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Gödel’s Theorem Without Tears?

Get to the heart of computational incompleteness proofs
without having to fuss about what a computable function is!
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The First Incompleteness Theorem

Which formal systems S admit sentences ϕ with both S 6` ϕ and S 6` ¬ϕ?

Gödel: all sound, sufficiently expressive ones (Gödel, 1931)

Rosser: all consistent, sufficiently expressive ones (Rosser, 1936)

Church/Turing(/Post): Gödel’s incompleteness follows from undecidability

Kleene: Rosser’s incompleteness follows from recursive inseparability (Kleene, 1951)

We give synthetic computational proofs complementing mechanisations à la Gödel/Rosser:
Shankar (1986); O’Connor (2005); Paulson (2015); Popescu and Traytel (2019)
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Synthetic Incompleteness (Kirst and Hermes, 2021)

P : X → P is decidable if there exists d : X → B with P x ↔ d x = tt
P : X → P is semi-decidable if there exists s : X → N→ B with P x ↔ ∃n. s x n = tt

Theorem
If Robinson’s Q (or any sound extension) is complete, then the halting problem is decidable.

Sketch.
Systems like Q are semi-decidable, complete ones also co-semi-decidable and hence decidable.
Thus all predicates soundly captured in such a complete system are decidable.

Shortcomings:
1 Not an explicit negation, only a computational taboo
2 No explicit independent sentence is constructed
3 Requires soundness to extract correct information from formal derivations
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Stronger Synthetic Incompleteness Results
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Abstract Formal Systems

Definition
A triple S = (S,¬,`) is called a formal system if:

S is a type, considered the sentences of S
¬ : S→ S is a function on sentences, considered the negation operation
`: S→ P is a semi-decidable predicate on sentences, considered the provable sentences
Consistency holds in the form that for all ϕ : S not both ` ϕ and ` ¬ϕ

Instances:
First-order axiomatisations like Q, PA, HA, ZF, IZF, . . .
Second-order arithemtics and set theories
Simple and dependent type theories
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The Weak Church-Turing Proof
Lemma
Given a formal system S = (S,¬,`), one can construct a partial function dS : S⇀ B with:

dS ϕ ↓ tt ↔ ` ϕ and dS ϕ ↓ ff ↔ ` ¬ϕ

By this specification, dS exactly diverges on the independent sentences of S.

Theorem
Let S weakly represent P : N→ P, i.e. assume there is a function ϕP : N→ S with:

P x ↔ ` ϕP(x)

If S is complete, i.e. satisfies ` ϕ or ` ¬ϕ for all ϕ, then P is decidable.

Proof.
If S is complete, then dS is a total function S→ B and dS ◦ ϕP is a decider for P .
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Church’s Thesis

Consistent assumption in many variants of constructive mathematics:

Kreisel (1970): “Every function can be captured by Kleene’s T-predicate”

Richman (1983): “The set of partial functions is countable”

Bauer (2006): “There are enumerably many enumerable sets”

Swan and Uemura (2019): consistency proof for (homotopy) type theory

Axiom (EPF, cf. Forster (2021))

There is a universal function Θ : N→ (N⇀ N) enumerating all partial functions:

∀f : N⇀ N.∃c : N. ∀xy .Θc x ↓ y ↔ f x ↓ y
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Synthetic Halting Problem
Lemma
KΘ x := Θx x ↓ is undecidable, in fact for every candidate decider d : N⇀ B with

KΘ x ↔ d x ↓ tt

one can construct a concrete value c such that d c diverges.

Proof.
We first define a partial function f : N⇀ B diagonalising against d by:

f x :=

{
tt if d x ↓ ff
undef. otherwise

Now using EPF we obtain a code c for f and deduce that d c ↑ by:

d c ↓ tt ⇔ KΘ c ⇔ Θc c ↓ ⇔ f c ↓ ⇔ f c ↓ tt ⇔ d c ↓ ff
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The Improved Church-Turing Proof

Theorem
Every formal system S weakly representing KΘ, i.e. providing ϕK : N→ S with

KΘ x ↔ ` ϕK(x)

has an independent sentence of the form ϕK(c) for some concrete value c .

Proof.
The composition dS ◦ ϕK is a candidate decider for KΘ since:

KΘ x ⇔ ` ϕK(x) ⇔ dS (ϕK(x)) ↓ tt

Thus there is c with dS (ϕK(c)) ↑, yielding that ϕK(c) is independent.

Only applies to sound extensions of S...
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Synthetic Recursive Inseparability

Lemma
K1
Θ := Θx x ↓ 1 and K0

Θ := Θx x ↓ 0 are recursively inseparable, in fact for every s : N⇀ B with

K1
Θ x → s x ↓ tt and K0

Θ x → s x ↓ ff

one can construct a concrete value c such that s c diverges.

Proof.
We first define a partial function f : N⇀ B diagonalising against s by:

f x :=


tt if s x ↓ ff
ff if s x ↓ tt
undef. s x ↑

Now using EPF we obtain a code c for f and deduce that s c ↑ by simple calculation.
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Kleene’s Proof (Kleene, 1952)

Theorem
Every formal system S strongly separating K1

Θ and K0
Θ, i.e. providing ϕK : N→ S with

K1
Θ x → ` ϕK(x) and K0

Θ x → ` ¬ϕK(x)

has an independent sentence of the form ϕK(c) for some concrete value c .

Proof.
The function dS ◦ ϕK is a candidate separator for K1

Θ and K0
Θ since:

K1
Θ x ⇒ ` ϕK(x) ⇒ dS (ϕK(x)) ↓ tt

K0
Θ x ⇒ ` ¬ϕK(x) ⇒ dS (ϕK(x)) ↓ ff

Thus there is c with dS (ϕK(c)) ↑, yielding that ϕK(c) is independent.

Immediately applies to consistent extensions of S!
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Instantiation: Essential Incompleteness of Q

To instantiate these abstract proofs to Q, we need a stronger assumption than EPF:

Axiom (CTQ, cf. Hermes and Kirst (2022))

For every f : N⇀ N there is a Σ1-formula ϕ with: f x ↓ y ↔ Q ` ∀y ′. ϕ(x , y ′)↔ y ′ = y

CTQ implies that Q and every consistent extension of it has an independent sentence:
CTQ implies EPF and that Q strongly separates the respective problems K1

Θ and K0
Θ

Claim follows from the abstract incompleteness result

CTQ is implied by a more conventional formulation of Church’s thesis:
EPFµ states that every f : N⇀ N is µ-computable (Troelstra and Van Dalen, 1988)
Mechanised DPRM theorem (Larchey-Wendling and Forster, 2019) yields f Diophantine
Σ1-completeness and Rosser’s trick yield that f can be captured as in CTQ
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Conclusion
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Results Overview

1 Weak Church-Turing incompleteness

2 Improved Church-Turing incompleteness (using EPF)

3 Kleene’s incompleteness (using EPF)

4 Essential undecidability of Q (using CTQ)

5 Essential undecidability of Q (using EPFµ)
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Contributions

Translation of several incompleteness proofs into abstract and synthetic setting
I “Synthetic computability trivialises things that should have been trivial from the beginning”

Popularisation of Kleene’s strong computational incompleteness proofs
I Less well-known though way stronger and not much more complicated than Church-Turing

Identification of CTQ as suitable axiom for synthetic computability theory
I Consistent assumption exactly factoring away Gödelisation tricks

Coq mechanisation, systematically hyperlinked with paper
I Only 200 lines for strongest incompleteness result, 2500 for instantiation to Q
I Based on Coq libraries for undecidability (Forster et al., 2020) and FOL (Kirst et al., 2022)
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Perspectives

Sidestep the DPRM theorem for a less heavy-weight consistency proof of CTQ

Postpone/avoid the use of EPF by working against an abstract computability predicate

Explore synthetic approaches to the second incompleteness theorem

https://www.ps.uni-saarland.de/extras/incompleteness/

Thanks for your attention!
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Mechanised Incompleteness

Shankar (1986)

First full mechanisation of G1
in the Boyer-Moore theorem prover O’Connor (2005)

Constructive mechanisation of G1
in the Coq proof assistantPaulson (2015)

Mechanisation of G1 and G2
in Isabelle/HOL Popescu and Traytel (2019)

Abstract preconditions for G1 and G2
in Isabelle/HOLKirst and Hermes (2021)

Weak G1 via synthetic undecidability
in the Coq proof assistant
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