Computational Back-and-Forth Arguments in Constructive Type Theory

A Proof Pearl

Dominik Kirst Saarland University, Saarland Informatics Campus

ITP'22, Haifa, Israel, August 9th

COMPUTER SCIENCE

SIC Saarland Informatics Campus What is the Back-and-Forth Method?¹

¹See Silver's 'Who invented Cantor's back-and-forth argument?' (1994) for a historic overview.

What is the Back-and-Forth Method?¹

Back-and-forth method

From Wikipedia, the free encyclopedia

In mathematical logic, especially set theory and model theory, the **back-and-forth method** is a method for showing isomorphism between countably infinite structures satisfying specified conditions. In particular it can be used to prove that

- any two countably infinite densely ordered sets (i.e., linearly ordered in such a way that between any two members there is another) without endpoints are isomorphic. An isomorphism between
 linear orders is simply a strictly increasing bijection. This result implies, for example, that there exists a strictly increasing bijection between the set of all rational numbers and the set of all real
 algebraic numbers.
- any two countably infinite atomless Boolean algebras are isomorphic to each other.
- · any two equivalent countable atomic models of a theory are isomorphic.
- the Erdős-Rényi model of random graphs, when applied to countably infinite graphs, always produces a unique graph, the Rado graph.
- any two many-complete recursively enumerable sets are recursively isomorphic.

¹See Silver's "Who invented Cantor's back-and-forth argument?" (1994) for a historic overview.

What is the Back-and-Forth Method?¹

Back-and-forth method

From Wikipedia, the free encyclopedia

In mathematical logic, especially set theory and model theory, the **back-and-forth method** is a method for showing isomorphism between countably infinite structures satisfying specified conditions. In particular it can be used to prove that

- any two countably infinite densely ordered sets (i.e., linearly ordered in such a way that between any two members there is another) without endpoints are isomorphic. An isomorphism between
 linear orders is simply a strictly increasing bijection. This result implies, for example, that there exists a strictly increasing bijection between the set of all rational numbers and the set of all real
 algebraic numbers.
- any two countably infinite atomless Boolean algebras are isomorphic to each other.
- · any two equivalent countable atomic models of a theory are isomorphic.
- the Erdős-Rényi model of random graphs, when applied to countably infinite graphs, always produces a unique graph, the Rado graph.
- any two many-complete recursively enumerable sets are recursively isomorphic.

General technique to establish isomorphisms for countable structures:

- Any two countable unbounded dense linear orders are isomorphic (Cantor (1895))
- Any two one-one interreducible sets are recursively isomorphic (Myhill (1957))
- Many more examples in model theory, Boolean algebras, and graph theory

¹See Silver's "Who invented Cantor's back-and-forth argument?" (1994) for a historic overview.

2

Formalisation of the abstract method in a constructive foundation

Formalisation of the abstract method in a constructive foundation

Instantiation to Cantor's and Myhill's isomorphism theorems

Formalisation of the abstract method in a constructive foundation

- Instantiation to Cantor's and Myhill's isomorphism theorems
- Observations about the computational interpretation of the results

Formalisation of the abstract method in a constructive foundation

- Instantiation to Cantor's and Myhill's isomorphism theorems
- Observations about the computational interpretation of the results
- Mechanisation of all results in Coq:

www.ps.uni-saarland.de/extras/back-and-forth

Assume two countable unbounded dense linear orders (X, <) and (Y, <), think $(\mathbb{Q}, <)$.

Assume two countable unbounded dense linear orders (X, <) and (Y, <), think (\mathbb{Q} , <).

Assume two countable unbounded dense linear orders (X, <) and (Y, <), think (\mathbb{Q} , <).

Assume two countable unbounded dense linear orders (X, <) and (Y, <), think (\mathbb{Q} , <).

Assume two countable unbounded dense linear orders (X, <) and (Y, <), think (\mathbb{Q} , <).

Assume two countable unbounded dense linear orders (X, <) and (Y, <), think (\mathbb{Q} , <).

Assume two countable unbounded dense linear orders (X, <) and (Y, <), think (\mathbb{Q} , <).

Assume two countable unbounded dense linear orders (X, <) and (Y, <), think (\mathbb{Q} , <).

Assume two countable unbounded dense linear orders (X, <) and (Y, <), think (\mathbb{Q} , <).

Given a partial order-isomorphism $f: X \to Y$, how do we extend it to a new element x?

Obtain a total order-isomorphism F:

$$f_0 := \emptyset$$

 $f_{n+1} := \{(x_n, \text{matching partner for } x_n)\} \cup f_n$

$$F := \bigcup_{n \in \mathbb{N}} f_n$$

Assume two countable unbounded dense linear orders (X, <) and (Y, <), think $(\mathbb{Q}, <)$. Given a partial order-isomorphism $f : X \to Y$, how do we extend it to a new element x?

Obtain a total order-isomorphism F:

$$f_0 := \emptyset$$

$$f_{n+1} := \{(x_n, \text{matching partner for } x_n)\} \cup$$

$$\{(\text{matching partner for } y_n, y_n)\} \cup f_n$$

$$F := \bigcup_{n \in \mathbb{N}} f_n$$

Assume two countable unbounded dense linear orders (X, <) and (Y, <), think $(\mathbb{Q}, <)$. Given a partial order-isomorphism $f : X \to Y$, how do we extend it to a new element x?

Obtain a total order-isomorphism F:

$$\begin{array}{l} f_0 := \emptyset \\ f_{n+1} := \{(x_n, \text{matching partner for } x_n)\} \cup \\ \{(\text{matching partner for } y_n, y_n)\} \cup f_n \end{array}$$

$$F := \bigcup_{n \in \mathbb{N}} f_n$$

F is correct: $\forall xx'. \ x < x' \leftrightarrow F x < F x'$

Assume two countable sets X and Y with injections $i_1 : X \to Y$ and $i_2 : Y \to X$.

Assume two countable sets X and Y with injections $i_1 : X \to Y$ and $i_2 : Y \to X$.

Given a partial one-to-one mapping $f: X \to Y$, how do we extend it to a new element x?

Assume two countable sets X and Y with injections $i_1 : X \to Y$ and $i_2 : Y \to X$.

Given a partial one-to-one mapping $f: X \to Y$, how do we extend it to a new element x?

Assume two countable sets X and Y with injections $i_1 : X \to Y$ and $i_2 : Y \to X$.

Given a partial one-to-one mapping $f: X \to Y$, how do we extend it to a new element x?

Assume two countable sets X and Y with injections $i_1 : X \to Y$ and $i_2 : Y \to X$.

Given a partial one-to-one mapping $f: X \to Y$, how do we extend it to a new element x?

Obtain a total one-to-one mapping F:

$$egin{aligned} f_0 & := \emptyset \ f_{n+1} & := \{(x_n, ext{matching partner for } x_n)\} \cup \ & \{(ext{matching partner for } y_n, y_n)\} \cup f_n \end{aligned}$$

$$F := \bigcup_{n \in \mathbb{N}} f_n$$

Assume two countable sets X and Y with injections $i_1 : X \to Y$ and $i_2 : Y \to X$.

Given a partial one-to-one mapping $f: X \to Y$, how do we extend it to a new element x?

Obtain a total one-to-one mapping F:

$$egin{aligned} f_0 & := \emptyset \ f_{n+1} & := \{(x_n, ext{matching partner for } x_n)\} \cup \ & \{(ext{matching partner for } y_n, y_n)\} \cup f_n \end{aligned}$$

$$F := \bigcup_{n \in \mathbb{N}} f_n$$

F is correct:
$$\forall xx'. x = x' \leftrightarrow F x = F x'$$

The Abstract Argument: Assumptions

Assumed data:

- Countable types $X, Y : \mathbb{T}$
- Abstract structure $\mathcal{A} : \mathbb{T} \times \mathbb{T} \to \mathbb{T}$
- Structure $\mathcal{S}_{X,Y} : \mathcal{A}(X,Y)$ on X and Y

$$\blacksquare \sim : (X imes X)
ightarrow (Y imes Y)
ightarrow \mathbb{P}$$

$$\bullet \ \mu: X \to \mathcal{L}(X \times Y) \to Y$$

The Abstract Argument: Assumptions

Assumed data:

- Countable types $X, Y : \mathbb{T}$
- Abstract structure $\mathcal{A} : \mathbb{T} \times \mathbb{T} \to \mathbb{T}$
- Structure $\mathcal{S}_{X,Y} : \mathcal{A}(X,Y)$ on X and Y

$$\blacksquare \sim : (X imes X)
ightarrow (Y imes Y)
ightarrow \mathbb{P}$$

$$\bullet \ \mu: X \to \mathcal{L}(X \times Y) \to Y$$

Assumed properties:

- If $(x, x') \sim (y, y')$, then x = x' iff y = y'.
- If L respects \sim , then so does $\nu \times L := (x, \mu \times L) :: L$.

The Abstract Argument: Assumptions

Assumed data:

- Countable types $X, Y : \mathbb{T}$
- Abstract structure $\mathcal{A} : \mathbb{T} \times \mathbb{T} \to \mathbb{T}$
- Structure $\mathcal{S}_{X,Y} : \mathcal{A}(X,Y)$ on X and Y
- $\bullet \sim : \forall XY. \ \mathcal{A}(X, Y) \to (X \times X) \to (Y \times Y) \to \mathbb{P}$
- $\bullet \ \mu: \forall XY. \ \mathcal{A}(X, Y) \to X \to \mathcal{L}(X \times Y) \to Y$
- Structure reversal $\mathcal{S}_{X,Y}^{-1} : \mathcal{A}(Y,X)$

Assumed properties:

- If $(x, x') \sim (y, y')$, then x = x' iff y = y'.
- If L respects \sim , then so does $\nu \times L := (x, \mu \times L) :: L$.
- $(S_{X,Y}^{-1})^{-1} = S_{X,Y}$ and if $(x, x') \sim (y, y')$, then $(y, y') \sim (x, x')$

Define finite approximations of the isomorphism, following the enumeration of X and Y:

$$L_{-} : \forall XY. \mathcal{A}(X, Y) \to \mathbb{N} \to \mathcal{L}(X \times Y)$$
$$L_{0} := []$$
$$L_{n+1} := (\nu y_{n} (\nu x_{n} L_{n})^{-1})^{-1}$$

Define finite approximations of the isomorphism, following the enumeration of X and Y:

$$L_{-} : \forall XY. \mathcal{A}(X, Y) \to \mathbb{N} \to \mathcal{L}(X \times Y)$$
$$L_{0} := []$$
$$L_{n+1} := (\nu y_{n} (\nu x_{n} L_{n})^{-1})^{-1}$$

Obtain the isomorphism by lookup in an approximation after enough iterations:

$$F x_n := L_{n+1}[x_n]$$
 $F^{-1} x_n := L_{n+1}^{-1}[y_n]$

Define finite approximations of the isomorphism, following the enumeration of X and Y:

$$L_{-} : \forall XY. \mathcal{A}(X, Y) \to \mathbb{N} \to \mathcal{L}(X \times Y)$$
$$L_{0} := []$$
$$L_{n+1} := (\nu y_{n} (\nu x_{n} L_{n})^{-1})^{-1}$$

Obtain the isomorphism by lookup in an approximation after enough iterations:

$$F x_n := L_{n+1}[x_n]$$
 $F^{-1} x_n := L_{n+1}^{-1}[y_n]$

Goal: *F* preserves the abstract structure, i.e. $\forall xx'. (x, x') \sim (Fx, Fx')$.

Lemma

 L_n respects \sim for every $n : \mathbb{N}$.

Lemma

```
L_n respects \sim for every n : \mathbb{N}.
```

Proof.

By induction on *n* with $L_0 = []$ trivial.

Lemma

$$L_n$$
 respects \sim for every $n : \mathbb{N}$.

Proof.

Lemma

 L_n respects \sim for every $n : \mathbb{N}$.

Proof.

By induction on *n* with $L_0 = []$ trivial. Now $L_{n+1} = (\nu y_n (\nu x_n L_n)^{-1})^{-1}$ respects \sim since so do:

L_n (by inductive hypothesis)

Lemma

 L_n respects \sim for every $n : \mathbb{N}$.

Proof.

By induction on *n* with $L_0 = []$ trivial. Now $L_{n+1} = (\nu y_n (\nu x_n L_n)^{-1})^{-1}$ respects \sim since so do:

 L_n (by inductive hypothesis) $\nu x_n L_n$ (by the assumption on μ)

Lemma

 L_n respects \sim for every $n : \mathbb{N}$.

Proof.

$$\begin{array}{ll} L_n & (\text{by inductive hypothesis}) \\ \nu x_n L_n & (\text{by the assumption on } \mu) \\ (\nu x_n L_n)^{-1} & (\text{by the symmetry assumption}) \end{array}$$

ν

Lemma

 L_n respects \sim for every $n : \mathbb{N}$.

Proof.

L _n	(by inductive hypothesis)
$\nu x_n L_n$	(by the assumption on $\mu)$
$(\nu x_n L_n)^{-1}$	(by the symmetry assumption)
$y_n (\nu x_n L_n)^{-1}$	(by the assumption on μ)

Lemma

 L_n respects \sim for every $n : \mathbb{N}$.

Proof.

Ln	(by inductive hypothesis)
$\nu x_n L_n$	(by the assumption on $\mu)$
$(\nu x_n L_n)^{-1}$	(by the symmetry assumption)
$ u y_n (u x_n L_n)^{-1}$	(by the assumption on $\mu)$
$(\nu y_n (\nu x_n L_n)^{-1})^{-1}$	(by the symmetry assumption)

Lemma

 L_n respects \sim for every $n : \mathbb{N}$.

Proof.

By induction on *n* with $L_0 = []$ trivial. Now $L_{n+1} = (\nu y_n (\nu x_n L_n)^{-1})^{-1}$ respects \sim since so do:

 $L_n \quad (by \text{ inductive hypothesis})$ $\nu x_n L_n \quad (by \text{ the assumption on } \mu)$ $(\nu x_n L_n)^{-1} \quad (by \text{ the symmetry assumption})$ $\nu y_n (\nu x_n L_n)^{-1} \quad (by \text{ the assumption on } \mu)$ $(\nu y_n (\nu x_n L_n)^{-1})^{-1} \quad (by \text{ the symmetry assumption})$

Theorem (Isomorphism)

F satisfies $(x, x') \sim (F x, F x')$ for all x, x' : X and is inverted by F^{-1} .

The Abstract Argument in Coq

(* Assumptions regarding the invertable abstract structure \mathcal{A} *) struc : Type \rightarrow Type srev : \forall X Y, struc X Y \rightarrow struc Y X srev_invol : \forall X Y (S : struc X Y), srev (srev S) = S

(* Assumptions regarding the abstract isomorphism property $\sim *$) iso : $\forall X Y$, struc $X Y \rightarrow X \rightarrow X \rightarrow Y \rightarrow Y \rightarrow Prop$ iso_eq : $\forall X Y (S : struc X Y) x x' y y'$, iso $S x x' y y' \rightarrow x = x' \leftrightarrow y = y'$ iso_rev : $\forall X Y (S : struc X Y) x x' y y'$, iso $S x x' y y' \rightarrow iso (srev S) y y' x x'$

(* Assumptions regarding the one-step extension function μ *) find : $\forall X Y$, struc $X Y \rightarrow X \rightarrow list (X * Y) \rightarrow Y$ find_iso : $\forall X Y (S : struc X Y) L x, x \notin dom L \rightarrow tiso S L \rightarrow tiso S ((x, find S x L) :: L)$

```
(* After 100 lines of abstract proofs: *)
Theorem back_and_forth :
{ F & { G | inverse F G \land \forall x x', iso SXY x x' (F x) (F x') } }.
```

Informally, the abstract theorem we have proven states:

Countable structures with a structure-preserving extension function are isomorphic.

²Employing synthetic computability theory as pioneered by Richman (1983) and Bauer (2006).

Informally, the abstract theorem we have proven states:

Countable structures with a structure-preserving extension function are isomorphic.

By working in a constructive meta-theory, we can also interpret it effectively:

Computational interpretation: enumerable and discrete structures with a structure-preserving extension algorithm are computably isomorphic.

²Employing synthetic computability theory as pioneered by Richman (1983) and Bauer (2006).

Informally, the abstract theorem we have proven states:

Countable structures with a structure-preserving extension function are isomorphic.

By working in a constructive meta-theory, we can also interpret it effectively:

Computational interpretation: enumerable and discrete structures with a structure-preserving extension algorithm are computably isomorphic.

So in the upcoming instantiations we always prove two theorems simultaneously,

²Employing synthetic computability theory as pioneered by Richman (1983) and Bauer (2006).

Informally, the abstract theorem we have proven states:

Countable structures with a structure-preserving extension function are isomorphic.

By working in a constructive meta-theory, we can also interpret it effectively:

Computational interpretation: enumerable and discrete structures with a structure-preserving extension algorithm are computably isomorphic.

So in the upcoming instantiations we always prove two theorems simultaneously, and by implementation in Coq we even have extractable algorithms at hand!

²Employing synthetic computability theory as pioneered by Richman (1983) and Bauer (2006). Dominik Kirst Computational Back-and-Forth Arguments August

Lemma

There is a function μ such that if L is a partial order-isomorphism, so is $(x, \mu \times L) :: L$.

Lemma

There is a function μ such that if L is a partial order-isomorphism, so is $(x, \mu \times L) :: L$.

Theorem (Cantor)

All countable unbounded dense linear orders are isomorphic.

Lemma

There is a function μ such that if L is a partial order-isomorphism, so is $(x, \mu \times L) :: L$.

Theorem (Cantor)

All countable unbounded dense linear orders are isomorphic.

Theorem (Computational Cantor)

All decidable linear orders over enumerable domain with computable witnesses for density and unboundedness are computably isomorphic.

Cantor's Isomorphism Theorem in Coq

(* After 150 lines to define partner and prove step_morph: *) Theorem Cantor X Y (OX : dulo X) (OY : dulo Y) (RX : retract X nat) (RY : retract Y nat) : $\{ F : X \to Y \& \{ G \mid \text{ inverse } F G \land \forall x x', x < x' \leftrightarrow (F x) < (F x') \} \}.$ Proof. unshelve edestruct back_and_forth as [F[G[H1 H2]]]. - intros A B, exact (dulo A * dulo B). (* structure *) - intros A B [OA OB]. exact (OB, OA). (* srev *) - cbn. intros A B [OA OB]. reflexivity. (* srev invol *) - intros A B [OA OB] a a' b b'. exact $((a = a' \leftrightarrow b = b') \land (a < a' \leftrightarrow b < b'))$. (* iso *) - cbn. tauto. (* iso_eq *) - cbn. tauto. (* iso rev *) - cbn. intros A B [OA OB] f a. exact (partner OA OB f a). (* find *) - cbn. intros A B [OA OB] f x. unfold step, tiso. now apply step_morph. (* find_iso *)

- exact X.
- exact Y.
- exact (OX, OY).
- exact RX.
- exact RY.

```
- cbn in *. exists F, G. split; try apply H1. apply H2. Qed.
```

"One-one interreducible sets of numbers are recursively isomorphic."

⁴Discovered by Myhill (1957), previously mechanised by Forster, Jahn, and Smolka (2022).

Computational Back-and-Forth Arguments

"One-one interreducible sets of numbers are recursively isomorphic."

A function $f : X \to Y$ is a many-one reduction from $p : X \to \mathbb{P}$ to $q : Y \to \mathbb{P}$ if $\forall x : X. p x \leftrightarrow q (f x).$

If f is injective (bijective), it is a one-one reduction (recursive isomorphism).

⁴Discovered by Myhill (1957), previously mechanised by Forster, Jahn, and Smolka (2022).

"One-one interreducible sets of numbers are recursively isomorphic."

A function $f : X \to Y$ is a many-one reduction from $p : X \to \mathbb{P}$ to $q : Y \to \mathbb{P}$ if $\forall x : X. p x \leftrightarrow q (f x).$

If f is injective (bijective), it is a one-one reduction (recursive isomorphism).

Structure $\mathcal{A}(X, Y) :=$ a pair (p, q) of one-one interreducible predicates $(x, x') \sim (y, y') := (x = x' \leftrightarrow y = y') \land (p x \leftrightarrow q y)$

⁴Discovered by Myhill (1957), previously mechanised by Forster, Jahn, and Smolka (2022).

"One-one interreducible sets of numbers are recursively isomorphic."

A function $f : X \to Y$ is a many-one reduction from $p : X \to \mathbb{P}$ to $q : Y \to \mathbb{P}$ if $\forall x : X. p x \leftrightarrow q (f x).$

If f is injective (bijective), it is a one-one reduction (recursive isomorphism).

Structure $\mathcal{A}(X, Y) :=$ a pair (p, q) of one-one interreducible predicates $(x, x') \sim (y, y') := (x = x' \leftrightarrow y = y') \land (p x \leftrightarrow q y)$

Theorem (Myhill)

One-one interreducible unary predicates on (retracts of) \mathbb{N} are recursively isomorphic.

⁴Discovered by Myhill (1957), previously mechanised by Forster, Jahn, and Smolka (2022).

Myhill's Isomorphism Theorem in Coq

```
(* After 100 lines to define mstep and prove step_corr: *)
Theorem Myhill X Y (SXY : bireduction X Y) (RX : retract X nat) (RY : retract Y nat) :
 \{ F : X \rightarrow Y \& \{ G \mid \text{ inverse } F G \land \text{ reduction } p q F \} \}.
Proof.
  unshelve edestruct back_and_forth as [F[G[H1 H2]]].
  - intros A B. exact (bireduction A B).
                                                                                              (* structure *)
  - intros A B S. cbn in *. apply (@Build_bireduction B A eY eX q p g f); apply S.
                                                                                              (* srev *)
  - cbn. intros A B []. reflexivity.
                                                                                              (* srev invol *)
  - intros A B S a a' b b'. cbn in S. exact ((a = a' \leftrightarrow b = b') \land (p = a \leftrightarrow q b)).
                                                                                              (* iso *)
                                                                                              (* iso_eq *)
  - cbn. tauto.
  - cbn. tauto.
                                                                                              (* iso rev *)
  - cbn. intros A B S C a. exact (mstep f eX eY C a).
                                                                                              (* find *)
  - cbn. intros A B S C a. unfold step, tiso. apply step_corr; apply S.
                                                                                              (* find_iso *)
```

- exact X.
- exact Y.
- exact SXY.
- exact RX.
- exact RY.

- cbn in *. exists F, G. split; try apply H1. intros x. now apply H2. Qed.

If we forget about the computational interpretation of the previous theorem, we can observe:

If we forget about the computational interpretation of the previous theorem, we can observe:

Corollary (Countable Cantor-Bernstein)

Countable sets X and Y with injections $X \to Y$ and $Y \to X$ admit a bijection $X \to Y$.

If we forget about the computational interpretation of the previous theorem, we can observe:

Corollary (Countable Cantor-Bernstein)

Countable sets X and Y with injections $X \to Y$ and $Y \to X$ admit a bijection $X \to Y$.

Proof.

Pick as p and q the full predicates on X and Y, then use the previous theorem.

If we forget about the computational interpretation of the previous theorem, we can observe:

Corollary (Countable Cantor-Bernstein)

Countable sets X and Y with injections $X \to Y$ and $Y \to X$ admit a bijection $X \to Y$.

Proof.

Pick as p and q the full predicates on X and Y, then use the previous theorem.

Though Pradic and Brown (2019) show that the general Cantor-Bernstein theorem is equivalent to excluded middle, the restriction to countable sets holds constructively!

⁵Discovered and previously mechanised by Forster, Jahn, and Smolka (2022).

Dominik Kirst

Computational Back-and-Forth Arguments

- The back-and-forth method can be described abstractly via a very general interface:
 - Natural formulation in constructive type theory
 - Neat construction and verification fully exploiting symmetry

- The back-and-forth method can be described abstractly via a very general interface:
 - Natural formulation in constructive type theory
 - Neat construction and verification fully exploiting symmetry
- Instantiation just requires a notion of structure and a one-step extension function:
 - ► Examples given for Cantor's and Myhill's isomorphism theorems
 - Should apply to all other examples and might save your time

- The back-and-forth method can be described abstractly via a very general interface:
 - Natural formulation in constructive type theory
 - Neat construction and verification fully exploiting symmetry
- Instantiation just requires a notion of structure and a one-step extension function:
 - Examples given for Cantor's and Myhill's isomorphism theorems
 - Should apply to all other examples and might save your time
- By doing all proofs constructively, you get computational results for free:
 - No need to work with an explicit model of computation
 - Method is pretty constructive by default, only little care needs to be taken

- The back-and-forth method can be described abstractly via a very general interface:
 - Natural formulation in constructive type theory
 - Neat construction and verification fully exploiting symmetry
- Instantiation just requires a notion of structure and a one-step extension function:
 - Examples given for Cantor's and Myhill's isomorphism theorems
 - Should apply to all other examples and might save your time
- By doing all proofs constructively, you get computational results for free:
 - No need to work with an explicit model of computation
 - Method is pretty constructive by default, only little care needs to be taken

Thanks for listening!

Bibliography

- Bauer, A. (2006). First steps in synthetic computability theory. *Electronic Notes in Theoretical Computer Science*, 155:5–31.
- Cantor, G. (1895). Beiträge zur Begründung der transfiniten Mengenlehre. *Mathematische Annalen*, 46(4):481–512.
- Forster, Y., Jahn, F., and Smolka, G. (2022). A Constructive and Synthetic Theory of Reducibility: Myhill's Isomorphism Theorem and Post's Problem for Many-one and Truth-table Reducibility in Coq (Full Version). working paper or preprint.
- Forster, Y., Kirst, D., and Smolka, G. (2019). On synthetic undecidability in Coq, with an application to the entscheidungsproblem. In *Proceedings of the 8th ACM SIGPLAN International Conference on Certified Programs and Proofs*, pages 38–51.
- Giese, M. and Schönegge, A. (1995). Any Two Countable, Densely Ordered Sets Without Endpoints are Isomorphic: A Formal Proof with KIV. Univ., Fak. für Informatik.
- Marzion, E. (2020). Visualizing Cantor's theorem on dense linear orders using Coq. Blog post.
- Myhill, J. (1957). Creative sets. Journal of Symbolic Logic, 22(1).
- Pradic, P. and Brown, C. E. (2019). Cantor-Bernstein implies excluded middle. arXiv preprint arXiv:1904.09193.
- Richman, F. (1983). Church's thesis without tears. The Journal of symbolic logic, 48(3):797-803.

Silver, C. L. (1994). Who invented Cantor's back-and-forth argument? Modern Logic, 4(1):74–78.

Synthetic Computability Theory

content

Myhill Construction

content