A Mechanised and Constructive Reverse Analysis of Soundness and Completeness of Bi-Intuitionistic Logic

Ian Shillito and Dominik Kirst

CPP 2024
January 15th
Bi-Intuitionistic Logic

Extends intuitionistic logic with exclusion, a dual to implication:
Bi-Intuitionistic Logic

Extends intuitionistic logic with exclusion, a dual to implication:

\[w \models \varphi \rightarrow \psi := \forall w'. w' \models \varphi \rightarrow w' \models \psi \]
Bi-Intuitionistic Logic

Extends intuitionistic logic with exclusion, a dual to implication:

\[w \vDash \varphi \rightarrow \psi \ := \ \forall w' \geq w. w' \vDash \varphi \rightarrow w' \vDash \psi \]
\[w \vDash \varphi \leftarrow \psi \ := \ \neg (\forall w' \leq w. w' \vDash \varphi \rightarrow w' \vDash \psi) \]
Bi-Intuitionistic Logic

Extends intuitionistic logic with exclusion, a dual to implication:

\[w \models \varphi \rightarrow \psi := \forall w' \geq w. \quad w' \models \varphi \rightarrow w' \models \psi \]

\[w \models \varphi \leftarrow \psi := \neg (\forall w' \leq w. \quad w' \models \varphi \rightarrow w' \models \psi) \]

\[w \models \varphi \leftarrow \neg \psi := \exists w' \leq w. \quad w' \models \varphi \land w' \not\models \psi \]
Bi-Intuitionistic Logic

Extends intuitionistic logic with exclusion, a dual to implication:

\[
\begin{align*}
 w \triangleright \varphi \rightarrow \psi & := \forall w' \geq w. w' \triangleright \varphi \rightarrow w' \triangleright \psi \\
 w \triangleright \varphi \leftarrow \neg \psi & := \neg(\forall w' \leq w. w' \triangleright \varphi \rightarrow w' \triangleright \psi) \\
 w \triangleright \varphi \leftarrow \neg \psi & := \exists w' \leq w. w' \triangleright \varphi \wedge w' \not\triangleright \psi
\end{align*}
\]

Corresponds to extending proof calculi with axioms for exclusion, e.g.

\[
\psi \lor (\top \leftarrow \psi)
\]
capturing the case distinction \(w \triangleright \varphi \lor \neg(\forall w' \leq w. w' \triangleright \varphi) \).
A Case for Computer Mechanisation
A Case for Computer Mechanisation

- Semantics introduced by Grzegorczyk (1964)
A Case for Computer Mechanisation

- Semantics introduced by Grzegorczyk (1964)
- Henkin-style completeness proof by Klemke (1971)
A Case for Computer Mechanisation

- Semantics introduced by Grzegorczyk (1964)
- Henkin-style completeness proof by Klemke (1971)
- Extensive investigation by Rauszer (1980)

Górecki and Shillito's results mechanised in the Coq proof assistant by Shillito (2023)

Soundness and completeness are guaranteed to be correct!
A Case for Computer Mechanisation

- Semantics introduced by Grzegorczyk (1964)
- Henkin-style completeness proof by Klemke (1971)
- Extensive investigation by Rauszer (1980)
- Rauszer’s completeness proofs fixed for the propositional case by Goré and Shillito (2020)
A Case for Computer Mechanisation

- Semantics introduced by Grzegorczyk (1964)
- Henkin-style completeness proof by Klemke (1971)
- Extensive investigation by Rauszer (1980)
- Rauszer’s completeness proofs fixed for the propositional case by Goré and Shillito (2020)
- Goré and Shillito’s results mechanised in the Coq proof assistant by Shillito (2023)
A Case for Computer Mechanisation

- Semantics introduced by Grzegorczyk (1964)
- Henkin-style completeness proof by Klemke (1971)
- Extensive investigation by Rauszer (1980)
- Rauszer’s completeness proofs fixed for the propositional case by Goré and Shillito (2020)
- Goré and Shillito’s results mechanised in the Coq proof assistant by Shillito (2023)

Soundness and completeness are guaranteed to be correct!
Constructive Reverse Mathematics1

In foundations like constructive type theory, many sub-classical distinctions become visible:

1. Excluded Middle (LEM): $\forall P : P \lor \neg P$
2. Weak Excluded Middle (WLEM): $\forall P : P \lor \neg \neg P$
3. Double Negation Shift (DNS): $\forall p : N \rightarrow P. (\forall n. \neg \neg p n) \rightarrow \neg \neg (\forall n. p n)$
4. Markov's Principle (MP): $\forall f : N \rightarrow B. \neg \neg (\exists n. f n = true) \rightarrow \exists n. f n = true$

Some classically valid theorems are actually equivalent to constructively weaker principles...

Correct theorems can still be analysed regarding their logical strength!

1Ishihara (2006); Diener (2018)
Constructive Reverse Mathematics\(^1\)

In foundations like constructive type theory, many sub-classical distinctions become visible:

Excluded Middle (LEM) \(\ := \ \forall P : \mathbb{P}. P \lor \neg P\)

\(^1\)Ishihara (2006); Diener (2018)
Constructive Reverse Mathematics

In foundations like constructive type theory, many sub-classical distinctions become visible:

\[
\text{Excluded Middle (LEM)} := \forall P : \mathbb{P}. P \lor \neg P
\]

\[
\text{Weak Excluded Middle (WLEM)} := \forall P : \mathbb{P}. \neg \neg P \lor \neg P
\]

Some classically valid theorems are actually equivalent to constructively weaker principles... Correct theorems can still be analysed regarding their logical strength!

\footnote{Ishihara (2006); Diener (2018)}
Constructive Reverse Mathematics1

In foundations like constructive type theory, many sub-classical distinctions become visible:

\begin{align*}
\text{Excluded Middle (LEM)} & \colon= \forall P : \mathbb{P} . P \lor \neg P \\
\text{Weak Excluded Middle (WLEM)} & \colon= \forall P : \mathbb{P} . \neg P \lor \neg \neg P \\
\text{Double Negation Shift (DNS)} & \colon= \forall p : \mathbb{N} \to \mathbb{P} . (\forall n. \neg \neg p n) \to \neg \neg (\forall n. p n)
\end{align*}

\text{Markov’s Principle (MP)} \colon= \forall f : \mathbb{N} \to \mathbb{B} . \neg \neg (\exists n. f n = \text{true}) \to (\exists n. f n = \text{true})

\text{Some classically valid theorems are actually equivalent to constructively weaker principles...}

\text{Correct theorems can still be analysed regarding their logical strength!}

1\text{Ishihara (2006); Diener (2018)}
Constructive Reverse Mathematics

In foundations like constructive type theory, many sub-classical distinctions become visible:

Excluded Middle (LEM) := \(\forall P : \mathbb{P}. P \lor \neg P \)
Weak Excluded Middle (WLEM) := \(\forall P : \mathbb{P}. \neg P \lor \neg \neg P \)
Double Negation Shift (DNS) := \(\forall p : \mathbb{N} \to \mathbb{P}. (\forall n. \neg \neg p n) \to \neg \neg (\forall n. p n) \)
Markov’s Principle (MP) := \(\forall f : \mathbb{N} \to \mathbb{B}. \neg \neg (\exists n. f n = \text{true}) \to \exists n. f n = \text{true} \)

Some classically valid theorems are actually equivalent to constructively weaker principles...
Correct theorems can still be analysed regarding their logical strength!

\(^1\)Ishihara (2006); Diener (2018)
Constructive Reverse Mathematics1

In foundations like constructive type theory, many sub-classical distinctions become visible:

- **Excluded Middle (LEM)**: \[\forall P : \mathbb{P}. P \lor \neg P \]
- **Weak Excluded Middle (WLEM)**: \[\forall P : \mathbb{P}. \neg P \lor \neg \neg P \]
- **Double Negation Shift (DNS)**: \[\forall p : \mathbb{N} \to \mathbb{P}. (\forall n. \neg \neg p n) \to \neg \neg (\forall n. p n) \]
- **Markov’s Principle (MP)**: \[\forall f : \mathbb{N} \to \mathbb{B}. \neg \neg (\exists n. f n = true) \to \exists n. f n = true \]

Some classically valid theorems are actually equivalent to constructively weaker principles...

1Ishihara (2006); Diener (2018)
Constructive Reverse Mathematics

In foundations like constructive type theory, many sub-classical distinctions become visible:

- **Excluded Middle (LEM)**: \(\forall P : P . P \lor \lnot P \)
- **Weak Excluded Middle (WLEM)**: \(\forall P : P . \lnot P \lor \lnot \lnot P \)
- **Double Negation Shift (DNS)**: \(\forall p : N \rightarrow P . (\forall n . \lnot \lnot p n) \rightarrow \lnot \lnot (\forall n . p n) \)
- **Markov’s Principle (MP)**: \(\forall f : N \rightarrow B . \lnot \lnot (\exists n . f n = \text{true}) \rightarrow \exists n . f n = \text{true} \)

Some classically valid theorems are actually equivalent to constructively weaker principles...

Correct theorems can still be analysed regarding their logical strength!

\(^1\)Ishihara (2006); Diener (2018)
The Case of Soundness

Some axioms of Bi-Int like $\psi \lor (T \rightarrow \psi)$ are only valid in models behaving classically:

- decidable models \subseteq stable models \subseteq axiomatic models
The Case of Soundness

Some axioms of Bi-Int like $\psi \lor (T \rightarrow \psi)$ are only valid in models behaving classically:

decidable models \subseteq stable models \subseteq axiomatic models

Lemma

Soundness holds for every model satisfying the (critical) axioms.
The Case of Soundness

Some axioms of Bi-Int like $\psi \lor (\top \rightarrow \psi)$ are only valid in models behaving classically:

decidable models \subseteq stable models \subseteq axiomatic models

Lemma

Soundness holds for every model satisfying the (critical) axioms.

Corollary

Assuming LEM, soundness holds for all models.
The Case of Soundness

Some axioms of Bi-Int like $\psi \lor (T \rightarrow \psi)$ are only valid in models behaving classically:

$$\text{decidable models } \subseteq \text{stable models } \subseteq \text{axiomatic models}$$

Lemma

Soundness holds for every model satisfying the (critical) axioms.

Corollary

Assuming LEM, soundness holds for all models.

Fact

Soundness for all models implies LEM.
The Case of Soundness

Some axioms of Bi-Int like $\psi \lor (\top \rightarrow \psi)$ are only valid in models behaving classically:

$$\text{decidable models} \subseteq \text{stable models} \subseteq \text{axiomatic models}$$

Lemma

Soundness holds for every model satisfying the (critical) axioms.

Corollary

Assuming LEM, soundness holds for all models.

Fact

Soundness for all models implies LEM.

Proof.

For a proposition P consider the single-world model with $w \models x_0$ iff P. By assuming soundness, we have $w \models x_0 \lor (\top \rightarrow x_0)$ which is equivalent to $P \lor \neg P$. \qed
Constructive Reverse Mathematics of Completeness Theorems

Does $\mathcal{T} \vDash \varphi$ imply $\mathcal{T} \vdash \varphi$ constructively?
Constructive Reverse Mathematics of Completeness Theorems

Does $\mathcal{T} \models \varphi$ imply $\mathcal{T} \vdash \varphi$ constructively?

Current situation in the literature on first-order logic:

- Completeness equivalent to Boolean Prime Ideal Theorem (Henkin, 1954)
- Completeness requires Markov’s Principle (Kreisel, 1962)
- Completeness equivalent to Weak König’s Lemma (Simpson, 2009)
- Completeness equivalent to Weak Fan Theorem (Krivtsov, 2015)
Constructive Reverse Mathematics of Completeness Theorems

Does $\mathcal{T} \models \varphi$ imply $\mathcal{T} \vdash \varphi$ constructively?

Current situation in the literature on first-order logic:

- Completeness equivalent to Boolean Prime Ideal Theorem (Henkin, 1954)
- Completeness requires Markov’s Principle (Kreisel, 1962)
- Completeness equivalent to Weak König’s Lemma (Simpson, 2009)
- Completeness equivalent to Weak Fan Theorem (Krivtsov, 2015)
- Completeness holds fully constructively (Krivine, 1996)
Working Towards an Explanation

There are multiple dimensions at play:

- Syntax fragment (e.g., propositional, minimal, negative, full)
- Complexity of the context (e.g., finite, decidable, enumerable, arbitrary)
- Cardinality of the signature (e.g., countable, uncountable)
- Representation of the semantics (e.g., Boolean, decidable, propositional)

Ongoing systematic investigation using Coq:

- Started by Herbelin and Ilik (2016), picked up by Forster, Kirst, and Wehr (2021)
- New observations by Hagemeier and Kirst (2022) and Kirst (2022)
- Overview of current landscape by Herbelin (2022) and (Herbelin and Kirst, 2023)

Today: syntactic disjunction, arbitrary contexts, countable signature, prop. semantics
Working Towards an Explanation

There are multiple dimensions at play:

- Syntax fragment (e.g., propositional, minimal, negative, full)
- Complexity of the context (e.g., finite, decidable, enumerable, arbitrary)
- Cardinality of the signature (e.g., countable, uncountable)
- Representation of the semantics (e.g., Boolean, decidable, propositional)
Working Towards an Explanation

There are multiple dimensions at play:

- Syntax fragment (e.g., propositional, minimal, negative, full)
- Complexity of the context (e.g., finite, decidable, enumerable, arbitrary)
- Cardinality of the signature (e.g., countable, uncountable)
- Representation of the semantics (e.g., Boolean, decidable, propositional)

Ongoing systematic investigation using Coq:

- Started by Herbelin and Ilik (2016), picked up by Forster, Kirst, and Wehr (2021)
- New observations by Hagemeier and Kirst (2022) and Kirst (2022)
- Overview of current landscape by Herbelin (2022) and (Herbelin and Kirst, 2023)
- Today: syntactic disjunction, arbitrary contexts, countable signature, prop. semantics
Classical Outline for (Bi-)Intuitionistic Propositional Logic

Employing prime theories \((\varphi \lor \psi \in \mathcal{T} \rightarrow \varphi \in \mathcal{T} \lor \varphi \in \mathcal{T})\):

- **Lindenbaum Extension**: if \(\mathcal{T} \not\vdash \varphi\) then there is prime \(\mathcal{T}' \supseteq \mathcal{T}\) with \(\mathcal{T}' \not\vdash \varphi\).

- **Universal Model** \(U\): consistent prime theories related by inclusion.

- **Truth Lemma** for \(\varphi \in \mathcal{T}\) in \(U\):
 \(\varphi \in \mathcal{T} \iff \mathcal{T} \models \varphi\).

- **Model Existence**: if \(\mathcal{T} \not\vdash \varphi\) then there is \(M\) with \(M \models \mathcal{T}\) and \(M \not\models \varphi\).

- **Quasi-Completeness**: if \(\mathcal{T} \models \varphi\) then \(\neg\neg(\mathcal{T} \vdash \varphi)\).

- **Completeness**: if \(\mathcal{T} \models \varphi\) then \(\mathcal{T} \vdash \varphi\).
Classical Outline for (Bi-)Intuitionistic Propositional Logic

Employing prime theories \((\varphi \lor \psi \in \mathcal{T} \rightarrow \varphi \in \mathcal{T} \lor \varphi \in \mathcal{T})\):

- **Lindenbaum Extension**: if \(\mathcal{T} \not\vdash \varphi\) then there is prime \(\mathcal{T}' \supseteq \mathcal{T}\) with \(\mathcal{T}' \not\vdash \varphi\)
Classical Outline for (Bi-)Intuitionistic Propositional Logic

Employing prime theories \((\phi \lor \psi \in \mathcal{T} \rightarrow \phi \in \mathcal{T} \lor \psi \in \mathcal{T})\):

- **Lindenbaum Extension**: if \(\mathcal{T} \not\vdash \phi\) then there is prime \(\mathcal{T}' \supseteq \mathcal{T}\) with \(\mathcal{T}' \not\vdash \phi\)

- **Universal Model** \(\mathcal{U}\): consistent prime theories related by inclusion
Classical Outline for (Bi-)Intuitionistic Propositional Logic

Employing prime theories \((\varphi \lor \psi \in \mathcal{T} \rightarrow \varphi \in \mathcal{T} \lor \varphi \in \mathcal{T})\):

- **Lindenbaum Extension**: if \(\mathcal{T} \not\vdash \varphi\) then there is prime \(\mathcal{T}' \supseteq \mathcal{T}\) with \(\mathcal{T}' \not\vdash \varphi\)

- **Universal Model** \(\mathcal{U}\): consistent prime theories related by inclusion

- **Truth Lemma for** \(\mathcal{T}\) **in** \(\mathcal{U}\): \(\varphi \in \mathcal{T} \iff \mathcal{T} \models \varphi\)
Classical Outline for (Bi-)Intuitionistic Propositional Logic

Employing prime theories \((\varphi \lor \psi \in \mathcal{T} \rightarrow \varphi \in \mathcal{T} \lor \varphi \in \mathcal{T})\):

- Lindenbaum Extension: if \(\mathcal{T} \not\vdash \varphi\) then there is prime \(\mathcal{T}' \supseteq \mathcal{T}\) with \(\mathcal{T}' \not\vdash \varphi\)
- Universal Model \(\mathcal{U}\): consistent prime theories related by inclusion
- Truth Lemma for \(\mathcal{T}\) in \(\mathcal{U}\): \(\varphi \in \mathcal{T} \iff \mathcal{T} \vDash \varphi\)
- Model Existence: if \(\mathcal{T} \not\vdash \varphi\) then there is \(\mathcal{M}\) with \(\mathcal{M} \vDash \mathcal{T}\) and \(\mathcal{M} \not\vDash \varphi\)
Classical Outline for (Bi-)Intuitionistic Propositional Logic

Employing prime theories \((\varphi \lor \psi \in T \rightarrow \varphi \in T \lor \varphi \in T)\):

- Lindenbaum Extension: if \(T \not\vdash \varphi\) then there is prime \(T' \supseteq T\) with \(T' \not\vdash \varphi\)
- Universal Model \(U\): consistent prime theories related by inclusion
- Truth Lemma for \(T\) in \(U\): \(\varphi \in T \iff T \models \varphi\)
- Model Existence: if \(T \not\vdash \varphi\) then there is \(M\) with \(M \models T\) and \(M \not\models \varphi\)
- Quasi-Completeness: if \(T \models \varphi\) then \(\neg \neg (T \vdash \varphi)\)
Classical Outline for (Bi-)Intuitionistic Propositional Logic

Employing prime theories ($\varphi \lor \psi \in \mathcal{T} \rightarrow \varphi \in \mathcal{T} \lor \varphi \in \mathcal{T}$):

- Lindenbaum Extension: if $\mathcal{T} \not\vdash \varphi$ then there is prime $\mathcal{T}' \supseteq \mathcal{T}$ with $\mathcal{T}' \not\vdash \varphi$

- Universal Model \mathcal{U}: consistent prime theories related by inclusion

- Truth Lemma for \mathcal{T} in \mathcal{U}: $\varphi \in \mathcal{T} \iff \mathcal{T} \models \varphi$

- Model Existence: if $\mathcal{T} \not\vdash \varphi$ then there is \mathcal{M} with $\mathcal{M} \models \mathcal{T}$ and $\mathcal{M} \not\models \varphi$

- Quasi-Completeness: if $\mathcal{T} \models \varphi$ then $\neg \neg (\mathcal{T} \vdash \varphi)$

- Completeness: if $\mathcal{T} \models \varphi$ then $\mathcal{T} \vdash \varphi$
Constructive Completeness Proof???

For \mathcal{T} quasi-prime ($\varphi \lor \psi \in \mathcal{T} \rightarrow \neg \neg (\varphi \in \mathcal{T} \lor \varphi \in \mathcal{T})$):

- Lindenbaum Extension: if $\mathcal{T} \not\vdash \varphi$ then there is quasi-prime $\mathcal{T}' \supseteq \mathcal{T}$ with $\mathcal{T}' \not\vdash \varphi$

- Universal Model: consistent quasi-prime theories related by inclusion

- Truth Lemma: fails immediately

- Model Existence: fails

- Quasi-Completeness: fails

- Completeness: needs MP/LEM depending on theory complexity and syntax fragment
Constructive Completeness Proof?

For \mathcal{T} quasi-prime ($\varphi \lor \psi \in \mathcal{T} \rightarrow \neg \neg (\varphi \in \mathcal{T} \lor \varphi \in \mathcal{T})$) and stable ($\neg \neg (\varphi \in \mathcal{T}) \rightarrow \varphi \in \mathcal{T}$):

- Lindenbaum Extension: if $\mathcal{T} \not\vdash \varphi$ then there is stable quasi-prime $\mathcal{T}' \supseteq \mathcal{T}$ with $\mathcal{T}' \not\vdash \varphi$

- Universal Model: consistent stable quasi-prime theories related by inclusion

- Truth Lemma: fails for disjunction

- Model Existence: fails

- Quasi-Completeness: fails

- Completeness: needs MP/LEM depending on theory complexity and syntax fragment
The Issue with Disjunction

Truth Lemma case for disjunctions $\varphi \lor \psi$:

$$\varphi \lor \psi \in T \iff T \vdash \varphi \lor \psi$$

So we really need prime theories to interpret disjunctions. Primeness from Lindenbaum Extension is constructive no-go.
The Issue with Disjunction

Truth Lemma case for disjunctions $\varphi \lor \psi$:

$$\varphi \lor \psi \in \mathcal{T} \iff \mathcal{T} \not\models \varphi \lor \psi$$

$$\iff \mathcal{T} \not\models \varphi \lor \mathcal{T} \not\models \psi$$

So we really need prime theories to interpret disjunctions. Primeness from Lindenbaum Extension is constructive no-go.
The Issue with Disjunction

Truth Lemma case for disjunctions $\varphi \lor \psi$:

$$
\varphi \lor \psi \in \mathcal{T} \iff \mathcal{T} \vDash \varphi \lor \psi
$$

$$
def \iff \mathcal{T} \vDash \varphi \lor \mathcal{T} \vDash \psi
$$

$$
IH \iff \varphi \in \mathcal{T} \lor \psi \in \mathcal{T}
$$
The Issue with Disjunction

Truth Lemma case for disjunctions $\varphi \lor \psi$:

$\varphi \lor \psi \in \mathcal{T} \iff \mathcal{T} \not\vdash \varphi \lor \psi$
$\overset{\text{def}}{\iff} \mathcal{T} \not\vdash \varphi \lor \mathcal{T} \not\vdash \psi$
$\overset{\text{IH}}{\iff} \varphi \in \mathcal{T} \lor \psi \in \mathcal{T}$

- So we really need prime theories to interpret disjunctions
The Issue with Disjunction

Truth Lemma case for disjunctions $\varphi \lor \psi$:

$$\varphi \lor \psi \in \mathcal{T} \iff \mathcal{T} \vDash \varphi \lor \psi$$

$$\overset{def}{\iff} \mathcal{T} \vDash \varphi \lor \mathcal{T} \vDash \psi$$

$$\overset{IH}{\iff} \varphi \in \mathcal{T} \lor \psi \in \mathcal{T}$$

- So we really need prime theories to interpret disjunctions
- Primeness from Lindenbaum Extension is constructive no-go
Model Existence via WLEM

Weak law of excluded middle WLEM := ∀P : P. ¬P ∨ ¬¬P

Lemma

Assuming WLEM, every *stable quasi-prime* theory is *prime.*
Model Existence via WLEM

Weak law of excluded middle WLEM \[:= \forall P : \mathbb{P}. \neg \neg P \lor \neg P \]

Lemma

Assuming WLEM, every *stable* quasi-prime theory is prime.

Proof.

Assume \(\varphi \lor \psi \in T \). Using WLEM, decide whether \(\neg (\varphi \in T) \) or \(\neg \neg (\varphi \in T) \). In the latter case, conclude \(\varphi \in T \) directly by stability. In the former case, derive \(\psi \in T \) using stability, since assuming \(\neg (\psi \in T) \) on top of \(\neg (\varphi \in T) \) contradicts quasi-primeness for \(\varphi \lor \psi \in T \). \(\square \)
Model Existence via WLEM

Weak law of excluded middle \(WLEM := \forall P : \mathbb{P}. \neg P \lor \neg \neg P \)

Lemma

Assuming WLEM, every stable quasi-prime theory is prime.

Proof.

Assume \(\varphi \lor \psi \in T \). Using WLEM, decide whether \(\neg(\varphi \in T) \) or \(\neg \neg(\varphi \in T) \). In the latter case, conclude \(\varphi \in T \) directly by stability. In the former case, derive \(\psi \in T \) using stability, since assuming \(\neg(\psi \in T) \) on top of \(\neg(\varphi \in T) \) contradicts quasi-primeness for \(\varphi \lor \psi \in T \). \(\square \)

Classical proof outline works again up to Model Existence and Quasi-Completeness!
Backwards Analysis

Which logical principles are really necessary for the intermediate statements?

Fact
Model Existence implies WLEM.
Proof.
Given P, use model existence on $T := \{x \lor \neg x\} \cup \{x \mid P\} \cup \{\neg x \mid \neg P\}$. We have $T \not\vdash \bot$ so if $M \Vdash T$, then either $M \Vdash x \lor \neg x$ or $M \Vdash \neg x \lor \neg x$, so either $\neg \neg P$ or $\neg P$, respectively.

Fact
Quasi-Completeness implies the following principle: $\forall p : N \rightarrow P \neg \neg (\forall n. \neg p n \lor \neg \neg p n)$.
Proof.
Using similar tricks for $T := \{x \lor \neg x\} \cup \{x \mid p n\} \cup \{\neg x \mid \neg p n\}$.

Since Quasi-Completeness also follows from DNS, there is no hope it is equivalent to WLEM...
Backwards Analysis

Which logical principles are really necessary for the intermediate statements?

Fact

Model Existence implies WLEM.
Backwards Analysis

Which logical principles are really necessary for the intermediate statements?

Fact

Model Existence implies WLEM.

Proof.

Given P, use model existence on $\mathcal{T} := \{x_0 \lor \neg x_0\} \cup \{x_0 \mid P\} \cup \{\neg x_0 \mid \neg P\}$. We have $\not\vdash_{\mathcal{T}} \bot$ so if $\mathcal{M} \models \mathcal{T}$, then either $\mathcal{M} \models x_0$ or $\mathcal{M} \models \neg x_0$, so either $\neg \neg P$ or $\neg P$, respectively. □
Backwards Analysis

Which logical principles are really necessary for the intermediate statements?

Fact

Model Existence implies WLEM.

Proof.

Given P, use model existence on $\mathcal{T} := \{x_0 \lor \neg x_0\} \cup \{x_0 \mid P\} \cup \{\neg x_0 \mid \neg P\}$. We have $\mathcal{T} \not\models \bot$ so if $\mathcal{M} \models \mathcal{T}$, then either $\mathcal{M} \models x_0$ or $\mathcal{M} \models \neg x_0$, so either $\neg\neg P$ or $\neg P$, respectively. \qed

Fact

Quasi-Completeness implies the following principle: $\forall p : \mathbb{N} \to \mathbb{P}. \neg\neg(\forall n. \neg p \ n \lor \neg\neg p \ n)$
Backwards Analysis

Which logical principles are really necessary for the intermediate statements?

Fact

Model Existence implies WLEM.

Proof.

Given P, use model existence on $\mathcal{T} := \{x_0 \lor \neg x_0\} \cup \{x_0 \mid P\} \cup \{\neg x_0 \mid \neg P\}$. We have $\mathcal{T} \not\models \bot$ so if $\mathcal{M} \models \mathcal{T}$, then either $\mathcal{M} \models x_0$ or $\mathcal{M} \models \neg x_0$, so either $\neg \neg P$ or $\neg P$, respectively.

Fact

Quasi-Completeness implies the following principle: $\forall p : \mathbb{N} \rightarrow \mathbb{P}. \neg \neg (\forall n. \neg p n \lor \neg \neg p n)$

Proof.

Using similar tricks for $\mathcal{T} := \{x_n \lor \neg x_n\} \cup \{x_n \mid p n\} \cup \{\neg x_n \mid \neg p n\}$.
Backwards Analysis

Which logical principles are really necessary for the intermediate statements?

Fact

Model Existence implies WLEM.

Proof.

Given P, use model existence on $\mathcal{T} := \{x_0 \lor \neg x_0\} \cup \{x_0 \mid P\} \cup \{\neg x_0 \mid \neg P\}$. We have $\mathcal{T} \not\models \bot$ so if $\mathcal{M} \models \mathcal{T}$, then either $\mathcal{M} \models x_0$ or $\mathcal{M} \models \neg x_0$, so either $\neg \neg P$ or $\neg P$, respectively.

Fact

Quasi-Completeness implies the following principle: $\forall p : \mathbb{N} \to \mathbb{P}. \neg \neg (\forall n. \neg p n \lor \neg \neg p n)$

Proof.

Using similar tricks for $\mathcal{T} := \{x_n \lor \neg x_n\} \cup \{x_n \mid p n\} \cup \{\neg x_n \mid \neg p n\}$.

Since Quasi-Completeness also follows from DNS, there is no hope it is equivalent to WLEM...
Weak Excluded-Middle Shift\(^2\)

\[
\text{WLEMS} := \forall p : \mathbb{N} \rightarrow \mathbb{P}. \quad \neg \neg (\forall n. \neg p n \lor \neg \neg p n)
\]

\(^2\)Mentioned in systematic study by Umezawa (1959) but absent from the literature otherwise
Weak Excluded-Middle Shift2

\[
\text{WLEMS} := \forall p : \mathbb{N} \to \mathbb{P}. (\forall n. \neg\neg (\neg p n \lor \neg\neg p n)) \to \neg(\forall n. \neg p n \lor \neg\neg p n)
\]

\[\text{Lemma}\]
Assuming WLEMS, every stable quasi-prime theory is not not prime.

\[\text{Proof.}\]
Assume T not prime and derive a contradiction. Given the negative goal, from WLEMS we obtain $\forall \phi. \neg (\phi \in T) \lor \neg\neg (\phi \in T)$. This yields exactly the instances of WLEM needed to derive that T is prime, contradiction.

Already this lemma turns out to be enough for Quasi-Completeness!

2Mentioned in systematic study by Umezawa (1959) but absent from the literature otherwise
Weak Excluded-Middle Shift²

\[\text{WLEMS} \ := \ \forall p : \mathbb{N} \rightarrow \mathbb{P}. \ (\forall n. \neg \neg (\neg p n \lor \neg \neg p n)) \rightarrow \neg \neg (\forall n. \neg p n \lor \neg \neg p n) \]
\[\iff \forall pq : \mathbb{N} \rightarrow \mathbb{P}. \ (\forall n. \neg \neg (\neg p n \lor \neg q n)) \rightarrow \neg \neg (\forall n. \neg p n \lor \neg q n) \]

²Mentioned in systematic study by Umezawa (1959) but absent from the literature otherwise
Weak Excluded-Middle Shift\(^2\)

\[
\text{WLEMS} := \forall p : \mathbb{N} \rightarrow \mathbb{P}. (\forall n. \neg \neg (\neg p n \lor \neg \neg p n)) \rightarrow \neg \neg (\forall n. \neg p n \lor \neg \neg p n)
\]
\[
\Leftrightarrow \forall pq : \mathbb{N} \rightarrow \mathbb{P}. (\forall n. \neg \neg (\neg p n \lor \neg q n)) \rightarrow \neg \neg (\forall n. \neg p n \lor \neg q n)
\]

Lemma

Assuming WLEMS, every stable quasi-prime theory is not not prime.

\(^2\)Mentioned in systematic study by Umezawa (1959) but absent from the literature otherwise
Weak Excluded-Middle Shift\(^2\)

\[
\text{WLEMS} \equiv \forall p : \mathbb{N} \rightarrow \mathbb{P}. (\forall n. \lnot (\lnot p n \lor \lnot p n)) \rightarrow \lnot (\forall n. \lnot p n \lor \lnot p n)
\]

\[
\equiv \forall pq : \mathbb{N} \rightarrow \mathbb{P}. (\forall n. \lnot (\lnot p n \lor \lnot q n)) \rightarrow \lnot (\forall n. \lnot p n \lor \lnot q n)
\]

Lemma

Assuming WLEMS, every stable quasi-prime theory is not not prime.

Proof.

Assume \(\mathcal{T}\) not prime and derive a contradiction. Given the negative goal, from WLEMS we obtain \(\forall \varphi. \lnot (\varphi \in \mathcal{T}) \lor \lnot (\varphi \in \mathcal{T})\). This yields exactly the instances of WLEM needed to derive that \(\mathcal{T}\) is prime, contradiction.

\(^2\)Mentioned in systematic study by Umezawa (1959) but absent from the literature otherwise
Weak Excluded-Middle Shift

\[
\text{WLEMS} := \forall p : \mathbb{N} \rightarrow \mathbb{P}. (\forall n. \neg\neg (\neg p n \lor \neg\neg p n)) \rightarrow \neg\neg (\forall n. \neg p n \lor \neg\neg p n)
\]

\[
\iff \forall pq : \mathbb{N} \rightarrow \mathbb{P}. (\forall n. \neg\neg (\neg p n \lor \neg q n)) \rightarrow \neg\neg (\forall n. \neg p n \lor \neg q n)
\]

Lemma

Assuming WLEMS, every stable quasi-prime theory is not not prime.

Proof.

Assume \(\mathcal{T} \) not prime and derive a contradiction. Given the negative goal, from WLEMS we obtain \(\forall \varphi. \neg(\varphi \in \mathcal{T}) \lor \neg(\varphi \in \mathcal{T}) \). This yields exactly the instances of WLEM needed to derive that \(\mathcal{T} \) is prime, contradiction. \(\square \)

Already this lemma turns out to be enough for Quasi-Completeness!

\(^2\)Mentioned in systematic study by Umezawa (1959) but absent from the literature otherwise
Quasi-Completeness via WLEMS

Refined proof outline using WLEMS:

Lindenbaum Extension: if $T \not\vdash \phi$ then there is stable not not prime T' $\supseteq T$ with $T' \not\vdash \phi$

Universal Model U: consistent stable prime theories related by inclusion

Truth Lemma for T in U: $\phi \in T \iff T \vDash \phi$

Quasi Model Existence: if $T \not\vdash \phi$ then not not is M with $M \vDash T$ and $M \not\vDash \phi$

Quasi-Completeness: if $T \vDash \phi$ then $\neg \neg (T \vdash \phi)$

Completeness: needs MP/LEM depending on theory complexity and syntax fragment
Quasi-Completeness via WLEMS

Refined proof outline using WLEMS:

- Lindenbaum Extension: if $\mathcal{T} \not\vdash \varphi$ then there is stable not not prime $\mathcal{T}' \supseteq \mathcal{T}$ with $\mathcal{T}' \not\vdash \varphi$
Quasi-Completeness via WLEMS

Refined proof outline using WLEMS:

- **Lindenbaum Extension**: if $T \not\vdash \varphi$ then there is **stable not not prime** $T' \supseteq T$ with $T' \not\vdash \varphi$

- **Universal Model U**: consistent **stable prime** theories related by inclusion
Quasi-Completeness via WLEMS

Refined proof outline using WLEMS:

- **Lindenbaum Extension**: if $\mathcal{T} \not\vdash \varphi$ then there is stable not not prime $\mathcal{T}' \supseteq \mathcal{T}$ with $\mathcal{T}' \not\vdash \varphi$

- **Universal Model \mathcal{U}**: consistent stable prime theories related by inclusion

- **Truth Lemma for \mathcal{T} in \mathcal{U}**: $\varphi \in \mathcal{T} \iff \mathcal{T} \models \varphi$
Quasi-Completeness via WLEMS

Refined proof outline using WLEMS:

- Lindenbaum Extension: if $\mathcal{T} \not\vdash \varphi$ then there is stable not prime $\mathcal{T}' \supseteq \mathcal{T}$ with $\mathcal{T}' \not\vdash \varphi$

- Universal Model \mathcal{U}: consistent stable prime theories related by inclusion

- Truth Lemma for \mathcal{T} in \mathcal{U}: $\varphi \in \mathcal{T} \iff \mathcal{T} \vDash \varphi$

- Quasi Model Existence: if $\mathcal{T} \not\vdash \varphi$ then there not not is \mathcal{M} with $\mathcal{M} \vDash \mathcal{T}$ and $\mathcal{M} \nvDash \varphi$
Quasi-Completeness via WLEMS

Refined proof outline using WLEMS:

- Lindenbaum Extension: if $\mathcal{T} \not\vdash \varphi$ then there is stable not not prime $\mathcal{T}' \supseteq \mathcal{T}$ with $\mathcal{T}' \not\vdash \varphi$

- Universal Model \mathcal{U}: consistent stable prime theories related by inclusion

- Truth Lemma for \mathcal{T} in \mathcal{U}: $\varphi \in \mathcal{T} \iff \mathcal{T} \vDash \varphi$

- Quasi Model Existence: if $\mathcal{T} \not\vdash \varphi$ then there not not is \mathcal{M} with $\mathcal{M} \vDash \mathcal{T}$ and $\mathcal{M} \not\vDash \varphi$

- Quasi-Completeness: if $\mathcal{T} \vDash \varphi$ then $\neg
\neg(\mathcal{T} \vDash \varphi)$
Quasi-Completeness via WLEMS

Refined proof outline using WLEMS:

- **Lindenbaum Extension:** if $T \not\vdash \phi$ then there is stable not not prime $T' \supseteq T$ with $T' \not\vdash \phi$

- **Universal Model U:** consistent stable prime theories related by inclusion

- **Truth Lemma for T in U:** $\phi \in T \iff T \models \phi$

- **Quasi Model Existence:** if $T \not\vdash \phi$ then there not not is M with $M \models T$ and $M \not\models \phi$

- **Quasi-Completeness:** if $T \models \phi$ then $\neg\neg(T \vdash \phi)$

- **Completeness:** needs MP/LEM depending on theory complexity and syntax fragment
Mechanisation and Open Questions

Mechanisation:
- Coq development (5k loc) guarantees correctness of error-prone proofs
- Keeps track of subtle sub-classical changes in definitions and theorems
- Underlying constructive type theory allows fine-grained analysis

Open questions:
- What restriction of WLEMS is sufficient for enumerable contexts?
- What is the relation of WLEMS to the fan theorem?
- What is the constructive status of the traditional semantics of bi-intuitionistic logic?
- What observations transport to first-order bi-intuitionistic logic (or other logics?)
Mechanisation and Open Questions

Mechanisation:

- Coq development (5k loc) guarantees correctness of error-prone proofs
- Keeps track of subtle sub-classical changes in definitions and theorems
- Underlying constructive type theory allows fine-grained analysis

Open questions:

- What restriction of WLEMS is sufficient for enumerable contexts?
- What is the relation of WLEMS to the fan theorem?
- What is the constructive status of the traditional semantics of bi-intuitionistic logic?
- What observations transport to first-order bi-intuitionistic logic (or other logics)?
Mechanisation and Open Questions

Mechanisation:

- Coq development (5k loc) guarantees correctness of error-prone proofs
- Keeps track of subtle sub-classical changes in definitions and theorems
- Underlying constructive type theory allows fine-grained analysis

Open questions:

- What restriction of WLEMS is sufficient for enumerable contexts?
- What is the relation of WLEMS to the fan theorem?
- What is the constructive status of the traditional semantics of bi-intuitionistic logic?
- What observations transport to first-order bi-intuitionistic logic (or other logics)?
Bibliography I

Quasi-Completeness via DNS

Assuming double-negation shift $\text{DNS} := \forall X. \forall p : X \rightarrow \mathbb{P}. (\forall x. \neg\neg p x) \rightarrow \neg\neg(\forall x. p x)$:

- **Lindenbaum Extension**: if $\mathcal{T} \not\vdash \varphi$ then there is stable quasi-prime \mathcal{T}' with $\mathcal{T}' \not\vdash \varphi$
- **Universal Model \mathcal{U}**: consistent stable quasi-prime theories related by inclusion
- **Pseudo Truth Lemma for \mathcal{T} in \mathcal{U}**: $\varphi \in \mathcal{T} \iff \neg\neg(\mathcal{T} \vDash \varphi)$
- **Pseudo Model Existence**: if $\mathcal{T} \not\vdash \varphi$ then there is \mathcal{M} with $\neg\neg(\mathcal{M} \vDash \mathcal{T})$ and $\mathcal{M} \not\vDash \varphi$
- **Quasi-Completeness**: if $\mathcal{T} \vDash \varphi$ then $\neg\neg(\mathcal{T} \vdash \varphi)$ (also since DNS $\leftrightarrow \neg\neg\text{LEM}$)
- **Completeness**: needs MP/LEM depending on theory complexity and syntax fragment