
Computational Back-and-Forth Arguments
in Constructive Type Theory

A Proof Pearl

Dominik Kirst
Saarland University, Saarland Informatics Campus

ITP’22, Haifa, Israel, August 9th

computer science

saarland
university

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 1

http://www.cs.uni-saarland.de/
https://saarland-informatics-campus.de/en/


What is the Back-and-Forth Method?1

General technique to establish isomorphisms for countable structures:
Any two countable unbounded dense linear orders are isomorphic (Cantor (1895))
Any two one-one interreducible sets are recursively isomorphic (Myhill (1957))
Many more examples in model theory, Boolean algebras, and graph theory

1See Silver’s “Who invented Cantor’s back-and-forth argument?” (1994) for a historic overview.
Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 2



What is the Back-and-Forth Method?1

General technique to establish isomorphisms for countable structures:
Any two countable unbounded dense linear orders are isomorphic (Cantor (1895))
Any two one-one interreducible sets are recursively isomorphic (Myhill (1957))
Many more examples in model theory, Boolean algebras, and graph theory

1See Silver’s “Who invented Cantor’s back-and-forth argument?” (1994) for a historic overview.
Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 2



What is the Back-and-Forth Method?1

General technique to establish isomorphisms for countable structures:
Any two countable unbounded dense linear orders are isomorphic (Cantor (1895))
Any two one-one interreducible sets are recursively isomorphic (Myhill (1957))
Many more examples in model theory, Boolean algebras, and graph theory

1See Silver’s “Who invented Cantor’s back-and-forth argument?” (1994) for a historic overview.
Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 2



What will this talk be about?

Formalisation of the abstract method in a constructive foundation

Instantiation to Cantor’s and Myhill’s isomorphism theorems

Observations about the computational interpretation of the results

Mechanisation of all results in Coq:

www.ps.uni-saarland.de/extras/back-and-forth

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 3

www.ps.uni-saarland.de/extras/back-and-forth


What will this talk be about?

Formalisation of the abstract method in a constructive foundation

Instantiation to Cantor’s and Myhill’s isomorphism theorems

Observations about the computational interpretation of the results

Mechanisation of all results in Coq:

www.ps.uni-saarland.de/extras/back-and-forth

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 3

www.ps.uni-saarland.de/extras/back-and-forth


What will this talk be about?

Formalisation of the abstract method in a constructive foundation

Instantiation to Cantor’s and Myhill’s isomorphism theorems

Observations about the computational interpretation of the results

Mechanisation of all results in Coq:

www.ps.uni-saarland.de/extras/back-and-forth

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 3

www.ps.uni-saarland.de/extras/back-and-forth


What will this talk be about?

Formalisation of the abstract method in a constructive foundation

Instantiation to Cantor’s and Myhill’s isomorphism theorems

Observations about the computational interpretation of the results

Mechanisation of all results in Coq:

www.ps.uni-saarland.de/extras/back-and-forth

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 3

www.ps.uni-saarland.de/extras/back-and-forth


What will this talk be about?

Formalisation of the abstract method in a constructive foundation

Instantiation to Cantor’s and Myhill’s isomorphism theorems

Observations about the computational interpretation of the results

Mechanisation of all results in Coq:

www.ps.uni-saarland.de/extras/back-and-forth

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 3

www.ps.uni-saarland.de/extras/back-and-forth


The Informal Argument: Cantor’s Isomorphism Theorem

Assume two countable unbounded dense linear orders (X , <) and (Y , <), think (Q, <).

Given a partial order-isomorphism f : X → Y , how do we extend it to a new element x?

X Y

f

f

≤ ≤

a

c

x

b

d

...

Obtain a total order-isomorphism F :

f0 := ∅
fn+1 := {(xn,matching partner for xn)}

F :=
⋃
n∈N

fn

F is correct: ∀xx ′. x < x ′ ↔ F x < F x ′

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 4



The Informal Argument: Cantor’s Isomorphism Theorem

Assume two countable unbounded dense linear orders (X , <) and (Y , <), think (Q, <).

Given a partial order-isomorphism f : X → Y , how do we extend it to a new element x?

X Y

f

f

≤ ≤

a

c

x

b

d

...

Obtain a total order-isomorphism F :

f0 := ∅
fn+1 := {(xn,matching partner for xn)}

F :=
⋃
n∈N

fn

F is correct: ∀xx ′. x < x ′ ↔ F x < F x ′

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 4



The Informal Argument: Cantor’s Isomorphism Theorem

Assume two countable unbounded dense linear orders (X , <) and (Y , <), think (Q, <).

Given a partial order-isomorphism f : X → Y , how do we extend it to a new element x?

X Y

f

f

≤ ≤

a

x

c

x

b

d

...

Obtain a total order-isomorphism F :

f0 := ∅
fn+1 := {(xn,matching partner for xn)}

F :=
⋃
n∈N

fn

F is correct: ∀xx ′. x < x ′ ↔ F x < F x ′

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 4



The Informal Argument: Cantor’s Isomorphism Theorem

Assume two countable unbounded dense linear orders (X , <) and (Y , <), think (Q, <).

Given a partial order-isomorphism f : X → Y , how do we extend it to a new element x?

X Y

f

f

≤ ≤

a

x

c

x

b
...
d

...

Obtain a total order-isomorphism F :

f0 := ∅
fn+1 := {(xn,matching partner for xn)}

F :=
⋃
n∈N

fn

F is correct: ∀xx ′. x < x ′ ↔ F x < F x ′

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 4



The Informal Argument: Cantor’s Isomorphism Theorem

Assume two countable unbounded dense linear orders (X , <) and (Y , <), think (Q, <).

Given a partial order-isomorphism f : X → Y , how do we extend it to a new element x?

X Y

f

f

≤ ≤

x

a

c

x

b

d

...

Obtain a total order-isomorphism F :

f0 := ∅
fn+1 := {(xn,matching partner for xn)}

F :=
⋃
n∈N

fn

F is correct: ∀xx ′. x < x ′ ↔ F x < F x ′

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 4



The Informal Argument: Cantor’s Isomorphism Theorem

Assume two countable unbounded dense linear orders (X , <) and (Y , <), think (Q, <).

Given a partial order-isomorphism f : X → Y , how do we extend it to a new element x?

X Y

f

f

≤ ≤

x

a

c

x

...
b

d

...

Obtain a total order-isomorphism F :

f0 := ∅
fn+1 := {(xn,matching partner for xn)}

F :=
⋃
n∈N

fn

F is correct: ∀xx ′. x < x ′ ↔ F x < F x ′

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 4



The Informal Argument: Cantor’s Isomorphism Theorem

Assume two countable unbounded dense linear orders (X , <) and (Y , <), think (Q, <).

Given a partial order-isomorphism f : X → Y , how do we extend it to a new element x?

X Y

f

f

≤ ≤

a

c

x

b

d

...

Obtain a total order-isomorphism F :

f0 := ∅
fn+1 := {(xn,matching partner for xn)}

F :=
⋃
n∈N

fn

F is correct: ∀xx ′. x < x ′ ↔ F x < F x ′

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 4



The Informal Argument: Cantor’s Isomorphism Theorem

Assume two countable unbounded dense linear orders (X , <) and (Y , <), think (Q, <).

Given a partial order-isomorphism f : X → Y , how do we extend it to a new element x?

X Y

f

f

≤ ≤

a

c

x

b

d
...

Obtain a total order-isomorphism F :

f0 := ∅
fn+1 := {(xn,matching partner for xn)}

F :=
⋃
n∈N

fn

F is correct: ∀xx ′. x < x ′ ↔ F x < F x ′

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 4



The Informal Argument: Cantor’s Isomorphism Theorem

Assume two countable unbounded dense linear orders (X , <) and (Y , <), think (Q, <).

Given a partial order-isomorphism f : X → Y , how do we extend it to a new element x?

X Y

f

f

≤ ≤

a

c

x

b

d
...

Obtain a total order-isomorphism F :

f0 := ∅
fn+1 := {(xn,matching partner for xn)} ∪ fn

F :=
⋃
n∈N

fn

F is correct: ∀xx ′. x < x ′ ↔ F x < F x ′

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 4



The Informal Argument: Cantor’s Isomorphism Theorem

Assume two countable unbounded dense linear orders (X , <) and (Y , <), think (Q, <).

Given a partial order-isomorphism f : X → Y , how do we extend it to a new element x?

X Y

f

f

≤ ≤

a

c

x

b

d
...

Obtain a total order-isomorphism F :

f0 := ∅
fn+1 := {(xn,matching partner for xn)} ∪

{(matching partner for yn, yn)} ∪ fn

F :=
⋃
n∈N

fn

F is correct: ∀xx ′. x < x ′ ↔ F x < F x ′

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 4



The Informal Argument: Cantor’s Isomorphism Theorem

Assume two countable unbounded dense linear orders (X , <) and (Y , <), think (Q, <).

Given a partial order-isomorphism f : X → Y , how do we extend it to a new element x?

X Y

f

f

≤ ≤

a

c

x

b

d
...

Obtain a total order-isomorphism F :

f0 := ∅
fn+1 := {(xn,matching partner for xn)} ∪

{(matching partner for yn, yn)} ∪ fn

F :=
⋃
n∈N

fn

F is correct: ∀xx ′. x < x ′ ↔ F x < F x ′

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 4



The Informal Argument: Countable Cantor-Bernstein Theorem

Assume two countable sets X and Y with injections i1 : X → Y and i2 : Y → X .

Given a partial one-to-one mapping f : X → Y , how do we extend it to a new element x?

X Y

f

f

a

c

x

b

d

. . .

Obtain a total one-to-one mapping F :

f0 := ∅
fn+1 := {(xn,matching partner for xn)} ∪

{(matching partner for yn, yn)} ∪ fn

F :=
⋃
n∈N

fn

F is correct: ∀xx ′. x = x ′ ↔ F x = F x ′

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 5



The Informal Argument: Countable Cantor-Bernstein Theorem

Assume two countable sets X and Y with injections i1 : X → Y and i2 : Y → X .

Given a partial one-to-one mapping f : X → Y , how do we extend it to a new element x?

X Y

f

f

a

c

x

b

d

. . .

Obtain a total one-to-one mapping F :

f0 := ∅
fn+1 := {(xn,matching partner for xn)} ∪

{(matching partner for yn, yn)} ∪ fn

F :=
⋃
n∈N

fn

F is correct: ∀xx ′. x = x ′ ↔ F x = F x ′

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 5



The Informal Argument: Countable Cantor-Bernstein Theorem

Assume two countable sets X and Y with injections i1 : X → Y and i2 : Y → X .

Given a partial one-to-one mapping f : X → Y , how do we extend it to a new element x?

X Y

f

f

a

c

x
b

d

. . .

Obtain a total one-to-one mapping F :

f0 := ∅
fn+1 := {(xn,matching partner for xn)} ∪

{(matching partner for yn, yn)} ∪ fn

F :=
⋃
n∈N

fn

F is correct: ∀xx ′. x = x ′ ↔ F x = F x ′

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 5



The Informal Argument: Countable Cantor-Bernstein Theorem

Assume two countable sets X and Y with injections i1 : X → Y and i2 : Y → X .

Given a partial one-to-one mapping f : X → Y , how do we extend it to a new element x?

X Y

f

f

a

c

x
b

d

. . .

Obtain a total one-to-one mapping F :

f0 := ∅
fn+1 := {(xn,matching partner for xn)} ∪

{(matching partner for yn, yn)} ∪ fn

F :=
⋃
n∈N

fn

F is correct: ∀xx ′. x = x ′ ↔ F x = F x ′

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 5



The Informal Argument: Countable Cantor-Bernstein Theorem

Assume two countable sets X and Y with injections i1 : X → Y and i2 : Y → X .

Given a partial one-to-one mapping f : X → Y , how do we extend it to a new element x?

X Y

f

f

a

c

x
b

d

. . .

Obtain a total one-to-one mapping F :

f0 := ∅
fn+1 := {(xn,matching partner for xn)} ∪

{(matching partner for yn, yn)} ∪ fn

F :=
⋃
n∈N

fn

F is correct: ∀xx ′. x = x ′ ↔ F x = F x ′

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 5



The Informal Argument: Countable Cantor-Bernstein Theorem

Assume two countable sets X and Y with injections i1 : X → Y and i2 : Y → X .

Given a partial one-to-one mapping f : X → Y , how do we extend it to a new element x?

X Y

f

f

a

c

x
b

d

. . .

Obtain a total one-to-one mapping F :

f0 := ∅
fn+1 := {(xn,matching partner for xn)} ∪

{(matching partner for yn, yn)} ∪ fn

F :=
⋃
n∈N

fn

F is correct: ∀xx ′. x = x ′ ↔ F x = F x ′

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 5



The Abstract Argument: Assumptions

X YSX ,Y

L

∼
x

x ′

y

µ x ′ L

Assumed data:
Countable types X ,Y : T
Abstract structure A : T× T→ T
Structure SX ,Y : A(X ,Y ) on X and Y

∼ :

∀XY .A(X ,Y )→

(X × X )→ (Y × Y )→ P
µ :

∀XY .A(X ,Y )→

X → L(X × Y )→ Y

Structure reversal S−1
X ,Y : A(Y ,X )

Assumed properties:
If (x , x ′) ∼ (y , y ′), then x = x ′ iff y = y ′.
If L respects ∼, then so does ν x L := (x , µ x L) :: L.

(S−1
X ,Y )

−1 = SX ,Y and if (x , x ′) ∼ (y , y ′), then (y , y ′) ∼ (x , x ′)

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 6



The Abstract Argument: Assumptions

X YSX ,Y

L

∼
x

x ′

y

µ x ′ L

Assumed data:
Countable types X ,Y : T
Abstract structure A : T× T→ T
Structure SX ,Y : A(X ,Y ) on X and Y

∼ :

∀XY .A(X ,Y )→

(X × X )→ (Y × Y )→ P
µ :

∀XY .A(X ,Y )→

X → L(X × Y )→ Y

Structure reversal S−1
X ,Y : A(Y ,X )

Assumed properties:
If (x , x ′) ∼ (y , y ′), then x = x ′ iff y = y ′.
If L respects ∼, then so does ν x L := (x , µ x L) :: L.

(S−1
X ,Y )

−1 = SX ,Y and if (x , x ′) ∼ (y , y ′), then (y , y ′) ∼ (x , x ′)

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 6



The Abstract Argument: Assumptions

X YSX ,Y

L

∼
x

x ′

y

µ x ′ L

Assumed data:
Countable types X ,Y : T
Abstract structure A : T× T→ T
Structure SX ,Y : A(X ,Y ) on X and Y

∼ : ∀XY .A(X ,Y )→ (X×X )→ (Y×Y )→ P
µ : ∀XY .A(X ,Y )→ X → L(X × Y )→ Y

Structure reversal S−1
X ,Y : A(Y ,X )

Assumed properties:
If (x , x ′) ∼ (y , y ′), then x = x ′ iff y = y ′.
If L respects ∼, then so does ν x L := (x , µ x L) :: L.
(S−1

X ,Y )
−1 = SX ,Y and if (x , x ′) ∼ (y , y ′), then (y , y ′) ∼ (x , x ′)

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 6



The Abstract Argument: Construction

Define finite approximations of the isomorphism, following the enumeration of X and Y :

L_ : ∀XY .A(X ,Y )→ N→ L(X × Y )

L0 := []

Ln+1 := (ν yn (ν xn Ln)
−1)−1

Obtain the isomorphism by lookup in an approximation after enough iterations:

F xn := Ln+1[xn] F−1 xn := L−1
n+1[yn]

Goal: F preserves the abstract structure, i.e. ∀xx ′. (x , x ′) ∼ (F x ,F x ′).

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 7



The Abstract Argument: Construction

Define finite approximations of the isomorphism, following the enumeration of X and Y :

L_ : ∀XY .A(X ,Y )→ N→ L(X × Y )

L0 := []

Ln+1 := (ν yn (ν xn Ln)
−1)−1

Obtain the isomorphism by lookup in an approximation after enough iterations:

F xn := Ln+1[xn] F−1 xn := L−1
n+1[yn]

Goal: F preserves the abstract structure, i.e. ∀xx ′. (x , x ′) ∼ (F x ,F x ′).

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 7



The Abstract Argument: Construction

Define finite approximations of the isomorphism, following the enumeration of X and Y :

L_ : ∀XY .A(X ,Y )→ N→ L(X × Y )

L0 := []

Ln+1 := (ν yn (ν xn Ln)
−1)−1

Obtain the isomorphism by lookup in an approximation after enough iterations:

F xn := Ln+1[xn] F−1 xn := L−1
n+1[yn]

Goal: F preserves the abstract structure, i.e. ∀xx ′. (x , x ′) ∼ (F x ,F x ′).

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 7



The Abstract Argument: Construction

Define finite approximations of the isomorphism, following the enumeration of X and Y :

L_ : ∀XY .A(X ,Y )→ N→ L(X × Y )

L0 := []

Ln+1 := (ν yn (ν xn Ln)
−1)−1

Obtain the isomorphism by lookup in an approximation after enough iterations:

F xn := Ln+1[xn] F−1 xn := L−1
n+1[yn]

Goal: F preserves the abstract structure, i.e. ∀xx ′. (x , x ′) ∼ (F x ,F x ′).

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 7



The Abstract Argument: Verification
Lemma
Ln respects ∼ for every n : N.

Proof.
By induction on n with L0 = [] trivial. Now Ln+1 = (ν yn (ν xn Ln)

−1)−1 respects ∼ since so do:

Ln (by inductive hypothesis)
ν xn Ln (by the assumption on µ)

(ν xn Ln)
−1 (by the symmetry assumption)

ν yn (ν xn Ln)
−1 (by the assumption on µ)

(ν yn (ν xn Ln)
−1)−1 (by the symmetry assumption)

Theorem (Isomorphism)

F satisfies (x , x ′) ∼ (F x ,F x ′) for all x , x ′ : X and is inverted by F−1.

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 8



The Abstract Argument: Verification
Lemma
Ln respects ∼ for every n : N.

Proof.
By induction on n with L0 = [] trivial.

Now Ln+1 = (ν yn (ν xn Ln)
−1)−1 respects ∼ since so do:

Ln (by inductive hypothesis)
ν xn Ln (by the assumption on µ)

(ν xn Ln)
−1 (by the symmetry assumption)

ν yn (ν xn Ln)
−1 (by the assumption on µ)

(ν yn (ν xn Ln)
−1)−1 (by the symmetry assumption)

Theorem (Isomorphism)

F satisfies (x , x ′) ∼ (F x ,F x ′) for all x , x ′ : X and is inverted by F−1.

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 8



The Abstract Argument: Verification
Lemma
Ln respects ∼ for every n : N.

Proof.
By induction on n with L0 = [] trivial. Now Ln+1 = (ν yn (ν xn Ln)

−1)−1 respects ∼ since so do:

Ln (by inductive hypothesis)
ν xn Ln (by the assumption on µ)

(ν xn Ln)
−1 (by the symmetry assumption)

ν yn (ν xn Ln)
−1 (by the assumption on µ)

(ν yn (ν xn Ln)
−1)−1 (by the symmetry assumption)

Theorem (Isomorphism)

F satisfies (x , x ′) ∼ (F x ,F x ′) for all x , x ′ : X and is inverted by F−1.

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 8



The Abstract Argument: Verification
Lemma
Ln respects ∼ for every n : N.

Proof.
By induction on n with L0 = [] trivial. Now Ln+1 = (ν yn (ν xn Ln)

−1)−1 respects ∼ since so do:

Ln (by inductive hypothesis)

ν xn Ln (by the assumption on µ)

(ν xn Ln)
−1 (by the symmetry assumption)

ν yn (ν xn Ln)
−1 (by the assumption on µ)

(ν yn (ν xn Ln)
−1)−1 (by the symmetry assumption)

Theorem (Isomorphism)

F satisfies (x , x ′) ∼ (F x ,F x ′) for all x , x ′ : X and is inverted by F−1.

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 8



The Abstract Argument: Verification
Lemma
Ln respects ∼ for every n : N.

Proof.
By induction on n with L0 = [] trivial. Now Ln+1 = (ν yn (ν xn Ln)

−1)−1 respects ∼ since so do:

Ln (by inductive hypothesis)
ν xn Ln (by the assumption on µ)

(ν xn Ln)
−1 (by the symmetry assumption)

ν yn (ν xn Ln)
−1 (by the assumption on µ)

(ν yn (ν xn Ln)
−1)−1 (by the symmetry assumption)

Theorem (Isomorphism)

F satisfies (x , x ′) ∼ (F x ,F x ′) for all x , x ′ : X and is inverted by F−1.

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 8



The Abstract Argument: Verification
Lemma
Ln respects ∼ for every n : N.

Proof.
By induction on n with L0 = [] trivial. Now Ln+1 = (ν yn (ν xn Ln)

−1)−1 respects ∼ since so do:

Ln (by inductive hypothesis)
ν xn Ln (by the assumption on µ)

(ν xn Ln)
−1 (by the symmetry assumption)

ν yn (ν xn Ln)
−1 (by the assumption on µ)

(ν yn (ν xn Ln)
−1)−1 (by the symmetry assumption)

Theorem (Isomorphism)

F satisfies (x , x ′) ∼ (F x ,F x ′) for all x , x ′ : X and is inverted by F−1.

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 8



The Abstract Argument: Verification
Lemma
Ln respects ∼ for every n : N.

Proof.
By induction on n with L0 = [] trivial. Now Ln+1 = (ν yn (ν xn Ln)

−1)−1 respects ∼ since so do:

Ln (by inductive hypothesis)
ν xn Ln (by the assumption on µ)

(ν xn Ln)
−1 (by the symmetry assumption)

ν yn (ν xn Ln)
−1 (by the assumption on µ)

(ν yn (ν xn Ln)
−1)−1 (by the symmetry assumption)

Theorem (Isomorphism)

F satisfies (x , x ′) ∼ (F x ,F x ′) for all x , x ′ : X and is inverted by F−1.

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 8



The Abstract Argument: Verification
Lemma
Ln respects ∼ for every n : N.

Proof.
By induction on n with L0 = [] trivial. Now Ln+1 = (ν yn (ν xn Ln)

−1)−1 respects ∼ since so do:

Ln (by inductive hypothesis)
ν xn Ln (by the assumption on µ)

(ν xn Ln)
−1 (by the symmetry assumption)

ν yn (ν xn Ln)
−1 (by the assumption on µ)

(ν yn (ν xn Ln)
−1)−1 (by the symmetry assumption)

Theorem (Isomorphism)

F satisfies (x , x ′) ∼ (F x ,F x ′) for all x , x ′ : X and is inverted by F−1.

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 8



The Abstract Argument: Verification
Lemma
Ln respects ∼ for every n : N.

Proof.
By induction on n with L0 = [] trivial. Now Ln+1 = (ν yn (ν xn Ln)

−1)−1 respects ∼ since so do:

Ln (by inductive hypothesis)
ν xn Ln (by the assumption on µ)

(ν xn Ln)
−1 (by the symmetry assumption)

ν yn (ν xn Ln)
−1 (by the assumption on µ)

(ν yn (ν xn Ln)
−1)−1 (by the symmetry assumption)

Theorem (Isomorphism)

F satisfies (x , x ′) ∼ (F x ,F x ′) for all x , x ′ : X and is inverted by F−1.

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 8



The Abstract Argument in Coq
(* Assumptions regarding the invertable abstract structure A *)
struc : Type → Type → Type
srev : ∀ X Y, struc X Y → struc Y X
srev_invol : ∀ X Y (S : struc X Y), srev (srev S) = S

(* Assumptions regarding the abstract isomorphism property ∼ *)
iso : ∀ X Y, struc X Y → X → X → Y → Y → Prop
iso_eq : ∀ X Y (S : struc X Y) x x' y y', iso S x x' y y' → x = x' ↔ y = y'
iso_rev : ∀ X Y (S : struc X Y) x x' y y', iso S x x' y y' → iso (srev S) y y' x x'

(* Assumptions regarding the one-step extension function µ *)
find : ∀ X Y, struc X Y → X → list (X * Y) → Y
find_iso : ∀ X Y (S : struc X Y) L x, x 6∈ dom L → tiso S L → tiso S ((x, find S x L) :: L)

(* After 100 lines of abstract proofs: *)
Theorem back_and_forth :

{ F & { G | inverse F G ∧ ∀ x x', iso SXY x x' (F x) (F x') } }.

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 9



The Computational Argument2

Informally, the abstract theorem we have proven states:

Countable structures with a structure-preserving extension function are isomorphic.

By working in a constructive meta-theory, we can also interpret it effectively:

Computational interpretation: enumerable and discrete structures with a
structure-preserving extension algorithm are computably isomorphic.

So in the upcoming instantiations we always prove two theorems simultaneously,
and by implementation in Coq we even have extractable algorithms at hand!

2Employing synthetic computability theory as pioneered by Richman (1983) and Bauer (2006).
Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 10



The Computational Argument2

Informally, the abstract theorem we have proven states:

Countable structures with a structure-preserving extension function are isomorphic.

By working in a constructive meta-theory, we can also interpret it effectively:

Computational interpretation: enumerable and discrete structures with a
structure-preserving extension algorithm are computably isomorphic.

So in the upcoming instantiations we always prove two theorems simultaneously,
and by implementation in Coq we even have extractable algorithms at hand!

2Employing synthetic computability theory as pioneered by Richman (1983) and Bauer (2006).
Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 10



The Computational Argument2

Informally, the abstract theorem we have proven states:

Countable structures with a structure-preserving extension function are isomorphic.

By working in a constructive meta-theory, we can also interpret it effectively:

Computational interpretation: enumerable and discrete structures with a
structure-preserving extension algorithm are computably isomorphic.

So in the upcoming instantiations we always prove two theorems simultaneously,

and by implementation in Coq we even have extractable algorithms at hand!

2Employing synthetic computability theory as pioneered by Richman (1983) and Bauer (2006).
Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 10



The Computational Argument2

Informally, the abstract theorem we have proven states:

Countable structures with a structure-preserving extension function are isomorphic.

By working in a constructive meta-theory, we can also interpret it effectively:

Computational interpretation: enumerable and discrete structures with a
structure-preserving extension algorithm are computably isomorphic.

So in the upcoming instantiations we always prove two theorems simultaneously,
and by implementation in Coq we even have extractable algorithms at hand!

2Employing synthetic computability theory as pioneered by Richman (1983) and Bauer (2006).
Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 10



Cantor’s Isomorphism Theorem3

Structure A(X ,Y ) := X and Y are unboundend dense linear orders
(x , x ′) ∼ (y , y ′) := (x = x ′ ↔ y = y ′) ∧ (x < x ′ ↔ y < y ′)

Lemma
There is a function µ such that if L is a partial order-isomorphism, so is (x , µ x L) :: L.

Theorem (Cantor)

All countable unbounded dense linear orders are isomorphic.

Theorem (Computational Cantor)

All decidable linear orders over enumerable domain with computable witnesses for density and
unboundedness are computably isomorphic.

3Discovered by Cantor (1895), previously mechanised by Giese and Schönegge (1995) and Marzion (2020).
Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 11



Cantor’s Isomorphism Theorem3

Structure A(X ,Y ) := X and Y are unboundend dense linear orders
(x , x ′) ∼ (y , y ′) := (x = x ′ ↔ y = y ′) ∧ (x < x ′ ↔ y < y ′)

Lemma
There is a function µ such that if L is a partial order-isomorphism, so is (x , µ x L) :: L.

Theorem (Cantor)

All countable unbounded dense linear orders are isomorphic.

Theorem (Computational Cantor)

All decidable linear orders over enumerable domain with computable witnesses for density and
unboundedness are computably isomorphic.

3Discovered by Cantor (1895), previously mechanised by Giese and Schönegge (1995) and Marzion (2020).
Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 11



Cantor’s Isomorphism Theorem3

Structure A(X ,Y ) := X and Y are unboundend dense linear orders
(x , x ′) ∼ (y , y ′) := (x = x ′ ↔ y = y ′) ∧ (x < x ′ ↔ y < y ′)

Lemma
There is a function µ such that if L is a partial order-isomorphism, so is (x , µ x L) :: L.

Theorem (Cantor)

All countable unbounded dense linear orders are isomorphic.

Theorem (Computational Cantor)

All decidable linear orders over enumerable domain with computable witnesses for density and
unboundedness are computably isomorphic.

3Discovered by Cantor (1895), previously mechanised by Giese and Schönegge (1995) and Marzion (2020).
Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 11



Cantor’s Isomorphism Theorem3

Structure A(X ,Y ) := X and Y are unboundend dense linear orders
(x , x ′) ∼ (y , y ′) := (x = x ′ ↔ y = y ′) ∧ (x < x ′ ↔ y < y ′)

Lemma
There is a function µ such that if L is a partial order-isomorphism, so is (x , µ x L) :: L.

Theorem (Cantor)

All countable unbounded dense linear orders are isomorphic.

Theorem (Computational Cantor)

All decidable linear orders over enumerable domain with computable witnesses for density and
unboundedness are computably isomorphic.

3Discovered by Cantor (1895), previously mechanised by Giese and Schönegge (1995) and Marzion (2020).
Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 11



Cantor’s Isomorphism Theorem3

Structure A(X ,Y ) := X and Y are unboundend dense linear orders
(x , x ′) ∼ (y , y ′) := (x = x ′ ↔ y = y ′) ∧ (x < x ′ ↔ y < y ′)

Lemma
There is a function µ such that if L is a partial order-isomorphism, so is (x , µ x L) :: L.

Theorem (Cantor)

All countable unbounded dense linear orders are isomorphic.

Theorem (Computational Cantor)

All decidable linear orders over enumerable domain with computable witnesses for density and
unboundedness are computably isomorphic.

3Discovered by Cantor (1895), previously mechanised by Giese and Schönegge (1995) and Marzion (2020).
Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 11



Cantor’s Isomorphism Theorem in Coq
(* After 150 lines to define partner and prove step_morph: *)
Theorem Cantor X Y (OX : dulo X) (OY : dulo Y) (RX : retract X nat) (RY : retract Y nat) :

{ F : X → Y & { G | inverse F G ∧ ∀ x x', x < x' ↔ (F x) < (F x') } }.
Proof.

unshelve edestruct back_and_forth as [F[G[H1 H2]]].
- intros A B. exact (dulo A * dulo B). (* structure *)
- intros A B [OA OB]. exact (OB, OA). (* srev *)
- cbn. intros A B [OA OB]. reflexivity. (* srev_invol *)
- intros A B [OA OB] a a' b b'. exact ((a = a' ↔ b = b') ∧ (a < a' ↔ b < b')). (* iso *)
- cbn. tauto. (* iso_eq *)
- cbn. tauto. (* iso_rev *)
- cbn. intros A B [OA OB] f a. exact (partner OA OB f a). (* find *)
- cbn. intros A B [OA OB] f x. unfold step, tiso. now apply step_morph. (* find_iso *)

- exact X.
- exact Y.
- exact (OX, OY).
- exact RX.
- exact RY.

- cbn in *. exists F, G. split; try apply H1. apply H2.
Qed.

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 12



Myhill’s Isomorphism Theorem4

“One-one interreducible sets of numbers are recursively isomorphic.”

A function f : X → Y is a many-one reduction from p : X → P to q : Y → P if

∀x : X . p x ↔ q (f x).

If f is injective (bijective), it is a one-one reduction (recursive isomorphism).

Structure A(X ,Y ) := a pair (p, q) of one-one interreducible predicates
(x , x ′) ∼ (y , y ′) := (x = x ′ ↔ y = y ′) ∧ (p x ↔ q y)

Theorem (Myhill)

One-one interreducible unary predicates on (retracts of) N are recursively isomorphic.

4Discovered by Myhill (1957), previously mechanised by Forster, Jahn, and Smolka (2022).
Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 13



Myhill’s Isomorphism Theorem4

“One-one interreducible sets of numbers are recursively isomorphic.”

A function f : X → Y is a many-one reduction from p : X → P to q : Y → P if

∀x : X . p x ↔ q (f x).

If f is injective (bijective), it is a one-one reduction (recursive isomorphism).

Structure A(X ,Y ) := a pair (p, q) of one-one interreducible predicates
(x , x ′) ∼ (y , y ′) := (x = x ′ ↔ y = y ′) ∧ (p x ↔ q y)

Theorem (Myhill)

One-one interreducible unary predicates on (retracts of) N are recursively isomorphic.

4Discovered by Myhill (1957), previously mechanised by Forster, Jahn, and Smolka (2022).
Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 13



Myhill’s Isomorphism Theorem4

“One-one interreducible sets of numbers are recursively isomorphic.”

A function f : X → Y is a many-one reduction from p : X → P to q : Y → P if

∀x : X . p x ↔ q (f x).

If f is injective (bijective), it is a one-one reduction (recursive isomorphism).

Structure A(X ,Y ) := a pair (p, q) of one-one interreducible predicates
(x , x ′) ∼ (y , y ′) := (x = x ′ ↔ y = y ′) ∧ (p x ↔ q y)

Theorem (Myhill)

One-one interreducible unary predicates on (retracts of) N are recursively isomorphic.

4Discovered by Myhill (1957), previously mechanised by Forster, Jahn, and Smolka (2022).
Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 13



Myhill’s Isomorphism Theorem4

“One-one interreducible sets of numbers are recursively isomorphic.”

A function f : X → Y is a many-one reduction from p : X → P to q : Y → P if

∀x : X . p x ↔ q (f x).

If f is injective (bijective), it is a one-one reduction (recursive isomorphism).

Structure A(X ,Y ) := a pair (p, q) of one-one interreducible predicates
(x , x ′) ∼ (y , y ′) := (x = x ′ ↔ y = y ′) ∧ (p x ↔ q y)

Theorem (Myhill)

One-one interreducible unary predicates on (retracts of) N are recursively isomorphic.

4Discovered by Myhill (1957), previously mechanised by Forster, Jahn, and Smolka (2022).
Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 13



Myhill’s Isomorphism Theorem in Coq
(* After 100 lines to define mstep and prove step_corr: *)
Theorem Myhill X Y (SXY : bireduction X Y) (RX : retract X nat) (RY : retract Y nat) :

{ F : X → Y & { G | inverse F G ∧ reduction p q F } }.
Proof.

unshelve edestruct back_and_forth as [F[G[H1 H2]]].
- intros A B. exact (bireduction A B). (* structure *)
- intros A B S. cbn in *. apply (@Build_bireduction B A eY eX q p g f); apply S. (* srev *)
- cbn. intros A B []. reflexivity. (* srev_invol *)
- intros A B S a a' b b'. cbn in S. exact ((a = a' ↔ b = b') ∧ (p a ↔ q b)). (* iso *)
- cbn. tauto. (* iso_eq *)
- cbn. tauto. (* iso_rev *)
- cbn. intros A B S C a. exact (mstep f eX eY C a). (* find *)
- cbn. intros A B S C a. unfold step, tiso. apply step_corr; apply S. (* find_iso *)

- exact X.
- exact Y.
- exact SXY.
- exact RX.
- exact RY.

- cbn in *. exists F, G. split; try apply H1. intros x. now apply H2.
Qed.

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 14



Bonus: Computational Cantor-Bernstein Theorem5

If we forget about the computational interpretation of the previous theorem, we can observe:

Corollary (Countable Cantor-Bernstein)

Countable sets X and Y with injections X → Y and Y → X admit a bijection X → Y .

Proof.
Pick as p and q the full predicates on X and Y , then use the previous theorem.

Though Pradic and Brown (2019) show that the general Cantor-Bernstein theorem is
equivalent to excluded middle, the restriction to countable sets holds constructively!

5Discovered and previously mechanised by Forster, Jahn, and Smolka (2022).
Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 15



Bonus: Computational Cantor-Bernstein Theorem5

If we forget about the computational interpretation of the previous theorem, we can observe:

Corollary (Countable Cantor-Bernstein)

Countable sets X and Y with injections X → Y and Y → X admit a bijection X → Y .

Proof.
Pick as p and q the full predicates on X and Y , then use the previous theorem.

Though Pradic and Brown (2019) show that the general Cantor-Bernstein theorem is
equivalent to excluded middle, the restriction to countable sets holds constructively!

5Discovered and previously mechanised by Forster, Jahn, and Smolka (2022).
Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 15



Bonus: Computational Cantor-Bernstein Theorem5

If we forget about the computational interpretation of the previous theorem, we can observe:

Corollary (Countable Cantor-Bernstein)

Countable sets X and Y with injections X → Y and Y → X admit a bijection X → Y .

Proof.
Pick as p and q the full predicates on X and Y , then use the previous theorem.

Though Pradic and Brown (2019) show that the general Cantor-Bernstein theorem is
equivalent to excluded middle, the restriction to countable sets holds constructively!

5Discovered and previously mechanised by Forster, Jahn, and Smolka (2022).
Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 15



Bonus: Computational Cantor-Bernstein Theorem5

If we forget about the computational interpretation of the previous theorem, we can observe:

Corollary (Countable Cantor-Bernstein)

Countable sets X and Y with injections X → Y and Y → X admit a bijection X → Y .

Proof.
Pick as p and q the full predicates on X and Y , then use the previous theorem.

Though Pradic and Brown (2019) show that the general Cantor-Bernstein theorem is
equivalent to excluded middle, the restriction to countable sets holds constructively!

5Discovered and previously mechanised by Forster, Jahn, and Smolka (2022).
Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 15



Bonus: Computational Cantor-Bernstein Theorem5

If we forget about the computational interpretation of the previous theorem, we can observe:

Corollary (Countable Cantor-Bernstein)

Countable sets X and Y with injections X → Y and Y → X admit a bijection X → Y .

Proof.
Pick as p and q the full predicates on X and Y , then use the previous theorem.

Though Pradic and Brown (2019) show that the general Cantor-Bernstein theorem is
equivalent to excluded middle, the restriction to countable sets holds constructively!

5Discovered and previously mechanised by Forster, Jahn, and Smolka (2022).
Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 15



What are the Take-Home Messages?

The back-and-forth method can be described abstractly via a very general interface:
I Natural formulation in constructive type theory
I Neat construction and verification fully exploiting symmetry

Instantiation just requires a notion of structure and a one-step extension function:
I Examples given for Cantor’s and Myhill’s isomorphism theorems
I Should apply to all other examples and might save your time

By doing all proofs constructively, you get computational results for free:
I No need to work with an explicit model of computation
I Method is pretty constructive by default, only little care needs to be taken

Thanks for listening!

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 16



What are the Take-Home Messages?

The back-and-forth method can be described abstractly via a very general interface:
I Natural formulation in constructive type theory
I Neat construction and verification fully exploiting symmetry

Instantiation just requires a notion of structure and a one-step extension function:
I Examples given for Cantor’s and Myhill’s isomorphism theorems
I Should apply to all other examples and might save your time

By doing all proofs constructively, you get computational results for free:
I No need to work with an explicit model of computation
I Method is pretty constructive by default, only little care needs to be taken

Thanks for listening!

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 16



What are the Take-Home Messages?

The back-and-forth method can be described abstractly via a very general interface:
I Natural formulation in constructive type theory
I Neat construction and verification fully exploiting symmetry

Instantiation just requires a notion of structure and a one-step extension function:
I Examples given for Cantor’s and Myhill’s isomorphism theorems
I Should apply to all other examples and might save your time

By doing all proofs constructively, you get computational results for free:
I No need to work with an explicit model of computation
I Method is pretty constructive by default, only little care needs to be taken

Thanks for listening!

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 16



What are the Take-Home Messages?

The back-and-forth method can be described abstractly via a very general interface:
I Natural formulation in constructive type theory
I Neat construction and verification fully exploiting symmetry

Instantiation just requires a notion of structure and a one-step extension function:
I Examples given for Cantor’s and Myhill’s isomorphism theorems
I Should apply to all other examples and might save your time

By doing all proofs constructively, you get computational results for free:
I No need to work with an explicit model of computation
I Method is pretty constructive by default, only little care needs to be taken

Thanks for listening!

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 16



What are the Take-Home Messages?

The back-and-forth method can be described abstractly via a very general interface:
I Natural formulation in constructive type theory
I Neat construction and verification fully exploiting symmetry

Instantiation just requires a notion of structure and a one-step extension function:
I Examples given for Cantor’s and Myhill’s isomorphism theorems
I Should apply to all other examples and might save your time

By doing all proofs constructively, you get computational results for free:
I No need to work with an explicit model of computation
I Method is pretty constructive by default, only little care needs to be taken

Thanks for listening!
Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 16



Bibliography
Bauer, A. (2006). First steps in synthetic computability theory. Electronic Notes in Theoretical Computer

Science, 155:5–31.

Cantor, G. (1895). Beiträge zur Begründung der transfiniten Mengenlehre. Mathematische Annalen,
46(4):481–512.

Forster, Y., Jahn, F., and Smolka, G. (2022). A Constructive and Synthetic Theory of Reducibility: Myhill’s
Isomorphism Theorem and Post’s Problem for Many-one and Truth-table Reducibility in Coq (Full Version).
working paper or preprint.

Forster, Y., Kirst, D., and Smolka, G. (2019). On synthetic undecidability in Coq, with an application to the
entscheidungsproblem. In Proceedings of the 8th ACM SIGPLAN International Conference on Certified
Programs and Proofs, pages 38–51.

Giese, M. and Schönegge, A. (1995). Any Two Countable, Densely Ordered Sets Without Endpoints are
Isomorphic: A Formal Proof with KIV. Univ., Fak. für Informatik.

Marzion, E. (2020). Visualizing Cantor’s theorem on dense linear orders using Coq. Blog post.

Myhill, J. (1957). Creative sets. Journal of Symbolic Logic, 22(1).

Pradic, P. and Brown, C. E. (2019). Cantor-Bernstein implies excluded middle. arXiv preprint arXiv:1904.09193.

Richman, F. (1983). Church’s thesis without tears. The Journal of symbolic logic, 48(3):797–803.

Silver, C. L. (1994). Who invented Cantor’s back-and-forth argument? Modern Logic, 4(1):74–78.
Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 17



Synthetic Computability Theory

content

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 18



Myhill Construction

content

Dominik Kirst Computational Back-and-Forth Arguments August 9th, 2022 19


	References
	Appendix

