a set A is the class ℵ(A) := λα ∈ O. |α| ≤ |A|.

Theorem

The Hartogs number ℵ(A) of A satisfies the following properties:

1 |ℵ(A)| ≤ |P6(A)| 2 ℵ(A) ∈ O 3 |ℵ(A)| 6≤ |A|

Proof.

1 By representing ordinals |α| ≤ |A| as well-ordered subsets of A.

2 Straightforward by definition of ordinals.

3 Straightforward by definition of ℵ(A).

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 12

Constructing Large Ordinals: |ℵ(A)| 6≤ |A|

Definition

The Hartogs number of a set A is the class ℵ(A) := λα ∈ O. |α| ≤ |A|.

Theorem

The Hartogs number ℵ(A) of A satisfies the following properties:

1 |ℵ(A)| ≤ |P6(A)| 2 ℵ(A) ∈ O 3 |ℵ(A)| 6≤ |A|

Proof.

1 By representing ordinals |α| ≤ |A| as well-ordered subsets of A.

2 Straightforward by definition of ordinals.

3 Straightforward by definition of ℵ(A).

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 12

Constructing Large Ordinals: |ℵ(A)| 6≤ |A|

Definition

The Hartogs number of a set A is the class ℵ(A) := λα ∈ O. |α| ≤ |A|.

Theorem

The Hartogs number ℵ(A) of A satisfies the following properties:

1 |ℵ(A)| ≤ |P6(A)| 2 ℵ(A) ∈ O 3 |ℵ(A)| 6≤ |A|

Proof.

1 By representing ordinals |α| ≤ |A| as well-ordered subsets of A.

2 Straightforward by definition of ordinals.

3 Straightforward by definition of ℵ(A).

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 12

Second Half in
Coq’s Type Theory

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 13

Small Ordinals in Type Theory

How to construct Hartogs numbers in Coq’s type theory?
No canonical representation of well-orders as ordinals∗

Consider small ordinals representable in a given type X :

Elements p of P(X) = X → P are subsets of X

Elements P of P2(X) are sets of subsets, some of them are
well-ordered by inclusion p ⊆ q := ∀x . p x → q x

Elements α of P3(X) are classes of sets of subsets, we call the ones
that are equivalence classes of well-ordered P small ordinals

H(X) is defined as the subtype of small ordinals α

Theorem

H(X) is well-ordered and satisfies |H(X)| 6≤ |X | and |H(X)| ≤ |P3(X)|.

∗without quotient axioms or univalence
D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 14

Small Ordinals in Type Theory

How to construct Hartogs numbers in Coq’s type theory?
No canonical representation of well-orders as ordinals∗

Consider small ordinals representable in a given type X :

Elements p of P(X) = X → P are subsets of X

Elements P of P2(X) are sets of subsets, some of them are
well-ordered by inclusion p ⊆ q := ∀x . p x → q x

Elements α of P3(X) are classes of sets of subsets, we call the ones
that are equivalence classes of well-ordered P small ordinals

H(X) is defined as the subtype of small ordinals α

Theorem

H(X) is well-ordered and satisfies |H(X)| 6≤ |X | and |H(X)| ≤ |P3(X)|.

∗without quotient axioms or univalence
D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 14

Small Ordinals in Type Theory

How to construct Hartogs numbers in Coq’s type theory?
No canonical representation of well-orders as ordinals∗

Consider small ordinals representable in a given type X :

Elements p of P(X) = X → P are subsets of X

Elements P of P2(X) are sets of subsets, some of them are
well-ordered by inclusion p ⊆ q := ∀x . p x → q x

Elements α of P3(X) are classes of sets of subsets, we call the ones
that are equivalence classes of well-ordered P small ordinals

H(X) is defined as the subtype of small ordinals α

Theorem

H(X) is well-ordered and satisfies |H(X)| 6≤ |X | and |H(X)| ≤ |P3(X)|.

∗without quotient axioms or univalence
D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 14

Small Ordinals in Type Theory

How to construct Hartogs numbers in Coq’s type theory?
No canonical representation of well-orders as ordinals∗

Consider small ordinals representable in a given type X :

Elements p of P(X) = X → P are subsets of X

Elements P of P2(X) are sets of subsets, some of them are
well-ordered by inclusion p ⊆ q := ∀x . p x → q x

Elements α of P3(X) are classes of sets of subsets, we call the ones
that are equivalence classes of well-ordered P small ordinals

H(X) is defined as the subtype of small ordinals α

Theorem

H(X) is well-ordered and satisfies |H(X)| 6≤ |X | and |H(X)| ≤ |P3(X)|.

∗without quotient axioms or univalence
D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 14

Small Ordinals in Type Theory

How to construct Hartogs numbers in Coq’s type theory?
No canonical representation of well-orders as ordinals∗

Consider small ordinals representable in a given type X :

Elements p of P(X) = X → P are subsets of X

Elements P of P2(X) are sets of subsets, some of them are
well-ordered by inclusion p ⊆ q := ∀x . p x → q x

Elements α of P3(X) are classes of sets of subsets, we call the ones
that are equivalence classes of well-ordered P small ordinals

H(X) is defined as the subtype of small ordinals α

Theorem

H(X) is well-ordered and satisfies |H(X)| 6≤ |X | and |H(X)| ≤ |P3(X)|.

∗without quotient axioms or univalence
D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 14

Small Ordinals in Type Theory

How to construct Hartogs numbers in Coq’s type theory?
No canonical representation of well-orders as ordinals∗

Consider small ordinals representable in a given type X :

Elements p of P(X) = X → P are subsets of X

Elements P of P2(X) are sets of subsets, some of them are
well-ordered by inclusion p ⊆ q := ∀x . p x → q x

Elements α of P3(X) are classes of sets of subsets, we call the ones
that are equivalence classes of well-ordered P small ordinals

H(X) is defined as the subtype of small ordinals α

Theorem

H(X) is well-ordered and satisfies |H(X)| 6≤ |X | and |H(X)| ≤ |P3(X)|.

∗without quotient axioms or univalence
D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 14

Small Ordinals in Type Theory

How to construct Hartogs numbers in Coq’s type theory?
No canonical representation of well-orders as ordinals∗

Consider small ordinals representable in a given type X :

Elements p of P(X) = X → P are subsets of X

Elements P of P2(X) are sets of subsets, some of them are
well-ordered by inclusion p ⊆ q := ∀x . p x → q x

Elements α of P3(X) are classes of sets of subsets, we call the ones
that are equivalence classes of well-ordered P small ordinals

H(X) is defined as the subtype of small ordinals α

Theorem

H(X) is well-ordered and satisfies |H(X)| 6≤ |X | and |H(X)| ≤ |P3(X)|.
∗without quotient axioms or univalence

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 14

Sierpiński’s Theorem - Proof

Theorem

GCH implies AC.

Proof.

Assume GCH, it suffices to show that every infinite type is well-orderable.

So for some infinite X , apply GCH to the situation obtained by Lemma 1:

|P2(X)| ≤ |P2(X) + H(X)| ≤ |P3(X)|

|P2(X) + H(X)| ≤ |P2(X)| yields |H(X)| ≤ |P2(X)|, start again

Lemma 1

If X is infinite, then |X | = |1 + X | and |P(X)| = |P(X) + P(X)|.

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 15

Sierpiński’s Theorem - Proof

Theorem

GCH implies AC.

Proof.

Assume GCH, it suffices to show that every infinite type is well-orderable.

So for some infinite X , apply GCH to the situation obtained by Lemma 1:

|P2(X)| ≤ |P2(X) + H(X)| ≤ |P3(X)|

|P2(X) + H(X)| ≤ |P2(X)| yields |H(X)| ≤ |P2(X)|, start again

Lemma 1

If X is infinite, then |X | = |1 + X | and |P(X)| = |P(X) + P(X)|.

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 15

Sierpiński’s Theorem - Proof

Theorem

GCH implies AC.

Proof.

Assume GCH, it suffices to show that every infinite type is well-orderable.

So for some infinite X , apply GCH to the situation obtained by Lemma 1:

|P2(X)| ≤ |P2(X) + H(X)| ≤ |P3(X)|

|P2(X) + H(X)| ≤ |P2(X)| yields |H(X)| ≤ |P2(X)|, start again

Lemma 1

If X is infinite, then |X | = |1 + X | and |P(X)| = |P(X) + P(X)|.

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 15

Sierpiński’s Theorem - Proof

Theorem

GCH implies AC.

Proof.

Assume GCH, it suffices to show that every infinite type is well-orderable.
So for some infinite X , apply GCH to the situation obtained by Lemma 1:

|P2(X)| ≤ |P2(X) + H(X)| ≤ |P3(X)|

|P2(X) + H(X)| ≤ |P2(X)| yields |H(X)| ≤ |P2(X)|, start again

Lemma 1

If X is infinite, then |X | = |1 + X | and |P(X)| = |P(X) + P(X)|.

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 15

Sierpiński’s Theorem - Proof

Theorem

GCH implies AC.

Proof.

Assume GCH, it suffices to show that every infinite type is well-orderable.
So for some infinite X , apply GCH to the situation obtained by Lemma 1:

|P2(X)| ≤ |P2(X) + H(X)| ≤ |P3(X)|

|P2(X) + H(X)| ≤ |P2(X)| yields |H(X)| ≤ |P2(X)|, start again

Lemma 1

If X is infinite, then |X | = |1 + X | and |P(X)| = |P(X) + P(X)|.

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 15

Sierpiński’s Theorem - Proof

Theorem

GCH implies AC.

Proof.

Assume GCH, it suffices to show that every infinite type is well-orderable.
So for some infinite X , apply GCH to the situation obtained by Lemma 1:

|P2(X)| ≤ |P2(X) + H(X)| ≤ |P3(X)|

|P2(X) + H(X)| ≤ |P2(X)| yields |H(X)| ≤ |P2(X)|, start again

|P3(X)| ≤ |P2(X) +H(X)| yields |P3(X)| ≤ |H(X)| by Lemma 2

Lemma 2

If |P(X)| ≤ |X + Y | and |X + X | ≤ |X |, then already |P(X)| ≤ |Y |.

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 16

Infinite Types: |P(X)| = |P(X) + P(X)|

UC := ∀X .∀p : X → P. (∃!x . px)→ Σx . px

Given types X ,Y , a predicate p : X → P, and an injection f : X → Y :

|N| = |1 + N| |B| UC
= |P|

|X + X | = |B× X | |X | UC
= |Σx .px + Σx .¬px |

|P(X + Y)| = |P(X)× P(Y)| |X | UC
= |Σy .∃x . y = fx |

Lemma 1

If X is infinite, then |X | UC
= |1 + X | and |P(X)| UC

= |P(X) + P(X)|.

Proof.

By equational reasoning, e.g. the former implies the latter as follows:

|P(X)| UC
= |P(1+X)| = |P(1)×P(X)| UC

= |B×P(X)| = |P(X)+P(X)|

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 17

Infinite Types: |P(X)| = |P(X) + P(X)|

UC := ∀X .∀p : X → P. (∃!x . px)→ Σx . px

Given types X ,Y , a predicate p : X → P, and an injection f : X → Y :

|N| = |1 + N| |B| UC
= |P|

|X + X | = |B× X | |X | UC
= |Σx .px + Σx .¬px |

|P(X + Y)| = |P(X)× P(Y)| |X | UC
= |Σy .∃x . y = fx |

Lemma 1

If X is infinite, then |X | UC
= |1 + X | and |P(X)| UC

= |P(X) + P(X)|.

Proof.

By equational reasoning, e.g. the former implies the latter as follows:

|P(X)| UC
= |P(1+X)| = |P(1)×P(X)| UC

= |B×P(X)| = |P(X)+P(X)|

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 17

Infinite Types: |P(X)| = |P(X) + P(X)|

UC := ∀X .∀p : X → P. (∃!x . px)→ Σx . px

Given types X ,Y , a predicate p : X → P, and an injection f : X → Y :

|N| = |1 + N| |B| UC
= |P|

|X + X | = |B× X | |X | UC
= |Σx .px + Σx .¬px |

|P(X + Y)| = |P(X)× P(Y)| |X | UC
= |Σy .∃x . y = fx |

Lemma 1

If X is infinite, then |X | UC
= |1 + X | and |P(X)| UC

= |P(X) + P(X)|.

Proof.

By equational reasoning, e.g. the former implies the latter as follows:

|P(X)| UC
= |P(1+X)| = |P(1)×P(X)| UC

= |B×P(X)| = |P(X)+P(X)|

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 17

Infinite Types: |P(X)| = |P(X) + P(X)|

UC := ∀X .∀p : X → P. (∃!x . px)→ Σx . px

Given types X ,Y , a predicate p : X → P, and an injection f : X → Y :

|N| = |1 + N| |B| UC
= |P|

|X + X | = |B× X | |X | UC
= |Σx .px + Σx .¬px |

|P(X + Y)| = |P(X)× P(Y)| |X | UC
= |Σy .∃x . y = fx |

Lemma 1

If X is infinite, then |X | UC
= |1 + X | and |P(X)| UC

= |P(X) + P(X)|.

Proof.

By equational reasoning, e.g. the former implies the latter as follows:

|P(X)| UC
= |P(1+X)| = |P(1)×P(X)| UC

= |B×P(X)| = |P(X)+P(X)|

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 17

Infinite Types: |P(X)| = |P(X) + P(X)|

UC := ∀X .∀p : X → P. (∃!x . px)→ Σx . px

Given types X ,Y , a predicate p : X → P, and an injection f : X → Y :

|N| = |1 + N| |B| UC
= |P|

|X + X | = |B× X | |X | UC
= |Σx .px + Σx .¬px |

|P(X + Y)| = |P(X)× P(Y)| |X | UC
= |Σy .∃x . y = fx |

Lemma 1

If X is infinite, then |X | UC
= |1 + X | and |P(X)| UC

= |P(X) + P(X)|.

Proof.

By equational reasoning, e.g. the former implies the latter as follows:

|P(X)| UC
= |P(1+X)| = |P(1)×P(X)| UC

= |B×P(X)| = |P(X)+P(X)|

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 17

Infinite Types: |P(X)| = |P(X) + P(X)|

UC := ∀X .∀p : X → P. (∃!x . px)→ Σx . px

Given types X ,Y , a predicate p : X → P, and an injection f : X → Y :

|N| = |1 + N| |B| UC
= |P|

|X + X | = |B× X | |X | UC
= |Σx .px + Σx .¬px |

|P(X + Y)| = |P(X)× P(Y)| |X | UC
= |Σy .∃x . y = fx |

Lemma 1

If X is infinite, then |X | UC
= |1 + X | and |P(X)| UC

= |P(X) + P(X)|.

Proof.

By equational reasoning, e.g. the former implies the latter as follows:

|P(X)| UC
= |P(1+X)|

= |P(1)×P(X)| UC
= |B×P(X)| = |P(X)+P(X)|

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 17

Infinite Types: |P(X)| = |P(X) + P(X)|

UC := ∀X .∀p : X → P. (∃!x . px)→ Σx . px

Given types X ,Y , a predicate p : X → P, and an injection f : X → Y :

|N| = |1 + N| |B| UC
= |P|

|X + X | = |B× X | |X | UC
= |Σx .px + Σx .¬px |

|P(X + Y)| = |P(X)× P(Y)| |X | UC
= |Σy .∃x . y = fx |

Lemma 1

If X is infinite, then |X | UC
= |1 + X | and |P(X)| UC

= |P(X) + P(X)|.

Proof.

By equational reasoning, e.g. the former implies the latter as follows:

|P(X)| UC
= |P(1+X)| = |P(1)×P(X)|

UC
= |B×P(X)| = |P(X)+P(X)|

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 17

Infinite Types: |P(X)| = |P(X) + P(X)|

UC := ∀X .∀p : X → P. (∃!x . px)→ Σx . px

Given types X ,Y , a predicate p : X → P, and an injection f : X → Y :

|N| = |1 + N| |B| UC
= |P|

|X + X | = |B× X | |X | UC
= |Σx .px + Σx .¬px |

|P(X + Y)| = |P(X)× P(Y)| |X | UC
= |Σy .∃x . y = fx |

Lemma 1

If X is infinite, then |X | UC
= |1 + X | and |P(X)| UC

= |P(X) + P(X)|.

Proof.

By equational reasoning, e.g. the former implies the latter as follows:

|P(X)| UC
= |P(1+X)| = |P(1)×P(X)| UC

= |B×P(X)|

= |P(X)+P(X)|

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 17

Infinite Types: |P(X)| = |P(X) + P(X)|

UC := ∀X .∀p : X → P. (∃!x . px)→ Σx . px

Given types X ,Y , a predicate p : X → P, and an injection f : X → Y :

|N| = |1 + N| |B| UC
= |P|

|X + X | = |B× X | |X | UC
= |Σx .px + Σx .¬px |

|P(X + Y)| = |P(X)× P(Y)| |X | UC
= |Σy .∃x . y = fx |

Lemma 1

If X is infinite, then |X | UC
= |1 + X | and |P(X)| UC

= |P(X) + P(X)|.

Proof.

By equational reasoning, e.g. the former implies the latter as follows:

|P(X)| UC
= |P(1+X)| = |P(1)×P(X)| UC

= |B×P(X)| = |P(X)+P(X)|

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 17

Eliminating Unique Choice

1 Introduce weaker notions |X | ≤r |Y | and |X | =r |Y | based on
injective and invertible total functional relations instead of functions

2 Obtain the critical relational bijection without UC:

|P(X)| =r |P(X) + P(X)|

3 Consider respective reformulations GCH’ and AC’:

∀XY . |N| ≤ |X | ≤r |Y | ≤r |P(X)| → |Y | ≤r |X | ∨ |P(X)| ≤r |Y |

∀XY .∀R : X → Y → P. (∀x .∃y .Rxy)→∃R ′ ⊆ R.∀x .∃!y .R ′xy

Theorem

GCH’ implies AC’.

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 18

Eliminating Unique Choice

1 Introduce weaker notions |X | ≤r |Y | and |X | =r |Y | based on
injective and invertible total functional relations instead of functions

2 Obtain the critical relational bijection without UC:

|P(X)| =r |P(X) + P(X)|

3 Consider respective reformulations GCH’ and AC’:

∀XY . |N| ≤ |X | ≤r |Y | ≤r |P(X)| → |Y | ≤r |X | ∨ |P(X)| ≤r |Y |

∀XY .∀R : X → Y → P. (∀x .∃y .Rxy)→∃R ′ ⊆ R.∀x .∃!y .R ′xy

Theorem

GCH’ implies AC’.

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 18

Eliminating Unique Choice

1 Introduce weaker notions |X | ≤r |Y | and |X | =r |Y | based on
injective and invertible total functional relations instead of functions

2 Obtain the critical relational bijection without UC:

|P(X)| =r |P(X) + P(X)|

3 Consider respective reformulations GCH’ and AC’:

∀XY . |N| ≤ |X | ≤r |Y | ≤r |P(X)| → |Y | ≤r |X | ∨ |P(X)| ≤r |Y |

∀XY . ∀R : X → Y → P. (∀x .∃y .Rxy)→∃R ′ ⊆ R.∀x .∃!y .R ′xy

Theorem

GCH’ implies AC’.

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 18

Eliminating Unique Choice

1 Introduce weaker notions |X | ≤r |Y | and |X | =r |Y | based on
injective and invertible total functional relations instead of functions

2 Obtain the critical relational bijection without UC:

|P(X)| =r |P(X) + P(X)|

3 Consider respective reformulations GCH’ and AC’:

∀XY . |N| ≤ |X | ≤r |Y | ≤r |P(X)| → |Y | ≤r |X | ∨ |P(X)| ≤r |Y |

∀XY . ∀R : X → Y → P. (∀x .∃y .Rxy)→∃R ′ ⊆ R.∀x .∃!y .R ′xy

Theorem

GCH’ implies AC’.

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 18

Eliminating Unique Choice

1 Introduce weaker notions |X | ≤r |Y | and |X | =r |Y | based on
injective and invertible total functional relations instead of functions

2 Obtain the critical relational bijection without UC:

|P(X)| =r |P(X) + P(X)|

3 Consider respective reformulations GCH’ and AC’:

∀XY . |N| ≤ |X | ≤r |Y | ≤r |P(X)| → |Y | ≤r |X | ∨ |P(X)| ≤r |Y |

∀XY . ∀R : X → Y → P. (∀x .∃y .Rxy)→∃R ′ ⊆ R.∀x .∃!y .R ′xy

Theorem

GCH’ implies AC’.

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 18

Eliminating Unique Choice

1 Introduce weaker notions |X | ≤r |Y | and |X | =r |Y | based on
injective and invertible total functional relations instead of functions

2 Obtain the critical relational bijection without UC:

|P(X)| =r |P(X) + P(X)|

3 Consider respective reformulations GCH’ and AC’:

∀XY . |N| ≤ |X | ≤r |Y | ≤r |P(X)| → |Y | ≤r |X | ∨ |P(X)| ≤r |Y |

∀XY . ∀R : X → Y → P. (∀x .∃y .Rxy)→∃R ′ ⊆ R.∀x .∃!y .R ′xy

Theorem

GCH’ implies AC’.

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 18

Wrap-Up

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 19

Take-Homes

Three ways to mechanise set-theoretic results in type-theoretic systems:

First-order axiomatisation unavoidable for meta-theoretic results

Higher-order axiomatisation available for internal results

Type-level structure sometimes sufficient for abstract results

In this setting, higher-order ZF is a bridge between both worlds:

Explicit set-theoretic primitives and notions

Inheritance of type-theoretic structure

Convenient to work with, especially without library support

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 20

Take-Homes

Three ways to mechanise set-theoretic results in type-theoretic systems:

First-order axiomatisation unavoidable for meta-theoretic results

Higher-order axiomatisation available for internal results

Type-level structure sometimes sufficient for abstract results

In this setting, higher-order ZF is a bridge between both worlds:

Explicit set-theoretic primitives and notions

Inheritance of type-theoretic structure

Convenient to work with, especially without library support

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 20

Open Questions

How constructive is the main GCH to AC implication?
I Mostly needed for ordering properties (linearity, WF)
I Maybe factoring through the classical WO not necessary
I Would show that GCH implies excluded middle

What is the situation in other type theories?
I MLTT: lacks a direct notion of propositional existence and power sets
I Type theory with AC: renders Sierpiński’s theorem vacuous
I HoTT: probably a good target since FE, PE, and UC are provable

How connected are GCH on type-level and in the set-level model?
I Certainly the former implies the latter
I Converse implication probably independent

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 21

Open Questions

How constructive is the main GCH to AC implication?
I Mostly needed for ordering properties (linearity, WF)
I Maybe factoring through the classical WO not necessary
I Would show that GCH implies excluded middle

What is the situation in other type theories?
I MLTT: lacks a direct notion of propositional existence and power sets
I Type theory with AC: renders Sierpiński’s theorem vacuous
I HoTT: probably a good target since FE, PE, and UC are provable

How connected are GCH on type-level and in the set-level model?
I Certainly the former implies the latter
I Converse implication probably independent

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 21

Open Questions

How constructive is the main GCH to AC implication?
I Mostly needed for ordering properties (linearity, WF)
I Maybe factoring through the classical WO not necessary
I Would show that GCH implies excluded middle

What is the situation in other type theories?
I MLTT: lacks a direct notion of propositional existence and power sets
I Type theory with AC: renders Sierpiński’s theorem vacuous
I HoTT: probably a good target since FE, PE, and UC are provable

How connected are GCH on type-level and in the set-level model?
I Certainly the former implies the latter
I Converse implication probably independent

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 21

Bibliography

Carneiro, M. (2015). GCH implies AC, a Metamath Formalization. In 8th Conference on
Intelligent Computer Mathematics, Workshop on Formal Mathematics for Mathematicians.

Gert Smolka (2016). Lecture Notes in Computational Logic II.
https://courses.ps.uni-saarland.de/cl2_16/.

Gillman, L. (2002). Two classical surprises concerning the axiom of choice and the continuum
hypothesis. The American Mathematical Monthly, 109(6):544–553.

Ilik, D. (2006). Zermelo’s well-ordering theorem in type theory. In International Workshop on
Types for Proofs and Programs, pages 175–187. Springer.

Kirst, D. and Smolka, G. (2018). Categoricity results and large model constructions for
second-order zf in dependent type theory. Journal of Automated Reasoning. First Online: 11
October 2018.

Sierpiński, W. (1947). L’hypothèse généralisée du continu et l’axiome du choix. Fundamenta
Mathematicae, 1(34):1–5.

Smolka, G., Schäfer, S., and Doczkal, C. (2015). Transfinite constructions in classical type
theory. In International Conference on Interactive Theorem Proving, pages 391–404. Springer.

Smullyan, R. M. and Fitting, M. (2010). Set theory and the continuum problem. Dover
Publications.

Specker, E. (1990). Verallgemeinerte Kontinuumshypothese und Auswahlaxiom. In Jäger, G.,
Läuchli, H., Scarpellini, B., and Strassen, V., editors, Ernst Specker Selecta, pages 86–91.
Birkhäuser, Basel.

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 22

https://courses.ps.uni-saarland.de/cl2_16/

	Intro
	Higher-Order ZF
	Type Theory
	Conclusion
	References

