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Introduction

First-Order Logic
Quantification only over individuals

φ(0) → (∀n. φ(n) → φ(n+ 1)) → ∀n. φ(n)
for all formulas φ

Second-Order Logic
Quantification over individuals & their properties

∀P.P(0) → (∀n.P(n) → P(n + 1)) → ∀n. P(n)

Behaviour of SOL depends on interpretation of second-order quantifiers:

Full semantics: Quantifiers span the full relation space
⇒ Only one PA2 model, rules out completeness

Henkin semantics: Generalises the relation space
⇒ Recovers completeness and other meta-properties of FOL

Results well known (e.g. [Shapiro, 1991]). We analyse them in constructive
type theory and mechanise them using the Coq proof assistant.
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Mechanisation

Given a signature Σ = (ΣF ,ΣP), we inductively define

t ::= xi | F t⃗ (F : ΣF ) (i : N)

φ,ψ ::= ⊥̇ | P t⃗ | pni t⃗ | φ □̇ ψ | ∇̇φ | ∇̇n
2 φ (P : ΣP) (i , n : N)

Follow previous FOL mechanisations (e.g. [Kirst and Hermes, 2021])
⇒ De Bruijn binders, non-primitive equality, type class for signatures

HOL mechanisations available (e.g. [Harrison, 2006, Kumar et al., 2016]),
but no previous work on SOL

Unique challenges of SOL: arities, function quantifiers
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Full Semantics: Undecidability and
Incompleteness



Full Semantics

Definition (Full Semantics)

A model M consists of a domain D and interpretations
FM : D |F| → D and PM : D |P| → Prop.

Interpretation (⊨) in M maps connectives □ and quantifiers ∇ to
their counterparts in Prop.

SOL quantifiers ∇n
2 range over the full relation space Dn → Prop.
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Second-Order Peano Arithmetic

Zero Addition : ∀̇x .O + x ≡ x

Addition Recursion : ∀̇xy . (Sx) + y ≡ S(x + y)

Disjointness : ∀̇x .O ≡ Sx →̇ ⊥̇

Equality Reflexivity : ∀̇x . x ≡ x

Zero Multiplication : ∀̇x .O · x ≡ O

Multiplication Recursion : ∀̇xy . (Sx) · y ≡ y + x · y

Successor Injectivity : ∀̇xy . Sx ≡ Sy →̇ x ≡ y

Equality Symmetry : ∀̇xy . x ≡ y →̇ y ≡ x

Induction : ∀̇P.P(O) →̇ (∀̇x .P(x) →̇ P(Sx)) →̇ ∀̇x .P(x)

Theorem (Categoricity [Dedekind, 1888, Shapiro, 1991])

PA2 is categorical for full semantics, i.e. all models of PA2 are isomorphic.

Proof.

Given models M1,M2 ⊨ PA2, inductively define ∼= : D1 → D2 → Prop

OM1 ∼= OM2 SM1 x ∼= SM2 y if x ∼= y .

Verify that ∼= is an isomorphism using the induction axiom.

5
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Consequences of Categoricity

Corollary (Failure of Löwenheim-Skolem)

SOL does not have the Löwenheim-Skolem property for full semantics.

Theorem (Failure of Compactness)

SOL is not compact for full semantics.

Proof.

Consider the theory T ̸= := PA2, x ̸= O, x ̸= S O, x ̸= S (S O), ...

Every finite subset of T̸= has a model, for example N.

But N is not model of the whole theory T ̸=. Since N is the only model
of PA2, we can conclude that T ̸= does not have a model. □
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Consequences of Categoricity

Theorem (Failure of Strong Completeness [Tennant, 1990])

SOL is not strongly complete for full semantics.

Deduction system ⊢ : L(form) → form → Prop

Completeness: Γ ⊨ φ→ Γ ⊢ φ for all lists Γ

Lift ⊢ to theories: T ⊢ φ := ∃ Γ ⊆fin T . Γ ⊢ φ

Strong completeness: T ⊨ φ→ T ⊢ φ

No computability assumptions on ⊢
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Consequences of Categoricity

Theorem (Failure of Strong Completeness [Tennant, 1990])

SOL is not strongly complete for full semantics.

Does not rule out the weaker notion of completeness: Γ ⊨ φ→ Γ ⊢ φ

Requires more involved proof + assumption that ⊢ is enumerable

Usually given as a consequence of Gödel’s first incompleteness theorem

We argue via computability theory [Kleene, 1952, Kirst and Hermes, 2021], using
the synthetic approach [Richman, 1983, Bauer, 2006, Forster et al., 2019]:

P is undecidable if an undecidable problem reduces to it (e.g. Halt).

P not enumerable if a not enumerable problem reduces to it (e.g. Halt).
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Incompleteness

Lemma

Validity in PA2 is not enumerable.

Proof Sketch.

Via reduction from the complement of Hilbert’s tenth problem H10:1

x+ 2︸ ︷︷ ︸
s

= y2 + z︸ ︷︷ ︸
t

⇝ φs,t := ∃̇xyz . x + S (S O) ≡ y · y + z

s = t is unsolvable iff N ⊨ ¬̇φs,t and thus iff PA2 ⊨ ¬̇φs,t by categoricity.
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Theorem (Incompleteness)
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Henkin Semantics: Completeness



Henkin Semantics

Definition (Henkin Semantics).

Second-order quantifiers ∇n
2 only range over the relations contained in

a universe Un : (Dn → Prop) → Prop.

Un is specified by a Henkin model H.

Un should satisfy comprehension, i.e. it must at least contain all
second-order definable properties.

The second-order ND system ⊢2 is obtained by extending the first-order
system ⊢1 with rules for second-order quantifiers and comprehension:

A ⊢2 ∃̇P. ∀̇x1...xn.P(x1, ..., x2) ↔̇ φ
Comprφ

⊢2 is complete for Henkin semantics [Henkin, 1949].
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Connection to FOL

SOL with Henkin semantics is essentially just many-sorted FOL:

φ := ∀̇x . ∃̇P.P(x , x) ⇝ φ⋆ := ∀̇xI . ∃̇pP2 .App2(p, x , x)

φ⋆ := ∀̇x . isIndi(x) →̇ ∃̇p. isPred2(p) ∧̇ App2(p, x , x)

Guard the quantifiers with predicates to distinguish the sorts [Van Dalen, 1994].

However, difficult to prove ⊢1 φ
⋆ → ⊢2 φ. [Nour and Raffalli, 2003] propose:

φ⋆ := ∀̇x . ∃̇p.App2(p, x , x)

x and p represent individuals and predicates at the same time.

⇒ We can transport the completeness theorem from FOL to SOL
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Reduction to FOL [Nour and Raffalli, 2003]

T ⊨2 φ

(T ∪ Compr)⋆ ⊨1 φ
⋆

(T ∪ Compr)⋆ ⊢1 φ
⋆

FOL completeness (MP / LEM)
[Forster et al., 2021]

T ⊢2 φ

Define FOL to SOL translation _⋄ that satisfies

⊢2 φ
⋆⋄ ↔̇ φ A ⊢1 φ→ A⋄ ⊢2 φ

⋄

Theorem (Compactness)

SOL with Henkin semantics is compact under LEM.
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Further Consequences of the Reduction

Theorem (Relative Löwenheim-Skolem)

If FOL has the Löwenheim-Skolem property, then so does SOL with Henkin
semantics.

14



Conclusion

Mechanisation (Hyperlinked with PDF):

Except for completeness, all results are fully constructive
Overall 8k new LOC and 1.5k reused
Undecidability results contributed to the Coq Library of Undecidability
Proofs [Forster et al., 2020]

https://www.ps.uni-saarland.de/extras/cpp22-sol/

Future work:
Löwenheim-Skolem theorem for FOL (work in progress)
Other second-order axiomatisations, e.g. ZF2

Internal Categoricity [Väänänen and Wang, 2012]. Would require extensive
tooling, maybe similar to the proof mode in [Hostert et al., 2021].
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Failure of Strong Completeness

Theorem (Failure of Strong Completeness).

SOL is not strongly complete for full semantics and decidable theories.

Proof.

Let ⊢ be sound and strongly complete.

There is no model of T ̸=. Thus

T̸= ⊨ ⊥̇ Completeness−−−−−−−−−−→ T̸= ⊢ ⊥̇ −→ Γ ⊢ ⊥̇
for Γ ⊆fin T ̸=

Soundness−−−−−−−−→ Γ ⊨ ⊥̇

But Γ ⊆fin T ̸= has a model.



Synthetic Computability Theory [Forster et al., 2019]

Every function definable in constructive type theory is computable.

This allows a synthetic rendering of computability theory without relying on a
concrete model of computation.

A problem P : X → Prop ...

is decidable if ∃f : X → B.∀x .P(X ) ↔ f (x) = true.

is enumerable if ∃f : N → O(X ).∀x .P(X ) ↔ ∃n. f (n) = x .

reduces to Q : Y → Prop if ∃f : X → Y .∀x .P(x) ↔ Q(f (x)).



Semantic Henkin Reduction

Turn Henkin model H into first-order model H⋆ with D⋆ := D ∪ U and
Appn (x :: v⃗) := toPredn x (toIndi v⃗)

H ⊨2 φ ↔ H⋆ ⊨1 φ
⋆

Turn first-order model M into Henkin model M⋄ with D⋄ := D and U
induced by interpretation of App.

M ⊨1 Compr⋆ → M⋄ ⊨2 φ ↔ M ⊨1 φ
⋆



Backwards Translation

Define a backwards translation _⋄ : form1 → form2. For example

(∀x .App0(x) ∧̇ App1(x , x))
⋄

||

∀x X 0 X 1.X 0 ∧̇ X 1(x)

(App1(f (x), y))
⋄ = ⊥̇1(y)

Special error symbols ⊥̇n if first argument is not a variable



Internal Categoricity [Väänänen and Wang, 2012]

Consider a theory T depending on a single predicate symbol P

Categ(T ) := ∀̇D1D2P1P2. T (P1)
D1 →̇ T (P2)

D2 →̇ ∃̇ ∼= . Iso(∼=,D1,D2,P1,P2)

where T (P1)
D1 replaces P with the variable P1 and guards all quantifiers with

the domain predicate D1.

T is categorical iff ⊨ Categ(T )

Provable in many cases (despite incompleteness), e.g.⊢ Categ(PA2).
⇒ Categoricity can be written and proven at the object level, without

depending on any external set theory (or type theory in our case)
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