Dominik Kirst and Felix Rech

Workshop on Homotopy Type Theory / Univalent Foundations July 18, 2021

COMPUTER SCIENCE

SIC Saarland Informatics Campus

There are no cardinalities between an infinite set and its power set (GCH) \Downarrow Every set has a choice function / can be well-ordered (AC/WO)

There are no cardinalities between an infinite set and its power set (GCH) \Downarrow Every set has a choice function / can be well-ordered (AC/WO)

- Result in ZF set theory announced by Lindenbaum and Tarski (1926)
- First published proof by Sierpiński (1947)
- Refinement using GCH more locally by Specker (1990)

There are no cardinalities between an infinite set and its power set (GCH) $\downarrow\downarrow$ Every set has a choice function / can be well-ordered (AC/WO)

- Result in ZF set theory announced by Lindenbaum and Tarski (1926)
- First published proof by Sierpiński (1947)
- Refinement using GCH more locally by Specker (1990)
- Mechanisation in Metamath by Carneiro (2015)
- Paper "GCH implies AC in Coq" by Kirst and Rech (2021)¹
 - ► Two mechanised variants: higher-order ZF and Coq's type theory

¹Mostly following Gillman (2002) and Smullyan and Fitting (2010).

Dominik Kirst and Felix Rech

GCH Implies AC in HoTT

Set Theory in Coq's Type Theory

Using impredicative universe \mathbb{P} and propositional existence $(\exists x. Px) : \mathbb{P}$ we have:

	ZF set theory	Coq's Type Theory
Membership	$x \in y$	$x:X$ (for $X:\mathbb{T}$)
Power sets	$\mathcal{P}(A)$	$X o \mathbb{P}$
Numbers	ω	\mathbb{N}
Cardinality	$\exists f \subseteq A \times B \dots$	$\exists f: X \to Y \dots$
Orderings	$\exists R \subseteq A \times A \dots$	$\exists R: X \to X \to \mathbb{P} \dots$

Set Theory in Coq's Type Theory

Using impredicative universe \mathbb{P} and propositional existence $(\exists x. Px) : \mathbb{P}$ we have:

	ZF set theory	Coq's Type Theory
Membership	$x \in y$	$x:X$ (for $X:\mathbb{T}$)
Power sets	$\mathcal{P}(A)$	$X o \mathbb{P}$
Numbers	ω	\mathbb{N}
Cardinality	$\exists f \subseteq A \times B \dots$	$\exists f: X \to Y \dots$
Orderings	$\exists R \subseteq A \times A \dots$	$\exists R: X \to X \to \mathbb{P} \dots$

Axioms necessary to make Coq's type theory behave like set theory:

- Functional extensionality, to tame function space
- Propositional extensionality, to tame predicate space
- Unique choice, to identify functions with total functional relations

Set Theory in Homotopy Type Theory

Using propositional resizing to represent propositions in Ω : \mathcal{U}_0 we have:

	ZF set theory	Homotopy Type Theory
Membership	$x \in y$	x: X (for X : hSet)
Power sets	$\mathcal{P}(A)$	$X ightarrow \Omega$
Numbers	ω	\mathbb{N}
Cardinality	$\exists f \subseteq A imes B \dots$	$ \Sigma f: X o Y \dots $
Orderings	$\exists R \subseteq A \times A \dots$	$ \Sigma R: X o X o \Omega \dots $

Set Theory in Homotopy Type Theory

Using propositional resizing to represent propositions in $\Omega:\mathcal{U}_0$ we have:

	ZF set theory	Homotopy Type Theory
Membership	$x \in y$	x: X (for X : hSet)
Power sets	$\mathcal{P}(A)$	$X o \Omega$
Numbers	ω	N
Cardinality	$\exists f \subseteq A \times B \dots$	$ \Sigma f:X ightarrow Y\ldots $
Orderings	$\exists R \subseteq A \times A \dots$	$ \Sigma R: X \to X \to \Omega \dots $

Naturally suited to represent set theory:

- Functional extensionality: implied by univalence
- Propositonal extensionality: implied by univalence
- Unique choice: by the elimination principle of propositional truncation

GCH Implies AC in HoTT

With $X \leq Y$ as propositional cardinality comparison $||\Sigma f : X \rightarrow Y$. injective f||:

With $X \leq Y$ as propositional cardinality comparison $||\Sigma f : X \rightarrow Y$. injective f||:

There are no cardinalities between an infinite set and its power set.

With $X \leq Y$ as propositional cardinality comparison $||\Sigma f : X \rightarrow Y$. injective f||:

There are no cardinalities between an infinite set and its power set.

 $\forall XY : \mathsf{hSet.} \ \mathbb{N} \le X \le Y \le \mathcal{P}(X) \ \rightarrow \ Y \le X \ + \ \mathcal{P}(X) \le Y$

With $X \leq Y$ as propositional cardinality comparison $||\Sigma f : X \rightarrow Y$. injective f||:

There are no cardinalities between an infinite set and its power set.

 $\forall XY : hSet. \mathbb{N} \leq X \leq Y \leq \mathcal{P}(X) \rightarrow Y \leq X + \mathcal{P}(X) \leq Y$

With $X \leq Y$ as propositional cardinality comparison $||\Sigma f : X \rightarrow Y$. injective f||:

There are no cardinalities between an infinite set and its power set.

 $\forall XY : \mathsf{hSet.} \ \mathbb{N} \leq \mathbf{X} \leq \mathbf{Y} \leq \mathbf{\mathcal{P}}(\mathbf{X}) \rightarrow Y \leq X + \mathbf{\mathcal{P}}(X) \leq Y$

With $X \leq Y$ as propositional cardinality comparison $||\Sigma f : X \rightarrow Y$. injective f||:

There are no cardinalities between an infinite set and its power set.

 $\forall XY : \mathsf{hSet.} \ \mathbb{N} \leq X \leq Y \leq \mathcal{P}(X) \ \rightarrow \ \mathbf{Y} \leq \mathbf{X} \ + \ \mathcal{P}(\mathbf{X}) \leq \mathbf{Y}$

With $X \leq Y$ as propositional cardinality comparison $||\Sigma f : X \rightarrow Y$. injective f||:

There are no cardinalities between an infinite set and its power set.

 $\forall XY : \mathsf{hSet.} \ \mathbb{N} \leq X \leq Y \leq \mathcal{P}(X) \ \rightarrow \ Y \leq X \ + \ \mathcal{P}(X) \leq Y$

With $X \leq Y$ as propositional cardinality comparison $||\Sigma f : X \rightarrow Y$. injective f||:

There are no cardinalities between an infinite set and its power set. $\forall XY : hSet. \mathbb{N} \le X \le Y \le \mathcal{P}(X) \rightarrow Y \le X + \mathcal{P}(X) \le Y$

Proposition since concluding disjunction is exclusive (Cantor's theorem)

With $X \leq Y$ as propositional cardinality comparison $||\Sigma f : X \rightarrow Y$. injective f||:

There are no cardinalities between an infinite set and its power set. $\forall XY : hSet. \mathbb{N} \le X \le Y \le \mathcal{P}(X) \rightarrow Y \le X + \mathcal{P}(X) \le Y$

- Proposition since concluding disjunction is exclusive (Cantor's theorem)
- Formulated positively since cardinalities aren't comparable without AC

With $X \leq Y$ as propositional cardinality comparison $||\Sigma f : X \rightarrow Y$. injective f||:

There are no cardinalities between an infinite set and its power set. $\forall XY : hSet. \mathbb{N} \le X \le Y \le \mathcal{P}(X) \rightarrow Y \le X + \mathcal{P}(X) \le Y$

- Proposition since concluding disjunction is exclusive (Cantor's theorem)
- Formulated positively since cardinalities aren't comparable without AC
- Conclusion just the missing comparison, not yet the equivalence

Already a weaker formulation of $CH = GCH(\mathbb{N})$ implies the excluded middle (LEM):

Fact (cf. Bridges (2016))

 $(\forall X:\mathsf{hSet}.\,\mathbb{N}\leq X\leq \mathcal{P}(\mathbb{N})\to X\leq \mathbb{N}+\mathcal{P}(\mathbb{N})\leq X)\ \to\ \forall P:\mathsf{hProp}.\,P+\neg P$

Already a weaker formulation of $CH = GCH(\mathbb{N})$ implies the excluded middle (LEM):

Fact (cf. Bridges (2016))

 $(\forall X:\mathsf{hSet}.\,\mathbb{N}\leq X\leq \mathcal{P}(\mathbb{N})\to X\leq \mathbb{N}+\mathcal{P}(\mathbb{N})\leq X)\ \to\ \forall P:\mathsf{hProp}.\,P+\neg P$

Proof.

Already a weaker formulation of $CH = GCH(\mathbb{N})$ implies the excluded middle (LEM):

Fact (cf. Bridges (2016))

 $(\forall X:\mathsf{hSet}.\,\mathbb{N}\leq X\leq \mathcal{P}(\mathbb{N})\to X\leq \mathbb{N}+\mathcal{P}(\mathbb{N})\leq X)\ \to\ \forall P:\mathsf{hProp}.\,P+\neg P$

Proof.

1 Given P: hProp, the set $X := \sum p : \mathcal{P}(\mathbb{N})$. ||singleton $p + (P + \neg P)$ || satisfies the premises.

Already a weaker formulation of $CH = GCH(\mathbb{N})$ implies the excluded middle (LEM):

Fact (cf. Bridges (2016))

 $(\forall X:\mathsf{hSet}.\,\mathbb{N}\leq X\leq \mathcal{P}(\mathbb{N})\to X\leq \mathbb{N}+\mathcal{P}(\mathbb{N})\leq X)\ \to\ \forall P:\mathsf{hProp}.\,P+\neg P$

Proof.

Given P : hProp, the set X := Σ p : P(N). ||singleton p + (P + ¬P)|| satisfies the premises.
 We can even show X ≤ N, hence we obtain an injection i : P(N) → X.

Already a weaker formulation of $CH = GCH(\mathbb{N})$ implies the excluded middle (LEM):

Fact (cf. Bridges (2016))

 $(\forall X:\mathsf{hSet}.\,\mathbb{N}\leq X\leq \mathcal{P}(\mathbb{N})\to X\leq \mathbb{N}+\mathcal{P}(\mathbb{N})\leq X)\ \to\ \forall P:\mathsf{hProp}.\,P+\neg P$

Proof.

1 Given P: hProp, the set $X := \Sigma p : \mathcal{P}(\mathbb{N})$. ||singleton $p + (P + \neg P)$ || satisfies the premises.

- **2** We can even show $X \not\leq \mathbb{N}$, hence we obtain an injection $i : \mathcal{P}(\mathbb{N}) \to X$.
- **3** By a variant of Cantor's theorem there is $p : \mathcal{P}(\mathbb{N})$ such that $\pi_1(i p)$ is not a singleton.

Already a weaker formulation of $CH = GCH(\mathbb{N})$ implies the excluded middle (LEM):

Fact (cf. Bridges (2016))

 $(\forall X:\mathsf{hSet}.\,\mathbb{N}\leq X\leq \mathcal{P}(\mathbb{N})\to X\leq \mathbb{N}+\mathcal{P}(\mathbb{N})\leq X)\ \to\ \forall P:\mathsf{hProp}.\,P+\neg P$

Proof.

1 Given P: hProp, the set $X := \Sigma p : \mathcal{P}(\mathbb{N})$. ||singleton $p + (P + \neg P)$ || satisfies the premises.

- **2** We can even show $X \not\leq \mathbb{N}$, hence we obtain an injection $i : \mathcal{P}(\mathbb{N}) \to X$.
- **3** By a variant of Cantor's theorem there is $p : \mathcal{P}(\mathbb{N})$ such that $\pi_1(ip)$ is not a singleton.
- 4 Thus $P + \neg P$ must be the case.

Already a weaker formulation of $CH = GCH(\mathbb{N})$ implies the excluded middle (LEM):

Fact (cf. Bridges (2016))

 $(\forall X:\mathsf{hSet}.\,\mathbb{N}\leq X\leq \mathcal{P}(\mathbb{N})\to X\leq \mathbb{N}+\mathcal{P}(\mathbb{N})\leq X)\ \to\ \forall P:\mathsf{hProp}.\,P+\neg P$

Proof.

1 Given P: hProp, the set $X := \Sigma p : \mathcal{P}(\mathbb{N})$. ||singleton $p + (P + \neg P)$ || satisfies the premises.

- **2** We can even show $X \not\leq \mathbb{N}$, hence we obtain an injection $i : \mathcal{P}(\mathbb{N}) \to X$.
- **3** By a variant of Cantor's theorem there is $p : \mathcal{P}(\mathbb{N})$ such that $\pi_1(ip)$ is not a singleton.
- 4 Thus $P + \neg P$ must be the case.

So by classical reasoning, i.e. the Cantor-Bernstein theorem:

Corollary

GCH is equivalent to $\forall XY$: hSet. $\mathbb{N} \leq X \leq Y \leq \mathcal{P}(X) \rightarrow Y = X + Y = \mathcal{P}(X)$.

Proof Overview

1 Instead of AC, show the equivalent WO

1 Instead of AC, show the equivalent WO

2 To well-order X it suffices to find ordinal α with $X \leq \alpha$

1 Instead of AC, show the equivalent WO

2 To well-order X it suffices to find ordinal α with $X \leq \alpha$

3 Central construction: Hartogs number $\aleph(X)$

1 Instead of AC, show the equivalent WO

2 To well-order X it suffices to find ordinal α with $X \leq \alpha$

3 Central construction: Hartogs number $\aleph(X)$

• Large ordinal: $\aleph(X) \not\leq X$

1 Instead of AC, show the equivalent WO

2 To well-order X it suffices to find ordinal α with $X \leq \alpha$

3 Central construction: Hartogs number $\aleph(X)$

- Large ordinal: $\aleph(X) \leq X$
- Controlled height: $\aleph(X) \leq \mathcal{P}^3(X)$

1 Instead of AC, show the equivalent WO

2 To well-order X it suffices to find ordinal α with $X \leq \alpha$

3 Central construction: Hartogs number $\aleph(X)$

- Large ordinal: $\aleph(X) \leq X$
- Controlled height: $\aleph(X) \leq \mathcal{P}^3(X)$

4 Develop cardinal arithmetic in the absence of AC

1 Instead of AC, show the equivalent WO

2 To well-order X it suffices to find ordinal α with $X \leq \alpha$

3 Central construction: Hartogs number $\aleph(X)$

- Large ordinal: $\aleph(X) \leq X$
- Controlled height: $\aleph(X) \leq \mathcal{P}^3(X)$

4 Develop cardinal arithmetic in the absence of AC

5 Use GCH to iteratively squeeze in $\aleph(X)$ and obtain $X \leq \aleph(X)$

Constructive Ordinal Numbers (Chapter 10.3 of the HoTT book)

Definition

An ordinal is a set equipped with a well-founded, extensional, transitive, mere relation.

Constructive Ordinal Numbers (Chapter 10.3 of the HoTT book)

Definition

An ordinal is a set equipped with a well-founded, extensional, transitive, mere relation.

Properties needed for main result:

- Isomorphic ordinals are equal (instance of SIP)
- Type Ord of ordinals with natural ordering is an ordinal
- Every ordinal is isomorphic to its set of initial segments
- Ordinals satisfy trichotomy and have least elements (requiring LEM)

Constructive Ordinal Numbers (Chapter 10.3 of the HoTT book)

Definition

An ordinal is a set equipped with a well-founded, extensional, transitive, mere relation.

Properties needed for main result:

- Isomorphic ordinals are equal (instance of SIP)
- Type Ord of ordinals with natural ordering is an ordinal
- Every ordinal is isomorphic to its set of initial segments
- Ordinals satisfy trichotomy and have least elements (requiring LEM)

Also successor and limit ordinals mechanised but irrelevant for main result.

Definition

We define $\aleph'(X)$: Ord as the type of ordinals α with $\alpha \leq X$, ordered by the natural ordering.

Definition

We define $\aleph'(X)$: Ord as the type of ordinals α with $\alpha \leq X$, ordered by the natural ordering.

The ordinal $\aleph'(X)$ lives in a higher universe level than X, therefore need to resize:

Definition

We define $\aleph'(X)$: Ord as the type of ordinals α with $\alpha \leq X$, ordered by the natural ordering.

The ordinal $\aleph'(X)$ lives in a higher universe level than X, therefore need to resize:

Theorem

Using LEM, we obtain $\aleph(X)$ by resizing $\aleph'(X)$ along the canonical injection $\aleph'(X) \leq \mathcal{P}^3(X)$. Then $\aleph(X)$ is in the same universe as X and satisfies $\aleph(X) \leq \mathcal{P}^3(X)$ as well as $\aleph(X) \not\leq X$.

Definition

We define $\aleph'(X)$: Ord as the type of ordinals α with $\alpha \leq X$, ordered by the natural ordering.

The ordinal $\aleph'(X)$ lives in a higher universe level than X, therefore need to resize:

Theorem

Using LEM, we obtain $\aleph(X)$ by resizing $\aleph'(X)$ along the canonical injection $\aleph'(X) \leq \mathcal{P}^3(X)$. Then $\aleph(X)$ is in the same universe as X and satisfies $\aleph(X) \leq \mathcal{P}^3(X)$ as well as $\aleph(X) \not\leq X$.

Proof.

Definition

We define $\aleph'(X)$: Ord as the type of ordinals α with $\alpha \leq X$, ordered by the natural ordering.

The ordinal $\aleph'(X)$ lives in a higher universe level than X, therefore need to resize:

Theorem

Using LEM, we obtain $\aleph(X)$ by resizing $\aleph'(X)$ along the canonical injection $\aleph'(X) \leq \mathcal{P}^3(X)$. Then $\aleph(X)$ is in the same universe as X and satisfies $\aleph(X) \leq \mathcal{P}^3(X)$ as well as $\aleph(X) \leq X$.

Proof.

1 Injection $i : \aleph'(X) \to \mathcal{P}^3(X)$ maps $\alpha \leq X$ to its induced order on X (using trichotomy).

Definition

We define $\aleph'(X)$: Ord as the type of ordinals α with $\alpha \leq X$, ordered by the natural ordering.

The ordinal $\aleph'(X)$ lives in a higher universe level than X, therefore need to resize:

Theorem

Using LEM, we obtain $\aleph(X)$ by resizing $\aleph'(X)$ along the canonical injection $\aleph'(X) \leq \mathcal{P}^3(X)$. Then $\aleph(X)$ is in the same universe as X and satisfies $\aleph(X) \leq \mathcal{P}^3(X)$ as well as $\aleph(X) \not\leq X$.

Proof.

Injection i : ℵ'(X) → P³(X) maps α ≤ X to its induced order on X (using trichotomy).
 Obtain ℵ(X) as range of i with ordering of ℵ'(X), then ℵ(X) ≤ P³(X) by construction.

Definition

We define $\aleph'(X)$: Ord as the type of ordinals α with $\alpha \leq X$, ordered by the natural ordering.

The ordinal $\aleph'(X)$ lives in a higher universe level than X, therefore need to resize:

Theorem

Using LEM, we obtain $\aleph(X)$ by resizing $\aleph'(X)$ along the canonical injection $\aleph'(X) \leq \mathcal{P}^3(X)$. Then $\aleph(X)$ is in the same universe as X and satisfies $\aleph(X) \leq \mathcal{P}^3(X)$ as well as $\aleph(X) \not\leq X$.

Proof.

Injection i : ℵ'(X) → P³(X) maps α ≤ X to its induced order on X (using trichotomy).
 Obtain ℵ(X) as range of i with ordering of ℵ'(X), then ℵ(X) ≤ P³(X) by construction.
 ℵ(A) ≤ A since otherwise ℵ(A) would be an initial segment of the isomorphic ℵ'(A).

Cardinal Arithmetic, without AC With AC, infinite sets X satisfy $X \simeq X + X$.

With AC, infinite sets X satisfy $X \simeq X + X$. Without AC we get:

Lemma

Using LEM, every set X with $\mathbb{N} \leq X$ satisfies $X \simeq \mathbb{1} + X$ and $\mathcal{P}(X) \simeq \mathcal{P}(X) + \mathcal{P}(X)$.

With AC, infinite sets X satisfy $X \simeq X + X$. Without AC we get:

Lemma

Using LEM, every set X with $\mathbb{N} \leq X$ satisfies $X \simeq \mathbb{1} + X$ and $\mathcal{P}(X) \simeq \mathcal{P}(X) + \mathcal{P}(X)$.

Sketch.

By equational reasoning, e.g. the former implies the latter as follows: $\mathcal{P}(X) \stackrel{\text{LEM}}{\simeq} \mathcal{P}(\mathbb{1} + X) \simeq \mathcal{P}(\mathbb{1}) \times \mathcal{P}(X) \stackrel{\text{LEM}}{\simeq} \mathbb{B} \times \mathcal{P}(X) \simeq \mathcal{P}(X) + \mathcal{P}(X)$

With AC, infinite sets X satisfy $X \simeq X + X$. Without AC we get:

Lemma

Using LEM, every set X with $\mathbb{N} \leq X$ satisfies $X \simeq \mathbb{1} + X$ and $\mathcal{P}(X) \simeq \mathcal{P}(X) + \mathcal{P}(X)$.

Sketch.

By equational reasoning, e.g. the former implies the latter as follows: $\mathcal{P}(X) \stackrel{\text{LEM}}{\simeq} \mathcal{P}(\mathbb{1} + X) \simeq \mathcal{P}(\mathbb{1}) \times \mathcal{P}(X) \stackrel{\text{LEM}}{\simeq} \mathbb{B} \times \mathcal{P}(X) \simeq \mathcal{P}(X) + \mathcal{P}(X)$

Call X large enough if $X \simeq X + X$, then using Cantor's theorem once again:

Lemma

For sets X large enough and Y with $\mathcal{P}(X) \leq X + Y$ we obtain $\mathcal{P}(X) \leq Y$.

With AC, infinite sets X satisfy $X \simeq X + X$. Without AC we get:

Lemma

Using LEM, every set X with $\mathbb{N} \leq X$ satisfies $X \simeq \mathbb{1} + X$ and $\mathcal{P}(X) \simeq \mathcal{P}(X) + \mathcal{P}(X)$.

Sketch.

By equational reasoning, e.g. the former implies the latter as follows: $\mathcal{P}(X) \stackrel{\text{LEM}}{\simeq} \mathcal{P}(\mathbb{1} + X) \simeq \mathcal{P}(\mathbb{1}) \times \mathcal{P}(X) \stackrel{\text{LEM}}{\simeq} \mathbb{B} \times \mathcal{P}(X) \simeq \mathcal{P}(X) + \mathcal{P}(X)$

Call X large enough if $X \simeq X + X$, then using Cantor's theorem once again:

Lemma

For sets X large enough and Y with $\mathcal{P}(X) \leq X + Y$ we obtain $\mathcal{P}(X) \leq Y$.

Sketch.

Obtain $i: \mathcal{P}(X) \times \mathcal{P}(X) \hookrightarrow X + Y$, use $\lambda p. i(p, c): \mathcal{P}(X) \hookrightarrow Y$, c the diagonal set of i^{-1} . \Box

Theorem

Assume GCH and a function $F : hSet_i \to hSet_i$ such that there is $k : \mathbb{N}$ with $F(X) \leq \mathcal{P}^k(X)$ and $F(X) \leq X$ for all X. Then for every large enough set X we obtain $X \leq F(X)$.

Theorem

Assume GCH and a function F: hSet_i \rightarrow hSet_i such that there is k: \mathbb{N} with $F(X) \leq \mathcal{P}^{k}(X)$ and $F(X) \leq X$ for all X. Then for every large enough set X we obtain $X \leq F(X)$.

Proof.

Theorem

Assume GCH and a function F: hSet_i \rightarrow hSet_i such that there is k: \mathbb{N} with $F(X) \leq \mathcal{P}^{k}(X)$ and $F(X) \leq X$ for all X. Then for every large enough set X we obtain $X \leq F(X)$.

Proof.

Theorem

Assume GCH and a function F: hSet_i \rightarrow hSet_i such that there is k: \mathbb{N} with $F(X) \leq \mathcal{P}^{k}(X)$ and $F(X) \leq X$ for all X. Then for every large enough set X we obtain $X \leq F(X)$.

Proof.

Given a large enough set X, we show $X \leq F(X)$ by induction on k:

• If k = 0 the assumptions $F(X) \leq \mathcal{P}^k(X)$ and $F(X) \leq X$ are contradictory.

Theorem

Assume GCH and a function $F : hSet_i \to hSet_i$ such that there is $k : \mathbb{N}$ with $F(X) \leq \mathcal{P}^k(X)$ and $F(X) \leq X$ for all X. Then for every large enough set X we obtain $X \leq F(X)$.

Proof.

- If k = 0 the assumptions $F(X) \leq \mathcal{P}^k(X)$ and $F(X) \leq X$ are contradictory.
- For k+1 apply GCH to the situation $\mathcal{P}^k(X) \leq \mathcal{P}^k(X) + F(X) \leq \mathcal{P}^{k+1}(X)$:

Theorem

Assume GCH and a function $F : hSet_i \to hSet_i$ such that there is $k : \mathbb{N}$ with $F(X) \leq \mathcal{P}^k(X)$ and $F(X) \leq X$ for all X. Then for every large enough set X we obtain $X \leq F(X)$.

Proof.

- If k = 0 the assumptions $F(X) \leq \mathcal{P}^k(X)$ and $F(X) \leq X$ are contradictory.
- For k+1 apply GCH to the situation $\mathcal{P}^k(X) \leq \mathcal{P}^k(X) + F(X) \leq \mathcal{P}^{k+1}(X)$:
 - If $\mathcal{P}^k(X) + F(X) \leq \mathcal{P}^k(X)$ then already $F(X) \leq \mathcal{P}^k(X)$, conclude with IH.

Theorem

Assume GCH and a function $F : hSet_i \to hSet_i$ such that there is $k : \mathbb{N}$ with $F(X) \leq \mathcal{P}^k(X)$ and $F(X) \leq X$ for all X. Then for every large enough set X we obtain $X \leq F(X)$.

Proof.

- If k = 0 the assumptions $F(X) \leq \mathcal{P}^k(X)$ and $F(X) \leq X$ are contradictory.
- For k+1 apply GCH to the situation $\mathcal{P}^k(X) \leq \mathcal{P}^k(X) + F(X) \leq \mathcal{P}^{k+1}(X)$:
 - If $\mathcal{P}^k(X) + F(X) \leq \mathcal{P}^k(X)$ then already $F(X) \leq \mathcal{P}^k(X)$, conclude with IH.
 - If $\mathcal{P}^{k+1}(X) \leq \mathcal{P}^k(X) + F(X)$ then already $\mathcal{P}^{k+1}(X) \leq F(X)$, conclude $X \leq F(X)$.

Theorem

Assume GCH and a function $F : hSet_i \to hSet_i$ such that there is $k : \mathbb{N}$ with $F(X) \leq \mathcal{P}^k(X)$ and $F(X) \leq X$ for all X. Then for every large enough set X we obtain $X \leq F(X)$.

Proof.

Given a large enough set X, we show $X \leq F(X)$ by induction on k:

- If k = 0 the assumptions $F(X) \leq \mathcal{P}^k(X)$ and $F(X) \not\leq X$ are contradictory.
- For k+1 apply GCH to the situation $\mathcal{P}^k(X) \leq \mathcal{P}^k(X) + F(X) \leq \mathcal{P}^{k+1}(X)$:
 - If $\mathcal{P}^k(X) + F(X) \leq \mathcal{P}^k(X)$ then already $F(X) \leq \mathcal{P}^k(X)$, conclude with IH.
 - If $\mathcal{P}^{k+1}(X) \leq \mathcal{P}^{k}(X) + F(X)$ then already $\mathcal{P}^{k+1}(X) \leq F(X)$, conclude $X \leq F(X)$.

Corollary

GCH implies AC.

Observations

Mechanisation Details

Mechanisation Details

Based on (and contributed to) the Coq HoTT library (Bauer et al. (2017))

- \blacksquare Cardinals, ordinals, Hartogs numbers, GCH \rightarrow LEM, GCH \rightarrow AC, 5 versions of Cantor
- 1400 lines in total (1300 relevant for result, 700 on ordinals, 250 on Hartogs number)
- Some code from previous development could be reused
- Easy to work with for pure Coq users (tactics, notations, typeclass for hProp)

Mechanisation Details

Based on (and contributed to) the Coq HoTT library (Bauer et al. (2017))

- \blacksquare Cardinals, ordinals, Hartogs numbers, GCH \rightarrow LEM, GCH \rightarrow AC, 5 versions of Cantor
- 1400 lines in total (1300 relevant for result, 700 on ordinals, 250 on Hartogs number)
- Some code from previous development could be reused
- Easy to work with for pure Coq users (tactics, notations, typeclass for hProp)

Only difficulties connected to power sets and universes:

- Resizing by hand tedious and sometimes very slow
- Power sets actually defined as $X \rightarrow hProp$, only resized where needed
- Construction of $\aleph(X)$ in two parts for performance reasons
- Showing that power sets are sets caused universe conflicts with section usage

- Similar proofs concerning cardinal arithmetic and main theorem
 - Some necessary equivalences already in HoTT library

- Similar proofs concerning cardinal arithmetic and main theorem
 - Some necessary equivalences already in HoTT library
- Ordinals admit a better organized set-theoretic construction of $\aleph(X)$
 - Previous development based on "small" ordinals embeddable into X

- Similar proofs concerning cardinal arithmetic and main theorem
 - Some necessary equivalences already in HoTT library
- Ordinals admit a better organized set-theoretic construction of $\aleph(X)$
 - Previous development based on "small" ordinals embeddable into X
- Setoid rewriting could be avoided by univalence
 - ▶ No need for morphism lemmas like $|X| = |Y| \rightarrow |\mathcal{P}(X)| = |\mathcal{P}(Y)|$

- Similar proofs concerning cardinal arithmetic and main theorem
 - Some necessary equivalences already in HoTT library
- Ordinals admit a better organized set-theoretic construction of $\aleph(X)$
 - Previous development based on "small" ordinals embeddable into X
- Setoid rewriting could be avoided by univalence
 - ▶ No need for morphism lemmas like $|X| = |Y| \rightarrow |\mathcal{P}(X)| = |\mathcal{P}(Y)|$
- Overall code reduction from 1700loc to 1300loc relevant for main theorem
 - Code for $\aleph(X)$ more principled than previous ad-hoc construction

- Similar proofs concerning cardinal arithmetic and main theorem
 - Some necessary equivalences already in HoTT library
- Ordinals admit a better organized set-theoretic construction of $\aleph(X)$
 - Previous development based on "small" ordinals embeddable into X
- Setoid rewriting could be avoided by univalence
 - ▶ No need for morphism lemmas like $|X| = |Y| \rightarrow |\mathcal{P}(X)| = |\mathcal{P}(Y)|$
- Overall code reduction from 1700loc to 1300loc relevant for main theorem
 - Code for $\aleph(X)$ more principled than previous ad-hoc construction
- More satisfying theoretical foundation for set-theoretic results
 - Could dispose of the ad-hoc assumptions from previous development

- Similar proofs concerning cardinal arithmetic and main theorem
 - Some necessary equivalences already in HoTT library
- Ordinals admit a better organized set-theoretic construction of $\aleph(X)$
 - Previous development based on "small" ordinals embeddable into X
- Setoid rewriting could be avoided by univalence
 - ▶ No need for morphism lemmas like $|X| = |Y| \rightarrow |\mathcal{P}(X)| = |\mathcal{P}(Y)|$
- Overall code reduction from 1700loc to 1300loc relevant for main theorem
 - Code for $\aleph(X)$ more principled than previous ad-hoc construction
- More satisfying theoretical foundation for set-theoretic results
 - Could dispose of the ad-hoc assumptions from previous development
- Caveat: Coq users are used to static impredicativity
 - Hard to trace and debug implicitly added universe constraints

Could a static HProp universe be used instead of resizing by hand?

Could a static HProp universe be used instead of resizing by hand?

Is "light HoTT" combining weak univalence with UIP in static \mathbb{P} useful?

Could a static HProp universe be used instead of resizing by hand?

Is "light HoTT" combining weak univalence with UIP in static \mathbb{P} useful?

Are there meaningful/consistent formulations of GCH for higher n-types?

Could a static HProp universe be used instead of resizing by hand?

Is "light HoTT" combining weak univalence with UIP in static \mathbb{P} useful?

Are there meaningful/consistent formulations of GCH for higher n-types?

Do constructive versions of GCH imply constructive versions of WO?

Bibliography

- Bauer, A., Gross, J., Lumsdaine, P. L., Shulman, M., Sozeau, M., and Spitters, B. (2017). The HoTT Library: a formalization of homotopy type theory in Coq. In *Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs*, pages 164–172.
- Bridges, D. S. (2016). The continuum hypothesis implies excluded middle. *Concepts of Proof in Mathematics, Philosophy, and Computer Science*, 6:111.
- Carneiro, M. (2015). GCH implies AC, a Metamath Formalization. In 8th Conference on Intelligent Computer Mathematics, Workshop on Formal Mathematics for Mathematicians.
- Gillman, L. (2002). Two classical surprises concerning the axiom of choice and the continuum hypothesis. *The American Mathematical Monthly*, 109(6):544–553.
- Kirst, D. and Rech, F. (2021). The generalised continuum hypothesis implies the axiom of choice in Coq. In *Proceedings of the 10th ACM SIGPLAN International Conference on Certified Programs and Proofs*, pages 313–326.
- Lindenbaum, A. and Tarski, A. (1926). Communication sur les recherches de le théorie des ensembles.
- Sierpiński, W. (1947). L'hypothèse généralisée du continu et l'axiome du choix. *Fundamenta Mathematicae*, 1(34):1–5.
- Smullyan, R. M. and Fitting, M. (2010). Set theory and the continuum problem. Dover Publications.
- Specker, E. (1990). Verallgemeinerte Kontinuumshypothese und Auswahlaxiom. In Jäger, G., Läuchli, H., Scarpellini, B., and Strassen, V., editors, *Ernst Specker Selecta*, pages 86–91. Birkhäuser, Basel.

Dominik Kirst and Felix Rech

GCH Implies AC in HoTT

Variants of Cantor's theorem

Fact (Injective Cantor)

Given a type X, there is no injection $\mathcal{P}(X) \leq X$.

Fact (Singleton Cantor)

Given a set X and an injection $i : \mathcal{P}(X) \to \mathcal{P}(X)$, there is p s.t. i p is not a singleton.

Fact (Surjective Cantor)

Given a type X and a function $f : X \to \mathcal{P}(X)$, there is p s.t. $f \times \neq p$ for all x.

Fact (Predicative Cantor)

Given a type X and a function $f : X \to (X \to U)$, there is p s.t. $f x \neq p$ for all x.

Fact (Relational Cantor)

Given a type X and a functional relation $R: X \to \mathcal{P}(X) \to \Omega$, there is p s.t. $\neg R \times p$ for all x.