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D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 1

http://www.cs.uni-saarland.de/
https://www.loria.fr/en/


Sierpiński’s Theorem∗

Generalised Continuum Hypothesis (GCH):
There are no cardinalities between an infinite set and its power set.

⇓

Axiom of Choice (AC):
Every total relation contains the graph of a function.

∗Sierpiński (1947), Specker (1990)
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Sierpiński’s Theorem∗

Generalised Continuum Hypothesis (GCH):
There are no cardinalities between an infinite set and its power set.

∀XY . |N| ≤ |X | → |X | ≤ |Y | ≤ |P(X )| → |Y | ≤ |X | ∨ |P(X )| ≤ |Y |

⇓

Axiom of Choice (AC):
Every total relation contains the graph of a function.
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Sierpiński’s Theorem - Outline∗

1 Instead of AC, show the equivalent well-ordering theorem (WO)

2 To well-order X it suffices to find well-ordered Y with |X | ≤ |Y |

3 Enough to only well-order infinite X since always |X | ≤ |N ∪ X |

4 Central construction: Hartogs number ℵ(X )

I Large well-order: |ℵ(X )| 6≤ |X |
I Controlled height: |ℵ(X )| ≤ |Pk(X )| for some k

5 Use GCH to iteratively squeeze in ℵ(X ) and obtain |X | ≤ |ℵ(X )|

∗Gillman (2002), Smullyan and Fitting (2010)
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Sierpiński’s Theorem - Outline∗

1 Instead of AC, show the equivalent well-ordering theorem (WO)

2 To well-order X it suffices to find well-ordered Y with |X | ≤ |Y |

3 Enough to only well-order infinite X since always |X | ≤ |N ∪ X |

4 Central construction: Hartogs number ℵ(X )

I Large well-order: |ℵ(X )| 6≤ |X |
I Controlled height: |ℵ(X )| ≤ |Pk(X )| for some k

5 Use GCH to iteratively squeeze in ℵ(X ) and obtain |X | ≤ |ℵ(X )|

∗Gillman (2002), Smullyan and Fitting (2010)
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Goal: Mechanisation in Coq

Proof outline surprisingly abstract, only need to find formal notions of:

Power sets

Numbers

Relations

Functions

Cardinality

Orderings

An expressive type theory like Coq’s type theory allows two strategies:

1 Axiomatise some variant of set theory

2 Use Coq itself to represent the necessary notions

Why are both variants interesting?

1 Many renderings of axiomatic set theory in type theory

2 Insights about type theory itself
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D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 4



Goal: Mechanisation in Coq

Proof outline surprisingly abstract, only need to find formal notions of:

Power sets

Numbers

Relations

Functions

Cardinality

Orderings

An expressive type theory like Coq’s type theory allows two strategies:

1 Axiomatise some variant of set theory

2 Use Coq itself to represent the necessary notions

Why are both variants interesting?

1 Many renderings of axiomatic set theory in type theory

2 Insights about type theory itself
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Variant 1: First-Order vs. Higher-Order ZF

Common setting: work in model S : T providing set-theoretic structure

∈ : S → S → P
⋃

: S → S ∅ : S
{ , } : S → S → S P : S → S ω : S

First-order ZF adds replacement for first-order relations:

{x | ∃z ∈ y . ϕ(z , x)} (ϕ a functional first-order formula)

Higher-order ZF admits replacement for all relations:

{x | ∃z ∈ y .R z x} (R a functional relation S → S → P)

Convenient to work with by reusing meta-level structure

Streamlined infinity and foundation axioms (Kirst and Smolka (2018))

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 5
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Variant 2: Synthetic Set Theory

Some abstract set-theoretic results apply to dependent type theories, e.g.
the equivalence of WO and AC (cf. Ilik (2006); Smolka et al. (2015))

Coq’s type theory with impredicative universe P of propositions:

Type of predicates X → P represents the power set of X

Anonymous propositional existence (∃x .P x) : P available

Propositional cardinality comparisons: existence of injective functions

Consistent with unique choice (UC) hard-wired in set theory

Represent GCH and AC in Coq by the following propositions:
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D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 6



Three Levels of Set Theory in Coq

First-Order ZF Higher-Order ZF Type Theory

Power sets P(A) X → P

Numbers ω - N

Relations P(A× B) both coincide X → Y → P

Functions {f ⊆ A× B | . . . } - X → Y

Cardinality ∃f ⊆ A× B . . . ∃f : X → Y . . .

Orderings ∃R ⊆ A× A . . . ∃R : X → X → P . . .

Rephrasing Quine: ”Higher-order ZF is type theory in sheep’s clothing.”
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Summary of our Paper

Sierpiński’s theorem already mechanised in Metamath by Carneiro (2015)
based on a library of first-order ZF, we synthesise 3 alternatives in Coq:

Coq∗ mechanisation based on higher-order ZF (2700loc)

Adaptation to Coq∗ itself assuming unique choice (1400loc)

Variant without unique choice (300loc on top)

Coq as a proof-assistant well-suited:

Axiomatic freedom (classical logic, extensionality)

Helpful features (type classes, setoid rewriting, auto rewriting)

https://www.ps.uni-saarland.de/extras/sierpinski

∗extended with functional and propositional extensionality as well as excluded middle
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https://www.ps.uni-saarland.de/extras/sierpinski


Summary of our Paper
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First Half in
Higher-Order ZF
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Higher-Order ZF Set Theory

Work in a model (S,∈, { , },
⋃
,P, ∅, ω).

Replace three of the usual first-order axioms by stronger versions:

∀A.WF∈ A (Foundation)

∀x . x ∈ ω ↔ ∃n : N. x = σn(∅) (Infinity)

λy .∃x ∈ A.R x y is a set for all functional R (Replacement)

Higher-order replacement yields a unique choice operator:

δ : ∀p : S → P. (∃!A. pA)→ ΣA. pA

δp :=
⋃
{y | ∃x ∈ P(∅). py}

Collapses total functional relations and functions on S as expected!

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 10



Higher-Order ZF Set Theory

Work in a model (S,∈, { , },
⋃
,P, ∅, ω).

Replace three of the usual first-order axioms by stronger versions:

∀A.WF∈ A (Foundation)

∀x . x ∈ ω ↔ ∃n : N. x = σn(∅) (Infinity)

λy .∃x ∈ A.R x y is a set for all functional R (Replacement)

Higher-order replacement yields a unique choice operator:

δ : ∀p : S → P. (∃!A. pA)→ ΣA. pA

δp :=
⋃
{y | ∃x ∈ P(∅). py}

Collapses total functional relations and functions on S as expected!
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Inductive Ordinals∗

Definition

A set x is transitive if every element is a subset (z ∈ y ∈ x → z ∈ x).

The class O : S → P of ordinals can be defined inductively by a single rule:

α ⊆ O transitiveα
α ∈ O

Equivalently, one can characterise O with 3 rules unveiling constructors:

∅ ∈ O
α ∈ O

σ(α) ∈ O
λ ⊆ O (

⋃
λ ⊆ λ)⋃

λ ∈ O

By simple induction on O, one obtains the desired ordering properties:

Fact

Every ordinal is well-ordered by ∈ and order-isomorphic ordinals are equal.

∗Gert Smolka (2016); Smullyan and Fitting (2010)
D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 11
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Constructing Large Ordinals: |ℵ(A)| 6≤ |A|

Definition

The Hartogs number of a set A is the class ℵ(A) := λα ∈ O. |α| ≤ |A|.

Theorem

The Hartogs number ℵ(A) of A satisfies the following properties:

1 |ℵ(A)| ≤ |P6(A)| 2 ℵ(A) ∈ O 3 |ℵ(A)| 6≤ |A|

Proof.

1 By representing ordinals |α| ≤ |A| as well-ordered subsets of A.

2 Straightforward by definition of ordinals.

3 Straightforward by definition of ℵ(A).
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Second Half in
Coq’s Type Theory
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Small Ordinals in Type Theory

How to construct Hartogs numbers in Coq’s type theory?
No canonical representation of well-orders as ordinals∗

Consider small ordinals representable in a given type X :

Elements p of P(X ) = X → P are subsets of X

Elements P of P2(X ) are sets of subsets, some of them are
well-ordered by inclusion p ⊆ q := ∀x . p x → q x

Elements α of P3(X ) are classes of sets of subsets, we call the ones
that are equivalence classes of well-ordered P small ordinals

H(X ) is defined as the subtype of small ordinals α

Theorem

H(X ) is well-ordered and satisfies |H(X )| 6≤ |X | and |H(X )| ≤ |P3(X )|.

∗without quotient axioms or univalence
D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 14
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D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 14



Small Ordinals in Type Theory

How to construct Hartogs numbers in Coq’s type theory?
No canonical representation of well-orders as ordinals∗

Consider small ordinals representable in a given type X :

Elements p of P(X ) = X → P are subsets of X

Elements P of P2(X ) are sets of subsets, some of them are
well-ordered by inclusion p ⊆ q := ∀x . p x → q x

Elements α of P3(X ) are classes of sets of subsets, we call the ones
that are equivalence classes of well-ordered P small ordinals

H(X ) is defined as the subtype of small ordinals α

Theorem

H(X ) is well-ordered and satisfies |H(X )| 6≤ |X | and |H(X )| ≤ |P3(X )|.

∗without quotient axioms or univalence
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Sierpiński’s Theorem - Proof

Theorem

GCH implies AC.

Proof.

Assume GCH, it suffices to show that every infinite type is well-orderable.

So for some infinite X , apply GCH to the situation obtained by Lemma 1:

|P2(X )| ≤ |P2(X ) + H(X )| ≤ |P3(X )|

|P2(X ) + H(X )| ≤ |P2(X )| yields |H(X )| ≤ |P2(X )|, start again

Lemma 1

If X is infinite, then |X | = |1 + X | and |P(X )| = |P(X ) + P(X )|.
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D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 15
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|P2(X )| ≤ |P2(X ) + H(X )| ≤ |P3(X )|

|P2(X ) + H(X )| ≤ |P2(X )| yields |H(X )| ≤ |P2(X )|, start again

|P3(X )| ≤ |P2(X ) +H(X )| yields |P3(X )| ≤ |H(X )| by Lemma 2

Lemma 2

If |P(X )| ≤ |X + Y | and |X + X | ≤ |X |, then already |P(X )| ≤ |Y |.
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Infinite Types: |P(X )| = |P(X ) + P(X )|

UC := ∀X .∀p : X → P. (∃!x . px)→ Σx . px

Given types X ,Y , a predicate p : X → P, and an injection f : X → Y :

|N| = |1 + N| |B| UC
= |P|

|X + X | = |B× X | |X | UC
= |Σx .px + Σx .¬px |

|P(X + Y )| = |P(X )× P(Y )| |X | UC
= |Σy .∃x . y = fx |

Lemma 1

If X is infinite, then |X | UC
= |1 + X | and |P(X )| UC

= |P(X ) + P(X )|.

Proof.

By equational reasoning, e.g. the former implies the latter as follows:

|P(X )| UC
= |P(1+X )| = |P(1)×P(X )| UC

= |B×P(X )| = |P(X )+P(X )|

D. Kirst and F. Rech Sierpiński’s Theorem in Coq CPP’21, January 17-19 17



Infinite Types: |P(X )| = |P(X ) + P(X )|

UC := ∀X .∀p : X → P. (∃!x . px)→ Σx . px

Given types X ,Y , a predicate p : X → P, and an injection f : X → Y :

|N| = |1 + N| |B| UC
= |P|

|X + X | = |B× X | |X | UC
= |Σx .px + Σx .¬px |

|P(X + Y )| = |P(X )× P(Y )| |X | UC
= |Σy .∃x . y = fx |

Lemma 1

If X is infinite, then |X | UC
= |1 + X | and |P(X )| UC

= |P(X ) + P(X )|.

Proof.

By equational reasoning, e.g. the former implies the latter as follows:

|P(X )| UC
= |P(1+X )| = |P(1)×P(X )| UC

= |B×P(X )| = |P(X )+P(X )|
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Eliminating Unique Choice

1 Introduce weaker notions |X | ≤r |Y | and |X | =r |Y | based on
injective and invertible total functional relations instead of functions

2 Obtain the critical relational bijection without UC:

|P(X )| =r |P(X ) + P(X )|

3 Consider respective reformulations GCH’ and AC’:

∀XY . |N| ≤ |X | ≤r |Y | ≤r |P(X )| → |Y | ≤r |X | ∨ |P(X )| ≤r |Y |

∀XY .∀R : X → Y → P. (∀x .∃y .Rxy)→∃R ′ ⊆ R.∀x .∃!y .R ′xy

Theorem

GCH’ implies AC’.
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Wrap-Up
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Take-Homes

Three ways to mechanise set-theoretic results in type-theoretic systems:

First-order axiomatisation unavoidable for meta-theoretic results

Higher-order axiomatisation available for internal results

Type-level structure sometimes sufficient for abstract results

In this setting, higher-order ZF is a bridge between both worlds:

Explicit set-theoretic primitives and notions

Inheritance of type-theoretic structure

Convenient to work with, especially without library support
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Open Questions

How constructive is the main GCH to AC implication?
I Mostly needed for ordering properties (linearity, WF)
I Maybe factoring through the classical WO not necessary
I Would show that GCH implies excluded middle

What is the situation in other type theories?
I MLTT: lacks a direct notion of propositional existence and power sets
I Type theory with AC: renders Sierpiński’s theorem vacuous
I HoTT: probably a good target since FE, PE, and UC are provable

How connected are GCH on type-level and in the set-level model?
I Certainly the former implies the latter
I Converse implication probably independent
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Birkhäuser, Basel.
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