Undecidability, Incompleteness, and Completeness of Second-Order Logic in Coq

1

Certified Programs and Proofs

Mark Koch and Dominik Kirst

January 18, 2022

Saarland University, Programming Systems Lab

Quantification only over individuals

Second-Order Logic

Quantification over individuals & their properties

Quantification only over individuals

Second-Order Logic

Quantification over individuals & their properties

 $\forall P. P(0) \rightarrow (\forall n. P(n) \rightarrow P(n+1)) \rightarrow \forall n. P(n)$

Quantification only over individuals

$$\begin{split} \varphi(\mathbf{0}) \to (\forall n. \, \varphi(n) \to \varphi(n+1)) \to \forall n. \, \varphi(n) \\ \text{for all formulas } \varphi \end{split}$$

Second-Order Logic

Quantification over individuals & their properties

 $\forall P. P(0) \rightarrow (\forall n. P(n) \rightarrow P(n+1)) \rightarrow \forall n. P(n)$

Quantification only over individuals

$$\begin{split} \varphi(\mathbf{0}) \to (\forall n. \, \varphi(n) \to \varphi(n+1)) \to \forall n. \, \varphi(n) \\ \text{for all formulas } \varphi \end{split}$$

Second-Order Logic

Quantification over individuals & their properties

$$\forall P. P(0) \rightarrow (\forall n. P(n) \rightarrow P(n+1)) \rightarrow \forall n. P(n)$$

Behaviour of SOL depends on interpretation of second-order quantifiers:

Quantification only over individuals

$$\begin{split} \varphi(\mathbf{0}) \to (\forall n. \, \varphi(n) \to \varphi(n+1)) \to \forall n. \, \varphi(n) \\ \text{for all formulas } \varphi \end{split}$$

Second-Order Logic

Quantification over individuals & their properties

$$\forall P. P(0) \rightarrow (\forall n. P(n) \rightarrow P(n+1)) \rightarrow \forall n. P(n)$$

Behaviour of SOL depends on interpretation of second-order quantifiers:

• Full semantics: Quantifiers span the full relation space

Quantification only over individuals

$$\begin{split} \varphi(\mathbf{0}) \to (\forall n. \, \varphi(n) \to \varphi(n+1)) \to \forall n. \, \varphi(n) \\ \text{for all formulas } \varphi \end{split}$$

Second-Order Logic

Quantification over individuals & their properties

$$\forall P. P(0) \rightarrow (\forall n. P(n) \rightarrow P(n+1)) \rightarrow \forall n. P(n)$$

Behaviour of SOL depends on interpretation of second-order quantifiers:

• Full semantics: Quantifiers span the full relation space \Rightarrow Only one PA₂ model, rules out completeness

Quantification only over individuals

$$\begin{split} \varphi(\mathbf{0}) \to (\forall n. \, \varphi(n) \to \varphi(n+1)) \to \forall n. \, \varphi(n) \\ \text{for all formulas } \varphi \end{split}$$

Second-Order Logic

Quantification over individuals & their properties

$$\forall P. P(0) \rightarrow (\forall n. P(n) \rightarrow P(n+1)) \rightarrow \forall n. P(n)$$

Behaviour of SOL depends on interpretation of second-order quantifiers:

- Full semantics: Quantifiers span the full relation space
 ⇒ Only one PA₂ model, rules out completeness
- Henkin semantics: Generalises the relation space

Quantification only over individuals

$$\begin{split} \varphi(\mathbf{0}) \to (\forall n. \, \varphi(n) \to \varphi(n+1)) \to \forall n. \, \varphi(n) \\ \text{for all formulas } \varphi \end{split}$$

Second-Order Logic

Quantification over individuals & their properties

$$\forall P. P(0) \rightarrow (\forall n. P(n) \rightarrow P(n+1)) \rightarrow \forall n. P(n)$$

Behaviour of SOL depends on interpretation of second-order quantifiers:

- Full semantics: Quantifiers span the full relation space
 ⇒ Only one PA₂ model, rules out completeness
- Henkin semantics: Generalises the relation space
 - \Rightarrow Recovers completeness and other meta-properties of FOL

Quantification only over individuals

$$\begin{split} \varphi(\mathbf{0}) \to (\forall n. \, \varphi(n) \to \varphi(n+1)) \to \forall n. \, \varphi(n) \\ \text{for all formulas } \varphi \end{split}$$

Second-Order Logic

Quantification over individuals & their properties

$$\forall P. P(0) \rightarrow (\forall n. P(n) \rightarrow P(n+1)) \rightarrow \forall n. P(n)$$

Behaviour of SOL depends on interpretation of second-order quantifiers:

- Full semantics: Quantifiers span the full relation space
 ⇒ Only one PA₂ model, rules out completeness
- Henkin semantics: Generalises the relation space
 - \Rightarrow Recovers completeness and other meta-properties of FOL

Results well known (e.g. [Shapiro, 1991]). We analyse them in constructive type theory and mechanise them using the Coq proof assistant.

Given a signature $\Sigma = (\Sigma_{\mathcal{F}}, \Sigma_{\mathcal{P}})$, we inductively define $t ::= x_i \mid \mathcal{F} \ \vec{t}$ $(\mathcal{F} : \Sigma_{\mathcal{F}}) \ (i : \mathbb{N})$ $\varphi, \psi ::= \dot{\perp} \mid \mathcal{P} \ \vec{t} \mid p_i^n \ \vec{t} \mid \varphi \ \dot{\Box} \ \psi \mid \dot{\nabla} \varphi \mid \dot{\nabla}_2^n \ \varphi$ $(\mathcal{P} : \Sigma_{\mathcal{P}}) \ (i, n : \mathbb{N})$

• Follow previous FOL mechanisations (e.g. [Kirst and Hermes, 2021])

Given a signature $\Sigma = (\Sigma_{\mathcal{F}}, \Sigma_{\mathcal{P}})$, we inductively define $t ::= x_i \mid \mathcal{F} \ \vec{t}$ $(\mathcal{F} : \Sigma_{\mathcal{F}}) \ (i : \mathbb{N})$ $\varphi, \psi ::= \dot{\perp} \mid \mathcal{P} \ \vec{t} \mid p_i^n \ \vec{t} \mid \varphi \ \dot{\Box} \ \psi \mid \dot{\nabla} \varphi \mid \dot{\nabla}_2^n \ \varphi$ $(\mathcal{P} : \Sigma_{\mathcal{P}}) \ (i, n : \mathbb{N})$

• Follow previous FOL mechanisations (e.g. [Kirst and Hermes, 2021]) \Rightarrow De Bruijn binders

Given a signature $\Sigma = (\Sigma_{\mathcal{F}}, \Sigma_{\mathcal{P}})$, we inductively define $t ::= x_i \mid \mathcal{F} \ \vec{t}$ $(\mathcal{F} : \Sigma_{\mathcal{F}}) \ (i : \mathbb{N})$ $\varphi, \psi ::= \dot{\perp} \mid \mathcal{P} \ \vec{t} \mid p_i^n \ \vec{t} \mid \varphi \ \dot{\Box} \ \psi \mid \dot{\nabla} \varphi \mid \dot{\nabla}_2^n \ \varphi$ $(\mathcal{P} : \Sigma_{\mathcal{P}}) \ (i, n : \mathbb{N})$

• Follow previous FOL mechanisations (e.g. [Kirst and Hermes, 2021]) \Rightarrow De Bruijn binders, non-primitive equality

Given a signature $\Sigma = (\Sigma_{\mathcal{F}}, \Sigma_{\mathcal{P}})$, we inductively define $t ::= x_i \mid \mathcal{F} \ \vec{t}$ $(\mathcal{F} : \Sigma_{\mathcal{F}}) \ (i : \mathbb{N})$ $\varphi, \psi ::= \dot{\perp} \mid \mathcal{P} \ \vec{t} \mid p_i^n \ \vec{t} \mid \varphi \ \dot{\Box} \ \psi \mid \dot{\nabla} \varphi \mid \dot{\nabla}_2^n \ \varphi$ $(\mathcal{P} : \Sigma_{\mathcal{P}}) \ (i, n : \mathbb{N})$

● Follow previous FOL mechanisations (e.g. [Kirst and Hermes, 2021])
 ⇒ De Bruijn binders, non-primitive equality, type class for signatures

- Follow previous FOL mechanisations (e.g. [Kirst and Hermes, 2021])
 ⇒ De Bruijn binders, non-primitive equality, type class for signatures
- HOL mechanisations available (e.g. [Harrison, 2006, Kumar et al., 2016])

- Follow previous FOL mechanisations (e.g. [Kirst and Hermes, 2021])
 ⇒ De Bruijn binders, non-primitive equality, type class for signatures
- HOL mechanisations available (e.g. [Harrison, 2006, Kumar et al., 2016]), but no previous work on SOL

- Follow previous FOL mechanisations (e.g. [Kirst and Hermes, 2021])
 ⇒ De Bruijn binders, non-primitive equality, type class for signatures
- HOL mechanisations available (e.g. [Harrison, 2006, Kumar et al., 2016]), but no previous work on SOL
- Unique challenges of SOL: arities

- Follow previous FOL mechanisations (e.g. [Kirst and Hermes, 2021])
 ⇒ De Bruijn binders, non-primitive equality, type class for signatures
- HOL mechanisations available (e.g. [Harrison, 2006, Kumar et al., 2016]), but no previous work on SOL
- Unique challenges of SOL: arities, function quantifiers

Full Semantics: Undecidability and Incompleteness

Definition (Full Semantics)

• A model \mathcal{M} consists of a domain D and interpretations $\mathcal{F}^{\mathcal{M}}: D^{|\mathcal{F}|} \to D$ and $\mathcal{P}^{\mathcal{M}}: D^{|\mathcal{P}|} \to \mathsf{Prop}.$

Definition (Full Semantics)

- A model \mathcal{M} consists of a domain D and interpretations $\mathcal{F}^{\mathcal{M}}: D^{|\mathcal{F}|} \to D$ and $\mathcal{P}^{\mathcal{M}}: D^{|\mathcal{P}|} \to \mathsf{Prop}.$
- Interpretation (⊨) in *M* maps connectives □ and quantifiers ∇ to their counterparts in Prop.

Definition (Full Semantics)

- A model \mathcal{M} consists of a domain D and interpretations $\mathcal{F}^{\mathcal{M}}: D^{|\mathcal{F}|} \to D$ and $\mathcal{P}^{\mathcal{M}}: D^{|\mathcal{P}|} \to \mathsf{Prop}.$
- Interpretation (\vDash) in \mathcal{M} maps connectives \Box and quantifiers ∇ to their counterparts in Prop.
- SOL quantifiers ∇_2^n range over the full relation space $D^n \to \text{Prop}$.

Zero Addition : $\forall x. O + x \equiv x$ Addition Recursion : $\forall xy. (Sx) + y \equiv S(x + y)$ Disjointness : $\forall x. O \equiv Sx \rightarrow \bot$ Equality Reflexivity : $\forall x. x \equiv x$ Zero Multiplication : $\dot{\forall}x. O \cdot x \equiv O$ Multiplication Recursion : $\dot{\forall}xy. (Sx) \cdot y \equiv y + x \cdot y$ Successor Injectivity : $\dot{\forall}xy. Sx \equiv Sy \rightarrow x \equiv y$ Equality Symmetry : $\dot{\forall}xy. x \equiv y \rightarrow y \equiv x$

Induction : $\dot{\forall} P. P(O) \rightarrow (\dot{\forall} x. P(x) \rightarrow P(Sx)) \rightarrow \dot{\forall} x. P(x)$

Zero Addition : $\forall x. O + x \equiv x$ Addition Recursion : $\forall xy. (Sx) + y \equiv S(x + y)$ Disjointness : $\forall x. O \equiv Sx \rightarrow \bot$ Equality Reflexivity : $\forall x. x \equiv x$ Zero Multiplication : $\forall x. O \cdot x \equiv O$ Multiplication Recursion : $\forall xy. (Sx) \cdot y \equiv y + x \cdot y$ Successor Injectivity : $\forall xy. Sx \equiv Sy \rightarrow x \equiv y$ Equality Symmetry : $\forall xy. x \equiv y \rightarrow y \equiv x$

Induction : $\dot{\forall} P. P(O) \rightarrow (\dot{\forall} x. P(x) \rightarrow P(Sx)) \rightarrow \dot{\forall} x. P(x)$

Theorem (Categoricity [Dedekind, 1888, Shapiro, 1991])

 PA_2 is categorical for full semantics, i.e. all models of PA_2 are isomorphic.

Zero Addition : $\forall x. O + x \equiv x$ Addition Recursion : $\forall xy. (Sx) + y \equiv S(x + y)$ Disjointness : $\forall x. O \equiv Sx \rightarrow \bot$ Equality Reflexivity : $\forall x. x \equiv x$ Zero Multiplication : $\dot{\forall}x. O \cdot x \equiv O$ Multiplication Recursion : $\dot{\forall}xy. (Sx) \cdot y \equiv y + x \cdot y$ Successor Injectivity : $\dot{\forall}xy. Sx \equiv Sy \rightarrow x \equiv y$ Equality Symmetry : $\dot{\forall}xy. x \equiv y \rightarrow y \equiv x$

Induction : $\forall P. P(O) \rightarrow (\forall x. P(x) \rightarrow P(Sx)) \rightarrow \forall x. P(x)$

Theorem (Categoricity [Dedekind, 1888, Shapiro, 1991])

PA₂ is categorical for full semantics, i.e. all models of PA₂ are isomorphic.

Proof.

Given models $\mathcal{M}_1, \mathcal{M}_2 \vDash \mathsf{PA}_2$, inductively define $\cong : D_1 \to D_2 \to \mathsf{Prop}$ $O^{\mathcal{M}_1} \cong O^{\mathcal{M}_2} \qquad S^{\mathcal{M}_1} x \cong S^{\mathcal{M}_2} y \quad \text{if } x \cong y.$

Zero Addition : $\forall x. O + x \equiv x$ Addition Recursion : $\forall xy. (Sx) + y \equiv S(x + y)$ Disjointness : $\forall x. O \equiv Sx \rightarrow \bot$ Equality Reflexivity : $\forall x. x \equiv x$ Zero Multiplication : $\forall x. O \cdot x \equiv O$ Multiplication Recursion : $\forall xy. (Sx) \cdot y \equiv y + x \cdot y$ Successor Injectivity : $\forall xy. Sx \equiv Sy \rightarrow x \equiv y$ Equality Symmetry : $\forall xy. x \equiv y \rightarrow y \equiv x$

Induction : $\forall P. P(O) \rightarrow (\forall x. P(x) \rightarrow P(Sx)) \rightarrow \forall x. P(x)$

Theorem (Categoricity [Dedekind, 1888, Shapiro, 1991])

PA₂ is categorical for full semantics, i.e. all models of PA₂ are isomorphic.

Proof.

Given models $\mathcal{M}_1, \mathcal{M}_2 \vDash \mathsf{PA}_2$, inductively define $\cong : D_1 \rightarrow D_2 \rightarrow \mathsf{Prop}$

$$O^{\mathcal{M}_1} \cong O^{\mathcal{M}_2}$$
 $S^{\mathcal{M}_1} x \cong S^{\mathcal{M}_2} y$ if $x \cong y$.

Verify that \cong is an isomorphism using the induction axiom.

Corollary (Failure of Löwenheim-Skolem)

SOL does not have the Löwenheim-Skolem property for full semantics.

Corollary (Failure of Löwenheim-Skolem)

SOL does not have the Löwenheim-Skolem property for full semantics.

Theorem (Failure of Compactness)

SOL is not compact for full semantics.

Corollary (Failure of Löwenheim-Skolem)

SOL does not have the Löwenheim-Skolem property for full semantics.

Theorem (Failure of Compactness)

SOL is not compact for full semantics.

Proof.

Consider the theory $\mathcal{T}_{\neq} := \mathsf{PA}_2, x \neq O, x \neq S \ O, x \neq S \ (S \ O), ...$

Corollary (Failure of Löwenheim-Skolem)

SOL does not have the Löwenheim-Skolem property for full semantics.

Theorem (Failure of Compactness)

SOL is not compact for full semantics.

Proof.

Consider the theory $\mathcal{T}_{\neq} := \mathsf{PA}_2, x \neq O, x \neq S \ O, x \neq S \ (S \ O), ...$

• Every finite subset of \mathcal{T}_{\neq} has a model, for example \mathbb{N} .

Corollary (Failure of Löwenheim-Skolem)

SOL does not have the Löwenheim-Skolem property for full semantics.

Theorem (Failure of Compactness)

SOL is not compact for full semantics.

Proof.

Consider the theory $\mathcal{T}_{\neq} := \mathsf{PA}_2, x \neq O, x \neq S \ O, x \neq S \ (S \ O), ...$

- Every finite subset of \mathcal{T}_{\neq} has a model, for example \mathbb{N} .
- But \mathbb{N} is not model of the whole theory \mathcal{T}_{\neq} .

Corollary (Failure of Löwenheim-Skolem)

SOL does not have the Löwenheim-Skolem property for full semantics.

Theorem (Failure of Compactness)

SOL is not compact for full semantics.

Proof.

Consider the theory $\mathcal{T}_{\neq} := \mathsf{PA}_2, x \neq O, x \neq S \ O, x \neq S \ (S \ O), ...$

- Every finite subset of \mathcal{T}_{\neq} has a model, for example \mathbb{N} .
- But N is not model of the whole theory T_≠. Since N is the only model of PA₂, we can conclude that T_≠ does not have a model.

Theorem (Failure of Strong Completeness [Tennant, 1990])

SOL is not strongly complete for full semantics.

Deduction system $\vdash : \mathcal{L}(\mathsf{form}) \to \mathsf{form} \to \mathsf{Prop}$

Theorem (Failure of Strong Completeness [Tennant, 1990])

SOL is not strongly complete for full semantics.

 $\mathsf{Deduction \ system} \vdash : \mathcal{L}(\mathsf{form}) \to \mathsf{form} \to \mathsf{Prop}$

 $\bullet \quad \text{Completeness:} \ \Gamma \vDash \varphi \to \Gamma \vdash \varphi \text{ for all lists } \Gamma$

SOL is not strongly complete for full semantics.

 $\mathsf{Deduction \ system} \vdash : \mathcal{L}(\mathsf{form}) \to \mathsf{form} \to \mathsf{Prop}$

- $\bullet \quad \text{Completeness:} \ \Gamma \vDash \varphi \to \Gamma \vdash \varphi \text{ for all lists } \Gamma$
- Lift \vdash to theories: $\mathcal{T} \vdash \varphi := \exists \Gamma \subseteq_{\mathsf{fin}} \mathcal{T}. \Gamma \vdash \varphi$

SOL is not strongly complete for full semantics.

Deduction system $\vdash : \mathcal{L}(\mathsf{form}) \to \mathsf{form} \to \mathsf{Prop}$

- $\bullet \quad \text{Completeness:} \ \ \Gamma \vDash \varphi \to \Gamma \vdash \varphi \ \text{for all lists } \Gamma$
- $\bullet \quad {\rm Lift} \vdash {\rm to \ theories:} \ {\mathcal T} \vdash \varphi := \exists \ \Gamma \subseteq_{{\rm fin}} {\mathcal T}. \ \Gamma \vdash \varphi$

SOL is not strongly complete for full semantics.

 $\mathsf{Deduction} \ \mathsf{system} \vdash : \mathcal{L}(\mathsf{form}) \to \mathsf{form} \to \mathsf{Prop}$

- Completeness: $\Gamma \vDash \varphi \rightarrow \Gamma \vdash \varphi$ for all lists Γ
- $\bullet \quad {\rm Lift} \vdash {\rm to \ theories:} \ {\mathcal T} \vdash \varphi := \exists \ \Gamma \subseteq_{{\rm fin}} {\mathcal T}. \ \Gamma \vdash \varphi$
- $\begin{tabular}{ll} \bullet & \mathsf{Strong completeness:} \end{tabular} \mathcal{T}\vDash\varphi\to\mathcal{T}\vdash\varphi \end{tabular}$

No computability assumptions on \vdash

SOL is not strongly complete for full semantics.

SOL is not strongly complete for full semantics.

Does not rule out the weaker notion of completeness: $\Gamma\vDash\varphi\to\Gamma\vdash\varphi$

SOL is not strongly complete for full semantics.

Does not rule out the weaker notion of completeness: $\Gamma\vDash\varphi\to\Gamma\vdash\varphi$

 $\bullet~$ Requires more involved proof + assumption that \vdash is enumerable

SOL is not strongly complete for full semantics.

Does not rule out the weaker notion of completeness: $\Gamma\vDash\varphi\to\Gamma\vdash\varphi$

- \bullet Requires more involved proof + assumption that \vdash is enumerable
- Usually given as a consequence of Gödel's first incompleteness theorem

SOL is not strongly complete for full semantics.

Does not rule out the weaker notion of completeness: $\Gamma\vDash\varphi\to\Gamma\vdash\varphi$

- \bullet Requires more involved proof + assumption that \vdash is enumerable
- Usually given as a consequence of Gödel's first incompleteness theorem

We argue via computability theory [Kleene, 1952, Kirst and Hermes, 2021],

SOL is not strongly complete for full semantics.

Does not rule out the weaker notion of completeness: $\Gamma\vDash\varphi\to\Gamma\vdash\varphi$

- \bullet Requires more involved proof + assumption that \vdash is enumerable
- Usually given as a consequence of Gödel's first incompleteness theorem

We argue via computability theory [Kleene, 1952, Kirst and Hermes, 2021], using the synthetic approach [Richman, 1983, Bauer, 2006, Forster et al., 2019]:

SOL is not strongly complete for full semantics.

Does not rule out the weaker notion of completeness: $\Gamma\vDash\varphi\to\Gamma\vdash\varphi$

- \bullet Requires more involved proof + assumption that \vdash is enumerable
- Usually given as a consequence of Gödel's first incompleteness theorem

We argue via computability theory [Kleene, 1952, Kirst and Hermes, 2021], using the synthetic approach [Richman, 1983, Bauer, 2006, Forster et al., 2019]:

• *P* is undecidable if an undecidable problem reduces to it (e.g. Halt).

SOL is not strongly complete for full semantics.

Does not rule out the weaker notion of completeness: $\Gamma\vDash\varphi\to\Gamma\vdash\varphi$

- \bullet Requires more involved proof + assumption that \vdash is enumerable
- Usually given as a consequence of Gödel's first incompleteness theorem

We argue via computability theory [Kleene, 1952, Kirst and Hermes, 2021], using the synthetic approach [Richman, 1983, Bauer, 2006, Forster et al., 2019]:

- *P* is undecidable if an undecidable problem reduces to it (e.g. Halt).
- *P* not enumerable if a not enumerable problem reduces to it (e.g. \overline{Halt}).

Validity in PA_2 is not enumerable.

Validity in PA_2 is not enumerable.

Proof Sketch.

Via reduction from the complement of Hilbert's tenth problem $\overline{H_{10}}$:¹

Validity in PA_2 is not enumerable.

Proof Sketch.

Via reduction from the complement of Hilbert's tenth problem $\overline{H_{10}}$:¹

$$\underbrace{x+2}_{s} = \underbrace{y^2 + z}_{t}$$

Validity in PA_2 is not enumerable.

Proof Sketch.

Via reduction from the complement of Hilbert's tenth problem $\overline{H_{10}}$:¹

$$\underbrace{x+2}_{s} = \underbrace{y^{2}+z}_{t} \quad \rightsquigarrow \quad \varphi_{s,t} := \dot{\exists} xyz. x + S(SO) \equiv y \cdot y + z$$

Validity in PA_2 is not enumerable.

Proof Sketch.

Via reduction from the complement of Hilbert's tenth problem $\overline{H_{10}}$:¹

$$\underbrace{x+2}_{s} = \underbrace{y^{2}+z}_{t} \quad \rightsquigarrow \quad \varphi_{s,t} := \dot{\exists}xyz.x + S(SO) \equiv y \cdot y + z$$

s = t is unsolvable iff $\mathbb{N} \vDash \neg \varphi_{s,t}$

Validity in PA_2 is not enumerable.

Proof Sketch.

Via reduction from the complement of Hilbert's tenth problem $\overline{H_{10}}$:¹

$$\underbrace{x+2}_{s} = \underbrace{y^{2}+z}_{t} \quad \rightsquigarrow \quad \varphi_{s,t} := \dot{\exists}xyz.x + S(SO) \equiv y \cdot y + z$$

s = t is unsolvable iff $\mathbb{N} \models \neg \varphi_{s,t}$ and thus iff $\mathsf{PA}_2 \models \neg \varphi_{s,t}$ by categoricity.

SOL is not complete for full semantics

SOL is not complete for full semantics, i.e. the existence of a sound, enumerable and complete deduction system implies enumerability of $\overline{H_{10}}$.

SOL is not complete for full semantics, i.e. the existence of a sound, enumerable and complete deduction system implies enumerability of $\overline{H_{10}}$.

Theorem (Undecidability)

Second-order validity and satisfiability in the empty signature are undecidable.

SOL is not complete for full semantics, i.e. the existence of a sound, enumerable and complete deduction system implies enumerability of $\overline{H_{10}}$.

Theorem (Undecidability)

Second-order validity and satisfiability in the empty signature are undecidable.

Proof Sketch.

• s = t has a solution iff $\dot{\forall} O S + \times \equiv . PA_2 \rightarrow \varphi_{s,t}$ is valid.

SOL is not complete for full semantics, i.e. the existence of a sound, enumerable and complete deduction system implies enumerability of $\overline{H_{10}}$.

Theorem (Undecidability)

Second-order validity and satisfiability in the empty signature are undecidable.

Proof Sketch.

- s = t has a solution iff $\dot{\forall} O S + \times \equiv$. PA₂ $\dot{\rightarrow} \varphi_{s,t}$ is valid.
- s = t has a solution iff $\exists OS + \times \equiv . PA_2 \land \varphi_{s,t}$ is satisfiable.

Henkin Semantics: Completeness

Definition (Henkin Semantics).

• Second-order quantifiers ∇_2^n only range over the relations contained in a universe $\mathbb{U}_n : (D^n \to \operatorname{Prop}) \to \operatorname{Prop}$.

Definition (Henkin Semantics).

- Second-order quantifiers ∇_2^n only range over the relations contained in a universe $\mathbb{U}_n : (D^n \to \operatorname{Prop}) \to \operatorname{Prop}$.
- \mathbb{U}_n is specified by a Henkin model \mathcal{H} .

Definition (Henkin Semantics).

- Second-order quantifiers ∇_2^n only range over the relations contained in a universe $\mathbb{U}_n : (D^n \to \operatorname{Prop}) \to \operatorname{Prop}$.
- \mathbb{U}_n is specified by a Henkin model \mathcal{H} .
- \mathbb{U}_n should satisfy comprehension, i.e. it must at least contain all second-order definable properties.

Definition (Henkin Semantics).

- Second-order quantifiers ∇_2^n only range over the relations contained in a universe $\mathbb{U}_n : (D^n \to \operatorname{Prop}) \to \operatorname{Prop}$.
- \mathbb{U}_n is specified by a Henkin model \mathcal{H} .
- \mathbb{U}_n should satisfy comprehension, i.e. it must at least contain all second-order definable properties.

The second-order ND system \vdash_2 is obtained by extending the first-order system \vdash_1 with rules for second-order quantifiers and comprehension:

$$A \vdash_2 \exists P. \forall x_1 ... x_n. P(x_1, ..., x_2) \leftrightarrow \varphi \quad \mathsf{Compr}_{\varphi}$$

Definition (Henkin Semantics).

- Second-order quantifiers ∇_2^n only range over the relations contained in a universe $\mathbb{U}_n : (D^n \to \operatorname{Prop}) \to \operatorname{Prop}$.
- \mathbb{U}_n is specified by a Henkin model \mathcal{H} .
- \mathbb{U}_n should satisfy comprehension, i.e. it must at least contain all second-order definable properties.

The second-order ND system \vdash_2 is obtained by extending the first-order system \vdash_1 with rules for second-order quantifiers and comprehension:

$$A \vdash_2 \exists P. \forall x_1 \dots x_n. P(x_1, \dots, x_2) \leftrightarrow \varphi \quad \mathsf{Compr}_{\varphi}$$

 \vdash_2 is complete for Henkin semantics [Henkin, 1949].

Connection to FOL

SOL with Henkin semantics is essentially just many-sorted FOL:

$$\varphi := \dot{\forall} x. \, \dot{\exists} P. \, P(x, x) \quad \rightsquigarrow \quad \varphi^{\star} := \dot{\forall} x^{\mathcal{I}}. \, \dot{\exists} p^{\mathcal{P}_2}. \, \mathsf{App}_2(p, x, x)$$

Connection to FOL

SOL with Henkin semantics is essentially just many-sorted FOL:

$$\varphi := \dot{\forall} x. \, \dot{\exists} P. \, P(x, x) \quad \rightsquigarrow \quad \varphi^{\star} := \dot{\forall} x^{\mathcal{I}}. \, \dot{\exists} p^{\mathcal{P}_2}. \, \mathsf{App}_2(p, x, x)$$

Connection to FOL

SOL with Henkin semantics is essentially just many-sorted FOL:

$$\varphi := \dot{\forall} x. \, \dot{\exists} P. \, P(x, x) \quad \rightsquigarrow \quad \varphi^{\star} := \dot{\forall} x^{\mathcal{I}}. \, \dot{\exists} p^{\mathcal{P}_2}. \, \mathsf{App}_2(p, x, x)$$

 $\varphi^{\star} := \dot{\forall} x. \operatorname{isIndi}(x) \rightarrow \dot{\exists} p. \operatorname{isPred}_2(p) \land \operatorname{App}_2(p, x, x)$

Guard the quantifiers with predicates to distinguish the sorts [Van Dalen, 1994].

$$\varphi := \dot{\forall} x. \, \dot{\exists} P. \, P(x, x) \quad \rightsquigarrow \quad \varphi^{\star} := \dot{\forall} x^{\mathcal{I}}. \, \dot{\exists} p^{\mathcal{P}_2}. \, \mathsf{App}_2(p, x, x)$$

 $\varphi^{\star} := \dot{\forall} x. \operatorname{isIndi}(x) \rightarrow \dot{\exists} p. \operatorname{isPred}_2(p) \land \operatorname{App}_2(p, x, x)$

Guard the quantifiers with predicates to distinguish the sorts [Van Dalen, 1994].

However, difficult to prove $\vdash_1 \varphi^* \rightarrow \vdash_2 \varphi$.

$$\varphi := \dot{\forall} x. \, \dot{\exists} P. \, P(x, x) \quad \rightsquigarrow \quad \varphi^{\star} := \dot{\forall} x^{\mathcal{I}}. \, \dot{\exists} p^{\mathcal{P}_2}. \, \mathsf{App}_2(p, x, x)$$

 $\varphi^{\star} := \dot{\forall} x. \operatorname{isIndi}(x) \rightarrow \dot{\exists} p. \operatorname{isPred}_2(p) \land \operatorname{App}_2(p, x, x)$

Guard the quantifiers with predicates to distinguish the sorts [Van Dalen, 1994].

However, difficult to prove $\vdash_1 \varphi^* \rightarrow \vdash_2 \varphi$. [Nour and Raffalli, 2003] propose:

$$\varphi := \dot{\forall} x. \, \dot{\exists} P. \, P(x, x) \quad \rightsquigarrow \quad \varphi^{\star} := \dot{\forall} x^{\mathcal{I}}. \, \dot{\exists} p^{\mathcal{P}_2}. \, \mathsf{App}_2(p, x, x)$$

 $\varphi^{\star} := \dot{\forall} x. \operatorname{\mathsf{isIndi}}(x) \dot{\rightarrow} \dot{\exists} p. \operatorname{\mathsf{isPred}}_2(p) \dot{\wedge} \operatorname{\mathsf{App}}_2(p, x, x)$

Guard the quantifiers with predicates to distinguish the sorts [Van Dalen, 1994].

However, difficult to prove $\vdash_1 \varphi^* \to \vdash_2 \varphi$. [Nour and Raffalli, 2003] propose:

$$\varphi^* := \dot{\forall} x. \dot{\exists} p. \operatorname{App}_2(p, x, x)$$

$$\varphi := \dot{\forall} x. \, \dot{\exists} P. \, P(x, x) \quad \rightsquigarrow \quad \varphi^{\star} := \dot{\forall} x^{\mathcal{I}}. \, \dot{\exists} p^{\mathcal{P}_2}. \, \mathsf{App}_2(p, x, x)$$

 $\varphi^{\star} := \dot{\forall} x. \operatorname{isIndi}(x) \rightarrow \dot{\exists} p. \operatorname{isPred}_2(p) \land \operatorname{App}_2(p, x, x)$

Guard the quantifiers with predicates to distinguish the sorts [Van Dalen, 1994].

However, difficult to prove $\vdash_1 \varphi^* \rightarrow \vdash_2 \varphi$. [Nour and Raffalli, 2003] propose:

 $\varphi^{\star} := \dot{\forall} x. \, \dot{\exists} p. \, \mathsf{App}_2(p, x, x)$

x and p represent individuals and predicates at the same time.

$$\mathcal{T} \vDash_2 \varphi \\ \uparrow \\ (\mathcal{T} \cup \mathsf{Compr})^* \vDash_1 \varphi^*$$

13

Theorem (Relative Completeness)

If FOL is complete, then so is SOL with Henkin semantics.

Theorem (Completeness)

SOL with Henkin semantics is complete under LEM.

Theorem (Completeness)

SOL with Henkin semantics is complete under LEM.

Theorem (Compactness)

SOL with Henkin semantics is compact under LEM.

Theorem (Relative Löwenheim-Skolem)

If FOL has the Löwenheim-Skolem property, then so does SOL with Henkin semantics.

Mechanisation (Hyperlinked with PDF):

• Except for completeness, all results are fully constructive

- Except for completeness, all results are fully constructive
- Overall 8k new LOC and 1.5k reused

- Except for completeness, all results are fully constructive
- Overall 8k new LOC and 1.5k reused
- Undecidability results contributed to the Coq Library of Undecidability Proofs [Forster et al., 2020]

- Except for completeness, all results are fully constructive
- Overall 8k new LOC and 1.5k reused
- Undecidability results contributed to the Coq Library of Undecidability Proofs [Forster et al., 2020]

```
https://www.ps.uni-saarland.de/extras/cpp22-sol/
```

Mechanisation (Hyperlinked with PDF):

- Except for completeness, all results are fully constructive
- Overall 8k new LOC and 1.5k reused
- Undecidability results contributed to the Coq Library of Undecidability Proofs [Forster et al., 2020]

```
https://www.ps.uni-saarland.de/extras/cpp22-sol/
```

Future work:

• Löwenheim-Skolem theorem for FOL (work in progress)

Mechanisation (Hyperlinked with PDF):

- Except for completeness, all results are fully constructive
- Overall 8k new LOC and 1.5k reused
- Undecidability results contributed to the Coq Library of Undecidability Proofs [Forster et al., 2020]

https://www.ps.uni-saarland.de/extras/cpp22-sol/

Future work:

- Löwenheim-Skolem theorem for FOL (work in progress)
- Other second-order axiomatisations, e.g. ZF₂

Mechanisation (Hyperlinked with PDF):

- Except for completeness, all results are fully constructive
- Overall 8k new LOC and 1.5k reused
- Undecidability results contributed to the Coq Library of Undecidability Proofs [Forster et al., 2020]

https://www.ps.uni-saarland.de/extras/cpp22-sol/

Future work:

- Löwenheim-Skolem theorem for FOL (work in progress)
- ${\ensuremath{\, \bullet }}$ Other second-order axiomatisations, e.g. ${\ensuremath{\mathsf{ZF}}}_2$
- Internal Categoricity [Väänänen and Wang, 2012]

Mechanisation (Hyperlinked with PDF):

- Except for completeness, all results are fully constructive
- Overall 8k new LOC and 1.5k reused
- Undecidability results contributed to the Coq Library of Undecidability Proofs [Forster et al., 2020]

https://www.ps.uni-saarland.de/extras/cpp22-sol/

Future work:

- Löwenheim-Skolem theorem for FOL (work in progress)
- ${\ensuremath{\, \bullet }}$ Other second-order axiomatisations, e.g. ${\ensuremath{\mathsf{ZF}}}_2$
- Internal Categoricity [Väänänen and Wang, 2012]. Would require extensive tooling, maybe similar to the proof mode in [Hostert et al., 2021].

References i

Bauer, A. (2006).

First steps in synthetic computability theory.

Electronic Notes in Theoretical Computer Science, 155:5–31.

Proceedings of the 21st Annual Conference on Mathematical Foundations of Programming Semantics (MFPS XXI).

Davis, M. and Putnam, H. (1959).

A computational proof procedure; Axioms for number theory; Research on Hilbert's Tenth Problem.

Air Force Office of Scientific Research, Air Research and Development

Dedekind, R. (1888).

Was sind und was sollen die Zahlen?

Vieweg, Braunschweig.

Forster, Y., Kirst, D., and Smolka, G. (2019).

On synthetic undecidability in Coq, with an application to the Entscheidungsproblem. In *Proceedings of the 8th ACM SIGPLAN International Conference on Certified Programs and Proofs*, CPP 2019, page 38–51, New York, NY, USA. Association for Computing Machinery.

References ii

Forster, Y., Kirst, D., and Wehr, D. (2021).

Completeness theorems for first-order logic analysed in constructive type theory: Extended version.

Journal of Logic and Computation, 31(1):112–151.

Forster, Y., Larchey-Wendling, D., Dudenhefner, A., Heiter, E., Kirst, D., Kunze, F., Smolka, G., Spies, S., Wehr, D., and Wuttke, M. (2020).

A Coq library of undecidable problems.

In CoqPL 2020 The Sixth International Workshop on Coq for Programming Languages.

Harrison, J. (2006).

Towards self-verification of HOL Light.

In Furbach, U. and Shankar, N., editors, *Proceedings of the third International Joint Conference, IJCAR 2006*, volume 4130 of *Lecture Notes in Computer Science*, pages 177–191, Seattle, WA. Springer-Verlag.

Henkin, L. (1949).

The completeness of the first-order functional calculus.

The journal of symbolic logic, 14(3):159–166.

References iii

References iv

Matijasevič, Y. V. (1971).

Diophantine representation of recursively enumerable predicates.

In Studies in Logic and the Foundations of Mathematics, volume 63, pages 171-177. Elsevier.

Nour, K. and Raffalli, C. (2003).

Simple proof of the completeness theorem for second-order classical and intuitionistic logic by reduction to first-order mono-sorted logic.

Theoretical computer science, 308(1-3):227-237.

Richman, F. (1983).

Church's thesis without tears.

The Journal of Symbolic Logic, 48(3):797-803.

Robinson, J. (1952).

Existential definability in arithmetic.

Transactions of the American Mathematical Society, 72(3):437-449.

Shapiro, S. (1991).

Foundations without foundationalism: A case for second-order logic, volume 17. Clarendon Press.

Failure of Strong Completeness

Theorem (Failure of Strong Completeness).

SOL is not strongly complete for full semantics and decidable theories.

Proof.

Let \vdash be sound and strongly complete.

There is no model of \mathcal{T}_{\neq} . Thus

$$\mathcal{T}_{\neq} \vDash \stackrel{\mathsf{Completeness}}{\longrightarrow} \mathcal{T}_{\neq} \vdash \stackrel{\mathsf{i}}{\perp} \xrightarrow{} \stackrel{\mathsf{\Gamma} \vdash \stackrel{\mathsf{i}}{\perp}}{\mathsf{for}} \stackrel{\mathsf{Soundness}}{\mathsf{\Gamma} \subseteq_{\mathsf{fin}}} \mathcal{T}_{\neq} \xrightarrow{} \stackrel{\mathsf{Soundness}}{\longrightarrow} \mathsf{\Gamma} \vDash \stackrel{\mathsf{i}}{\perp}$$

But $\mathsf{\Gamma} \subseteq_{\mathsf{fin}} \mathcal{T}_{\neq}$ has a model.

But $\Gamma \subseteq_{fin} \mathcal{T}_{\neq}$ has a model.

Synthetic Computability Theory [Forster et al., 2019]

Every function definable in constructive type theory is computable.

This allows a synthetic rendering of computability theory without relying on a concrete model of computation.

A problem $P: X \rightarrow Prop \dots$

- is decidable if $\exists f : X \to \mathbb{B}$. $\forall x. P(X) \leftrightarrow f(x) =$ true.
- is enumerable if $\exists f : \mathbb{N} \to \mathcal{O}(X)$. $\forall x. P(X) \leftrightarrow \exists n. f(n) = x$.
- reduces to $Q: Y \to \text{Prop if } \exists f: X \to Y. \forall x. P(x) \leftrightarrow Q(f(x)).$

• Turn Henkin model \mathcal{H} into first-order model \mathcal{H}^* with $D^* := D \cup \mathbb{U}$ and App_n (x :: \vec{v}) := toPred_n x (toIndi \vec{v})

 $\mathcal{H} \vDash_2 \varphi \; \leftrightarrow \; \mathcal{H}^* \vDash_1 \varphi^*$

• Turn first-order model \mathcal{M} into Henkin model \mathcal{M}^{\diamond} with $D^{\diamond} := D$ and \mathbb{U} induced by interpretation of App.

 $\mathcal{M} \vDash_{1} \mathsf{Compr}^{\star} \to \mathcal{M}^{\diamond} \vDash_{2} \varphi \leftrightarrow \mathcal{M} \vDash_{1} \varphi^{\star}$

Define a backwards translation $_^\diamond$: form₁ \rightarrow form₂. For example

```
(\forall x. \operatorname{App}_{0}(x) \land \operatorname{App}_{1}(x, x))^{\diamond}||\forall x X^{0} X^{1}. X^{0} \land X^{1}(x)
```

$$(\operatorname{App}_1(f(x), y))^\diamond = \bot_1(y)$$

Special error symbols \perp_n if first argument is not a variable

Internal Categoricity [Väänänen and Wang, 2012]

Consider a theory ${\mathcal T}$ depending on a single predicate symbol ${\mathcal P}$

$$\mathsf{Categ}(\mathcal{T}) := \dot{\forall} D_1 D_2 P_1 P_2. \ \mathcal{T}(P_1)^{D_1} \xrightarrow{\cdot} \mathcal{T}(P_2)^{D_2} \xrightarrow{\cdot} \exists \cong . \ \mathsf{lso}(\cong, D_1, D_2, P_1, P_2)$$

where $\mathcal{T}(P_1)^{D_1}$ replaces \mathcal{P} with the variable P_1 and guards all quantifiers with the domain predicate D_1 .

- \mathcal{T} is categorical iff \models Categ (\mathcal{T})
- - \Rightarrow Categoricity can be written and proven at the object level, without depending on any external set theory (or type theory in our case)