Synthetic Undecidability and Incompleteness of First-Order Axiom Systems in Coq

Dominik Kirst and Marc Hermes

Interactive Theorem Proving June 30th, 2021

COMPUTER SCIENCE

SIC Saarland Informatics Campus

Why Revisit Undecidability and Incompleteness?

≡	incompleteness logic		٩
+	Scholar About 24.700 results (0,08 sec)	YEAR *	÷
2011-2021			

 Still fascinates broad audience in and outside of science

 Prominent benchmark for interactive theorem proving

 Showcases synthetic approach to computability theory From Undecidability of First-Order Logic...

Decision problems on first-order formulas φ :

- Is φ provable in a deduction system ($\vdash \varphi$)?
- Is φ valid in model-theoretic semantics ($\vDash \varphi$)?
- Is φ satisfiable by some model $\mathcal{M} \vDash \varphi$?
- Is φ satisfiable by a finite model $\mathcal{M} \vDash \varphi$?

All of them are undecidable (for non-trivial signatures):

- Classical papers: Turing (1937), Church (1936), Trakhtenbrot (1950)
- Coq mechanisations: Forster, K., and Smolka (2019), K. and Larchey-Wendling (2020)

...to Undecidability of First-Order Axiom Systems

Decision problems relativised to an axiomatisation \mathcal{A} :

- **Is** φ derivable from \mathcal{A} , i.e. $\mathcal{A} \vdash \varphi$?
- Is φ semantically entailed by \mathcal{A} , i.e. $\mathcal{A} \vDash \varphi$?

Call \mathcal{A} (un)decidable if these problems are (un)decidable.

- Connected to the general decision problems
- Some are decidable: Presburger arithmetic, Boolean algebras, real closed fields etc.
- Some are undecidable: Peano arithmetic, ZF set theory, etc.
- Several mechanisations of decidability, none of undecidability (of PA/ZF)

Links to Consistency and Incompleteness

By contraposition of two facts:

Fact

Inconsistent axiomatisations $(A \vdash \bot)$ are decidable.

- Mechanising undecidability is at least as hard as mechanising consistency
- Our strategy is to work with standard models anyway

Fact

(Negation-)complete axiomatisations (for all closed φ either $\mathcal{A} \vdash \varphi$ or $\mathcal{A} \vdash \neg \varphi$) are decidable.

- Mechanising undecidability is at least as hard as mechanising incompleteness
- Disclaimer: no construction of an independent Gödel/Rosser sentence

Previous Mechanisations of Incompleteness

- Shankar (1986)
 - ▶ First full mechanisation of Gödel's 1st (G1) in the Boyer-Moore theorem prover
- O'Connor (2005)
 - Constructive mechanisation of G1 in Coq
- Paulson (2015)
 - Mechanisation of G1 and G2 in Isabelle/HOL
- Popescu and Traytel (2019)
 - ► Abstract preconditions for G1 and G2 in Isabelle/HOL

None of them approach incompleteness via undecidability.

Plan of the Talk

Framework:

Synthetic undecidability and incompleteness

2 Case studies: Arithmetic (PA/HA) and set theory (ZF/IZF)

3 Conclusion:

Coq mechanisation and future directions

Framework

Synthetic Undecidability (Forster, K., and Smolka (2019))

Every function definable in constructive type theory is computable.

A predicate/decision problem $p: X \to \mathbb{P}$...

- is decidable: $\exists f : X \to \mathbb{B}. \forall x. p x \leftrightarrow f x = tt$
- is enumerable: $\exists g : \mathbb{N} \to X_{\perp}. \forall x. p x \leftrightarrow \exists n. g n = x$
- is reducible to $q: Y \to \mathbb{P}$: $\exists h: X \to Y. \forall x. p x \leftrightarrow q(hx)$

 \Rightarrow No need to encode f, g, and h as Turing machines!

Definition

A predicate p is undecidable if decidability of p implies falsity.decidability of HALT.

Lemma

A predicate p is undecidable if there is a reduction HALT $\leq p$.

First-Order Axiom Systems (e.g. K. and Larchey-Wendling (2020)) Given a signature $\Sigma = (\mathcal{F}_{\Sigma}; \mathcal{P}_{\Sigma})$, we represent terms and formulas inductively by:

$$\begin{aligned} t : \operatorname{Term}_{\Sigma} & ::= x \mid f \ \vec{t} & (x : \mathbb{N}, \ f : \mathcal{F}_{\Sigma}, \ \vec{t} : \operatorname{Term}_{\Sigma}^{|f|}) \\ \varphi, \psi : \operatorname{Form}_{\Sigma} & ::= \perp \mid P \ \vec{t} \mid \varphi \Box \psi \mid \nabla \varphi & (P : \mathcal{P}_{\Sigma}, \ \vec{t} : \operatorname{Term}_{\Sigma}^{|P|}) \end{aligned}$$

• Interpretation (\vDash) in models $\mathcal{M} = (D, \forall f : \mathcal{F}_{\Sigma}. D^{|f|} \rightarrow D, \forall P : \mathcal{P}_{\Sigma}. D^{|P|} \rightarrow \mathbb{P})$

- Map all connectives \Box and quantifiers abla to their (constructive) counterparts in $\mathbb P$
- Provability (\vdash) characterised by intuitionistic (\vdash_i) and classical (\vdash_c) deduction systems
 - Soundness of \vdash_i constructive, soundness of \vdash_c requires excluded middle (LEM)

Definition

An axiomatisation is an enumerable predicate $\mathcal{A} : \text{Form} \to \mathbb{P}$. The decision problem \mathcal{A}^{\vDash} contains the closed formulas φ with $\mathcal{A} \vDash \varphi$, similarly for \mathcal{A}^{\vdash} .

Consistency and Incompleteness of Undecidable Axiomatisations

Fact (Consistency)

If $p \preceq A^{\vdash}$ and there is x with $\neg p x$ then $A \not\vdash \bot$.

Proof.

Let f witness $p \prec A^{\vdash}$. Then $A \not\vdash f x$ since f is a reduction. Thus $A \not\vdash \bot$ by explosion rule.

Fact (Synthetic Incompleteness)

If $p \preceq A^{\vdash}$ and A is complete and consistent, then p is decidable.

Proof.

Completeness of A[⊢] implies decidability of A[⊢] via Post's theorem. The premises are enumerability of A[⊢] (immediate), enumerability of its complement (as A ⊢ φ via F ¬φ), and logical decidability of A[⊢] (as A ⊢ φ ∨ A ⊢ ¬φ implies A ⊢ φ ∨ A ⊢ φ).

2 Decidability of *p* follows by transporting back along $p \preceq A^{\vdash}$ (also if $A \vdash \bot$).

Undecidability: General Strategy for an axiomatisation ${\cal A}$

- **1** Pick a suitable undecidable seed $p: X \to \mathbb{P}$ problem
- **2** Define the reduction function $f : X \to Form$
- **3** Isolate a minimal finite fragment $A \subseteq \mathcal{A}$
- **4** Show that $p \times implies \mathcal{M} \models f \times for all models \mathcal{M} \models A$
- **5** Show that $\mathcal{M} \models f \times$ implies $p \times$ if \mathcal{M} is standard (i.e. well-behaved)
- 6 Construct a standard model, possibly relying on assumptions
- **7** Repeat step 4 deductively $(p \times implies A \vdash f \times)$

Theorem (Generic Undecidability)

Given an axiomatisation \mathcal{A} , a problem $p: X \to \mathbb{P}$, and an encoding $f: X \to \text{Form such that:}$

Then for all $\mathcal{B} \supseteq \mathcal{A}$ admitting a standard model, $p \preceq \mathcal{B}^{\vDash}$ and $p \preceq \mathcal{B}^{\vdash_i}$. With LEM also $p \preceq \mathcal{B}^{\vdash_c}$.

Case Studies

Peano Arithmetic

Signature with zero, successor, addition, multiplication, and equality:

$$\Sigma = (O, S_{, \Box} \oplus _, _ \otimes _; _ \equiv _)$$

I Seed problem: solvability of diophantine equations (H10)¹

- **2** Reduction function: polynomial equation p = q encoded as $\exists^* \overline{p} \equiv \overline{q}$
- 3 Core axiomatisation Q': Dedekind equations characterising \oplus and \otimes
- 4 Verification: straightforward using the canonical homomorphism $\mathbb{N} \hookrightarrow$ Term 5 Standard model: $\mathcal{N} = (\mathbb{N}, +, \times)$

Theorem

Q' and all its extensions satisfied by \mathcal{N} like Robinson arithmetic Q or full PA are undecidable and incomplete. Without LEM, these hold for the respective fragments of Heyting arithmetic.

¹Reduction HALT \leq H10 mechanised by Larchey-Wendling and Forster (2019)

ZF Set Theory

Signature with empty set, pairing, union, power set, infinite set, equality, and membership:

$$\boldsymbol{\Sigma} = (\emptyset, \{_, _\}, \bigcup_{-}, \mathcal{P}(_), \omega ; _ \equiv _, _ \in _)$$

1 Seed problem: Post correspondence problem $(PCP)^2$

2 Reduction function: encode numbers, Booleans, strings, recursion (backup slide)

3 Core axiomatisation Z': extensionality and characterisations of set operations

- 4 Verification: develop basic set theory, inline recursion theorem (backup slide)
- **5** Standard model: \mathcal{M} where $\omega^{\mathcal{M}} \cong \mathbb{N}$, needs assumptions for full ZF (backup slide)

Theorem

Z' and all its extensions satisfied by standard models like Z or full ZF are undecidable and incomplete. Without LEM, these hold for the respective fragments of intuitionistic ZF.

²Reduction HALT \leq PCP mechanised by Forster, Heiter, and Smolka (2018)

ZF Set Theory without Function Symbols

Core axiomatisation Z'_{\in} minimal signature $\Sigma = (_ \in _)$ not even containing equality.

- Extensionality axiom: $\forall xy. (\forall z. z \in x \leftrightarrow z \in y) \rightarrow (\forall z. x \in z \leftrightarrow y \in z)$
- Set operations existentially guaranteed: $\forall x. \exists u. \forall y. y \in u \leftrightarrow y \subseteq x$

Direct reduction from PCP unfeasible, instead verify translation from previous signature:

- Encode terms t as formulas F_t^x stating that variable x behaves like t: $F_{\emptyset}^x := \forall y. y \notin x$
- Encode formulas accordingly: $F_{t \in t'} := \exists xy. F_t^x \land F_{t'}^y \land x \in y$
- Verify only needed directions: $Z'_{\in} \vDash F_{\varphi} \rightarrow Z' \vDash \varphi$ and $Z' \vdash \varphi \rightarrow Z'_{\in} \vdash F_{\varphi}$

Theorem

The axiomatisation Z'_{\in} is undecidable and incomplete. LEM needed for \vdash_c .

Corollary (Improving on Forster, K., and Smolka (2019))

First-order logic with a single binary relation symbol is undecidable. LEM needed for \vdash_c .

Conclusion

Coq Mechanisation

- Mostly axiom-free, only local use of LEM and axioms for models of ZF
- FOL mechanisation synthesis of previous developments
- 5300 new lines of code, 1300 reused
 - ► 700loc for reduction from H10 to PA
 - ► 1600loc for reduction from PCP to ZF with function symbols
 - 3000loc for elimination of function symbols
- Inspiration for tooling: related talk @ Coq Workshop (Friday, 11:35)
- Included in the Coq Library of Undecidability Proofs (Forster et al. (2020))

Future Directions

- Strengthening and generalisation
 - Friedman translation to obtain data from classical deductions without LEM
 - Extract reduction functions to computational model for negated completeness
 - Eliminate power set and infinity axioms from set theory reduction
 - Mechanise the conservativity of FOL with definable symbols
- Find the most economical undecidability proof for FOL
 - Direct reduction into FOL with only \bot , \rightarrow , and \forall over a single binary relation
- Mechanise Tennenbaum's theorem (\mathbb{N} is the only recursive model of PA)
 - Connected to incompleteness, characteristic of constructive Tarski semantics
- Undecidability and incompleteness of second-order logic
 - ► By incompleteness and categoricity of second-order Peano arithmetic

Wrap-Up

- Synthetic approach eases mechanised undecidability proofs
- Synthetic approach eases mechanised incompleteness proofs
- Synthetic approach available in most constructive foundations (and even Coq + LEM)

www.ps.uni-saarland.de/extras/axiomatisations/

Thank you!

Bibliography I

- Aczel, P. (1978). The type theoretic interpretation of constructive set theory. In *Studies in Logic and the Foundations of Mathematics*, volume 96, pages 55–66. Elsevier.
- Barras, B. (2010). Sets in Coq, Coq in sets. Journal of Formalized Reasoning, 3(1):29-48.
- Church, A. (1936). A note on the entscheidungsproblem. J. Symb. Log., 1(1):40-41.
- Forster, Y., Heiter, E., and Smolka, G. (2018). Verification of PCP-related computational reductions in Coq. In *International Conference on Interactive Theorem Proving*, pages 253–269. Springer.
- Forster, Y., Kirst, D., and Smolka, G. (2019). On synthetic undecidability in Coq, with an application to the Entscheidungsproblem. In *Proceedings of the 8th ACM SIGPLAN International Conference on Certified Programs and Proofs*, pages 38–51.
- Forster, Y., Larchey-Wendling, D., Dudenhefner, A., Heiter, E., Kirst, D., Kunze, F., Smolka, G., Spies, S., Wehr, D., and Wuttke, M. (2020). A coq library of undecidable problems. In *CoqPL 2020*.
- Kirst, D. and Larchey-Wendling, D. (2020). Trakhtenbrot's theorem in coq. In *International Joint Conference* on Automated Reasoning, pages 79–96. Springer.
- Kirst, D. and Smolka, G. (2018). Large model constructions for second-order ZF in dependent type theory. *Certified Programs and Proofs - 7th International Conference, CPP 2018, Los Angeles, USA, 2018.*

Bibliography II

- Larchey-Wendling, D. and Forster, Y. (2019). Hilbert's tenth problem in Coq. In 4th International Conference on Formal Structures for Computation and Deduction, volume 131 of LIPIcs, pages 27:1–27:20.
- O'Connor, R. (2005). Essential incompleteness of arithmetic verified by Coq. In Hurd, J. and Melham, T., editors, *Theorem Proving in Higher Order Logics*, pages 245–260, Berlin, Heidelberg. Springer Berlin Heidelberg.
- Paulson, L. C. (2015). A mechanised proof of Gödel's incompleteness theorems using Nominal Isabelle. *Journal of Automated Reasoning*, 55(1):1–37.
- Popescu, A. and Traytel, D. (2019). A formally verified abstract account of Gödel's incompleteness theorems. In *International Conference on Automated Deduction*, pages 442–461. Springer.
- Shankar, N. (1986). Proof-checking metamathematics. The University of Texas at Austin. PhD Thesis.
- Trakhtenbrot, B. A. (1950). The impossibility of an algorithm for the decidability problem on finite classes. *Dokl. Akad. Nok. SSSR*, 70(4):569–572.
- Turing, A. M. (1937). On computable numbers, with an application to the Entscheidungsproblem. *Proceedings* of the London mathematical society, 2(1):230–265.
- Werner, B. (1997). Sets in types, types in sets. In *Theoretical Aspects of Computer Software*, pages 530–546. Springer, Berlin, Heidelberg.

Encoding PCP in Set Theory (Construction)

PCP characterised inductively over a finite stack S of pairs (s, t) of Boolean strings:

$$\frac{(s,t) \in S}{S \triangleright (s,t)} \qquad \qquad \frac{S \triangleright (u,v) \quad (s,t) \in S}{S \triangleright (su,tv)} \qquad \qquad \frac{S \triangleright (s,s)}{P C P S}$$

Ingredients expressible in set theory via standard encodings:

Numbers: $\overline{0} := \emptyset$ and $\overline{n+1} := \overline{n} \cup \{\overline{n}\}$ Booleans: $\overline{tt} := \{\emptyset\}$ and $\overline{ff} := \emptyset$ Stacks: $\overline{S} := \{(\overline{s_1}, \overline{t_1}), \dots, (\overline{s_m}, \overline{t_m})\}$

Solvability condition of PCP expressed by accumulating all derivations recursively:

• "
$$\exists x. (x, x) \in \bigcup_{k \in \omega} \overline{S}^{k}$$
" where $\overline{S}^{0} \triangleq \overline{S}$ and $\overline{S}^{k+1} \triangleq S \boxtimes \overline{S}^{k} \triangleq \bigcup_{s/t \in S} \{(\overline{s}x, \overline{t}y) \mid (x, y) \in \overline{S}^{k}\}$

 $\bullet \varphi_{\mathcal{S}} := \exists k, f, B, x. k \in \omega \land (\forall (I, B), (I, B') \in f. B = B') \land f \gg k \land (k, B) \in f \land (x, x) \in B$

Encoding PCP in Set Theory (Verification)

With basic results about binary union and ordered pairs obtain (for $n, m : \mathbb{N}$ and $s, t : \mathbb{B}^*$): **1** $\mathcal{M} \vDash \overline{n} \in \omega$ **3** $\mathcal{M} \vDash \overline{n} \equiv \overline{m}$ implies n = m**4** $\mathcal{M} \vDash \overline{s} \equiv \overline{t}$ implies s = t

Lemma

For $n : \mathbb{N}$ and $f_S^n := \{(\emptyset, \overline{S}), \dots, (\overline{n}, \overline{S^n})\}$ we have $\mathcal{M} \vDash f_S^n \gg \overline{n}$ in every model $\mathcal{M} \vDash Z'$.

Corollary

If PCPS then $Z' \vDash \varphi_S$.

Lemma

If in a standard model $\mathcal{M} \vDash \mathsf{Z}'$ there is a functional approximation $f \gg k$ for $k \in \omega$ with $(k, B) \in f$, then for all $p \in B$ there are $s, t : \mathbb{B}^*$ with $p = (\overline{s}, \overline{t})$ and $S \triangleright (s, t)$.

Corollary

Every standard model $\mathcal{M} \vDash \mathsf{Z}'$ with $\mathcal{M} \vDash \varphi_{\mathsf{S}}$ yields PCP S.

Standard Models of Set Theory

Aczel's sets-as-trees interpretation (Aczel (1978); Werner (1997); Barras (2010)):

- Inductive type of well-founded trees \mathcal{T} with constructor $\tau: \forall X. (X \to \mathcal{T}) \to \mathcal{T}$
- \blacksquare Equality interpreted as bisimulation $t\approx t'$
- Membership interpreted by $t \in (\tau X f) := \exists x. t \approx f x$
- Models constructive set theory, assumptions needed for classical ZF

Previous work isolates assumptions for fragments (Kirst and Smolka (2018)):

$$\mathsf{CE} := \forall (P, P' : \mathcal{T} \to \mathbb{P}). (\forall t. P t \leftrightarrow P' t) \to P = P'$$

$$\mathsf{TD} := \exists (\delta : (\mathcal{T} \to \mathbb{P}) \to \mathcal{T}). \forall P. (\exists t. P = [t]_{\approx}) \to P (\delta P)$$

- Setoid models of Z' and Z for free
- Quotiented models of Z' and Z require CE
- Model of ZF requires both CE and TD