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Why Revisit Undecidability and Incompleteness?

Still fascinates broad audience
in and outside of science

Prominent benchmark for
interactive theorem proving

Showcases synthetic approach
to computability theory
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From Undecidability of First-Order Logic...

Decision problems on first-order formulas ϕ:
Is ϕ provable in a deduction system (` ϕ)?
Is ϕ valid in model-theoretic semantics (� ϕ)?
Is ϕ satisfiable by some modelM � ϕ?
Is ϕ satisfiable by a finite modelM � ϕ?

All of them are undecidable (for non-trivial signatures):
Classical papers: Turing (1937), Church (1936), Trakhtenbrot (1950)
Coq mechanisations: Forster, K., and Smolka (2019), K. and Larchey-Wendling (2020)
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...to Undecidability of First-Order Axiom Systems

Decision problems relativised to an axiomatisation A:
Is ϕ derivable from A, i.e. A ` ϕ?
Is ϕ semantically entailed by A, i.e. A � ϕ?

Call A (un)decidable if these problems are (un)decidable.

Connected to the general decision problems
Some are decidable: Presburger arithmetic, Boolean algebras, real closed fields etc.
Some are undecidable: Peano arithmetic, ZF set theory, etc.
Several mechanisations of decidability, none of undecidability (of PA/ZF)
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Links to Consistency and Incompleteness

By contraposition of two facts:

Fact
Inconsistent axiomatisations (A ` ⊥) are decidable.

Mechanising undecidability is at least as hard as mechanising consistency
Our strategy is to work with standard models anyway

Fact
(Negation-)complete axiomatisations (for all closed ϕ either A ` ϕ or A ` ¬ϕ) are decidable.

Mechanising undecidability is at least as hard as mechanising incompleteness
Disclaimer: no construction of an independent Gödel/Rosser sentence
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Previous Mechanisations of Incompleteness

Shankar (1986)
I First full mechanisation of Gödel’s 1st (G1) in the Boyer-Moore theorem prover

O’Connor (2005)
I Constructive mechanisation of G1 in Coq

Paulson (2015)
I Mechanisation of G1 and G2 in Isabelle/HOL

Popescu and Traytel (2019)
I Abstract preconditions for G1 and G2 in Isabelle/HOL

None of them approach incompleteness via undecidability.
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Plan of the Talk

1 Framework:
Synthetic undecidability and incompleteness

2 Case studies:
Arithmetic (PA/HA) and set theory (ZF/IZF)

3 Conclusion:
Coq mechanisation and future directions
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Framework
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Synthetic Undecidability (Forster, K., and Smolka (2019))

Every function definable in constructive type theory is computable.

A predicate/decision problem p : X → P...
is decidable: ∃f : X → B.∀x . p x ↔ f x = tt
is enumerable: ∃g : N→ X⊥. ∀x . p x ↔ ∃n. g n = x

is reducible to q : Y → P: ∃h : X → Y .∀x . p x ↔ q (h x)

⇒ No need to encode f , g , and h as Turing machines!

Definition
A predicate p is undecidable if decidability of p implies falsity.decidability of HALT.

Lemma
A predicate p is undecidable if there is a reduction HALT � p.
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First-Order Axiom Systems (e.g. K. and Larchey-Wendling (2020))
Given a signature Σ = (FΣ;PΣ), we represent terms and formulas inductively by:

t : TermΣ ::= x | f ~t (x : N, f : FΣ, ~t : Term|f |Σ )

ϕ,ψ : FormΣ ::= ⊥ | P ~t | ϕ�ψ | ∇ϕ (P : PΣ, ~t : Term|P|Σ )

Interpretation (�) in modelsM = (D,∀f : FΣ.D
|f | → D, ∀P : PΣ.D

|P| → P)
I Map all connectives � and quantifiers ∇ to their (constructive) counterparts in P

Provability (`) characterised by intuitionistic (`i ) and classical (`c) deduction systems
I Soundness of `i constructive, soundness of `c requires excluded middle (LEM)

Definition
An axiomatisation is an enumerable predicate A : Form→ P.
The decision problem A� contains the closed formulas ϕ with A � ϕ, similarly for A`.
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Consistency and Incompleteness of Undecidable Axiomatisations
Fact (Consistency)

If p � A` and there is x with ¬p x then A 6` ⊥.

Proof.
Let f witness p ≺ A`. Then A 6` f x since f is a reduction. Thus A 6` ⊥ by explosion rule.

Fact (Synthetic Incompleteness)

If p � A` and A is complete and consistent, then p is decidable.

Proof.

1 Completeness of A` implies decidability of A` via Post’s theorem. The premises are
enumerability of A` (immediate), enumerability of its complement (as A 6` ϕ iff A ` ¬ϕ),
and logical decidability of A` (as A ` ϕ ∨ A ` ¬ϕ implies A ` ϕ ∨ A 6` ϕ).

2 Decidability of p follows by transporting back along p � A` (also if A ` ⊥).
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Undecidability: General Strategy for an axiomatisation A

1 Pick a suitable undecidable seed p : X → P problem
2 Define the reduction function f : X → Form
3 Isolate a minimal finite fragment A ⊆ A
4 Show that p x impliesM � f x for all modelsM � A

5 Show thatM � f x implies p x ifM is standard (i.e. well-behaved)
6 Construct a standard model, possibly relying on assumptions
7 Repeat step 4 deductively (p x implies A ` f x)

Theorem (Generic Undecidability)

Given an axiomatisation A, a problem p : X → P, and an encoding f : X → Form such that:

M � f x implies p x ifM is standard p x implies A ` f x

Then for all B ⊇ A admitting a standard model, p � B� and p � B`i . With LEM also p � B`c .
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Case Studies
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Peano Arithmetic

Signature with zero, successor, addition, multiplication, and equality:

Σ = (O, S_ , _⊕_ , _⊗_ ; _ ≡ _)

1 Seed problem: solvability of diophantine equations (H10)1

2 Reduction function: polynomial equation p = q encoded as ∃∗ p ≡ q

3 Core axiomatisation Q′: Dedekind equations characterising ⊕ and ⊗
4 Verification: straightforward using the canonical homomorphism N ↪→ Term
5 Standard model: N = (N,+,×)

Theorem
Q ′ and all its extensions satisfied by N like Robinson arithmetic Q or full PA are undecidable
and incomplete. Without LEM, these hold for the respective fragments of Heyting arithmetic.

1Reduction HALT � H10 mechanised by Larchey-Wendling and Forster (2019)
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ZF Set Theory

Signature with empty set, pairing, union, power set, infinite set, equality, and membership:

Σ = (∅, {_,_},
⋃

_, P(_), ω ; _ ≡ _, _ ∈ _)

1 Seed problem: Post correspondence problem (PCP)2

2 Reduction function: encode numbers, Booleans, strings, recursion (backup slide)
3 Core axiomatisation Z′: extensionality and characterisations of set operations
4 Verification: develop basic set theory, inline recursion theorem (backup slide)
5 Standard model: M where ωM ∼= N, needs assumptions for full ZF (backup slide)

Theorem
Z ′ and all its extensions satisfied by standard models like Z or full ZF are undecidable and
incomplete. Without LEM, these hold for the respective fragments of intuitionistic ZF.

2Reduction HALT � PCP mechanised by Forster, Heiter, and Smolka (2018)
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ZF Set Theory without Function Symbols
Core axiomatisation Z′∈ minimal signature Σ = (_ ∈ _) not even containing equality.

Extensionality axiom: ∀xy . (∀z . z ∈ x ↔ z ∈ y)→ (∀z . x ∈ z ↔ y ∈ z)

Set operations existentially guaranteed: ∀x . ∃u. ∀y . y ∈ u ↔ y ⊆ x

Direct reduction from PCP unfeasible, instead verify translation from previous signature:
Encode terms t as formulas F x

t stating that variable x behaves like t: F x
∅ := ∀y . y 6∈ x

Encode formulas accordingly: Ft∈t′ := ∃xy .F x
t ∧ F y

t′ ∧ x ∈ y

Verify only needed directions: Z′∈ � Fϕ → Z ′ � ϕ and Z ′ ` ϕ → Z′∈ ` Fϕ

Theorem
The axiomatisation Z ′∈ is undecidable and incomplete. LEM needed for `c .

Corollary (Improving on Forster, K., and Smolka (2019))

First-order logic with a single binary relation symbol is undecidable. LEM needed for `c .
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Conclusion
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Coq Mechanisation

Mostly axiom-free, only local use of LEM and axioms for models of ZF

FOL mechanisation synthesis of previous developments

5300 new lines of code, 1300 reused
I 700loc for reduction from H10 to PA
I 1600loc for reduction from PCP to ZF with function symbols
I 3000loc for elimination of function symbols

Inspiration for tooling: related talk @ Coq Workshop (Friday, 11:35)

Included in the Coq Library of Undecidability Proofs (Forster et al. (2020))
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Future Directions

Strengthening and generalisation
I Friedman translation to obtain data from classical deductions without LEM
I Extract reduction functions to computational model for negated completeness
I Eliminate power set and infinity axioms from set theory reduction
I Mechanise the conservativity of FOL with definable symbols

Find the most economical undecidability proof for FOL
I Direct reduction into FOL with only ⊥, →, and ∀ over a single binary relation

Mechanise Tennenbaum’s theorem (N is the only recursive model of PA)
I Connected to incompleteness, characteristic of constructive Tarski semantics

Undecidability and incompleteness of second-order logic
I By incompleteness and categoricity of second-order Peano arithmetic
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Wrap-Up

Synthetic approach eases mechanised undecidability proofs

Synthetic approach eases mechanised incompleteness proofs

Synthetic approach available in most constructive foundations (and even Coq + LEM)

www.ps.uni-saarland.de/extras/axiomatisations/

Thank you!
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Encoding PCP in Set Theory (Construction)

PCP characterised inductively over a finite stack S of pairs (s, t) of Boolean strings:

(s, t) ∈ S

S . (s, t)

S . (u, v) (s, t) ∈ S

S . (su, tv)

S . (s, s)

PCPS

Ingredients expressible in set theory via standard encodings:

Numbers: 0 := ∅ and n + 1 := n ∪ {n}

Booleans: tt := {∅} and ff := ∅

Strings: b1, . . . , bn := (b1, (. . . (bn, ∅) . . . ))

Stacks: S := {(s1, t1), . . . , (sm, tm)}

Solvability condition of PCP expressed by accumulating all derivations recursively:

“∃x . (x , x) ∈
⋃

k∈ω S
k
” where S

0
, S and S

k+1
, S � S

k
,

⋃
s/t∈S{(sx , ty) | (x , y) ∈ S

k}

ϕS := ∃k , f ,B, x . k ∈ ω ∧ (∀(l ,B), (l ,B ′) ∈ f .B = B ′) ∧ f � k ∧ (k,B) ∈ f ∧ (x , x) ∈ B
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Encoding PCP in Set Theory (Verification)
With basic results about binary union and ordered pairs obtain (for n,m : N and s, t : B∗):

1 M � n ∈ ω
2 M � n 6∈ n

3 M � n ≡ m implies n = m

4 M � s ≡ t implies s = t

Lemma
For n : N and f nS := {(∅, S), . . . , (n, Sn)} we haveM � f nS � n in every modelM � Z′.

Corollary

If PCPS then Z′ � ϕS .

Lemma
If in a standard modelM � Z′ there is a functional approximation f � k for k ∈ ω with
(k,B) ∈ f , then for all p ∈ B there are s, t : B∗ with p = (s, t) and S . (s, t).

Corollary

Every standard modelM � Z′ withM � ϕS yields PCPS .
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Standard Models of Set Theory
Aczel’s sets-as-trees interpretation (Aczel (1978); Werner (1997); Barras (2010)):

Inductive type of well-founded trees T with constructor τ : ∀X . (X → T )→ T

Equality interpreted as bisimulation t ≈ t ′

Membership interpreted by t ∈ (τ X f ) := ∃x . t ≈ f x

Models constructive set theory, assumptions needed for classical ZF

Previous work isolates assumptions for fragments (Kirst and Smolka (2018)):

CE := ∀(P,P ′ : T → P). (∀t.P t ↔ P ′ t)→ P = P ′

TD := ∃(δ : (T → P)→ T ). ∀P. (∃t.P = [t]≈)→ P (δ P)

Setoid models of Z′ and Z for free
Quotiented models of Z′ and Z require CE
Model of ZF requires both CE and TD
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