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Our Coq Library of Undecidability Proofs∗

Merge of a few initial Coq developments:
I Computablity theory using a cbv. lambda calculus
I Synthetic computability
I Initial undecidability proofs

Extended with further undecidability reductions over past 2 years

Unified framework to ease external contribution

9+ contributors and more than 100k lines of code

12+ related publications (ITP, CPP, IJCAR, FSCD, etc.)

Currently roughly 13 (groups of) undecidable problems

∗https://github.com/uds-psl/coq-library-undecidability
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Library Overview (Forster et al. (2020b))
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Classification in seed problems and target problems
This talk: mostly the PCP → FOL edge

Dominik Kirst Synthetic Undecidability Proofs in Coq November 12th, 2020 3



Outline

Framework: Synthetic Undecidability

Example 1: The Entscheidungsproblem

Example 2: Trakhtenbrot’s Theorem

Example 3: First-Order Axiom Systems

Conclusion

Dominik Kirst Synthetic Undecidability Proofs in Coq November 12th, 2020 4



Framework:
Synthetic Undecidability∗

∗Yannick Forster, K., and Gert Smolka at CPP’19.
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How to mechanise decidability?

Conventional approach:
Pick a concrete model of computation
(Turing machines, µ-recursive functions, untyped λ-calculus, etc.)
Invent a decision procedure for the given problem
Explicitly code the algorithm in the chosen model!

Synthetic approach (Bauer (2006); Richman (1983)):
Work in a constructive foundation, e.g. constructive type theory
Define a decision procedure e.g. as a Boolean function
Definable functions are computable, so that’s it!

(Similar for other notions like enumerability and reducibility)
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How to mechanise undecidability?

Problem of the synthetic approach:
Constructive type theories like MLTT or CIC are consistent with
classical assumption, rendering every problem decidable
Proving a given problem undecidable is not outright possible

Possible solutions:
Resort to a concrete model of computation
Verify a synthetic reduction from an undecidable problem

I Computability axioms could be used to obtain expected results

(Again similar for other negative notions of computability theory)
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Coq’s Type Theory

Main features of Coq’s underlying CIC:

Standard type formers: X → Y , X × Y , X + Y , ∀x .F x , Σx .F x

Inductive types: B, N, lists L(X ), options O(X ), vectors X n, ...

Propositional universe P with logical connectives: →, ∧, ∨, ∀, ∃

P is impredicative and separate from computational types

All definable functions N→ N are computable!
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Decidability and Enumerability

A problem interpreted as a predicate p : X → P on a type X is
decidable if there is a function f : X → B with

∀x . p x ↔ f x = tt,

enumerable if there is a function f : N→ O(X ) with

∀x . p x ↔ ∃n. f n = pxq.

Fact
Let p : X → P be a predicate, then p is

decidable iff ∀x . p x + ¬(p x) is inhabited and
enumerable iff there is L : N→ L(X ) s.t. ∀x . p x ↔ ∃n. x ∈ L n.

Dominik Kirst Synthetic Undecidability Proofs in Coq November 12th, 2020 9



Data Types

Computability theory is usually developed on computational domains.

A type X is called
enumerable if λx .> is enumerable,
discrete if λxy . x = y is decidable, and
data type if it is both enumerable and discrete.

Fact
Decidable predicates on data types are enumerable and co-enumerable.

Proof.
Let fX : N→ O(X ) enumerate X and fp : X → B decide p. Then

f n := match fX n with pxq⇒ if fp x then pxq else ∅ | ∅ ⇒ ∅

defines an enumerator for p.
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Many-One Reductions

Given predicates p : X → P and q : Y → P we call a function f : X → Y a
(many-one) reduction from p to q if

∀x . p x ↔ q (f x).

We write p 4 q if a reduction from p to q exists.

Theorem (Reduction)

Let p and q be predicates on data types with p 4 q.
If q is decidable/enumerable/co-enumerable, then so is p.
If p is not co-enumerable, then q is not co-enumerable.

Proof.
If f witnesses p 4 q and g decides q, then g ◦ f decides p.
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The Post Correspondence Problem

Intuition: given a stack S of cards s/t, find a derivable match.
This (undecidable) problem can be expressed by an inductive predicate:

s/t ∈ S

S . s/t

S . u/v s/t ∈ S

S . su/tv

S . s/s

PCP S

Fact
The type S of stacks is a data type and PCP is enumerable.

Proof.
The former follows from closure properties and for the latter

L 0 := []

L (S n) := L n++ [(S , (s, t)) | S ∈ LS n, (s, t) ∈ S ]

++ [(S , (su, tv)) | (S , (u, v)) ∈ L n, (s, t) ∈ S ]

defines a list enumerator for λSst.S . s/t.
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Example 1:
The Entscheidungsproblem∗

∗Yannick Forster, K., and Gert Smolka at CPP’19.
Dominik Kirst Synthetic Undecidability Proofs in Coq November 12th, 2020 13



General Idea

Given a FOL formula ϕ, is ϕ valid in all models?

Conventional outline following Turing:
Encode Turing machine M as formula ϕM over custom signature
Verify that M halts if and only if ϕM holds in all models
(Argue why the used signature could have been minimised)

Our outline:
Follow the simpler proof given in Manna (2003) using PCP
Also don’t bother with signature minimisation yet...
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Syntax and Tarski Semantics

Terms and formulas are defined for a fixed signature:

τ : Term := x | a | e | ftt τ | fff τ x , a : N
ϕ,ψ : Form := ⊥̇ | Q | P τ1 τ2 | ϕ→̇ψ | ∀̇x . ϕ

Formulas are interpreted in models I = (D, η, eI , f Itt , f
I
ff ,Q

I ,PI)
given a variable environment ρ : N→ D:

I �ρ ⊥̇ := ⊥
I �ρ Q := QI

I �ρ P τ1 τ2 := PI (ρ̂ τ1) (ρ̂ τ2)

I �ρ ϕ→̇ψ := I �ρ ϕ→ I �ρ ψ
I �ρ ∀̇x . ϕ := ∀d : D. I �ρ[x :=d ] ϕ

A formula ϕ is valid if I �ρ ϕ for all I and ρ.
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A Standard Model

Strings can be encoded as terms, e.g. tt ff ff tt = ftt (fff (fff (ftt (e)))).

The standard model B over the type L(B) of Boolean strings captures
exactly the cards derivable from a fixed stack S :

eB := [] QB := PCPS

f Bb s := b :: s PB s t := S . s/t.

Lemma
Let ρ : N→ L(B) be an environment for the standard model B.
Then ρ̂ s = s and B �ρ P τ1 τ2 ↔ S . ρ̂ τ1/ρ̂ τ2.
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Undecidability of Validity
We express the constructors of S . s/t and PCP as formulas:

ϕ1 := [P s t | s/t ∈ S ]

ϕ2 := [ ∀̇xy .P x y→̇P (sx) (ty) | s/t ∈ S ]

ϕ3 := ∀̇x .P x x→̇Q

ϕS := ϕ1→̇ϕ2→̇ϕ3→̇Q

Theorem
PCPS iff ϕS is valid, hence PCP reduces to validity.

Proof.
Let ϕS be valid, so in particular B � ϕS . Since B satisfies all of ϕ1, ϕ2,
and ϕ3 it follows that B � Q and thus PCP S .
Now suppose that S . s/s for some s and that some model I satisfies all of
ϕ1, ϕ2, and ϕ3. Then I � P s s by ϕ1 and ϕ2, hence I � Q by ϕ3, and
thus I � ϕS .
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Undecidability of Satisfiability

Disclaimer: validity does not directly reduce to (co-)satisfiability!
If ϕ is valid, then certainly ¬̇ϕ is unsatisfiable
However, the converse does not hold constructively

Fortunately, we can give a direct reduction from the complement of PCP:

Theorem
¬PCPS iff ¬̇ϕS is satisfiable, hence co-PCP reduces to satisfiability.

Proof.
If ¬PCP S , then B � ¬̇ϕS since B � ϕS would yield PCPS as before.
Now suppose there are I and ρ with I `ρ ¬̇ϕS . Then assuming PCPS
yields the contradiction that ϕS is valid.
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Interlude: Completeness Theorems for FOL
Completeness of deduction systems for FOL relies on Markov’s principle:

MP := ∀f : N→ B.¬¬(∃n. f n = tt)→ ∃n. f n = tt

MP is independent but admissible in Coq’s type theory∗

Theorem (cf. Yannick Forster, K., and Dominik Wehr at LFCS’20.)

T � ϕ implies ¬¬(T `c ϕ) for all T : Form→ P and ϕ : Form
If T is enumerable, then MP is equivalent to the stability of T `c ϕ

⇒ Completeness for enumerable T is equivalent to MP and admissible

Possible strategies:
a) Verify a weak reduction from PCP integrating the double negation
b) Obtain a standard reduction by proving A `c ϕS by hand (done so far)

∗Coquand/Mannaa ’17, Pédrot/Tabareau ’18
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Undecidability of Minimal Provability

We define a minimal natural deduction system inductively:

ϕ ∈ A

A ` ϕ A
ϕ :: A ` ψ
A ` ϕ→̇ψ II

A ` ϕ→̇ψ A ` ϕ
A ` ψ IE

A ` ϕx
a a 6∈ P(ϕ) ∪ P(A)

A ` ∀̇x . ϕ
AI

A ` ∀̇x . ϕ V(τ) = ∅
A ` ϕx

τ
AE

A formula ϕ is provable if ` ϕ.

Fact (Soundness)

A ` ϕ implies A � ϕ, so provable formulas are valid.

Theorem

PCP S iff ϕS is provable. (proving ` ϕS by hand)
Provability is enumerable. (by giving a list enumerator)
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Undecidability of Classical Provability

We extend the deduction system by a classical rule for falsity:

A `c ¬̇¬̇ϕ
A `c ϕ

DN

Unfortunately, this rule is not sound constructively!

As a remedy, we define a Gödel-Gentzen-Friedman translation ϕQ of
formulas ϕ such that A `c ϕ implies AQ ` ϕQ .

Theorem
PCPS iff ϕS is classically provable, hence PCP reduces to classical ND.

Proof.
If PCP S then ` ϕS by the previous theorem and hence `c ϕS . Conversely,
let `c ϕS and hence ` ϕQ

S . Then by soundness B � ϕQ
S which still implies

B � Q and PCP S as before.
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Example 2:
Trakhtenbrot’s Theorem∗

∗K. and Dominique Larchey-Wendling at IJCAR’20.
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General idea

Given a FOL formula ϕ, is ϕ finitely satisfiable?

Textbook proofs by dual reduction from the halting problem:∗

Encode Turing machine M as formula ϕM over custom signature
Verify that the models of ϕM correspond to the runs of M
Conclude that M halts if and only if ϕM has a finite model

Our mechanisation:
Illustrates that one can still use PCP for a simpler reduction
Signature minimisations are constructive for finite models

∗e.g. Libkin (2010); Börger et al. (1997)
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First-Order Satisfiability over Signatures
Given a signature Σ = (FΣ;PΣ), we represent terms and formulas by:

t : TermΣ ::= x | f ~t (x : N, f : FΣ, ~t : Term
|f |
Σ )

ϕ,ψ : FormΣ ::= ⊥̇ | P ~t | ϕ �̇ψ | ∇̇ϕ (P : PΣ, ~t : Term
|P|
Σ )

A modelM over a domain D is a pair of interpretation functions:

−M : ∀f : FΣ.D
|f | → D −M : ∀P : PΣ.D

|P| → P

For assignments ρ : N→ D define evaluation ρ̂ t and satisfactionM �ρ ϕ:
ρ̂ x := ρx ρ̂ (f ~t ) := fM (ρ̂ ~t )

M �ρ ⊥̇ := ⊥ M �ρ ϕ �̇ψ := M �ρ ϕ �M �ρ ψ

M �ρ P ~t := PM (ρ̂ ~t ) M �ρ ∇̇ϕ := ∇a : D.M �a·ρ ϕ

SAT(Σ)ϕ := there areM and ρ such thatM �ρ ϕ

Dominik Kirst Synthetic Undecidability Proofs in Coq November 12th, 2020 24



Finiteness in Constructive Type Theory

Definition
A type X is finite if there exists a list lX with x ∈ lX for all x : X .

This seems to be a good compromise:
Easy to establish and work with
Does not enforce discreteness
Enough to get expected properties:

I Every strict order on a finite type is well-founded
I Every finite decidable equivalence relation admits a quotient on Fn

FSAT(Σ)ϕ if additionally D is finite and all PM are decidable

FSATEQ(Σ;≡)ϕ if x ≡M y ↔ x = y for all x , y : D (hence discrete)
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Encoding the Post Correspondence Problem

We use the signature ΣBPCP := ({?0, e0, f 1tt , f 1ff }; {P2,≺2,≡2}):

Chains like fff(ftt(e)) represent strings while ? signals overflow

P concerns only defined values and ≺ is a strict ordering:

ϕP := ∀̇xy .P x y →̇ x 6≡ ? ∧̇ y 6≡ ?
ϕ≺ := (∀̇x . x 6≺ x) ∧̇ (∀̇xyz . x ≺ y →̇ y ≺ z →̇ x ≺ z)

Sanity checks on f regarding overflow, disjointness, and injectivity:

ϕf :=

 ftt ? ≡ ? ∧̇ fff ? ≡ ?
∀̇x . ftt x 6≡ e

∀̇x . fff x 6≡ e

 ∧̇
 ∀̇xy . ftt x 6≡ ? →̇ ftt x ≡ ftt y →̇ x ≡ y

∀̇xy . fff x 6≡ ? →̇ fff x ≡ fff y →̇ x ≡ y

∀̇xy . ftt x ≡ fff y →̇ ftt x ≡ ? ∧̇ fff y ≡ ?


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Trakhtenbrot’s Theorem
Given an instance R of PCP, we construct a formula ϕR by:

ϕR := ϕP ∧̇ ϕ≺ ∧̇ ϕf ∧̇ ϕ. ∧̇ ∃̇x .P x x

Crucially, we enforce that P satisfies the inversion principle of R . (s, t):

ϕ. := ∀̇xy .P x y →̇
.∨

(s,t)∈R

∨̇
{
x ≡ s ∧̇ y ≡ t

∃̇uv .P u v ∧̇ x ≡ su ∧̇ y ≡ tv ∧̇ u/v ≺ x/y

Theorem
PCPR iff FSATEQ(ΣBPCP;≡)ϕR , hence PCP 4 FSATEQ(ΣBPCP;≡).

Proof.
If R has a solution of length n, then ϕR is satisfied by the model of strings of
length bounded by n. Conversely, ifM �ρ ϕR we can extract a solution of R from
ϕ. by well-founded induction on ≺M (which is applicable sinceM is finite).
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Signature Transformations

Given a finite and discrete signature Σ with arities bounded by n, we have:

FSATEQ(Σ;≡) 4 FSAT(Σ) 4 FSAT(0;Pn+2) 4 FSAT(0;∈2)

First reduction: axiomatise that ≡ is a congruence for the symbols in Σ

Second reduction:
Encode k-ary functions as (k + 1)-ary relations
Align the relation arities to be constantly n + 1
Merge relations into a single (n + 2)-ary relation indexed by constants
Interpret constants with fresh variables

Caveat: intermediate reductions may rely on discrete models...

Dominik Kirst Synthetic Undecidability Proofs in Coq November 12th, 2020 28



Discrete Models

FSAT′(Σ)ϕ if FSAT(Σ)ϕ on a discrete model

Can every finite modelM be transformed to a discrete finite modelM′?

Idea: first-order indistinguishability x=̇y := ∀ϕρ.M �x ·ρ ϕ↔M �y ·ρ ϕ

Lemma
The relation x=̇y is a decidable congruence for the symbols in Σ.

Fact
FSAT′(Σ)ϕ iff FSAT(Σ)ϕ, hence in particular FSAT′(Σ)ϕ 4 FSAT(Σ)ϕ.

Proof.
IfM �ρ ϕ pickM′ to be the quotient ofM under x=̇y .
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Compressing Relations: FSAT(0;Pn) 4 FSAT(0;∈2)
Intuition: encode P x1 . . . xn as (x1, . . . , xn) ∈ p for a set p representing P

So let’s play set theory! For a set d representing the domain we define ϕ′∈:

(P x1 . . . xn)′∈ := “(x1, . . . , xn) ∈ p” (∀̇z . ϕ)′∈ := ∀̇z . z ∈ d →̇ (ϕ)′∈
(ϕ �̇ ψ)′∈ := (ϕ)′∈ �̇ (ψ)′∈ (∃̇z . ϕ)′∈ := ∃̇z . z ∈ d ∧̇ (ϕ)′∈

Then ϕ∈ is ϕ′∈ plus asserting ∈ to be extensional and d to be non-empty.

Fact
FSAT(0;Pn)ϕ iff FSAT(0;∈2)ϕ∈, hence FSAT(0;Pn) 4 FSAT(0;∈2).

Proof.
The hard direction is to construct a model of ϕ∈ given a modelM of ϕ.
We employ a segment of the model of hereditarily finite sets by Smolka and
Stark (2016) large enough to accommodateM.
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Full Signature Classification

Composing all signature transformations verified we obtain:

Theorem
If Σ contains either an at least binary relation or a unary relation together
with an at least binary function, then PCP reduces to FSAT(Σ).

On the other hand, FSAT for monadic signatures remains decidable:

Theorem
If Σ is discrete and has all arities bounded by 1 or if all relation symbols
have arity 0, then FSAT(Σ) is decidable.

In any case, since one can enumerate all finite models up to extensionality:

Fact
If Σ is discrete and enumerable, then FSAT(Σ) is enumerable.
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Example 3:
First-Order Axiom Systems∗

∗Work in progress with Marc Hermes.
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General Idea

Is a formula ϕ entailed by an axiomatisation A?

Strategy if A is strong enough to capture computation:
Encode Turing machine M as formula ϕM

Verify that M halts iff A � ϕM

Verify that M halts iff A ` ϕM (→ direction by hand)
Instead of TM use problems suitable to encode in A

Connections to consistency and incompleteness:
Reducing a non-trivial problem P to A ` ϕ shows A consistent
Undecidability implies incompleteness for enumerable axiomatisations
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Sketch for Peano Arithmetic

Use axiomatisation PA over standard signature (0, S,+, · ;≡).

Diophantine constraints (cf. Larchey-Wendling and Forster (2019)):
Instances are lists L of constraints xi = 1 | xi + xj = xk | xi · xj = xk
L is solvable if there is an evaluation η : N→ N solving all constraints

Theorem
L = [c1, . . . , ck ] with maximal index xn is solvable iff PA � ∃nc1 ∧ · · · ∧ ck .

Proof.
If L has solution η instantiate the existential quantifiers with numerals
η1, . . . , ηn. Then the axioms of PA entail the constraints.
If PA � ∃nc1 ∧ · · · ∧ ck use the standard model N to extract solution η.

Fact
L = [c1, . . . , ck ] with maximal index xn is solvable iff PA ` ∃nc1 ∧ · · · ∧ ck .

Dominik Kirst Synthetic Undecidability Proofs in Coq November 12th, 2020 34



Interlude: Models of ZF
Sets-as-trees interpretation (Aczel (1978)):

Type T of well-founded trees with constructor τ : ∀X . (X → T )→ T
Equality of trees s, t given by isomorphism s ≈ t

Membership defined by s ∈ τ X f := ∃x . s ≈ f x

Set operations implemented by tree operations:
I ∅ := τ ⊥ elim⊥
I {s, t} := τ B (λb. if b then s else t)
I ω := τ N (λn. n) where 0 := ∅ and S n := n ∪ {n}
I ...

Axioms needed in Coq:
EM to really interpret ZF instead of IZF
Replacement needs a type-theoretical choice axiom (Werner (1997))
Strong quotient axiom for (T ,≈) suffices (Kirst and Smolka (2019))
This yields a well-behaved model S: quotiented, standard numbers
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Sketch for ZF Set Theory
Use axiomatisation ZF over explicit signature (∅, {_,_},

⋃
,P, ω ;≡,∈).

Reduction from PCP:
Boolean encoding: tt = {∅, ∅} and tt = ∅
String encoding: tt ff ff tt = (tt, (ff, (tt, (ff, ∅))))

Stack encoding: S = {(s1, t1), . . . , (sk , tk)}
Combination encoding: S ++B :=

⋃
s/t∈S{(sx , ty) | (x , y) ∈ B}

f . n := (∅, S) ∈ f ∧ ∀(k,B) ∈ f . k ∈ n→ (k + 1,S ++B) ∈ f

ϕS := ∃f , n,B, x . n ∈ ω ∧ f . n ∧ (n,B) ∈ f ∧ (x , x) ∈ B

Theorem
PCPS iff ZF � ϕS and PCP S iff ZF ` ϕS .

Proof.
Direction → by internal proofs and ← relies on standard model S.
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Conclusion
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Ongoing and Future Work

What I am involved with:
Finish undecidability proofs for PA and ZF
Extend and improve FOL mechanisation

I Löwenheim-Skolem theorems, relative consistency proofs, etc.
I Automated definability proofs, proof mode for ND derivations, etc.
I Merge into a uniform core mechanisation

What other contributors are working on:
Undecidability of semi-unification
Undecidability of typability and type checking in System F
Undecidability of IMSELL
Verified compiler from cbv. lambda calculus to Turing machines
Theoretical basis (e.g. consistency of computability axioms with EM)
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Take-Home Messages

Synthetic approach eases mechanisation of undecidability proofs

Reductions (not only) to FOL benefit from using PCP

Core reduction typically easy, remaining transformations intricate

Constructive mechanisation of FOL rewarding but challenging

If you work on undecidability proofs in Coq:
Our library could help and is open for contributions

Thank You!
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Coq Mechanisation∗

Includes all results presented in the paper (PDF is hyperlinked!)

Roughly 10k loc with additional 3k loc of utility libraries
I More than 4k loc for FSAT(0;Pn) 4 FSAT(0;∈2)
I Less than 500 loc for PCP 4 FSATEQ(ΣBPCP;≡)

FOL engineering similar to previous devs (cf. Forster et al. (2020a))
I De Bruijn encoding of bound variables
I Dependent syntax enforcing well-defined terms and formulas

Axiom-free to ensure computability and interoperability

Contributed to the Coq library of undecidability proofs†

†https://github.com/uds-psl/coq-library-undecidability
∗https://www.ps.uni-saarland.de/extras/fol-trakh/
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First-Order Indistinguishability

We define operators FF ,FP : (D → D → P)→ (D → D → P) by :

FF (R) x y := ∀f . f ∈ lF → ∀(~v : D |f |) (i : F|f |).R
(
fM ~v [x/i ]

) (
fM ~v [y/i ]

)
FP(R) x y := ∀P.P ∈ lP → ∀(~v : D |P|) (i : F|P|).PM ~v [x/i ]↔ PM ~v [y/i ]

We then consider F(R) := FF (R) ∩ FP(R) and show:

Theorem
First-order indistinguishability =̇ up to lF/lP is extensionally equivalent to
≡F (Kleene’s greatest fixpoint of F), i.e. for any x , y : D we have

x =̇ y ↔ x ≡F y where x ≡F y := ∀n : N.Fn(λuv .>) x y .

Moreover, the relation x ≡F y is decidable and hence so is x =̇ y .
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Hereditarily Finite Sets
Theorem
Given a decidable n-ary relation R : X n → P over a finite, discrete and inhabited type X ,
one can compute a finite and discrete type Y equipped with a decidable relation
∈ : Y → Y → P, two distinguished elements d , r : Y and a pair of maps i : X → Y and
s : Y → X s.t.

1. ∈ is extensional; 4. ∀x : X . i x ∈ d ;
2. extensionally equal elements of Y are equal; 5. ∀y : Y . y ∈ d → ∃x . y = i x ;
3. all n-tuples of members of d exist in Y ; 6. ∀x : X . s(i x) = x ;
7. R ~v iff i(~v) is a n-tuple member of r , for any ~v : X n.

Proof.
The type Y is built from the type of hereditarily finite sets. The idea is first to construct
d as a transitive set of which the elements are in bijection i/s with the type X , hence d
is the cardinal of X in the set-theoretic meaning. Then the iterated powersets
P(d),P2(d), . . . ,Pk(d) are all transitive as well and contain d both as a member and
as a subset. Considering P2n(d) which contains all the n-tuples built from the members
of d , we define r as the set of n-tuples collecting the encoding i(~v) of vectors ~v : X n

such that R ~v . We show r ∈ p for p defined as p := P2n+1(d). Then we define
Y := {z | z ∈ p} and restrict membership ∈ to Y .
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Decidability Results

Lemmas used for decidability of monadic FOL and enumerability of FSAT:

Lemma
Given a discrete signature Σ and a discrete and finite type D, one can
decide whether or not a formula over Σ has a (finite) model over D.

Lemma
A formula over a signature Σ has a finite and discrete model if and only if
it has a (finite) model over Fn for some n : N.
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