Towards Extraction of Continuity Moduli in Coq

Yannick Forster, Dominik Kirst, Florian Steinberg

TYPES'20, Torino, Italy
March 2-4, 2020
Background

- Florian works on a Coq library of computable analysis\(^1\)
 - Typical goal: prove some particular \(f : (\mathbb{N} \to \mathbb{N}) \to \mathbb{N} \) continuous
 - Doing this by hand is repetitive and in fact unnecessary, since...
 - Metathorem: in vanilla Coq, every definable function is continuous

- Yannick works on the MetaCoq project\(^2\)
 - Internal representation of Coq terms with quote and unquote
 - Support for monadic programming to implement metatheorems

- I learned about the continuity theorem for System T at PC’18
 - Translated Escardó’s Agda implementation\(^3\) to Coq

[Steinberg et al. '19] [Sozeau et al. '19] [Escardó '13]

Project idea when we met at PC’19: Implement a PoC continuity plugin
Demo

Require Import systemT.

(* A simple first example *)

Definition f (a : N → N) := a 7.

Goal continuous f.
Proof.
 MetaCoq Run (ExtractModulus "cont_f" f).
 Check cont_f.
 exact cont_f.

(* A failing example *)

Definition f₂ (a : N → N) := a (a 3 + a 4).

Fail MetaCoq Run (ExtractModulus "cont_f₂" f₂).
Fail MetaCoq Run (Reify "ext_add" Nat.add).

(* A more careful example *)
Demo

Require Import systemT.

(* A simple first example *)

Definition f (a : N → N) := a 7.

Goal continuous f.
Proof.
 MetaCoq Run (ExtractModulus "cont_f" f).
 Check cont_f.
 exact cont_f.

(* A failing example *)

Definition f2 (a : N → N) := a (a 3 + a 4).

Fail MetaCoq Run (ExtractModulus "cont_f2" f2).
Fail MetaCoq Run (Reify "ext_add" Nat.add).

(* A more careful example *)
Demo

Require Import systemT.

(* A simple first example *)

Definition f (a : N -> N) := a 7.

Goal continuous f.
Proof.
 MetaCoq Run (ExtractModulus "cont_f" f).
 Check cont_f.
 exact cont_f.

(* A failing example *)

Definition f2 (a : N -> N) := a (a 3 + a 4).

Fail MetaCoq Run (ExtractModulus "cont_f2" f2).
Fail MetaCoq Run (Reify "ext_add" Nat.add).

(* A more careful example *)
Demo

```
Require Import systemT.

(* A simple first example *)

Definition f (a : N -> N) := a 7.

Goal continuous f.

Proof.
  MetaCoq Run (ExtractModulus "cont_f" f).
  Check cont_f.
  exact cont_f.

(* A failing example *)

Definition f_2 (a : N -> N) := a (a 3 + a 4).

Fail MetaCoq Run (ExtractModulus "cont_f_2" f_2).

Fail MetaCoq Run (Reify "ext_add" Nat.add).

(* A more careful example *)
```
Demo

Require Import systemT.

(* A simple first example *)

Definition f (a : N → N) := a 7.

Goal continuous f.
Proof.
 MetaCoq Run (ExtractModulus "cont_f" f).
 Check cont_f.
 exact cont_f.

(* A failing example *)

Definition f2 (a : N → N) := a (a 3 + a 4).

Fail MetaCoq Run (ExtractModulus "cont_f2" f2).
Fail MetaCoq Run (Reify "ext_add" Nat.add).

(* A more careful example *)
Demo

Require Import systemT.

(* A simple first example *)

Definition f (a : N → N) := a 7.

Goal continuous f.
Proof.
MetaCoq Run (ExtractModulus "cont_f" f).
Check cont_f.
exact cont_f.

(* A failing example *)

Definition f_2 (a : N → N) := a (a 3 + a 4).

Fail MetaCoq Run (ExtractModulus "cont_f2" f_2).
Fail MetaCoq Run (Reify "ext_add" Nat.add).

(* A more careful example *)
Demo

Require Import systemT.

(* A simple first example *)

Definition f (a : N → N) := a 7.

Goal continuous f.
Proof.
 MetaCoq Run (ExtractModulus "cont_f" f).
 Check cont_f.
 exact cont_f.

(* A failing example *)

Definition f2 (a : N → N) := a (a 3 + a 4).

Fail MetaCoq Run (ExtractModulus "cont_f2" f2).
Fail MetaCoq Run (Reify "ext_add" Nat.add).

(* A more careful example *)
Demo

Check cont_f.
exact cont_f.

(* A failing example *)

Definition f₂ (a : N → N) := a (a 3 + a 4).

Fail MetaCoq Run (ExtractModulus "cont_f2" f₂).

Fail MetaCoq Run (Reify "ext_add" Nat.add).

(* A more careful example *)

Definition add := (\n m : N ⇒ nat_rec _ m (\n r ⇒ S r) n).

MetaCoq Run (Reify "ext_add" add).

Definition f₃ (a : N → N) := a (add (a 3) (a 4)).

MetaCoq Run (Reify "ext_f3" f₃).

MetaCoq Run (ExtractModulus "cont_f3" f₃).

f₂ is defined

Check cont_f₃.
Demo

Check cont_f.
exact cont_f.

(* A failing example *)

Definition f2 (a : N → N) := a (a 3 + a 4).

Fail MetaCoq Run (ExtractModulus "cont_f2" f2).

Fail MetaCoq Run (Reify "ext_add" Nat.add).

(* A more careful example *)

Definition add := (λ n m : N ⇒ nat_rec _ m (λ n r ⇒ S r) n).

MetaCoq Run (Reify "ext_add" add).

Definition f3 (a : N → N) := a (add (a 3) (a 4)).

MetaCoq Run (Reify "ext_f3" f3).

MetaCoq Run (ExtractModulus "cont_f3" f3).

The command has indeed failed with message:
not in SystemT fragment
Demo

```plaintext
Check cont_f.
exact cont_f.

(* A failing example *)

Definition f_2 (a : N → N) := a (a 3 + a 4).

Fail MetaCoq Run (ExtractModulus "cont_f2" f_2).

Fail MetaCoq Run (Reify "ext_add" Nat.add).

(* A more careful example *)

Definition add := (λ n m : N ⇒ nat_rec _ m (λ n r ⇒ S r) n).

MetaCoq Run (Reify "ext_add" add).

Definition f_3 (a : N → N) := a (add (a 3) (a 4)).

MetaCoq Run (Reify "ext_f3" f_3).

MetaCoq Run (ExtractModulus "cont_f3" f_3).

Check cont_f.
```

The command has indeed failed with message:
not in SystemT fragment
Demo

Fail MetaCoq Run (Reify "ext_add" Nat.add).

(* A more careful example *)

Definition add := (\ n m : N \rightarrow nat_rec _ m (\ n r = S r) n).

MetaCoq Run (Reify "ext_add" add).

Definition f3 (a : N + N) := a (add (a 3) (a 4)).

MetaCoq Run (Reify "ext_f3" f3).

MetaCoq Run (ExtractModulus "cont_f3" f3).

Check cont_f3.

(* Modulus extraction *)

Print continuous.

Compute (get_modulus cont_f3 (\ n = 3)).

Compute (get_modulus cont_f3 (\ n = n)).
Fail MetaCoq Run (Reify "ext_add" Nat.add).

(* A more careful example *)

Definition add := (\n m : N \to nat_rec _ m (\n n r = S r) n).

MetaCoq Run (Reify "ext_add" add).

Definition f3 (a : N \to N) := a (add (a 3) (a 4)).

MetaCoq Run (Reify "ext_f3" f3).

MetaCoq Run (ExtractModulus "cont_f3" f3).

Check cont_f3.

(* Modulus extraction *)

Print continuous.

Compute (get_modulus cont_f3 (\n n = 3)).

Compute (get_modulus cont_f3 (\n n = n)).
Fail MetaCoq Run (Reify "ext_add" Nat.add).
(* A more careful example *)

Definition add := (\ n m : N ⇒ nat_rec _ m (\ n r ⇒ S r) n).
MetaCoq Run (Reify "ext_add" add).
Definition f3 (a : N + N) := a (add (a 3) (a 4)).
MetaCoq Run (Reify "ext_f3" f3).
MetaCoq Run (ExtractModulus "cont_f3" f3).
Check cont_f3.

(* Modulus extraction *)

Print continuous.
Compute (get_modulus cont_f3 (\ n ⇒ 3)).
Compute (get_modulus cont_f3 (\ n ⇒ n)).
Demo

Fail MetaCoq Run (Reify "ext_add" Nat.add).

(* A more careful example *)

Definition add := (\ n m : N \rightarrow nat_rec_ m (\ n r : S r) n).

MetaCoq Run (Reify "ext_add" add).

Definition f3 (a : N \rightarrow N) := a (add (a 3) (a 4)).

MetaCoq Run (Reify "ext_f3" f3).

MetaCoq Run (ExtractModulus "cont_f3" f3).

Check cont_f3.

(* Modulus extraction *)

Print continuous.

Compute (get_modulus cont_f3 (\ n = 3)).

Compute (get_modulus cont_f3 (\ n = n)).
Fail MetaCoq Run (Reify "ext_add" Nat.add).

(* A more careful example *)

Definition add := (λ n m : N ⇒ nat_rec _ m (λ n r ⇒ S r) n).
MetaCoq Run (Reify "ext_add" add).

Definition f3 (a : N ⇒ N) := a (add (a 3) (a 4)).
MetaCoq Run (Reify "ext_f3" f3).
MetaCoq Run (ExtractModulus "cont_f3" f3).

Check cont_f3.

(* Modulus extraction *)

Print continuous.

Compute (get_modulus cont_f3 (λ n ⇒ 3)).
Compute (get_modulus cont_f3 (λ n ⇒ n)).
Demo

Fail MetaCoq Run (Reify "ext_add" Nat.add).

(* A more careful example *)

Definition add := (∀ n m : N ⇒ nat_rec _ m (∀ n r = S r) n).
MetaCoq Run (Reify "ext_add" add).

Definition f3 (a : N ⇒ N) := a (add (a 3) (a 4)).
MetaCoq Run (Reify "ext_f3" f3).
MetaCoq Run (ExtractModulus "cont_f3" f3).

Check cont_f3.

(* Modulus extraction *)

Print continuous.

Compute (get_modulus cont_f3 (λ n = 3)).
Compute (get_modulus cont_f3 (λ n = n)).
Demo

Check cont_f3.

(* Modulus extraction *)

Print continuous.

Compute (get_modulus cont_f3 (\ n \rightarrow 3)).

Compute (get_modulus cont_f3 (\ n \rightarrow n)).

continuous = \ (X : Type) (f : Baire \rightarrow X) \rightarrow \forall \ a : N \rightarrow N, \{L : \text{list} N | \forall \ \beta : N \rightarrow N, \ a = \{L\} \beta \rightarrow f \ a = f \ \beta\}

: \forall \ X : Type, (Baire \rightarrow X) \rightarrow \text{Set}

Argument X is implicit
Argument scopes are [type_scope function_scope]
Demo

Check cont_f3.

(* Modulus extraction *)

Print continuous.

Compute (get_modulus cont_f3 (\ n \rightarrow 3)).

Compute (get_modulus cont_f3 (\ n \rightarrow n)).
Check cont_f3.

(* Modulus extraction *)

Print continuous.

Compute (get_modulus cont_f3 (\ n ➝ 3)).

Compute (get_modulus cont_f3 (\ n ➝ n)).

= [3; 4; 7]

: list N
Plugin Pipeline

Expected input: T-definable functional $f : (\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$

1. Reify f to the internal MetaCoq representation f_C

2. Try to translate f_C to an untyped T-term f_U

3. Infer a type for f_U to obtain an intrinsically typed T-term f_T

4. Compute the continuity information for f_T

5. Verify that f_T corresponds to f
Gödel’s System T

Simply typed lambda calculus with natural numbers and recursors:

\[A, B ::= \mathbb{N} \mid A \to B \]

\[s, t ::= x \mid \lambda x. s \mid st \mid 0 \mid S \mid R_A \]

Usual typing rules \(\Gamma \vdash s : A \) of simply typed lambda calculus plus:

\[
\begin{align*}
\Gamma \vdash 0 : \mathbb{N} & \quad \Gamma \vdash S : \mathbb{N} \to \mathbb{N} & \quad \Gamma \vdash R_A : A \to (\mathbb{N} \to A \to A) \to \mathbb{N} \to A
\end{align*}
\]

Natural denotational semantics in type theory:
Judgements \(\Gamma \vdash s : A \) translate to terms \(\llbracket s \rrbracket : \llbracket A \rrbracket \)
Continuity of T-Definable Functionals (cf. Escardó ’13)

A functional $f : (\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$ is continuous if

- “it accesses only finitely many positions of every input sequence”
- $\forall (\alpha : \mathbb{N} \to \mathbb{N}). \Sigma (L : \mathbb{N}^*). \forall (\beta : \mathbb{N} \to \mathbb{N}). \alpha \approx_L \beta \to f \alpha = f \beta$ \(^1\)

\(^1\)Projecting out $\mu_f : (\mathbb{N} \to \mathbb{N}) \to \mathbb{N}^*$ yields the modulus of continuity.

Theorem

If $\vdash s : (\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$ is typable in System T, then $\llbracket s \rrbracket$ is continuous.

Proof sketch.

We translate Escardó’s Agda development to Coq

- Logical statements placed in impredicative universe of propositions
- Computationally relevant notions placed in predicative type universes
- Based on intrinsically typed de Bruijn representation of System T
Reification (cf. Forster/Kunze ’19)

- MetaCoq type Ast.tm represents untyped Coq terms
- MetaCoq program tmQuote reifies Coq terms to Ast.tm

Module Ast.
Inductive tm : Set :=
| tRel : nat -> tm
| tConstruct : inductive -> nat ->
 universe_instance -> tm
| tFix : mfixpoint tm -> nat -> tm
| tLambda : name -> tm -> tm -> tm
| tApp : tm -> tm -> tm
| (* ... *).
End Ast.

Module SystemT.
Inductive tm : Type :=
| var : nat -> tm
| zero : tm
| succ : tm
| rec : type -> tm
| lambda : type -> tm -> tm
| app : tm -> tm -> tm.
End SystemT.

- Implemented translation to SystemT.tm as monadic program reify
Explicit annotations in SystemT.tm allow for unique type inference
Composes to reification from Coq functions \(f \) to typed T-terms \(f_T \)

Definition Reify (def : ident) \{A\} (f : A) :=
 f <- tmEval hnf f;;
 s <- tmQuote f;;
 s' <- reify 42 (trans s);;
 s' <- tmEval cbv (infer s' empty_env);;
 match s' with
 | Some (_, s') => tmDefinitionRed def (Some Common.hnf) s'
 | None => tmFail "could not infer type"
end.
Extraction Plugin

- Feeds the extracted typed T-term f_T into the continuity theorem
- Tries to show that $f = \llbracket f_T \rrbracket$ by reflexivity
- Concludes the continuity of f

Definition ExtractModulus def f :=
 syn <- tmQuote f;;
 m <- ExtractModulus’ f;;
 let (A, s) := m in
 match type_eq A ((N -> N) -> N) with
 | left H => s <- tmQuote s;;
 H <- tmUnquoteTyped (continuous f) (cnst syn s);;
 H <- tmEval cbv H;;
 tmDefinition def H
 | right _ => @tmFail (continuous f) "wrong type"
end.
Debatable Design Decisions

- Syntax translations as monadic programs instead of Coq functions
 - Ast.tm to SystemT.tm is morally the identity function
 - Normalisation needed to eliminate unexpressible features
 - Supported by MetaCoq’s tmEval program
 - Not internally verifiable!

- Ad-hoc type inference for reified terms
 - Forget typing information of Ast.tm, can be easily reconstructed
 - Allows simple syntax transformations to SystemT.tm in empty context
 - Only works for fully annotated representation of System T!

- Intermediate language to express the supported fragment
 - Natural starting point given previous developments
 - Works for well-defined fragments of Coq
 - Might be difficult to adjust to more language features!
Future Directions

Extend the supported syntax fragment to

- More data types like \mathbb{B}, sums, pairs, lists, rational numbers etc.
- Definitions using Coq's fix/match instead of explicit recursors
- More expressiveness with dependent and informative types
 ⇒ Clarify how notion and status of continuity scale!

Verify the current pipeline:

- Requires verified normalisation and type inference (Sozeau et al. ’20)
- Soundness: $f = \sem{f_T}$ holds whenever reification succeeds
- Completeness: reification succeeds for all T-definable f

http://www.ps.uni-saarland.de/extras/modulus-extraction/
Bibliography

Yannick Forster and Fabian Kunze.
A Certifying Extraction with Time Bounds from Coq to CBV Lambda Calculus.

Matthieu Sozeau, Simon Boulier, Yannick Forster, Nicolas Tabareau, and Théo Winterhalter.
Coq Coq correct! verification of type checking and erasure for Coq, in Coq.

Florian Steinberg, Laurent Théry, and Holger Thies.
Quantitative Continuity and Computable Analysis in Coq.

Martín Escardó.
Continuity of Gödel’s System T definable functionals via effectful forcing.

The MetaCoq Project.
Continuity of T-Definable Functionals (cf. Escardó ’13)

Theorem

If \(\vdash s : (\mathbb{N} \to \mathbb{N}) \to \mathbb{N} \) is typable in System T, then \([s]\) is continuous.

Proof sketch.